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ABSTRACT

Tiltrotor aircraft are emerging as a next—generation rotorcraft configuration capable of combining
vertical takeoff and landing (VTOL) capability with high—-speed cruise performance. During flight mode
transition, the rotors undergo tilt motion, which induces unsteady aerodynamic phenomena that
significantly affect not only the flight performance but also the acoustic radiation characteristics of the
aircraft. In particular, complex aerodynamic interactions such as rotor-rotor, rotor-fuselage, and rotor-
wing interference occur during the mode transition, and accurate prediction of these effects requires the
aeroacoustic analysis framework that incorporates detailed rotor geometry modeling and wake resolution.
In this study, a mid-fidelity aeroacoustic simulation framework was developed by coupling a panel
method-based aerodynamic solver, a vortex particle method for wake modeling, and the Farassat 1A
formulation for noise prediction. The proposed framework was validated against experimental data for
the HART II rotor and the XV-15 tiltrotor. The framework was applied to predict the noise levels of a
full-configuration XV-15 tiltrotor model under various tilt angles. In particular, phase interference
effects depending on the observer location were evaluated to examine the impact of destructive and
constructive interference on the overall sound pressure level
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Table 2. Validation conditions for HART Il rotor

Property Value
Rotation speed [rpm] 1041
Rotor shaft angle of attack [°] 4.5
Advance ratio [-] 0.151
Rotor thrust [N] 3300
Rolling moment [Nm] 0
Pitching moment [Nm] 0
(Cho:jl:/vni]sbee/rss;cngvrife) [-] 39 / 36
Time step [] 3
Total revolution [-] 10
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Experiment Panel method
P (Present)
Collective pitch 3.8 2.8
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Table 4. Validation conditions for XV-15 rotor

Property Value
Tip Mach number [-] 0.691
Advance ratio [-] 0.2
Tip path plane angle [] 4
Rotor thrust coefficient, Cy/o [-] 0.075
Rolling moment [Nm] 0
Pitching moment [Nm] 0
Number of grid
(Chordwise/Spanwise) [-]
Time step []
Total revolution [-]
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