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ABSTRACT

The phenomenon of rotational relaxation in diatomic gases such as nitrogen was studied in a

non-equilibrium flow regime. Higher-order constitutive theory such as the nonlinear coupled con-

stitutive relations (NCCR) approach was used to calculate the flow properties. The bulk viscosity-

based approach, employing a single temperature to identify rotational non-equilibrium was found

applicable for low Mach number cases. Since diatomic gases are characterized by additional de-

grees of freedom that may not be in equilibrium with each other in non-equilibrium flows, differ-

ent temperatures need to be assigned to each degree of freedom to account for the same. Energy

exchange between translational and rotational degrees of freedom was accomplished using the ro-

tational energy equation with a non-zero source term. The source term was modeled using the

Landau-Teller formulation and involved a rotational collision number representing the average

number of collisions required to attain trans-rotational equilibrium. In the present work, it was cal-

culated using the simplified formulation proposed by Parker. An additional non-conservedmoment

equation related to rotational heat flux was formulated under the NCCR framework and was solved

in conjunction with other NCCR algebraic equations. It was noticed that the new two-temperature

NCCR formulation for rotational non-equilibrium had better agreements with experiments, direct

simulation Monte Carlo (DSMC), and molecular dynamics (MD) simulations. Moreover, the for-

mulation was computationally less expensive than the DSMC/ MD simulations. A topological

analysis was carried out to demonstrate the nonlinearity present in NCCR.

I. INTRODUCTION

Diatomic gases are known to have internal degrees of freedom, such as rotational and vibrational

degrees, that may not be in equilibrium in hypersonic flows. In such situations, an energy change

in the domain is initially reflected by a change in translational energy and later gets re-distributed

to other internal degrees of freedom. Generally, this redistribution of energy is quite fast, and the

timescale is many orders of magnitude lower than the timescale of the flow. The flow in such

cases is usually assumed to be in equilibrium and the distribution of energy follows the law of

equipartition of energy.

However, in certain cases, such as the hypersonic flow around re-entry vehicles, the presence of

high gradients and rarefied atmospheric conditions may delay the relaxation of internal energies to
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such an extent that the flow time and relaxation time may become comparable. In such situations,

the impact of the relaxation of internal energies and their redistribution may play a significant role

in the flow physics.

Non-equilibrium phenomena in diatomic gases can be investigated using different approaches.

The disparity in energy levels among various degrees of freedom can be modeled as an additional

dissipative phenomenon, or by assuming a separate relaxation equation with different temperatures

associated with each degree of freedom. This leads to the two basic approaches to the problem:

1. The single temperature approach with bulk viscosity accounting for internal modes, and

2. The multi-temperature relaxation equation approach.

The single-temperature formulation has the benefit of simplicity since it requires no additional

accounting of the energy contents of different degrees of freedom. A property, known as bulk

viscosity, is introduced in the momentum and the energy equations that account for the relaxation

time associated with the internal degrees of freedom. The pressure tensor (P) is expanded to have

a non-zero excess stress term (∆), as given below.

P =ΠΠΠ+∆I+ pI (1)

where ΠΠΠ is the stress term, p is the pressure, and I is the identity matrix. While ∆ is zero for

monoatomic gases, it may be non-zero for diatomic and polyatomic gases. It can be estimated

using the first-order approximate formulation, which relates it to the bulk viscosity coefficient

through the following relation.

∆ =−ηb∇∇∇ ·u (2)

where ηb is the coefficient of bulk viscosity and u is the bulk velocity of the flow.

In the multi-temperature approach, additional energy equations for the internal degrees of free-

dom are included. The energy for various degrees of freedom is associated with a separate tem-

perature value that may have a different value in the case of non-equilibrium flows. A source term

is present that accounts for inter-mode energy transfer based on the temperature values of each

degree of freedom. A typical evolution equation takes the following form.

∂
∂ t

(ρEm)+∇∇∇ · (Emu)+∇∇∇ ·Qm = Sm (3)
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where ρ is the mass density, Em is the energy per unit volume for the mode (m), Qm is the heat

flux associated with the mode, and Sm is the source term.

It was shown by McCourt et al.1 that the excess stress term, (∆), appearing in the conservation

laws is equivalent to the difference between the translational and rotational temperatures. Thus,

the hydrodynamic equation can be formulated in two ways2,3: either by introducing the excess

stress, (∆), and retaining the one temperature (Ttrans−rot or Tt−r) concept, or by introducing trans-

lational (Tt) and rotational (Tr) temperatures and assuming no excess stress term. The former had

been employed in previous studies4 as it is a natural extension of the Navier-Stokes-Fourier (NSF)

constitutive laws. Here we tried to explore the multi-temperature approach to the non-equilibrium

problems.

