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Analysis of the Radar Cross Section of Major Components of Next-generation

VTOL Aircraft

Seon Jae Hwang', Su Min Choi?, Hakjin Lee®, Rho Shin Myong?
School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju, Republic of Korea

ABSTRACT

Coaxial rotorcraft and tiltrotor aircraft are attracting attention as the next-generation VTOL aircraft.
In this study, the radar cross section (RCS) of the UH-60A, SB>1 Defiant, and V-280 Valor models
were compared to analyze the survivability related to radar signals of VTOL aircraft. The RCS analysis
was conducted using the PO{Physical Optics) method in the X-band region of 10 GHz In order to
identify the main RCS sources of the next-generation VTOL aircraft, the RCS of the SB>1 Defiant and
V-280 Valor was analyzed by component. The results showed that the next-generation VTOL aircraft
had an overall higher RCS than the existing VTOL aircraft. In particular, a small number of components
were found to have a dominant effect on the overall RCS,
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.M B Black Hawk: 1979¢1%E f£8=%on] 2030¥5E

g AF3 20409730lE 280 F8E o= A3

2% 7% $FojAF/= WH olF, 22 £4, 7 Hth vZoME o]¥ UH-60 Black HawkE HAISH]
Z 98 XY, 24 ¥ AY = trgst Ao &8y $8) (Future Long-Range Assault Aircraft; FLRAA)
2 Atk dEA] ¥ 715 $H0IRE7IA UH-60 ARIE 23 FoloHl]l. #H3 NATO= ENGRT (European
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Table 1. Rotorcraft losses and fatalities, 2001 to 2009 [2]

All Class A

Mishop sl Lgilsg(:?:tﬁl
Hostile Non- Non- ;'S cme BNMl::&;rd
Action Hosle ~ Combat | combay MomHostle)
Losses 70 157 148 305 227
Fatalities 145 219 132 351 364
Loss
Rate(%) 18.67 4187 3947 81.34 60.54
Fatality
Rate(%) 29.23 4415 26.61 70.76 7338

Next Generation Rotorcraft Technologies) B NGRC
(Next Generation Rotorcraft Capability) 52| ZEA|
EE 59 2% 9 9 AAY $£201257] AEE F
7 Foltt, AAY $AoAFI|E2 FEIL = A
2 FEVHY Ay, dEREH 37, 5¥Y A
o717k Sk ol2lg AN A o|AFI|7F FAF AT
of £4E AL A& FE7F d4Holt). 200195
2009¥17A] oloj ofmzpUArr HAT; ojgta HA
B F 3759 FAo|AF7)7 £AFER, o= I3
496789 AFIAZL WASEITk Table 10 Yebd vfe}
Zo] FE AP U £AEL 61%0lH, o] & AlYER
73%°l 3t} ol EIE wl, AF A Yox £AHE
fE] AFEo] § 52 ZASE UEdr ol +£4 ¥
715 UFoM 4 9 F7t oFs A $3o] uf
E 9% +£8& 191 AR Y0 A&EFHeER =gd
o] 8 YUJAYE AAFRITH2].

FAo|2587]9] AEAHAE FAAI7] HAoME R
(Infrared), RF(Radio Frequency), Noise A%} 72 tt
&3t FAAZREE Ao HA|E 3udtE 7]&c] ¥R
3ITH3]. 30|57 A”HA 7]£9] F8 Q4= T
S 2 A AS(R)E A7 wi7]FolA vexs
Hi7|dof] QsfiA gL o]& &ol|7] A= Hi7]
dg AHAF|AYG REisfor gk 422 379 B
O]=(Rotor Blade)® (13} =LA s, o]& #Z5}7]
A8 Efol= £& F7HAF|AY A g7l Fenestron
& A&stE Wo] AMSET B AFolA tE #Hold
ANERFE 2917 M= #old =2 A3 (Radar
Cross Section; RCS)S AZA|ACk gt RCSE &°|
7] 1M E Eolgzt EHol ¥iatEo] QtELtol $A1E]
A AT 7|4 BHO BAE Aut vA WEFES Aoj¥
T+ UEE AAstAY, #Hold F4 EZ(RAM, Radar
Absorbing Material) & #A-83t= WAjo] glth. 420z}
%7]9] RCSt Fig. 13} Z°] Nose, Engine Inlets,
Cabin, Vertical Stabilizer, Horizontal Stabilizer, Main
Rotor 59] REAA TAst= AS AT ¢ ATH3]

