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Abstract: A novel way to solve gas flows in thermal non-equilibrium has been proposed by Garg et al. 

(Physics of Fluids, 106113, 2024), which built compact constitutive relations for monatomic gases in 

advance by applying deep neural network (DNN) machine learning (ML) to available direct simulation 

Monte Carlo (DSMC) solution data, and later combined them with the conventional finite volume method 

(FVM) for the physical laws of conservation. We extend this FVM-DSMC-ML framework to diatomic 

gases by employing the two-temperature framework (translational and rotational) as well as the three-

temperature framework (translational, rotational, and vibrational), coupled with DNN-based DSMC 

constitutive relations for viscous stresses and heat fluxes associated with these energy modes. After 

resolving challenges associated with various energy modes, we evaluate the performance of the FVM-

DSMC-ML solver for diatomic gases for the compressive shock structure problem. Developing a 

successful DNN model requires the careful selection of input and output parameters, as well as 

meticulous attention to the details of various DNN parameters. The DNN model of DSMC constitutive 

relations is trained using filtered data as inputs, with corresponding DSMC data as outputs. The study 

demonstrates that the FVM-DSMC-ML solver provides results in excellent agreement with the actual 

DSMC solutions and shows superior performance, with its computational cost being 1/50 of that of the 

conventional DSMC solver. The DSMC topologies reveal pronounced nonlinearities and strong coupling 

between viscous stresses and heat fluxes, and for the most part they exhibit higher values of viscous stress 

and heat fluxes compared to the NSF topology. 

Keywords: Rarefied and microscale diatomic gases; deep neural network; DSMC; constitutive relations; 

finite volume method; shock wave structure
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I. INTRODUCTION 

The advent of high-speed space vehicles flying at the edge of space has created a need to understand 

several important gas flow phenomena. One of the major areas that has received much attention in recent 

years is high-temperature (rarefied) gas dynamics. The topic incorporates a great deal of complexity and 

requires an understanding of gas flow physics at a fundamental level [1-5]. The majority of the Earth’s 

atmosphere consists of diatomic gases (i.e., nitrogen and oxygen), where high-temperature conditions can 

lead to complex physical phenomena. These include the excitation of molecules to higher vibrational and 

electronic quantum levels and changes in the structure or identification of molecules that result from 

chemical reactions and ionization [6-8].  

Re-entry vehicles inevitably encounter high-temperature flow situations because of the high-speed 

flow that surrounds them while flying through the layers of Earth’s atmosphere [7-11]. When descending 

at hypersonic speeds, the vehicles encounter harsh conditions and extreme temperatures, especially in the 

shock and the post-shock region. Further complications in the flow can result from the rapid increase in 

rarefaction at high altitudes, resulting in a high degree of non-equilibrium. 

For these conditions, conducting full-scale experimental studies, either on the ground or in real flight, 

would be prohibitively expensive [12]. Thus, computational simulations are often employed to gain a 

deeper and better understanding of the high-temperature re-entry gas flows. The most widely used 

numerical methodology involves solving the conservation laws for mass, momentum, and energy in 

combination with the (first-order) Navier–Stokes and Fourier (NSF) constitutive relations. These, coupled 

with additional conservation laws for vibration mode and species, have been widely employed to 

investigate hypersonic flows at lower altitudes (< 55 km) [6, 13-15]. Source terms for the vibrational 

energy balance and species balance are introduced in the conservation laws to account for the non-

equilibrium effects in the trans-rotational and vibrational mode of energy, and the chemical reactions in 

the flow, respectively. Since the NSF constitutive relations are modeled with the basic assumption that the 
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flow is near local thermal equilibrium (LTE), their validity becomes questionable for cases where the 

flow is away from the LTE assumption. 

To overcome these limitations, the following Boltzmann kinetic equation (BKE) is often used, which 

can capture the detailed physics for flows far from thermal non-equilibrium, 

( )  2, , ,f t C f f
t

 +  =  
v v r .  (1) 

Here, ( ), ,f tv r and  2
,C f f  represent the distribution function in terms of the particle velocity, the 

particle position, and time, and the Boltzmann collision integral, respectively. Direct analytical and 

numerical solutions of BKE are complex due to the Boltzmann collision term. 

An alternative method to obtain an approximate solution of BKE is the direct simulation Monte Carlo 

(DSMC) [16, 17]. The DSMC method is a statistical technique (not based on any partial differential 

equation) that decouples the kinematic and collision processes in the original BKE by directly simulating 

the motion of statistically representative particles and carrying out probabilistic collisions [16-21]. In 

DSMC, the effects of internal degrees of freedom and chemical reactions are taken into account through 

inelastic [22, 23] and reactive [16, 24, 25] collision models, respectively. Due to its statistical nature, 

DSMC is computationally expensive when simulating flow situations at altitudes below 70 km. This 

limitation of DSMC emanates from the requirement that a large ensemble of particles must be tracked to 

reduce the statistical noise within the solution.  

To address the issue of computational cost associated with DSMC, researchers have been working to 

develop a hybrid approach that combines DSMC and FVM-NSF frameworks based on the domain 

decomposition concept [26-28]. However, this method continues to encounter significant limitations 

compared to the traditional computational fluid dynamics (CFD) method, since DSMC is still handling a 

portion of the domain. An alternative strategy to mitigate the inherent statistical noise in DSMC 

simulations—without incurring the substantial computational cost associated with increasing particle 

numbers—is the implementation of information-preserving (IP) variants of the DSMC method [29, 30]. 
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However, even with these advanced techniques, the overall computational expense remains significantly 

higher compared to conventional finite volume methods (FVM). 

Numerous researchers have also tackled the crucial challenge associated with the direct solution of the 

Boltzmann kinetic equation (BKE), specifically concerning the collision integral. Their aim is to develop 

simplified models for this term. Among them, the Bhatnagar-Gross-Krook (BGK) [31], Shakhov-BGK 

[32], ellipsoidal statistical BGK (ES-BGK) [33], unified stochastic particle BGK (USP-BGK) [34, 35], 

and Fokker–Planck (FP) [36] approaches represent linearized or simplified Boltzmann model equations 

[37-41]. 

Another way is to reduce the original BKE to a set of conservation laws in the form of partial 

differential equations (PDEs), which can be solved in conjunction with a set of higher-order constitutive 

relations. Following this approach, researchers have presented various equations called extended or 

generalized hydrodynamic equations. The extended hydrodynamic equation framework includes Burnett-

type equations [42-46], the Grad-13 moment method [47, 48], and the regularized-13 moment method 

[49, 50]. In another study, based on Eu’s generalized hydrodynamic equations [51, 52], Myong [11, 53-

60] developed the nonlinear coupled constitutive relations (NCCRs) in algebraic form. These methods 

provide a distinct advantage in computational efficiency over the previously mentioned particle-based 

methods but suffer from a disadvantage in accuracy. Specifically, the macroscopic properties predicted by 

these methods are less accurate than full kinetic solutions, and thus require an ingenious solution 

methodology to simultaneously exploit the advantages of the DSMC (i.e., correct solution of BKE) and 

conventional CFD methods (i.e., affordable computational cost). 

In recent years, machine learning-based solution strategies have attracted significant attention in the 

computational physics community. For the problem at hand, these methodologies can broadly be 

categorized into two paradigms. The first, often referred to as the ‘black-box’ approach, involves training 

deep neural networks (DNNs) to learn and replicate the constitutive relations embedded within DSMC 

data [1]. The second, a ‘white-box’ framework, focuses on the data-driven discovery of governing 

equations using DSMC-generated datasets [61, 62]. In the present study, we adopt the ‘black-box’ 
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paradigm [1], aiming to develop a DNN-based surrogate model that captures the constitutive relations 

embedded in DSMC data. 

Garg et al. [1] proposed a computationally efficient method (called FVM-DSMC-ML solver). It 

utilizes the DSMC data to build a separate database for constitutive relations (CR) guided by NCCRs in 

advance, instead of using the numerical solutions of higher-order constitutive relations in conventional 

algebraic or differential forms, and then later combines it with the conservation laws (CL), which are 

fundamental laws of physics. The origin of this novel methodology can be traced back to the foundational 

work in Myong’s 1999 article in the Physics of Fluids, where the author articulated that “if a method in 

which the constitutive relations are stored as a separate database is adopted, the additional 

computational cost can be trivial compared with the Navier–Stokes relations.” (Ref. 53, p. 2800). 