The first attempt to modify the Boltzmann equation to include the rotational degree of freedom

was carried out by Curtiss5. Curtiss employed the classical theory to model rigid convex non-

spherical bodies having the center of mass at the center of symmetry. Chapman-Enskog theory

(CE)6 was employed, similar to the monoatomic gas flows. However, because of the complexities

involved in the CE expansion, the resultant formulation was only applicable to a lower degree of

non-equilibrium and for simple geometries.

Wang-Chang and Uhlenbeck7 included the concepts of quantummechanics with the Boltzmann

equation with quantized levels of internal degrees, and obtained the semi-classical equations. The

collision termwas modified to incorporate transition probabilities for elastic, inelastic, and reactive

transitions. Additionally, the Pauli exclusion principle was enforced, which restricted the transition

to already occupied states.

Although Wang-Chang and Uhlenbeck were able to provide the formulation, the difficulty of

solving the resultant set of equations was a major hindrance to its use in general cases. They spe-

cialized the formulation for two extreme cases, classified7 as ”when energy exchange between

translational-internal degrees of freedom is not difficult” and ”when the energy exchange is diffi-

cult”. The first case involves the introduction of bulk viscosity to account for the lower degree of

non-equilibrium, while the second case elucidates the importance of separate temperature values

for the internal modes.

The bulk viscosity approach is central to the first case. As discussed earlier in the text, the

minor deviation from equilibrium is modeled as additional viscous phenomena associated with the

excess stress component in the pressure tensor. The second case involved relaxation phenomena

and was modeled using a separate equation. However, the transport coefficients were in the form of
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integrals having inelastic collision terms as integrands. Due to a lack of knowledge about inelastic

collisions for any molecular model, further simplification could not be done.

For gases with internal degrees of freedom, a simplified model for the collision term, similar

to the Bhatnagar-Gross-Krook (BGK) model of monoatomic gas, was formulated by Morse8. His

model was based on theWang-Chang andUhlenbeckmodel for polyatomic gases. The two extreme

cases were retaken and solved using this novel technique.

The BGK model offers extreme simplicity due to the simplified formulation of the collision

term. However, the non-dimensional parameter such as the Prandtl number (Pr) calculated using

the BGK model provides an incorrect value equal to 1 for monoatomic gases. An extension of the

BGK model, to get the correct value of Pr, led to the development of the ES-BGK model9. The

extension of the ES-BGKmodel to polyatomic gas involving rotational and vibrational equilibrium

was carried out by Dauvois et al.10. They employed discrete vibrational energy levels for the study

and subsequently proved the H-theorem for this model.

Rykov11 proposed a new model kinetic equation considering the rotational degree of freedom

in a diatomic gas. This model formed the basis of the numerical experiments, carried out by Rykov

et al.12 and Larina et al.13. Computed shock structures were in good agreement with experiments

and DSMC simulations.

Contemporary to the above formulations, Curtiss14,15 generalized his previous formulations to

account for diatomic gases in general. His development considered diatomic gas as a special case.

Further specialization to rigid-rotor and harmonic oscillator models was considered.

Recently, Wu et al.16 implemented the Rykov model for inelastic collisions. The elastic col-

lision was modeled using the Boltzmann collision operator (BCO), similar to that used for the

monoatomic gas. The Boltzmann equation for monoatomic gases was obtained when the rotational

contribution became zero. Shock waves in nitrogen gas were analyzed, and good agreements were

observed with DSMC simulations.

Besides the kinetic model-based approach to non-equilibrium flows in diatomic gases, DSMC

simulations were carried out by Bird17 to predict shock structure in nitrogen gas. In a few cases,

limited experimental results were also obtained by Alsmeyer18, Linzer et al.19. The DSMC and

experimental results are often used to validate model kinetic equations and other computational

methods.

Estimating the rotational collision number (Zr) is central to calculating the source term, required

in a multi-temperature framework. It quantifies the average number of collisions required to attain
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equilibrium between the internal and translational degrees of freedom. Various formulations were

devised to calculate the rotational collision number. Parker20 gave the first analytical formula-

tion to calculate rotational and vibrational collision numbers. He obtained analytical expressions

based on a simplified assumption, using the concepts of classical theory. He calculated rotational

collision numbers21 for various gases including Cl2, N2, and O2. His formulation predicted the

strong dependence of the rotational collision numbers on the translational temperature. Parker’s

theoretical calculations were confirmed using ultrasonic experiments by Carnevale et al.22. They

determined the rotational collision numbers and vibrational relaxation times of poly-atomic gases

such as N2, O2, andCO2.

