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ABSTRACT

Distributed electric propulsion(DEP) has attracted attention as a sustainable alternative to
conventional propulsion systems in pursuit of carbon-neutral aviation. Although DEP
systems offer advantages such as improved aerodynamic control and reduced noise emissions,
the complex flow interactions among multiple rotors and the wing surface should be
investigated to ensure reliable performance prediction. This study presents a comparative
numerical analysis of aerodynamic and acoustic performance between a single-propeller
configuration and a DEP system under equivalent thrust and tip Mach number conditions.
Flow simulations were conducted using the Lattice Boltzmann Method(LBM), and far-field
acoustic predictions were obtained via the Ffowcs Williams-Hawkings(FW-H) method
under impermeable surface assumptions. The DEP configuration with three propellers
generated a more spanwise-uniform suction distribution, yielding a 5-8% increase in lift
coefficient compared to the single-propeller case. However, drag was slightly higher due to
increased friction from multiple rotors. Moreover, the DEP system achieved an average
noise reduction of 2-3 dB in Overall Sound Pressure Level(OASPL), with a maximum
reduction of 4.1 dB observed in the downward direction. These results demonstrate that
DEP systems can offer aecrodynamic benefits while significantly reducing noise emissions,
supporting their applicability to next generation low noise air vehicle designs.
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Fig. 1. Delft University’s PROWIM model[29]

Table 1. Flow conditions of PROWIM validation case

Freestream Mach number(Mw) 0.14
Wing angle of attack( @) 0°, 4°
Pressure 92,499.6 Pa
Reynolds number(Re) 804,000
Rotating speed 15,000 RPM
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Fig. 2. Comparison of propeller thrust coefficients between LBM analysis and experimental data at different advance ratios
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Table 2. Comparison of propeller thrust coefficients obtained from LBM analysis and experimental data at various advance

ratios
Advance ratio Experiment LBM(Present)
0.5 0.168 0.162
0.6 0.144 0.138
0.7 0.123 0.117
0.8 0.095 0.089
0.9 0.053 0.049
1.0 0.014 0.013
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Fig. 4. Computational models of the equivalent single-propeller configuration and the distributed electric propulsion(DEP)
system with three propellers

Table 3. Geometric and operating parameters for the computational analysis models

Equivalent single propeller DEP system with three propellers
Propeller diameter[m] 0.415(1.75D) 0.236(1D)
Rotating speed[RPM] 8,600 15,000
Tip Mach number(My;,) 0.55 0.553
Wing Reynolds number(Re,) 650,000
Propeller Reynolds number(Reg 75r) 321,700 183,000
Required thrust(total)[N] 93.34 92.9
Required power(total)[W] 2919.71 5452.23
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Fig. 5. Computational domain used in the LBM simulation, defined relative to the propeller diameter(D)

Fig. 6. Surface and volume grid systems used for the LBM simulation
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Table 4. Flow and simulation conditions

Freestream Mach number(Ms) 0.116
Wing angle of attack( @) 0°,4°, 10°
Pressure[Pa] 101,325
Rotating speed 8600 RPM, 15000 RPM

Tip Mach number(Mg,) 0.55

Finest mesh size[mm|] 0.2(0.1 % wing chord length)

Time step size[deg] 0.02
Total simulation time 20 revolution
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Table 5. Comparison of lift coefficient, drag coefficient, and L/D for the equivalent single propeller configuration and the
DEP system with three propellers at angles of attack of 4° and 10°

Equivalent single propeller DEP system with three propellers
a CL Co L/D CL Co L/D
4° 0.268 0.027 9.925 0.281 0.031 9.064
10° 0.631 0.0615 10.26 0.672 0.0682 9.85
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