 The FVM-DSMC-ML framework presented in [1] is currently only valid for monoatomic gas. In this 

study, we aim to extend the FVM-DSMC-ML framework to diatomic gases with rotational and 

vibrational modes by employing the two-temperature framework (translational and rotational) as well as 

the three-temperature framework (translational, rotational, and vibrational), coupled with deep neural 

network (DNN)-based DSMC constitutive relations for the viscous stresses and heat fluxes associated 

with translational, rotational, and vibrational modes. 

There are some non-trivial issues in extending the FVM-DSMC-ML solver to diatomic gases. First, it 

is important to describe rotational and vibrational modes, as there are different ways to handle them. In 

this study, we use a multi-temperature framework, where each mode has its own temperature, as it is 

necessary to describe them in the same way as DSMC. Second, developing a successful DNN model for 

diatomic gases, which have two additional modes (and dimensions on topology) compared to monatomic 

gases, requires the careful selection of input and output parameters, as well as meticulous attention to the 

details of various additional parameters such as the number of hidden layers, neurons per layer, epochs, 

learning rate, etc. In this regard, insights and guidance gained from the theoretical study of NCCRs of 

diatomic gases are vital to developing compact DNN models for diatomic gases. 
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As with the monatomic gas case, we will evaluate the performance (computational accuracy and cost) 

of the new FVM-DSMC-ML solver for diatomic gas for the one-dimensional compressive shock structure 

problem. The choice of this flow problem is based on its simplicity and relevance for gases in high non-

equilibrium states. Shock structures have a significant impact on the overall flow pattern around 

hypersonic aerospace vehicles flying at high altitudes. It is also well known that stiff shock structures are 

one of the most difficult problems to solve theoretically and numerically because the physical properties 

change rapidly over thin regions, in the order of microns, due to extreme self-steeping nonlinearities. 

Section II explains in detail the set of physical conservation laws considered for the current study, 

alongside the formulation utilized to develop DNN-based constitutive relations for diatomic gases. 

Section III presents the validation studies carried out to test the efficacy of the new FVM-DSMC-ML 

framework for diatomic gases. In Sec. IV, we construct the topology of the DSMC constitutive relations 

for diatomic gases (in the compression regime of flow topology), which allows us to understand how a 

DSMC topology deviates from the NSF topology when the flow is away from local thermal equilibrium. 

II. PHYSICAL CONSERVATION LAWS AND CONSTITUTIVE 

RELATIONS IN MULTI-TEMPERATURE FORMULATION 

In most existing works on diatomic gases, the set of conservation laws used by conventional CFD 

methods is the two-temperature model introduced by Park [5, 63]. This model assumes that the 

translational and rotational energy modes are in equilibrium, since a comparatively small number of 

collisions are required to attain equilibrium between the translational and rotational modes, compared to 

the vibrational modes. Thus, in addition to the conservation of mass momentum and energy, another 

conservation law is required to account for the changes in the vibrational temperature [64]. Olejniczak & 

Candler [65] devised a source term in the vibrational energy conservation law to account for the non-

equilibrium between the trans-rotational and vibrational energy modes by employing coupling models in 

the Landau-Teller equation [66]. In the works by Sharma & Gillespie [67] and Kim [68], it was observed 

that at high temperatures, a non-equilibrium exists between the translational and rotational modes of 

energy, thus requiring a separate conservation law for the rotational energy.  
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In the current study, instead of using the conventional two-temperature model [5, 63, 65], we will 

develop an FVM-DSMC-ML solver for the following three-temperature model of conservation laws, 

( )

0 0

0

0 0.tot tot tr rt vb

rt rt rt rt

Conserved Inviscid Viscousvb vb vb vb Source
Variable Flux Flux

p

E E p
t

E E S

E E S

 
 
 
  
  

       
       +               +  + +   + + + + =

        
       
              

u

u uu I

u u Q Q Q

u Q

u Q


    

(2) 

Here,   is the density, u is the fluid velocity, p  is the pressure, and totE  is the total energy. The 

following relations of the equation of state (EOS), specific heat ratio ( ), and totE  are also assumed ( trT , 

rtT , vbT , trE , rtE  , vbE , vb , DOFT , DOFR , DOFV  and
g

R  are the translational temperature, rotational 

temperature, vibrational temperature, translational energy, rotational energy, vibrational energy, 

characteristic vibrational temperature, translational degrees of freedom, rotational degrees of freedom, 

vibrational degrees of freedom, and gas constant, respectively), 

( )

( ) ( )

( )

1
,     ,

2

,

    ,

exp 1

22
,     .

g tr tot tr rt vb

DOF
tr g

g vbDOF
rt g vb

vb

vb vbDOF DOF DOF
DOF

DOF DOF DOF g vb

p R T E E E E

T
E T R T

2

RR
E T R T, E T

2

T

E TT R V
V

T R V R T








= =  + + +

=

= =
  − 
 

+ + +
= =

+ +

u u

  (3) 

At this juncture, it is crucial to note that the DSMC solutions satisfy the ideal equation of state (EOS) 

[16]. The source terms ( rtS  and vbS ) in equation (2) can be defined as follows [60, 64, 65, 69],  

( ) ( ) ( ) ( )
,     ,

,     .

rt tr rt rt vb tr vb vb

rt vb

rt vb

rt R T c vb V T c

E T E T E T E T
S S

Z Z

 
   − −

− −
= =

= =

  (4) 
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Here,  rt  is the rotational relaxation time,  vb  is the vibrational relaxation time, −R TZ  is the relaxation 

parameter for the rotational and translational energy exchange, −V TZ  is the relaxation parameter for the 

vibrational and translational energy exchange, and  c  is the mean collision time based on translational 

temperature. In equation (4), we have not included the term that accounts for the exchange of energy 

between the vibrational and rotational energy, which was identified in the works by Park [70] and Kim & 

Boyd [71, 72]. This decision stems from the procedure followed by DSMC to exchange energy. In 

DSMC, during collisions, both the rotational and vibrational modes exchange energy individually with 

the translational mode. In this study, we develop a solution methodology that relies on the DSMC results; 

therefore, vibrational-rotational energy exchange is not included in the source terms. 

Previous researchers [11, 18, 19, 59, 60, 73] have demonstrated that the conservation laws of the 

density, momentum, and total energy in (2) are an exact consequence of the Boltzmann kinetic equation 

(1). Only with the introduction of approximations such as the linear Navier-Stokes and Fourier (NSF) 

constitutive relations for viscous shear stress ( ) and heat fluxes ( ,  tr rtQ Q , and vbQ ) in equation (2), 

do these equations become approximate, thereby restricting their accuracy to conditions near LTE. These 

linear NSF constitutive relations are as follows, 

 ( )2

,

,

,

2 ,

,

,

.

NSF

tr NSF tr tr

rt NSF rt rt

vb NSF vb vb

k T

k T

k T

= −

= −

= −

= −

u

Q

Q

Q

 







  (5) 

Here,   is the coefficient of viscosity, trk  is the thermal conductivity for translational mode, rtk  is the 

thermal conductivity for rotational mode, vbk  is the thermal conductivity for vibrational mode, and the 

symbol  ( )2
A stands for the traceless symmetric part of a tensor A.  

For a situation where thermal nonequilibrium is prevalent, the constitutive relations of the four 

undetermined variables in the set of equations (2), i.e., viscous stress (  ), total heat flux (
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tr rt vbQ Q Q Q= + + ), rotational heat flux ( rtQ ), and vibrational heat flux ( vbQ ) are derived by first 

differentiating the statistical definition of the variables in time and then combining them with the 

Boltzmann kinetic equation [11, 59, 60, 73], 

( ) (2) (2) ( )

( ) ( ) ( )

( ) ( )

( )

,

( / )
2[ ] 2 [ ] ,

( / )
: ( ) ( ) ,

( / )
( ) ( ) ,

( / )
( )

rt rt

vb

p p

rt
rt p rt p rt

vb
vb p vb vb

d
p

dt

d d
C T p C T

dt dt

d
C T p C T

dt

d
C T

dt









+  +  + =

+  + +  +  +  + =

+  +  +  + =

+  +  +  +

Π Π

Q P Q

Q Q

Q

Π Π u u

Q u
u Q u Π Π

Q
Q u Π

Q
Q u Π

   

     

    

  



 



 ( )

,( ) .vb

p vb vbp C T = Q 

 (6) 

Here, 
p

C  and 
,p vb

C  denote the specific heat capacity at constant pressure and the vibrational specific heat 

capacity at constant pressure, respectively. The constitutive equations (6), ( ), , , ,Q P Q Qrt vb  represent the 

open high-order terms associated with the viscous shear stress, the total heat flux, the stress, the rotational 

heat flux, and the vibrational heat flux, respectively. 
( , , , )Π Q Q Qrt vb  on the right-hand side of the equations 

(6) accounts for the dissipation in non-conserved quantities, which arises from the collision operator in 

the kinetic equation. It is worth noting that the constitutive equations (6) are an exact consequence of the 

modified Boltzmann equation [59, 60] which makes them capable of capturing the complete flow physics 

if accurate closures for the open higher-order terms ( ), , , ,Q P Q Qrt vb  and 
( , , , )Π Q Q Qrt vb  are provided.  