Parker had assumed certain restrictions for a colliding set of molecules, such as zero initial

angular velocity and same-plane collision, and this resulted in an extremely idealized formulation.

Nyeland23 extended Parker’s formulation by removing the assumption of zero angular velocity of

colliding molecules. The result was, however, in poorer agreement with the experiments .

Valentini et al.24 studied how the compression and expansion of gases affected the rotational

collision number. They employed DSMC simulations to study shock structure and rarefaction and

compared the results with MD and experimental data. A new fit to estimate Zr was also proposed.

The present study incorporates a generalized hydrodynamics (GH) approach to solve the non-

equilibrium phenomenon involving diatomic gases. The generalized hydrodynamics was devel-

oped by Eu25, as a modification to the moment method of Grad26,27. Eu assumed a special form for

the probability distribution function that led to a more intuitive definition of entropy production28.

The formulation strictly follows the second law of thermodynamics even at higher order approx-

imations, which was a major drawback of the Chapman-Enskog formulation and Grad’s moment

method29.

Eu applied his theory to numerous practical applications for example, in the calculation of trans-

port properties in gases30, in semiconductors31, Knudsen problem32, rigid diatomic gases33, sound

waves absorption and dispersion34 and found better applicability to situations far from equilibrium

as compared to the Navier-Stokes-Fourier formulation. A high degree of non-equilibrium, as is ob-

served in shock structures35, was studied using Eu’s GH, and good agreements with experiments

were observed at all Mach numbers.

Myong36 modified the original generalized hydrodynamics formulation, leading to a simplified

yet robust set of coupled algebraic equations for the non-conserved variables. The modified formu-

lation was known as the nonlinear coupled constitutive relations (NCCR). The NCCR was proven
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to be equivalent to the original formulation and was computationally less expensive. NCCR for-

mulation was applied to study several non-equilibrium problems37,38. Myong4 extended NCCR to

diatomic gases by incorporating the bulk viscosity approach into the NCCR formulation. Recently,

Yuan et al.39 introduced a multi-temperature approach to study non-equilibrium phenomena in di-

atomic gases using a formulation similar to NCCR. They, however, kept bulk viscosity in their

formulation along with the equation of excess stress.

The multi-temperature NCCR formulation was employed to study vibrational non-equilibrium

by Mankodi et al.40. The rotational degree was assumed to be in equilibrium with the translational

mode. Further, the NCCR formulation was extended to investigate the hypersonic reacting flows41

with the vibrational degree of freedom42. It was found closer to the wind tunnel experiments, in-

flight tests, and direct simulation Monte Carlo method than the NSF formulation.

A novel multi-temperature formulation was extended by Kumar et al.43 where they considered

the overall temperature and the dynamic temperature representing the internal degrees of free-

dom. A linear relationship was assumed between the translational and internal heat fluxes. The

constitutive relations were obtained using an extended Gibbs relationship44 and by enforcing the

second law of inequality. A satisfactory match with the experimental and DSMC shock profiles

was obtained up to Mach 10, compared to the NSF formulation, especially at Mach 6.1.

It is generally assumed that the rotational mode equilibriates very fast and can be taken as equal

to the translational temperature leading to a two-temperature formulation45. However, the shock

tube experiments, performed by Sharma et al.46 and Fujita et al.47 show that at high temperatures,

the rate of rotational relaxation is slower. They found that the rotational temperature was closer to

the vibrational temperature, unlike the two-temperature model where the rotational temperature is

equal to the translational temperature. Further, the numerical studies performed by Furudate et al.48

to calculate the shock standoff distance in a flow past sphere case, matched with the experiments

when some finite rate rotational relaxation was accounted.

The present study incorporated the multi-temperature approach to diatomic gases to handle

translational-rotational non-equilibrium within the NCCR framework for flow conditions far from

equilibrium. Specifically, a shock structure study was chosen to investigate the high degree of

non-equilibrium, observed at high Mach numbers. Despite the limitations of Parker’s20 model,

it was employed in this study for simplicity. The present study aimed to investigate the role of

higher-order constitutive theory in a multi-temperature framework. A comparison was made with

the first-order Navier-Stokes-Fourier formulation, to determine the range of applicability of the
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lower-order schemes, and then with experimental/DSMC data, to measure the accuracy of the new

second-order constitutive relations.