RCSE £A0IA 4 km AZOME ©XE 4 9o
ng olF &0l AL A AYE TLAANHA AFE 9
2 3 A 8% 942 ZE35ch olo] sl AA

==, Tail Horizontal
/ wheel stabilizer

Landing gear

anchor fairing Main rotor

Main wheels

=

2
Fig. 1. Major part of rotorcraft detection by radar[3]

FA0|ZE7E o 71 A wAn 3£ 7|EAL g1
#of 3lnf, o]= HS EFT A W gt V5 B
&E(EERE, ¥4 29y, 3 9 =Z=249y 3)
9] Z7}2 olojzict olgqt 2=2F ERAL HA RCS
£ Z7HZ 7t5Ao] Utk wEbd A $z2oxF
719l AEAE BQlslr] YsiME ZnkAQl YA WSyt
RCSO mAE= S AFHo= moid Hart ok
E35] it FdYolA A 849 uHE FF¥S 4
Foan, 5 AA IPolM AdE FA HAHste 7]
F& AAE £ Sk €A FgFRofoAE RCSE &9l
7] $8iA FU2 w2 At A= Qo

Alves E[4]2 X-band WH(8GHz ~ 12GHz)elA
T8 £4 F£2o|z77) Holy &5 s ETAES
AL S W RCS A7 AIE RISt Yuan S(5]
2 ALE HEA Holg &2 A& vAE g &
2Ele} ¥ At 549 ol dish AFsto] ¢
=7t dE4% oo gx)7t of¥x AT fgsich=
AL ATt Zhou E[6-10]12 HIFH Holyg &
Holl ot 2e F3 Aol g ois) dFstzn, §
A At Aol e EERE 7|9 RCS A4S £
At 4 Wiyl we F2EY A9 FA
7] ARt EAE BAsct =8 B3 BN FTH
e dg A FEQ RCSY EAS BEAsch a8
il Blade Pitch Anglec] @& RCSol tisfiAl £A45t9
tt Song S[11]2 RL-GO 7|H& AE3lod X-47B &
< UCAV #4at IR A7 7140l HE8¥ Hidol i3y
RCS #AlS 485t Yang E[12]12 PO 7|HES &
£35) 38 A% RCSE nde &% fE89 37 3§
Aol ofs] AFstgich Park S[13]12 PO 71'HE ol&
sto] H|gAe] RCSE ol&sta, 3 AINE HFE
Sk Aol wWyo] RCSol| mlAE AFL FRIsHgh
Baek 5[14]2 tiFZ #Holg Fat¢ FH9A 10 GHze}
15 GHz tiolld 20|25 7]9] AWM 7FS 2 &
W W RCS7L F71she AS gRlskh

B AdjoAME 9YREY $70]2157]9 UH-60A,
Z29r48 314917]Q1 SB>1 Defiantet YEZE 37
Ql V-280 Valor Aol tigt RCSE &4 9 ujms}r]
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sl PO 71HE AEsl RCS 314l Fagstgict aga
FEVAY 397, €E2E ¥37]|9 Hd RCSE
X517 AsiA SBX1 Defiantt V-280 Valor2l T4
244 RCS 3iAS 78ttt Coherent Sumit ZA|
RCSE w|aste] aFstpo|A] 74 844 RCS 79
Elgde Fostqnt. Fuels #F80lA 7B ®ol A}
85+ X-band9 10 GHzolA 3141& zl3gstech

Il. RCS 84

2.1 RCS aiH 21 H FA=AH

gojt] 22k HA(RCS)S HolHolx SAF A}
7t B2 YAtElE AAF F7E AIZI(E)SE FA A
AE o] oy W} R HEote: A A7 A7
(E)9 H|2 Aoj¥rt. R Holtie ¥4 Aol Az
£ Uittt RCSE A (DI 2ol yehdth(15].