In this study, rather than theoretically deriving the precise closed forms of the open higher-order terms 

in equations (6), we will utilize a combination of closed-form DSMC solution data and DNN to achieve a 

compact representation of these constitutive relations. Therefore, as pointed out in [1], the current 

methodology does not suffer the so-called closure problem. Nonetheless, the insights and guidance gained 

from the theoretical study of equations (6) have proven to be very useful in constructing compact DNN 

models that map linear viscous stresses and heat fluxes to higher-order viscous stresses and heat fluxes 

from DSMC data. The decision to employ a DNN model to develop constitutive relations, rather than 

simpler approaches such as curve fitting, regression, or least-squares methods, is motivated by the high 
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degree of non-linearity inherent in the self-steepening shock structure problem. Traditional curve-fitting 

techniques cannot generalize effectively in this context, compromising the model’s robustness, i.e., they 

do not allow the model to predict solutions for intermediate Mach numbers that were not included in the 

curve-fitting dataset. 

As the first step, we develop a DNN model that encompasses the sum of the effects of all the higher-

order terms in (6), leading to the closed non-conserved variables predicted by DSMC solutions of 

diatomic gases. This DNN model of constitutive relations is equivalent to an iterative solver of (6) that 

predicts the closed DSMC viscous stresses and heat fluxes with the initial prediction as the first-order 

viscous stresses and heat fluxes from the same solution space. To implement it directly in the 

conservation laws, the DNN model can be conceptually expressed as follows: 

( )
( )
( )

  , , ,

,   Q , , ,

,   Q , , ,

,   Q

, , , ,

, , , ,

, , , ,

tr

rt

vb

DSMC or Higher order NSF tr NSF rt NSF vb NSF

tr DSMC or Higher order NSF tr NSF rt NSF vb NSF

rt DSMC or Higher order NSF tr NSF rt NSF vb NSF

vb DSMC or Higher order N

f

f

f

f

− 

−

−

−

=

=

=

=

Π Π Q Q Q

Q Π Q Q Q

Q Π Q Q Q

Q Π( ), , ,, , , .SF tr NSF rt NSF vb NSFQ Q Q

 (7) 

One notable difference between equations (6) and the DNN-based implementation of these relations in 

equations (7) is that instead of choosing total heat flux, we develop the DNN model containing 

translational heat flux. This choice stems from our goal to understand the topology of each form of 

energy, including translational, rotational, and vibrational, compared to their first-order counterparts.  

At this point, it must be highlighted that the first-order constitutive relations, such as (

 ( )2
2 ( )NSF DSMC DSMC DSMCT− = −Π u ), are introduced in a bookkeeping role, to facilitate the efficient 

construction of the topology of DSMC solutions that can be coupled with the conservation laws (2). Since 

these first-order non-conserved variables are inherently a part of the closed solutions predicted by DSMC, 

their introduction does not compromise the integrity of the DSMC constitutive data, ensuring that the 

final solutions remain uncontaminated in principle. 
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On the other hand, Mankodi & Myong [60] and Srivastava et al. [74] proposed simplified second-

order NCCR models that effectively capture the intrinsic nonlinearity and strong coupling inherent in the 

nonlinear coupled constitutive relations, within the context of the conventional two-temperature 

framework on translational and vibrational, and translational and rotational energy modes, respectively. 

Combining these two models yields 

(2)

, ,

, ,

, ,

ˆ ˆ ˆ ˆ ˆ( ) [ ] ,

ˆ ˆ ˆˆ ˆ( ) ,

ˆ ˆ ˆˆ ˆ( ) ,

ˆ ˆ ˆˆ ˆ( ) ,

2nd NSF

tr 2nd tr NSF tr NSF

rt 2nd rt NSF rt NSF

vb 2nd vb NSF vb NSF

q cR

q cR

q cR

q cR

= + 

= + 

= + 

= + 

Π Π Π u

Q Q Π Q

Q Q Π Q

Q Q Π Q



 (8) 

where 

2

1/2

ˆsinh( )ˆ( ) ,ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ: .

nd

tr tr rt rt vb vb

cR
q cR

cR

R

=

 = +  +  +  Π Π Q Q Q Q Q Q

 (9) 

In this expression, c is the coefficient of gas power laws [53]. The following hat ( ^ ) quantities have been 

applied to express the constitutive model in a compact form: 

2

2
,

, , ,

(2)

,

,  Re ,  ,   Kn= ,
Re 2

1
Ec = ,  Pr ,   ,

Ec Pr

( 2 [ ] )ˆ ˆ,   ,  

( )ˆ ˆ,   .
/ (2 ) / (2 )

r

r

r r r

rg r

p rr

p r r

NSF

NSF

u u L M N
M = N

MR T

cu

C T k

N N

p p

k TN N

p pT T





  

    

 

   
 

   

  
 






 

= =

= =

−
 

−
 

uΠ Π Π

Q
Q Q





 (10) 

Here, the subscript  denotes internal degrees of freedom (translational, rotational, or vibrational), r 

represents the reference state, and L denotes the characteristic length. The hat ( ^ ) quantities introduced 

above play a critical role in normalizing the value of the flux of non-conserved variables (viscous stresses 

and heat fluxes) in the present DNN models. 
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In the present study, similar to the monatomic gas case, we will focus on the development of DNN-

based constitutive relations for the compressive zone of the diatomic gas flows through the one-

dimensional shock structure problem. A stationary shock wave structure represents a purely one-

dimensional compressive flow of gas that appears as a very thin segment of a stationary gas region (with 

the scales of the order of mean free path) [75]. It manifests itself between the supersonic flow upstream 

and the subsonic flow downstream. This flow is the most extensively studied problem in non-equilibrium 

gas dynamics [52, 76-78], as a full understanding of its physical behavior has significant scientific and 

technological consequences. Further, this flow provides an advantage in the computational study (i.e., the 

absence of boundary conditions), making it an ideal test problem to demonstrate the new FVM-DSMC-

ML framework (as the solution is devoid of solid wall boundary effects).  

The full set of conservation laws in equation (2) can be simplified for the one-dimensional shock 

structure problem as follows, 

( )

2

0 0

0

Q Q Q 0

Q

Q

xx

xx tr,x rt,x vb,xtot tot

rt,xrt rt rt

Conserved Inviscid Viscousvb,xvb vb vb
Variable Flux Flux

u

u u p

uE E p u
t x x

E E u S

E E u S

 
 
 
  
  

      
      +                + + ++ + + +

        
     
           

0.

Source

 =




 
(11) 

To underscore the critical role of higher-order constitutive relations, Fig. 1 compares the temperature 

distributions and essential thermophysical properties, specifically the specific heat ratio and vibrational 

degrees of freedom, within the shock structure for solutions obtained from NSF and DSMC. The 

differences in numerical predictions between these solvers arise from their distinct approaches to 

estimating viscous shear stress and heat fluxes via their respective constitutive relations. 
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(a) Temperature (b) Thermophysical properties 

FIG. 1. Comparison of normalized (a) temperature profiles and (b) key thermophysical properties 

predicted by NSF and DSMC at a specific Mach number, M = 10 for diatomic gas (nitrogen). 

The analysis of shock profiles illustrated in Fig. 1 indicates significant differences in the upstream 

region between the profiles predicted by the FVM-NSF solver and those obtained from the DSMC 

solution. They arise from variations in the distribution of non-conserved variables across the shock 

structure in the two approaches. Figure 2 compares these non-conserved variables computed from both 

the FVM-NSF and DSMC solvers. 
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(a) Stress (b) Translational heat flux 

  

(c) Rotational heat flux (d) Vibrational heat flux 

FIG. 2. Comparison of non-conserved variables across the shock structure (M=10) for diatomic gas 

(nitrogen): (a) stress, (b) translational heat flux, (c) rotational heat flux, and (d) vibrational heat flux for 

FVM-NSF and DSMC solvers. 

A. Computational methodology 

The computational methodology consists of two main components. The first involves the development 

of a DNN model that incorporates the extracted DSMC (or higher-order constitutive) relationships. The 
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second component entails the development of a finite volume method (FVM) solver designed to solve the 

conservation laws in conjunction with the DNN model of constitutive relations. The FVM solver 

employed in this study is based on a second-order monotonic upwind scheme for conservation laws 

(MUSCL) [79] with a minmod limiter, alongside the Harten-Lax-van Leer-Contact (HLLC) flux solver 

[80] for the convective terms and a central difference scheme for the viscous terms. Time integration of 

the conservation laws is performed using the explicit Euler method. 