This paper has been divided into sections, as follows. The derivation of the new set of gov-

erning equations related to NCCR formulation and the implementation of the multi-temperature

approach are described in Section II. The section also includes relevant non-dimensionalization

and the statements of various assumptions used to derive the NCCR equations. A short discussion

on topological analysis for different combinations of non-conserved variables has been presented

in Section III, where the non-linear and coupled nature of the higher-order moments in the current

scheme will be evident. The details of the shock structure problem and the choice of the model-

ing parameters are discussed in Section IV along with the numerical detail of the computational

scheme used in the present work. A thorough analysis of the shock structure results is presented

in Section V, followed by conclusions in Section VI.

II. GOVERNING EQUATIONS

The fundamental equations governing the conservation of mass, momentum, and total energy

remain the same as in the Navier-Stokes-Fourier formulation. The rotational energy may change

into translational energy and vice versa. Hence, an additional equation for rotational energy evo-

lution is needed to account for the exchange of energy between the two modes within the limits

of the conservation of the total energy of the flow. The set of partial differential equations for the

conserved variables (ρ,ρu and ρE) along with the energy equation for the rotational degree of

freedom and the equation of state is as follows.

∂ρ
∂ t

+∇∇∇ · (ρu) = 0 (4)

∂
∂ t

(ρu)+∇∇∇ · (pI+ρuu)+∇∇∇ ·ΠΠΠ = 0 (5)

∂
∂ t

(ρE)+∇∇∇ · [(ρE + p)u]+∇∇∇ · (ΠΠΠ ·u+Q) = 0 (6)

∂
∂ t

(ρEr)+∇∇∇ · [(ρEr)u]+∇∇∇ ·Qr = Sr (7)

where E is the total energy per unit volume, Er is the rotational energy per unit volume, Q is the

total heat flux (= {Qt +Qr}), and Qr is the rotational heat flux. The total energy (E), translational

energy (Et), and rotational energy (Er) densities per unit volume are defined below.
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Er = RTr (8)

Et =
1
2

u2 +
3
2

RTt (9)

E = Et +Er (10)

where Tt is the translational temperature and Tr is the rotational temperature. The closure is pro-

vided by the equation of state, as given below.

p = ρRTt (11)

whereR is the gas constant. The inter-mode energy exchange is accounted for by including a source

term (Sr) in the rotational energy evolution equation. The source term not only accounts for the

amount of energy exchange but also the direction of relaxation depending on whether the flow is

being compressed (Et > Er) or expanded (Er > Et).

The source term modeling is challenging as it involves the determination of complex inter-

molecular energy exchanges. In the present derivation, the rotational-translational source term is

modeled using the Landau-Teller-Jeans relaxation model, which is given as.

Sr =
ρR
Zrτc

(Tt −Tr) (12)

where Zr is the rotational collision number and τc, is the mean collision time, given through the

following formulation:

τc =
η
p

(13)

where η represents the coefficient of shear viscosity. The dependence of rotational collision num-

ber (Zr) on translational temperature can be estimated using Parker’s formulation20 which has the

following form21:

Zr(Tt) =
Z∞

r[
1+ π

3
2

2

(
T ′
Tt

) 1
2
+
(

2+ π2

4

)(
T ′
Tt

)] (14)

where T ′ and Z∞
r are gas specific parameters. The corresponding values for N2, O2 and Cl2 were

provided by Parker20.

The higher-order non-conserved moments in the momentum and energy conservation equations

will be calculated using the generalized hydrodynamics28 approach. The equation for the evolution

of any higher-order moment takes the following general form:
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ρ
d
dt

ϕ̂ (α) = Z(α)+Λ(α) (15)

where ϕ̂ = ϕ/ρ denotes the intensive property of the higher-order moment ϕ , Z(α) is the kinematic

term, and Λ(α) is the dissipative term28.

The evolution equation for stress can be obtained with ϕ = ΠΠΠ that can be simplified to the

following form:

ρ
dΠ̂̂Π̂Π
dt

=−∇∇∇ ·ψ2 −2[ΠΠΠ ·∇∇∇u](2)− p
η
{ΠΠΠq(κ)+2η [∇∇∇u](2)} (16)

where ψ2 is the higher order moment that should be evaluated and [∇∇∇u](2) = 1
2 [∇∇∇u+ (∇∇∇u)T ]−

1
3(∇∇∇ ·u)I. This forms a complete set of infinite evolution equations, as the evolution equation of

each flux will have a higher-order moment in it. For practical limitations, a closure is needed to

limit the evolution equations to some definite set.