B
a(RCS) = };Lrﬁ‘l“ﬁ@ (1)

RCSE #Ast7] Ssid 8 AZEF0Q] Altair
FEKO 2022.1.1& AM&st3ith. FEKO= ¥ FEjet 2o
A71FHor e 2 37 Ao siMo] HAstE 1
Zu A =32 PO, LE-PO(Large Element Physical
Optics), UTD(Uniform Theory of Diffraction) 5 %
g #7183 RAM/EZA AF] 715e ATt =3
cet #nt 27, 1=Z/4974E RCS B4 75, 2
23l CATIA ¥4 Z#8AE AlFste] BT o of
3] RCS #Ao] AH§sigdxn #AGHL FapEs FollA
73 @ol AH8EE X-band?| 10 GHz RFTGE A
83191 8| 7|HeRE FRE9 A7) AL AEA
& 32939 LE-PO 7|H& AHEstglth PO 7|2 o
Fut FYollA w2 HFY=E AToHAT, RE FHHO|
s AUst oAl B8o] "Hgstnz AL zpgdo] A
S3HTh ¥ LE-PO 71H2 © & ¥ 84F A3}
o #|A Alzto] A=Y, FEF AL RAE WEH=
BAoME 5Y £79 AY=E 7HdEs ZHo A
th LE-PO 712 Folzl rbg 9 AA=7 9l
Qjejo] FHHol| ¥AISt= Currentol]l gt ZAMAE o] &
3to] AAste Wholch A7 @ A7) =A|(PEC)Y
A%, 2L POl oJsha EA FHolAMS] Current
(e A (2)2 o] EdFTH16].

P T
% [0 Ripepe 2)

o, »2 EWHO YWAME, H: AEE A7F
(Incident Magnetic Field)< et Ex] EHo 2
A5l Currentol]l 93+ At #H7|FL 4] (3)ap Zo]

®28E 4 16l

—Jkr,

- (BB < (L) [[ 77 s @
s

Ts

jE BA B9, k= Wave HE|(k=27/1)F u|st
th. dAtEE A7|Fo] ofde] A (4)¢ TS w, A
(3)0lld FEA= 4k WA YA AFE AR
of €412 RCSE 4 (1)g E8ll ALY 4 SlcH16].

E=(BA+E 4)e ™" @)

RCSS ©9i= 4 (5)2 Zo] m’E dBsmz EIFY
4 JTH17].

RCS[dBsm] = 10log,(RCS[m?]) (5)

DFFpNE Y A 47 YehtA wHed 2
717k 23 BT HPAS] RCSOl wigh 1A AL
(First-order Approximation): F8 YA} AEE gHit
o 2HM AE F£ Utk o] Z$ Component Buildup
MethodE AH&Ste] 744 A RCSe 4 84 RCS
9] Coherent Sum& E3%F RCS MaximumE H|ZE 4
9t} Coherent Sume ofgfjet Zo] uepd £ ot
[17].

M
Omax =125 VoI (6)

314 2712 Table 29} o] A3t B4 EH2
A A7l =A(PEC)°lx, Hutg FAlste <Qreuhet
$A8= QU7 Y% Mono-static RadarE AHE-3]
HH, VvV #xtof] dfsir] siAstat) AaxzojAe] YF-E
7t7dste] wrejzke 0° ~ 360°, ILEZF 0°of dis 1° zF
Aoz AL 35t MeshE AAY Wl Standard

Table 2. RCS analysis condition

Parameters Conditions

Frequency 10 GHz
Surface Material PEC

Radar Type Mono-static Radar

Polarization HH, VV
Azimuth Angle 0" ~ 360°
Elevation Angle 0

Interval
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MeshE A 83 Local Mesh SizeE 94/5 7|2 MAs}
Aot MAE Meshd £ 747 UH-60A: o 52%
7, SB>1 Defiant:= oF 659+ 7] 183 V-280 Valor:
oF 655+ 7fo|ct,

22 #E0|357| ¥y

E AFoME A 7P Bol ABER Qe 30|
25719 tEAQ =l UH-603 A $2ol2tx
712 FE43 Qe FENbEY 377 tiEgA] »
Q21 SB>1 Defiantet @EZE 379 tjEzd =d
U V-280 Valor F4S RAYSoL. JAS 2T
CATIA Z2IYE AMEste] AAet Hl% 27|12 A
Zsteitt & HArel Engine Intake®t Exhaust Exitoll
Engine Bladeo] 2|3} RCS7} ¥iAlE|o] U& A& 714
slo] Huo=z wmol FAGE EIE BARIYG SHAT
BHEog Uy S, AA Engine Blade?} ¥HAISH=
Radarol] H3] S9Ao2 52 & Uepd ¢ U} &
AFol|ME= Engine Intake®t Exhaust Exitol]l %l& B
oA 10 GHz, 3 ¥¥ 7| 2A¥t ££9 RCS #o]
Add £ U=E #Holt F+ EZ(RAM; Radar
Absorbing Material) & 4835ttt Fo+4 10 GHzolA
POE AMEsto, B $£Zo|A vl e w, Hy £&
o= Za¥ 4 Y= RAME EAAE AHASHATHILI.
AR 7, &4 BAE(tand)E 04, Y=(p)E
3000 kg/m® 282 F7= 3 mmo|th ol 1 m? HT
o] tisi RAM %ol w2 RCS si4S #ggsiqict. sl
A A= Fig 20 YedY 39E o= uEe
w(0°) 41.46 dBsmolM 22,93 dBsme 2 &of o 45%
Z2% AS AT + gtk