The specifics of the algorithm utilized to develop the DNN model for DSMC (or the solution 

methodology incorporating the higher-order constitutive relations) can be summarized as follows: 

Step 1. Generation of the DSMC data. In this study, numerical solutions to the flow problem are 

obtained for a range of critical parameters, specifically Mach numbers in the context of the shock 

structure problem, using DSMC. This approach yields the solutions for viscous stress and heat 

fluxes in the DSMC framework (ΠDSMC , 
,Q

tr DSMC
, 

,Q
rt DSMC

 and 
,Q

vb DSMC
). 

Step 2. Computing the distribution of first-order viscous stresses and heat fluxes employing the 

values of macroscopic properties predicted by DSMC.  

a) NSF linear viscous stress ( ( )Π
NSF DSMC

) – This is computed based on the velocity 

information acquired in Step 1. The viscosity (  ) in the viscous stress calculation is 

assumed to be a function of total temperature. The mathematical expression for linear 

viscous stress is as follows, 

( ) ( )ref

4
,     /

3
refNSF DSMC

du
T T

dx


   = − = . (12) 

Here, 
ref

 is the reference viscosity, 
ref

T the reference temperature, and   the 

coefficient of viscosity. In the present work,   is ‘0.74’ (VHS molecule), 
ref

  is 1.656 

×10-5 kg/m∙s, and 
ref

T  is 273.15 K. 
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b)  NSF linear translational heat flux ( ( ),
Q

tr NSF DSMC
) – This is computed based on the 

translational temperature information acquired in Step 1. The thermal conductivity is 

calculated using the Eucken’s relation [81, 82]. The mathematical expression for linear 

translational heat flux is as follows, 

( ) ( ) ,

5
Q ,     

2

tr
tr tr tr v trtr,NSF DSMC

dT
k k T C

dx
= − = . (13) 

Here, viscosity (  ) is the function of translational temperature and is computed based 

on the relation provided in equation (12). The value of specific heat at constant volume 

(
,v tr

C ) is calculated using the relation, ( ),
1

v tr g
C R = −  where the value of specific heat 

( ) is computed using the relation provided in equation (3). 

c) NSF linear rotational heat flux ( ( ),
Q

rt NSF DSMC
) – This is computed based on the rotational 

temperature information acquired in Step 1. The thermal conductivity is calculated using 

Eucken’s relation [81, 82]. Similar to translational heat flux, it can be mathematically 

expressed as follows, 

( ) ( ) ,DSMC
Q ,     = − =rt

rt rt rt v rtrt,NSF

dT
k k T C

dx
. (14) 

Here, viscosity (  ) is the function of rotational temperature and is computed based on 

the power-law formulation provided in equation (12). The specific heat at constant 

volume (
,v rt

C ) is calculated using the same formulation as for 
,v tr

C . 

d) NSF linear vibrational heat flux ( ( ),
Q

vb NSF DSMC
) – This is computed based on the 

vibrational temperature information acquired in Step 1. The thermal conductivity is 

calculated using the relationship provided by Casseau [82]. It can be mathematically 

expressed as follows, 
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( ) ( )

2

, ,DSMC 2

exp

Q ,     1.2 ,     

exp 1

vb vb
g

vb vbvb
vb vb vb v vb v vbvb,NSF

vb

vb

R
T TdT

k k T C C
dx

T

 




   
   
   = − = =
  

−  
  

 (15) 

Here, viscosity (  ) is the function of vibrational temperature and is computed based on 

the power-law formulation provided in equation (12). 

Step 3. The DNN model for constitutive relations is trained using ( )Π
NSF DSMC

 (as described in 

Step 2a), ( ),
Q

tr NSF DSMC
 (as detailed in Step 2b), ( ),

Q
rt NSF DSMC

 (as detailed in Step 2c), and 

( ),
Q

vb NSF DSMC
 (as detailed in Step 2d) as inputs, with outputs represented byΠDSMC , 

,Q
tr DSMC

, 

,Q
rt DSMC

, and 
,Q

vb DSMC
 or the equivalent higher-order values. This model maps the linear 

viscous stress and heat fluxes to their DSMC or higher-order counterparts.  

Figure 3 shows a conceptual diagram of the DNN model of constitutive relations for the multi-

temperature framework. Developing a successful DNN model requires the careful selection of input and 

output parameters, as well as meticulous attention to the details of various additional parameters. These 

include the number of hidden layers, neurons per layer, epochs, learning rate, batch size, activation 

functions, regularization techniques, and optimization functions. In this study, the ‘Adam’ optimizer [83] 

was chosen, along with a combination of ‘ELU’ [84], ‘Leaky-ReLU’ [85], and ‘Mish’ [86] activation 

functions for training the DNN model of constitutive relations. To prevent overfitting, a blend of L1 and 

L2 regularization was applied. The numeric values for these parameters, influenced by data quality and 

dataset size, were tailored specifically to address the problem and reduce overfitting risks. 
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FIG. 3. Conceptual representation of the DNN model of constitutive relations for the multi-temperature 

framework when both rotational and vibrational degrees of freedom are active. 

The next phase entails embedding the DNN model into a standard FVM framework, which is 

systematically achieved using the following algorithm: 

Step I. The NSF flux at the cell interface is calculated using the methodology detailed in Step 2. 

In this procedure, the macroscopic properties used for calculation are the initial values 

corresponding to the current iteration. 

Step II. The value of the NSF flux is normalized using the methodology thoroughly described by 

Mankodi & Myong [60] and Srivastava et al. [74] and given in (10). These normalized values 

serve as the input for the DNN model, while the corrected flux, i.e., the output from the DNN 

model, is relayed back to the FVM solver. 

Step III. The solution for the current iteration proceeds by using these corrected fluxes provided 

by the DNN model. 
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FIG. 4. Flowchart of the algorithm implemented in the FVM-DSMC-ML solver. 

The FVM-ML solver continues to iterate until convergence is reached. The progress of the simulation 

toward convergence is tracked by calculating the L1 error in the macroscopic properties defined as 

( )1

1

1
L1 

cellN
t t

i i

icell

error abs
N

 +

=

= − . (16) 

In this equation,   represents the translational, rotational, and vibrational temperatures, while cellN  refers 

to the mesh count. The solution is assumed to reach convergence when the L1 error value is below 10-4 

for all monitored macroscopic properties. Figure 4 illustrates the flow chart of the algorithm implemented 

in the FVM-DSMC-ML solver. 

III. DSMC SOLUTIONS USING THE FVM-DSMC-ML SOLVER FOR 

DIATOMIC GASES 

This section describes the validation studies of the FVM-DSMC-ML framework developed for 

diatomic gases. In the first case, a DNN model of constitutive relations is developed for diatomic gases in 
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which only the rotational degrees of freedom are active. In the second case, another DNN model is 

developed for diatomic gases, where not only rotational degrees of freedom but also vibrational degrees 

of freedom are activated. In both cases, we develop a single DNN model that can cover full flow regimes 

across all Mach numbers. 

A. Validation of the two-temperature framework 

Before evaluating the performance of the FVM-DSMC-ML solver for the full three-temperature 

framework given in equation (2), we consider a simpler case in which only one additional internal degree 

of freedom—the rotational degree of freedom—is activated. The corresponding set of conservation laws 

for the one-dimensional shock structure problem is as follows: 

( )

2

0 0

0
0.

Q Q 0

Q

xx

xx tr,x rt,xtot tot

rt,xrt rt rt

u

u u p

uE E p ut x x

E E u S

 
 
 
  

      
      +         + + + =
       + ++  
      

      

 (17) 

By applying the strategy described in Sec. II, the non-conserved variables (Π , Qtr , Qrt ) appearing in 

the conservation laws (17) will be determined using the following DNN-based DSMC constitutive 

relations, 

( )
( )
( )

, ,

, Q , ,

, Q , ,

Π Π ,Q ,Q ,

Q Π ,Q ,Q ,

Q Π ,Q ,Q .

tr

rt

DSMC NSF tr NSF rt NSF

tr DSMC NSF tr NSF rt NSF

rt DSMC NSF tr NSF rt NSF

f

f

f

=

=

=

 (18) 

Figure 5 shows a conceptual diagram of the DNN model of constitutive relations for the multi-

temperature framework when only rotational degrees of freedom are active. The computational 

methodology for this simpler case exactly follows the approach outlined in Sec. II A, with the sole 

adjustment being the omission of steps related to vibrational degrees of freedom. 
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FIG. 5. Conceptual representation of the DNN model of constitutive relations for the multi-temperature 

framework when only rotational degrees of freedom are active. 

The DSMC simulations are carried out with a diatomic gas (nitrogen with a molecular diameter of 4.17

10-10 m and molecular mass of 4.6488510-26 kg). For all simulations, the viscosity index ( ) is set to 

0.74, assuming a variable hard sphere (VHS) model. The upstream pressure ( 1p ), temperature ( 1T ), and 

specific heat ratio ( ) are 6.0651 Pa, 300 K, and 1.4, respectively. The mean free path in the upstream 

region ( 1 ) is 8.839610-4 m, with a computational cell width equal to 1/50th of this mean free path. The 

time step for the DSMC simulations is 1/100th of the mean collision time ( c ) based on the upstream 

conditions. The rotational degrees of freedom ( DOFR ) and rotational relaxation parameter ( −R TZ ) are 2 

and 5 [87], respectively. The weight ratio, defined as the number of real molecules per DSMC particle, is 

5.0 1013, and the simulation domain spans from [−250.0, 250.0] times the upstream mean free path. 

Using these upstream conditions and the flow Mach number ( 1M ), the remaining downstream 

macroscopic properties are determined based on the Rankine–Hugoniot relations, as summarized below, 
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( )
( )

( )

( ) ( ) ( )
( )

22
1

1

2

12

2 2

1

2

122
1 2

1 1

2
1 1 ,

1

1 1 2
,

1 2

2 12
1 1 .

1 1

p
M

p

M
M

M

MT
M

T M





 


 

= + −
+

+ −  =
− −

   + −
= + −   + +   

 (19) 

In the equations above, subscript ‘1’ denotes the upstream conditions, while subscript ‘2’ denotes the 

downstream conditions. The initial discontinuity is located at the center of the computational domain. 

Data for developing the DNN model is generated using an in-house MPI parallelized DSMC solver. 

In the present in-house DSMC solver, sampling cells are intentionally configured to match the 

collision cells, providing the enhanced resolution essential for accurate DNN modeling. The DSMC 

solution performs sampling until the viscous stress (ΠDSMC ), translational heat flux (
,Q

tr DSMC
), and 

rotational heat flux (
,Q

rt DSMC
) values stabilize, typically requiring approximately 0.2 million samples. 

Despite this extensive sampling, the calculated values for linear viscous stress ( ( )Π
NSF DSMC

), linear 

translational heat flux ( ( ),
Q

tr NSF DSMC
), and linear rotational heat flux ( ( ),

Q
rt NSF DSMC

) remain noisy due to 

the probabilistic nature of the DSMC. To obtain a smooth solution for the linear viscous stress 

( ( )Π
NSF DSMC

) and heat fluxes ( ( ),
Q

tr NSF DSMC
 and ( ),

Q
rt NSF DSMC

), after sampling these values (detailed in 

Sec. II A) are filtered. The algorithm applied to achieve the filtered solution can be summarized as 

follows: 

1) The values of linear viscous stress and heat flux are treated as spatially dependent signals. The 

first step involves computing the fast Fourier transform (FFT) of these signals, yielding a 

frequency-amplitude distribution. This distribution identifies the cutoff frequency, defined as the 

frequency beyond which the amplitudes of linear viscous stress, linear translational heat flux, and 

linear rotational heat flux become negligible. 
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2) In the subsequent step, the data is filtered using a low-pass filter based on this frequency. In the 

present study, a second-order Butterworth filter is employed. 

The DNN model of the DSMC constitutive relations is trained using filtered linear viscous stress and 

heat flux data as inputs, with corresponding DSMC viscous stress and heat flux data as outputs. For 

practical applications, the DNN model of constitutive relations should reliably predict accurate non-

conserved variables across a broad range of Mach numbers. For this purpose, a single DNN model is 

developed using DSMC data for Mach numbers 2, 3, 4, 5, 6, 7, 8, 9, and 10. Shock structure simulations 

are subsequently conducted using the FVM-DSMC-ML solver (see Sec. II A), and the results are 

validated against actual DSMC solutions to evaluate its performance under two conditions: (1) for Mach 

numbers that were included in the DNN model’s training dataset, and (2) for intermediate Mach numbers, 

specifically 2.5, 4.5, 6.5, and 8.5, which were not part of the training data. 

 

FIG. 6. Progress of root mean square loss for training and validation in the DNN modeling (two-

temperature framework). 
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Figure 6 illustrates the evolution of the root mean square (RMS) loss for both the training and 

validation datasets as the DNN model is progressively trained within the two-temperature framework. The 

key hyperparameters employed for model training are summarized in Table I. Notably, the number of 

training epochs is not explicitly specified in the table, as it was determined dynamically based on an early 

stopping criterion with a patience parameter set to ‘5’. 

TABLE I. Summary of hyperparameters employed in training the DNN model for multi-temperature 

constitutive relation. 

Hyperparameter 
Two-temperature  

framework 

Three-temperature  

framework 

Number of hidden layers 4 4 

Activation function [LeakyReLU, ELU, ELU, LeakyReLU] [Mish, ELU, ELU, LeakyReLU] 

Number of neurons [16, 16, 16, 15] [14, 14, 14, 13] 

Optimizer Adam Adam 

Learning rate 0.0003 0.0003 

Batch 25 25 

L1 regularization 0.2e-6 0.2e-6 

L2 regularization 0.2e-6 0.2e-6 

 

Lumpkin & Boyd [88] proposed that when comparing particle-based solutions (such as DSMC) with 

continuum-based solutions (like the FVM method), the rotational relaxation parameter term for the 

continuum approach ( R-T,CFDZ ) should be higher than that for the particle-based approach ( R-T,DSMCZ ), 

i.e., 2R-T,CFD R-T,DSMCZ Z . This difference arises because of the different implementations of rotational 

energy exchange. The DSMC method employs the collision model by Larsen and Borgnakke [22], which 

assumes that a specific fraction of collisions ( ,1 − −=
in elastic R T DSMC

Z ) results in thermal relaxation by 

allowing the exchange of translational energy with an internal energy mode. In contrast, the continuum 

method employs the Jeans equation (4) [69] where the relaxation is defined as ,  − =
R T continuum rt c

Z . 

In this study, we determine the rotational relaxation parameter value for the FVM-DSMC-ML solver 

based on the relationship 1.2=R-T,FVM -DSMC-ML R-T,DSMCZ Z  such that the viscous stress and heat fluxes of 
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the FVM-DSMC-ML solver may align closely with those in the DSMC solution. Since these viscous 

stress and heat flux results from the particle-based method with internal energy exchange intrinsic to 

DSMC, the FVM-DSMC-ML solver exhibits source relaxation behavior similar to that of DSMC. 

Consequently, the Jeans source term in equation (17), which governs energy exchange between the 

translational and rotational energy modes [69], requires a relaxation parameter closer to the one used in 

DSMC. 

  

(a) M = 2 (b) M = 8.5 

FIG. 7. Comparison of viscous stress profiles predicted by the DNN model of DSMC constitutive 

relations for the two-temperature framework, developed using the DSMC data of Mach numbers 2, 3, 4, 

5, 6, 7, 8, 9, and 10, with the actual DSMC results for Mach numbers: (a) 2 and (b) 8.5. 
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(a) M = 2 (b) M = 8.5 

FIG. 8. Comparison of translational heat flux profiles predicted by the DNN model of constitutive 

relations for the two-temperature framework, developed using the DSMC data for Mach numbers 2, 3, 4, 

5, 6, 7, 8, 9, and 10, with the actual DSMC results for Mach numbers: (a) 2 and (b) 8.5. 

 

  

(a) M = 2 (b) M = 8.5 
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FIG. 9. Comparison of rotational heat flux profiles predicted by the DNN model for constitutive relations 

in the two-temperature framework, developed using the DSMC data for Mach numbers 2, 3, 4, 5, 6, 7, 8, 

9, and 10, with the actual DSMC results for Mach numbers: (a) 2 and (b) 8.5. 

Before performing FVM-DSMC-ML simulations of conserved (density, velocity, and all temperatures) 

and non-conserved (viscous stress and all heat fluxes) properties, we compare non-conserved properties 

estimated by the DNN model with the actual DSMC results. For brevity, Figs. 7, 8, and 9 present 

comparisons of viscous stress, translational heat flux, and rotational heat flux for Mach numbers 2 and 8.5, 

respectively. These figures demonstrate that the DNN model provides results in close agreement with 

those obtained from the DSMC simulations. 