Figure 32 UH-60P9] %7] ¥{# UH-60A ¥4
UeH 3 Fig. 4= SB>1 Defiant?t FAFSH A e
Wl 283l Fig 5% V-280 Valorel {ARH AL
vehdcy, 71502 v-280 Valord AS &8 27&
7Hgsto] |E 7k 0°o|A9] A A8y 7479
P2 AA BAY FF Zolg Haste Z7 oF
15.27 m, 16.6 m, 154 mZ A4}t

6“_

Ty

~————— Plate_W/O RAM
———— Plate_ W/ RAM

RCS [dBsm]
= =

1
[
-

| EEEE

I L T Y LYY S T R S ot T O Y L [NRY U T T N 0 LA S, O
=90 -60 =30 0 30 60 90
Azimth Angle[deg]

g &

Fig. 2. Plate RCS with and without RAM

&
o

Fig. 4. SB>1 Defiant geometry

l
{}

~
Y

Fig. 5. V-280 Valor geometry

ll. RCS F&t &lia] Zat

3.1 RCS Z&h siMxt HF

FEKO 38 AZEQolE AMESH] A £ AFolA
&= RCS s 711 LE-PO| tidt 7HZE S 93l
Boeing 707 &A1Y 2@ AMESH a4 AW a4 7|
2l MLFMM(Multilevel Level Fast Multipole Method)
3 :mFat 2AF 7|Rte] £ s WEQl PO HAlS 4
ot Fig. 62 Aol AMEE Boeing 707 ¥/l
t} ¥Ao Zoj: 1.8 mZ 0,03 mECH R & B9
ch s 27AL B4 gHS 9H H7] =4 (PEC)o] 2,
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Fig. 6. Boeing 707 geometry

MLFMM

RCS [dBsm]|

o 90 2o 150 . 180
Azimuth angle [deg]

Fig. 7. RCS at 10 GHz simulated in FEKO with MLFMM,
PO, and LE-PO

10 GHzolAl Mono-static RadarE AM&3sto] HH Hutz2
W7t 0° () ~180°(F el WisiA LE-PO 7|H&
AHEsH] A S EstolTh

Figure 72 Boeing 707 &A1Y B4l digk MLFMM,
PO 18 i LE-PO9| A4t 14 ZA:tE uehddh RCS
814 ZA3t 159°0|A- LE-PO: MLFMM, POEt Y2
e Egith o]:= LE-PO 71H9 AL IAHTE 514
Ql MLFMM tH] Edge Diffractionol T3F A4t AHge
7}t 47] WjEes woEch A RCS Peak W
Bzt wE FIFPoME fARE S B B
ERME RCS Peak A9 7S fAHo=z Zhad)
oF & 9jojo]7] wRo] LE-PO 7]'o] aFubpolA 2
717v & BA(L/A>1)ol gt B et A% 8
Aof| dfs] 283 AP E 7HRIYE 2AE ERIY 4 9
=3
3.2 HYLI2H0’ ~ 360°) RCS 4 £4

Figures 8, 9% ZIZ} HH, VV ¥djolA UH-60A,
SB>1 Defiant®} V-280 Valor?] RCSE #AWizte] o
A 1° 7tAe2 AT Zdtolx, olF HY(315° ~
45°), &9 (45° ~ 135° 225° ~ 315°), FHF(135° ~
225°) 2.2 oA EASHTH19].

Azimuth Angle [deg]

SB=>1 Defiant
V-280 Valor

Fig. 8. RCS for HH-polarization in azimuth angle

Azimuth Angle [deg]

SB>1 Defi
V-280 Valor

Fig. 9. RCS for VV-polarization in azimuth angle

HHF RCS: A% B F(Arithmetic Mean), 715t BT
(Geometric Mean)©] Sith Zrzh 4] (T3 4 (8)3
o] uERdTH20].