  

(a) M = 2 (b) M = 4.5 
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(c) M = 8.5 (d) M = 10 

FIG. 10. Comparison of normalized conserved properties (density, velocity, and total temperature) of the 

FVM-DSMC-ML (two-temperature) and DSMC solutions for Mach numbers: (a) 2, (b) 4.5, (c) 8.5, and 

(d) 10. The DNN model here is trained using DSMC data from Mach numbers 2, 3, 4, 5, 6, 7, 8, 9, and 

10. 

Figure 10 compares the normalized conserved properties of the FVM-DSMC-ML (two-temperature) 

and DSMC solutions for Mach numbers 2, 4.5, 8.5, and 10. The DNN model is trained using DSMC data 

from Mach numbers 2, 3, 4, 5, 6, 7, 8, 9, and 10. The conserved macroscopic properties are normalized 

employing the following relation: 

1

2 1

where  is either  or ,  ,
 −

 =
 −

cell
norm

T  (20) 

 

2

1 2

−
=

−
cell

norm

V V
V

V V
. (21) 

The FVM-DSMC-ML results for all the cases show excellent agreement with DSMC solutions. 
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Figure 11 compares translational and rotational temperatures of the FVM-DSMC-ML (two-

temperature) and DSMC solutions for Mach numbers 2, 4.5, 8.5, and 10. It shows that the FVM-DSMC-

ML solver results in close agreement with those produced by the DSMC method. 

  

(a) M = 2 (b) M = 4.5 

  

(c) M = 8.5 (d) M = 10 

FIG. 11. Comparison of normalized conserved properties (translational and rotational temperatures) of the 

FVM-DSMC-ML (two-temperature) and DSMC solutions for Mach numbers: (a) 2, (b) 4.5, (c) 8.5, and 
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(d) 10. The DNN model here is trained using DSMC data from Mach numbers 2, 3, 4, 5, 6, 7, 8, 9, and 

10. 

In terms of computational cost, the FVM-DSMC-ML solver demonstrates a slight increase, ranging 

from 1.2 to 1.3 times that of the FVM-NSF solver, with the maximum value of 1.3 observed at a high 

Mach number of 10. However, when compared to the DSMC solver, the FVM-DSMC-ML solver 

achieves a drastic reduction in computational time, requiring only 1/20 of the time taken by the 

conventional DSMC solver. Excluding the cost associated with training DSMC data generation, the 

computational expense of training the machine learning model constitutes a one-time investment, as the 

objective is to develop an a priori portable model. This training cost is approximately 1/15th of the 

computational effort required to simulate a 1D high Mach number shock structure using an FVM-NSF 

solver. 

B. Validation of the three-temperature framework 

We now evaluate the performance of the FVM-DSMC-ML solver for the full three-temperature 

framework given in equations (2) and (11). Nitrogen is again used as the working gas. The DSMC data 

for this case is produced using an in-house DSMC solver with MPI parallelization (where sampling cells 

are the same as collision cells). The upstream pressure ( 1p ) and temperature ( 1T ) are set to 10.0563 Pa 

and 1000 K, respectively. The weight ratio, indicating the number of real molecules per DSMC particle, is 

3.81013, and the simulation domain extends from [−250.0, 250.0] times the upstream mean free path. 

The vibrational relaxation parameter ( V TZ − ) is assigned a value of 50 and the vibrational degrees of 

freedom ( DOFV ) is set to 1. Based on upstream pressure and temperature, the mean free path ( 1 ) is 

calculated as 1.777110-3 m. All other parameters are the same as those specified in Sec. III A. 

The excitation of vibrational degrees of freedom results in a shock structure problem characterized by 

a varying specific heat ratio (  ) across the two sides of the diaphragm. Given a set of pre-shock 

(upstream) conditions, the post-shock (downstream) conditions can be analytically derived using the 
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following generalized Rankine–Hugoniot shock relations [60, 89, 90], which account for the impact of the 

variable specific heat ratio, 
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 (22) 

Here, subscripts ‘1’ and ‘2’ represent the upstream and downstream states, respectively. The relationship 

between the specific heat ratio and internal degrees of freedom is given in equation (3). Notably, for a 

given upstream Mach number, the downstream specific heat ratio depends on the post-shock temperature, 

thereby forming an implicit system. Determining the post-shock conditions thus requires an iterative 

numerical procedure based on the generalized Rankine–Hugoniot shock relations. The initial 

discontinuity is located at the center of the computational domain. 

In the DSMC solver, sampling is performed until the macroscopic properties such as viscous stress and 

heat fluxes stabilize, requiring approximately one million samples. The linear viscous stress and heat flux 

components (translational, rotational, and vibrational) are filtered based on the algorithm detailed in Sec. 

III A to ensure smooth distributions. The DNN model of the DSMC constitutive relations is trained using 

filtered linear viscous stress and heat flux data as inputs, with corresponding DSMC viscous stress and 

heat flux data as outputs. Similar to the two-temperature case, a single DNN model is developed using 

DSMC data for Mach numbers 4, 5, 6, 7, 8, 9, and 10.  
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FIG. 12. Progress of root mean square loss for training and validation in the DNN modeling (three-

temperature framework). 

Similar to the analysis presented in Section III.A, Fig. 12 illustrates the progression of the root mean 

square loss for both training and validation datasets during the training of the DNN model for the three-

temperature framework. The hyperparameters selected for training the DNN model in this case are listed 

in Table I. An early stopping criterion with a patience of ‘5’ was employed. Following training, neural 

network-based shock structure simulations are performed using the FVM-DSMC-ML solver (see Sec. II 

A), and their outcomes are validated against actual DSMC solutions to assess its performance under two 

scenarios: (1) for Mach numbers present in the DNN model’s training dataset, and (2) for intermediate 

Mach numbers—specifically 4.5, 6.5, and 8.5—that were not included in the training data. 

As done in Sec. III A, before performing FVM-DSMC-ML simulations for conserved and non-

conserved properties, we compare non-conserved properties estimated by the DNN model with the actual 

DSMC results. Figures 13, 14, 15, and 16 present comparisons of viscous stress, translational heat flux, 
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rotational heat flux, and vibrational heat flux for Mach numbers 4 and 8.5, respectively. The results 

predicted by the DNN model are in excellent agreement with the actual DSMC results. 

  

(a) M = 4 (b) M = 8.5 

FIG. 13. Comparison of viscous stress profiles predicted by the DNN model and DSMC method for Mach 

numbers: (a) 4 and (b) 8.5. The DNN model here is trained using DSMC data from Mach numbers 4, 5, 6, 

7, 8, 9, and 10. 
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(a) M = 4 (b) M = 8.5 

FIG. 14. Comparison of translational heat flux profiles predicted by the DNN model and the DSMC 

method for Mach numbers: (a) 4 and (b) 8.5. The DNN model is trained using DSMC data from Mach 

numbers 4, 5, 6, 7, 8, 9, and 10. 

 

  

(a) M = 4 (b) M = 8.5 

FIG. 15. Comparison of rotational heat flux profiles predicted by the DNN model (trained using DSMC 

data from Mach numbers 4, 5, 6, 7, 8, 9, and 10) and the DSMC method for Mach numbers: (a) 4 and (b) 

8.5. 
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(a) M = 4 (b) M = 8.5 

FIG. 16. Comparison of vibrational heat flux profiles predicted by the DNN model (trained using DSMC 

data from Mach numbers 4, 5, 6, 7, 8, 9, and 10) and the DSMC method for Mach numbers: (a) 4 and (b) 

8.5. 

Gimelshein, Gimelshein, and Levin [91] established a relationship between the vibrational relaxation 

( ,−V T DSMC
Z ) employed in DSMC and the corresponding value ( ,−V T CFD

Z ) used in continuum-based CFD 

simulations. In the present study, we chose, however, not to use this relationship because we are directly 

implementing the DSMC fluxes into the conservation laws for the three-temperature framework (11). 

Here, a formulation, , ,1.2− − − −=
V T FVM DSMC ML V T DSMC

Z Z , enables an effective resolution of the non-

equilibrium between the translational and vibrational degrees of freedom through the inclusion of the 

Landau-Teller [60, 66] source term, as presented in equations (11). This approach aligns with the 

rationale detailed in Sec. III A of the two-temperature framework. The viscous stress and heat fluxes 

provided to the conservation laws account for non-equilibrium effects embedded in the DSMC solutions, 

and this vibrational heat flux stems from the vibrational relaxation process inherent to DSMC. Regarding 
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the Jeans source term [69], which calculates the energy exchange between the rotational and translational 

degrees of freedom, we employ the relation 1.2=R-T,FVM -DSMC-ML R-T,DSMCZ Z  as done in Sec. III A. 

  

(a) M = 4 (b) M = 6.5 

  

(c) M = 8.5 (d) M = 10 

FIG. 17. Comparison of normalized conserved properties (density, velocity, and total temperature) of the 

FVM-DSMC-ML (three-temperature) and DSMC solutions for Mach numbers: (a) 4, (b) 6.5, (c) 8.5, and 
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(d) 10. The DNN model here is trained using DSMC data from Mach numbers 4, 5, 6, 7, 8, 9, and 10. 

Figure 17 compares the normalized conserved properties (density, velocity, and total temperature) of 

the FVM-DSMC-ML (three-temperature) and DSMC solutions for four distinct cases, Mach numbers of 4, 

6.5, 8.5, and 10. The main objective of this study was to develop an FVM solver capable of predicting the 

DSMC-equivalent non-equilibrium among the translational, rotational, and vibrational internal degrees of 

freedom. For this purpose, Fig. 18 compares the normalized properties (translational, rotational, and 

vibrational temperatures) of the FVM-DSMC-ML (three-temperature) and DSMC solutions. 

Additionally, for completeness, we compare normalized thermophysical properties, specifically the 

specific heat ratio (  ) normalized using equation (21) and vibrational degrees of freedom ( DOFV ) 

normalized using equation (20), with the actual DSMC solutions for Mach numbers of 4, 6.5, 8.5, and 10. 

Figures 17, 18, and 19 demonstrate that the FVM-DSMC-ML solver provides results that are in close 

agreement with the actual DSMC solutions. 

  

(a) M = 4 (b) M = 6.5 
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(c) M = 8.5 (d) M = 10 

FIG. 18. Comparison of normalized properties (translational, rotational, and vibrational temperatures) of 

the FVM-DSMC-ML (three-temperature) and DSMC solutions for Mach numbers: (a) 4, (b) 6.5, (c) 8.5, 

and (d) 10. The DNN model here is trained using DSMC data from Mach numbers 4, 5, 6, 7, 8, 9, and 10. 

 

  

(a) M = 4 (b) M = 6.5 
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(c) M = 8.5 (d) M = 10 

FIG. 19. Comparison of normalized properties (specific heat ratio and vibrational degrees of freedom) of 

the FVM-DSMC-ML (three-temperature) and DSMC solutions for Mach numbers: (a) 4, (b) 6.5, (c) 8.5, 

and (d) 10. The DNN model here is trained using DSMC data from Mach numbers 4, 5, 6, 7, 8, 9, and 10. 

When evaluating the computational cost of the FVM-DSMC-ML solver compared to the two standard 

solvers, namely FVM-NSF and DSMC, the FVM-DSMC-ML solver is found to be approximately 1.2 to 

1.5 times slower than the FVM-NSF solver. However,  compared to the DSMC solver, the FVM-DSMC-

ML solver shows superior performance with its computational cost being only 1/50 of that of the 

conventional DSMC solver. The cost of training the machine learning model—excluding the expense of 

generating the training DSMC dataset—is incurred only once, as it pertains to the construction of an a 

priori model. This cost is relatively modest, amounting to approximately 1/15th of the computational 

resources needed to perform a simulation of a high Mach number 1D shock structure using the FVM-NSF 

solver. 
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IV. TOPOLOGY OF THE DSMC CONSTITUTIVE RELATIONS 

Topology is a mathematical concept useful for describing the properties of a system that remains 

invariant under continuous transformations. Exploring the topological aspects of fluid dynamics has 

proven highly effective for characterizing fluid flows with complex physical behavior. A core idea in 

topology is that knowledge of objects is independent of their spatial embedding. In fluid dynamics, 

topological frameworks can be organized into various categories, including vortex and helicity [92], 

stability in dynamical systems, phase transitions, and constitutive relations [60, 74, 93]. For instance, the 

topology of vortex and helicity offers essential insights into the tendency of flows in classical fluids to 

form vortices or coherent structures. The constitutive relations in a topological form—the generic 

property of fluid—are transferable to all flow scenarios in principle because they describe the thermo-

fluidic behavior of a fluid subjected to certain thermodynamic driving forces such as spatial gradients of 

velocity and temperature [93]. Therefore, when they are combined with the physical conservation laws of 

mass, momentum, energy, and initial and boundary conditions, any flow problem can be described within 

the limits of certain constitutive relations. 

Garg et al. [1] presented the topology of the DSMC constitutive relations for the compressive flow 

branch in monatomic gases. Here we extend their work to diatomic gases, specifically presenting the 

DSMC topology for compressive flow in nitrogen. This is accomplished by developing two distinct multi-

temperature FVM-DSMC-ML frameworks: a two-temperature model that incorporates translational and 

rotational internal energies, and a three-temperature model that additionally includes vibrational internal 

energy. 

A. The two-temperature model with rotational degrees of freedom only 

We first present the topology of the DNN-based DSMC constitutive relations (18) for the two-

temperature framework given in (17). Figure 19 presents three-dimensional topologies (original DSMC, 

DNN-based DSMC model, and NSF) for the shock structure solutions, focusing on the compressive flow 

regime primarily characterized by positive viscous stress and negative heat fluxes. Variables carrying the 
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subscript ‘0’ denote the corresponding values based on the NSF constitutive relations computed using 

equations (12)-(15). 

  

(a) 3D topology of viscous stress ( ̂ ) (b) 2D projection of viscous stress ( ̂ ) 

  

(c) 3D topology of translational heat flux ( trQ̂ ) (d) 2D projection of translational heat flux ( trQ̂ ) 
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(e) 3D topology of rotational heat flux ( rtQ̂ ) (f) 2D projection of rotational heat flux ( rtQ̂ ) 

FIG. 20. Comparison of topologies of the DSMC constitutive relations and the DNN-based model for the 

two-temperature case: (a) 3D topology of viscous stress, (b) 2D projection of the viscous stress topology 

on (
0̂ , ̂ ), (c) 3D topology of translational heat flux, (d) 2D projection of the translational heat flux 

topology on(
,0Q̂tr

, Q̂
tr

), (e) 3D topology of rotational heat flux, and (f) 2D projection of the rotational 

heat flux topology on (
,0Q̂rt

, Q̂
rt

). 

In Figs. 20(a), 20(c) and 20(e), the x-, y-, and z-axes correspond to the normalized hat quantities(
0̂ ,

,0Q̂tr
, ̂ ), (

0̂ ,
,0Q̂tr

, Q̂
tr

), and (
0̂ ,

,0Q̂rt
, Q̂

rt
), respectively, defined in (10). In these figures, the blue 

symbols represent the topology of the original DSMC data for the Mach numbers used to train the DNN 

model (see Sec. III A), while the red symbols represent the DNN-based DSMC topology for intermediate 

Mach numbers not included in the training data. Figures 20(b), 20(d), and 20(f) present two-dimensional 

projections: viscous stress topology on the (
0̂ , ̂ ) plane, translational heat flux topology on the ( ,0Q̂tr

,

Q̂
tr ) plane, and rotational heat flux topology on the ( ,0Q̂rt

, Q̂rt ) plane, respectively.  
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A close look at these topologies reveals pronounced nonlinearities and strong coupling between 

viscous stresses and heat fluxes. The coupling is evident in the curvature along the direction of thermal 

forces at fixed viscous stress force values, particularly in cases where the flow significantly deviates from 

LTE (indicated as the origin). While the viscous stress primarily responds to the viscous stress force, it 

also varies nonlinearly with thermal force. In contrast, the NSF topology, represented by black symbols, 

shows a decoupled response to viscous stress and thermal forces, i.e., the viscous stress depends only on 

the viscous stress force, independent of thermal effects, and vice versa for the heat fluxes (both 

translational and rotational). Further, despite their nonlinearity, the DSMC and DNN-based DSMC 

topologies are smooth. Interestingly, in most regimes, the DSMC and DNN-based DSMC topologies 

exhibit higher values of viscous stress and translational heat flux compared to the NSF topology. 

These topologies provide valuable insights into the flow regime that requires additional data to 

develop improved DNN models. A close look at the topology of the viscous stress reveals wider spacing 

between the DSMC topology curves at low Mach numbers (i.e., below Mach 5), suggesting that more 

data in this range would enhance the DNN’s ability to accurately model the viscous stress. In addition, 

examining the DSMC heat flux magnitudes—whether translational or rotational—reveals significant 

variation with Mach number (e.g., the peak heat flux for Mach number 2 is approximately one-tenth of 

that for Mach number 10). This disparity indicates that insufficient data in lower Mach number regions 

may lead to unrealistic results, potentially degrading solution quality in those zones. 