1 &
1010810 (ﬁ Eak) [dBSIIl] (7
k=1
% (10log,go; +10l0g,0, + -+ 10l0g,y0y ) [dBsm]  (8)

A& B2 & RCS #ol ez o & 757t
Horlogz dubdoz 7|3t PFHo 2 TS Z=
ch w715 HF2 A2 RCS ol © HEE &
Ate e 4o ghe Uels Ago] 9k =
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RCS|dBsm|

Fig. 10. Arithmetic mean RCS for HH-polarization
in azimuth angle

RCS|dBsm|

Front Side Rear

Fig. 11. Arithmetic mean RCS for VV-polarization
in azimuth angle

o4 el Aozt AA yEhA =HE, 54 F7tolA
2 RCS 540 FFHo=2 IANSS ouisict o=t
A % RCS A HAAE HsiME 4te Ham 715t
BES FAlo BAste] & F 719 Aolg F4Asleh=
WeFo g zdst= Zo] ulgAsitt[21], Figs. 10, 112
Z¥Z} HH, VV Hubold 29, 39, 3o A& HF
RCSE uEHUM, Figs. 12, 132 77} HH, VV 7|5t 3
¥ RCSE HoZEth ¢ FFL HH VV ¥ 2%
Zdlo|M= V-280 ValorZt 7FE &4 Ugtz, &9 &
oAM= SB>1 Defiant?} UH-60A, V-280 ValorErch
2 RCSE Yehii: A& £ 4 Uz, 7|8t BF2
HH, VV #at 2% Hyo|ME UH-60A7F 7F¢ w1
Zdo|ME HH Hubo|ME UH-60A, VV HatoA:
SB>1 Defiant7} 7V &4 Usgich uix|gto 2 FHbolA
L HH, VV 3 2% SB>] Defiant’} 7Hd =2 &
Lebdich o2 Ate FFa 7|8k Haol o] grojch
HH, VV HEulollA UH-602 AWolA ZHZt 2,35 dBsm,
2.32 dBsm. Z9olA 6.80 dBsm, 6.87 dBsm, FHioj
A SB>1 Defiant= Z*ollA 2,57 dBsm, 2.49 dBsm,
Z2dojlA 1057 dBsm, 10.41 dBsm, F9olA 11.02
dBsm, 11.44 dBsmo|t} V-280 Valor:= ZHlollA
11.39 dBsm, 10.92 dBsm, ZF9HolA 9.90 dBsm, 9.91
dBsm, ¥HollA 422 dBsm, 4.02 dBsmo|t}l A& H

20

F . UHDA
SB1 Defiant
Vo280 Valor

13.25 13.23

RCS[dBsm]|

[}

Fig. 12. Geometric mean RCS for HH-polarization
in azimuth angle

20

UH-6IA
SB<1 Defiant
V-180 Valor

RCS[dBsm|]

Fig. 13. Geometric mean RCS for VV-polarization
in azimuth angle

43}t 7|5t B9 Ao|7t FHE4E dlojg e FEitol
At & Aol 2 FFHoz {2 RCSE UEUE=
A|Fo] ZAeA =k UH-60A= =HolA, SBd
Defiant= 29, $ojlA V-280 Valor: AWal 2
oA IFgHoR ¥ RCSE YeilE 847 Qith=
ojm|7} e},

3.3 HY(315" ~ 45°) RCS &4 &#4

HH ®HaolA A&, 7]t HF RCSE ®He ),
UH-60A= 1271 dBsm, 10.36 dBsm, #°]= 235
dBsm, SB>1 Defiant= 13.39 dBsm, 10.02 dBsm, #}o]
Lt 337 dBsm, V-280 Valor:= 17.66 dBsm, 6.27
dBsm, Aol 11.39 dBsmelt}l, VV Hito|A UH-60A
= 12,73 dBsm, 10.41 dBsm, #°]& 2.32 dBsm,
SB>1 Defiant= 13.45 dBsm, 10.00 dBsm, #to]: 3.45
dBsm, V-280 Valor: 17.63 dBsm, 6.71 dBsm, o]
L 10.92 dBsmZ V-280 Valor7l 7F¢ & BH# AolS
B Figs. 8, 95 ®< u UH-60Ax 00N &2
RCSE uEhdch o] <zl Wi Fx]9] RCS YhAlas}
£ BASH7] 98] Engine Intake $Zo] ¥ ol
osid uehd ze=z HuEch V-280 Valors AtE
g3 715t Q] Aojgto] b Ak ol EAF W
fizolN FdA o2 B2 RCS &S 7KKE HAZHES}
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Table 3. RCS peak point and mean RCS in azimuth angle
ey a9 -1
e 2|8t ] 2|5t ] 2|8t
T T T