Compared to the monoatomic gas counterpart (as presented in Garg et al. [1]), we find that the 

transitional heat flux topology of the diatomic gas changes signs, i.e., becomes positive in certain regions 

downstream of the shock wave. As a result, the curves drawn for different Mach numbers intersect each 

other. This behavior can be attributed to the change in the slope of the translational temperature following 

the peak, as illustrated in Fig. 11. Interestingly, the predominant regions of the original and DNN-based 

DSMC rotational heat flux topologies for Mach numbers below 4 are smaller than those predicted by the 

NSF topology, as shown in Figs. 20 (e) and (f). 
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B. The three-temperature model with both rotational and vibrational degrees 

of freedom 

We now present the topology of the DNN-based DSMC constitutive relations (7) for the three-

temperature framework given in (11). Figure 21 presents three-dimensional topologies (original DSMC, 

DNN-based DSMC model, and NSF) of the shock structure solutions, focusing on the compressive flow 

regime, which is mostly characterized by positive viscous stress and heat fluxes with either positive or 

negative signs. Variables carrying the subscript ‘0’ are computed using (12)-(15). These topologies 

represent a novel contribution to the understanding of shock wave structures.  

In Figs. 21(a), 21(c), 21(e) and 21(g), the x-, y-, and z-axes correspond to the normalized hat quantities 

(
0̂ ,

,0Q̂tr
, ̂ ), (

0̂ ,
,0Q̂tr

, Q̂
tr

), and (
0̂ ,

,0Q̂rt
, Q̂

rt
) and (

0̂ ,
,0Q̂

vb
, Q̂

vb
), respectively, defined in (10). 

In these figures, the blue symbols represent the topology of the original DSMC data for Mach numbers 

included in training the DNN model (see Sec. III B), while the red symbols represent the DNN-based 

DSMC topology for intermediate Mach numbers not included in the training data. The NSF topology is 

represented by the black symbols. Figures 21(b), 21(d), 21(f), and 21(h) present two-dimensional 

projections: viscous stress topology on the (
0̂ , ̂ ) plane, translational heat flux topology on the (

,0Q̂tr
,

Q̂
tr

) plane, rotational heat flux topology on the (
,0Q̂rt

, Q̂
rt

) plane, and vibrational heat flux topology on 

the (
,0Q̂

vb
, Q̂

vb
) plane, respectively. 
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(a) 3D topology of viscous stress ( ̂ ) (b) 2D projection of viscous stress ( ̂ ) 

  

(c) 3D topology of translational heat flux ( trQ̂ ) (d) 2D projection of translational heat flux ( trQ̂ ) 
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(e) 3D topology of rotational heat flux ( rtQ̂ ) (f) 2D projection of rotational heat flux ( rtQ̂ ) 

 
 

(g) 3D topology of vibrational heat flux ( vbQ̂ ) (h) 2D projection of vibrational heat flux ( vbQ̂ ) 

FIG. 21. Comparison of topologies of the DSMC constitutive relations and the DNN-based model for the 

three-temperature case: (a) 3D topology of viscous stress, (b) 2D projection of the viscous stress topology 

onto the (
0̂ , ̂ ) plane, (c) 3D topology of translational heat flux, (d) 2D projection of the translational 

heat flux topology onto the (
,0Q̂tr

, Q̂
tr

) plane, (e) 3D topology of rotational heat flux, (f) 2D projection of 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
6
5
5
6
4



47 

 

the rotational heat flux topology onto the (
,0Q̂rt

, Q̂
rt

) plane, (g) 3D topology of vibrational heat flux, and 

(h) 2D projection of the vibrational heat flux topology onto the (
,0Q̂

vb
, Q̂

vb
) plane. 

Like the two-temperature model with rotational degrees of freedom only, as described in Sec. IV A, 

the topologies of the three-temperature framework exhibit pronounced nonlinearities and strong coupling 

between viscous stresses and heat fluxes. In addition, for the most part, the DSMC and DNN-based 

DSMC topologies exhibit higher values of viscous stress and heat fluxes compared to the NSF topology. 

A close examination of the DSMC translational and rotational heat flux magnitudes reveals substantial 

variation with Mach number, with the peak heat flux for Mach number 4 being approximately one-fourth 

of that for Mach number 10. Further, the DSMC vibrational heat flux topology shows an intriguing 

pattern: in the upstream region, the vibrational heat flux profile varies as a multiple of the characteristic 

vibrational temperature, resulting in a series of Mach numbers with consistent topological shapes. These 

observations suggest that insufficient data in certain Mach number ranges could result in inaccurate model 

predictions, potentially compromising solution quality in these regions. 

Compared to the topology of the rotational heat flux of the two-temperature framework described in 

Sec. IV A (where vibrational degrees of freedom are inactive), we find that the nearly equal spacing in 

magnitude between successive Mach numbers, noted in Sec. IV A, does not exist in the present three-

temperature framework. The series of sets generated by multiples of the characteristic temperature in the 

vibrational heat flux affects the topology of rotational heat flux and exhibits similar characteristics. This is 

not observed in the translational heat flux, which can be attributed to the fact that the magnitude of 

translational heat flux for any Mach number is at least 2 orders of magnitude greater than the vibrational 

heat flux. In contrast, the rotational heat flux for a specific Mach number is quite close to that of its 

vibrational counterpart. 

To summarize from Secs. IV A and IV B, it is clear that although both DSMC and NSF obey the same 

physical conservation laws, the essential differences observed between the DSMC and NSF topologies—
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in particular, pronounced nonlinearities and strong coupling between viscous stresses and heat fluxes—

are responsible for the different shock structure profiles observed in the DSMC and NSF solutions. 

V. CONCLUDING REMARKS 

The objective of this study is to extend the FVM-DSMC-ML framework to diatomic gases with 

vibrational modes by employing the two-temperature framework (translational and rotational) as well as 

the three-temperature framework (translational, rotational, and vibrational). The core idea of this 

framework is to combine DNN-based DSMC constitutive relations with traditional CFD codes, such as 

FVM or discontinuous Galerkin (DG) methods, to establish a third approach for describing gas flows 

including rarefied and microscale gases, complementing existing PDE-based and purely particle-based 

methods. In this framework, DNN-ML models serve to construct constitutive relations from 

computationally simulated data in a multi-variable space for fundamental flow regimes which establish a 

foundation applicable to diverse flow problems. Accordingly, the present DNN-ML models provide an 

alternative to the traditional methods of deriving constitutive relations from experimental data or 

empirical techniques. 

In principle, the approach presented in this study can extend beyond the DSMC framework to 

encompass molecular dynamics (MD) and gas kinetic solvers (GKSs), where explicit forms of PDEs for 

constitutive relations are often lacking. This is possible because the method is based on the concept that 

constitutive relations independent of spatial embedding (thus called topology) can be first derived from 

raw simulated spatial flow data that satisfy physical conservation laws, and then later combined 

separately with an external computational solver for the conservation laws. This opens the possibility of 

developing various FVM-ML solvers, including FVM-MD-ML and FVM-GKS-ML. 

We considered the one-dimensional shock wave structure, focusing on diatomic gas (specifically 

nitrogen), which is a well-studied problem in the context of nonequilibrium gas flow. We subsequently 

developed a single DNN model from the DSMC solution data alongside the associated FVM-DSMC-ML 

solver, capable of providing solutions for arbitrary Mach numbers with computational efficiency 
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comparable to that of the FVM-NSF solver. The simulation results indicated an acceptable equivalence 

between the FVM-DSMC-ML and DSMC solutions. Additionally, we constructed the topology of the 

DSMC constitutive relations for diatomic gas for the first time, enabling us to investigate how the DSMC 

topology deviates from the NSF topology in regions where the flow is significantly removed from LTE. 

The current DNN-based FVM-DSMC-ML solver represents an innovative approach with significant 

potential; however, several challenges must be addressed to establish it as a robust method capable of 

tackling real-world scientific and technical problems. First, the method should be extendable to 

accommodate high-temperature gas flows involving chemical reactions [7, 24, 71, 94] and unsteady flow 

phenomena. At the same time, in the long term, it should be expanded toward developing quantum 

algorithms [95] capable of solving shock structure problems using quantum computing. Second, in 

addition to the compressive flow branch of the constitutive relations topology examined in this study, it is 

essential to develop additional machine learning models for other flow regimes, including expansion and 

boundary-driven velocity shear. Finally, it should be developed to address the challenges of multi-

dimensional flows, going beyond the one-dimensional framework developed in this study. We hope to 

report our progress on these topics in due course. 
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