B A2 ap ap B a0 wp Had ¥z W@

— HH 17.64(07) 12.71 1036 32.71(94) 2005 13.25 23.90(2267) 12.01 944
Vv 18.66(07) 12.73 1041 32.67(94) 2000 13.13 24.39(2267) 11.85 936

SB>1 HH 21.65(-97) 13.39 10.02 36.86(937) 2380 13.23 38.55(1807) 2227 11.25
Defaint VvV 21.88(-97) 13.45 10.00 37.01(93) 2392 13.51 38.41(1807 2288 11.44
V-280 HH 33.04(07) 17.66 627 36.17(99) 2042 10.52 14.36(1807) 493 0.71
Valor Vv 33.00(0Y) 17.63 6.71 36.14(997) 2046 10.57 14.59(1807) 541 1.43

UH-60A_Arithmetic

SB=1 Defiani_Arithmeiic
—  V-I80 Valor_Arithmetic
= = — - UH-60A_Geometric 25 45
— = — - SB=1 defiant_Geomeiric —_
= = = = V-I80 Valor _Geometric

RCS |dBsm]
3

| 5
X e 0
B R ———

-15
Elevation Angle [deg]

Fig. 14. Mean RCS of front for HH-polarization in
elevation angle

UH-60A_Arithmetic

SE=1 Defiant_Arithmetic
V-280 Valor_Arithmetic
— = — = UH-60A_Geometric 25 15
- = « SB=1 defiant_Geometric 2 15
— — — - V-280 Valor _Geometric

RCS [dBsm]
5
0 .

-15
Elevation Angle [deg]

Fig. 15. Mean RCS of front for VV-polarization in
elevation angle

ZAgch= oujojct 0% 71 ¥ RCSE uied
o] Wing Leading Edgeoll 2314 &2 RCS7} JEhd
= Zlo® BwdHETh SBY] Defiant:= -9°o|A 714 &
RCSE YeiE A& #RIT 4 stk ol= A HE
o] @&t Pusher Propeller? d¥¥oz yehtl:= A
o= @waE =Y 0°7F ofd -9°o|lM HaHo| 2AHEE
22 Pusher Propeller7t EAlol 28] 7HiAlE= FEo|
A7\ m ol& Qs -9°o|A E9kg W 7 %2 RCS7H
UEehtE= Zlojth
3.4 HYojM nE2f0f oHE RCS dat

AAM(315° ~ 45°)2 AEZF -15° ~ 15%] isfiA %
714]1 siA& 185ttt Figs. 14, 15= Zkz} HH,
VV HatoA AWM 1=z wE A& 75t HiE
RCSE yehd zZojt} UH-60AE HH, VV it 2%

Unit: dBsm

0°dllA 71 & RCSE YENARITL Blade?t 3E7Z} (%0
A g TS 7IFS AeE wHHEY SB] Defiant
£ HH, VV ¥} 2% %A 7F¢ & RCS7F uEhd
ot =% 0°F 71£22 gAEYU FFHS EA o=
2 31=7}Y w Hub & Mast Fairing?] g2, 9
327 W Ventral Fin? dFoz QIste] UAF
Ql F&Ado] vehdttn waEtt v-280 Valor:= HH,
VV #at 2% 5%A 7bg & RCS7F SA=E U ole
Blade7l 915 ¥FolA] ¥ AW E Fsta 9low, Blade
Pitch Angleol webr ZWollA 2o RCS7} YEht=
ax7to] GEtd ¢ Qlthe AS 9n|gith a=a o
1=ZoAE & Aol& Holx] gs HF <F 16 dBsm
Hxzo] RCS7H SAEth

ol & £330 EY| RdiE= da2A Wing 34
o] Z-&%lo] glo] ¥z}t 0°oflH 9 L& RCS7F AW H
# RCSOIM 2 9¥FE viAE Zez IAgEc HH,
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Fig. 17. Geometry for component of V-280 Valor
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