Similarly, for translational heat flux, ϕ = Qt is substituted which finally leads to:

ρ
dQ̂t
dt

= −∇∇∇ ·ψ3 +∇∇∇ · (pI+ΠΠΠ) · ΠΠΠ
ρ
−Qt · (∇∇∇u)−ϕ (3) : (∇∇∇u)

−Cp,tΠΠΠ ·∇∇∇∇∇∇∇∇∇Tt −
Cp,t p

kt

{
ktTt∇∇∇(lnTt)+Qtq(κ)

}
(17)

where kt and Cp,t are the thermal conductivity and specific heat capacity at constant pressure cor-

responding to the translational mode, and ψ3 is the higher order flux. The evolution equation for

translational heat flux is the same as that of total heat flux in the case of a monoatomic gas. This

seems logical, as the monoatomic gas has only the translational degree of freedom. The Cp,t is

taken as 5/3R, the monoatomic equivalent value as the equation is assumed to be written for the

translational degree of freedom only.

Similar to the translational heat flux equation, rotational heat flux will take a similar form with

parameters corresponding to rotational energy. Since, the term∇∇∇ · (pI+ΠΠΠ) · (ΠΠΠ/ρ) depends solely

on the translational mode, it is absent in the formulation of the rotational energy evolution equation.

TheCp,r andCv,r, both specific heat capacities, are taken as R for rotational energy.

ρ
dQ̂r
dt

= −∇∇∇ ·ψ4 −Qr · (∇∇∇u)−Cp,rΠΠΠ ·∇∇∇Tr −
Cp,r p

kr

{
krTr∇∇∇(lnTr)+Qrq(κ)

}
(18)
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where kr andCp,r are the thermal conductivity and specific heat capacity respectively correspond-

ing to the rotational mode. Again, ψ4 is the higher order moment associated with the rotational

flux equation. Equations 16, 17 and 18 involve a non-linear parameter, q(κ), which is common to

all evolution equations and is defined as

q(κ) =
sinh(κ)

κ
(19)

where κ is given as

κ =
(mkB)

1/4
√

2d
T 1/4

t

p

[
Π : ΠΠ : ΠΠ : Π

2η
+

Qt ·Qt/Tt

kt
+

Qr ·Qr/Tr

kr

]1/2

(20)

The form of ‘κ’ in the present set of equations is analogous to the Rayleigh-Onsager dissipation

function derived for the monoatomic gas case. It was extended to include the term (Qr ·Qr)/(Trkr)

that corresponds to the rotational degree of freedom.

A. Adiabatic Approximation

Since, the scale at which non-conserved moments change is much smaller than the scale at

which macroscopic properties change, these moments were assumed to have reached their steady

state with the infinitesimal change in macroscopic properties involved in their calculation. Hence,

the non-conserved moment equations can be solved as steady-state equations with constant values

of macroscopic variables. This approximation is known as the adiabatic approximation36.

Further, the higher ordermoment terms in the stress and energy equations (ψ2,ψ3,ϕ (3),ψ4) need

to be closed. Among closure theories, we employ the “closing-last balanced closure,” proposed by

Myong in 201449. Myong observed that the number of places to be closed is two (movement and

interaction), rather than one (movement only). The order of approximations in handling the kine-

matic (movement)ψ and dissipation (interaction)Λ(α) termsmust be the same to satisfy balancing,

for instance, the second-order closure for both terms. The present balanced closure effectively re-

solves the weakness of Eu’s closure35, where it was assumed that ψα = 0. This was challenged by

mathematicians and physicists for its inconsistency, i.e., that the termψα cannot be zero in general,

especially in strong thermal non-equilibrium3. Rather Myong assumes the following relations to

be valid.

∇∇∇ ·ψ2 =∇∇∇ ·ψ3 +ϕ (3) : ∇∇∇u = 0 (21)
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In this balanced closure theory, third-order closure for ψ2 in the constitutive equation of stress

term may not be essential; in fact, the unbalanced higher-order closure in the moment method may

not provide improved solutions as promised, especially in the case of a high Mach number shock

structure problem.

The higher-order term associated with the vibrational heat flux equation is handled (∇∇∇ ·ψ4 = 0)

in the sameway. We finally obtain the following set of second-order approximate NCCR equations.

−(u ·∇∇∇)ΠΠΠ−ΠΠΠ(∇∇∇ ·u)−2[ΠΠΠ ·∇∇∇u](2)− p
η
[ΠΠΠq(κ)+2η{∇∇∇u](2)} = 0 (22)

−(u ·∇∇∇)Qt −Qt(∇∇∇ ·u)+∇∇∇ · (pI+ΠΠΠ) · ΠΠΠ
ρ
−Qt · (∇∇∇u)

−Cp,tΠΠΠ ·∇∇∇Tt −
Cp,t p

kt

{
ktTt∇∇∇(lnTt)+Qtq(κ)

}
= 0 (23)

−(u ·∇∇∇)Qr −Qr(∇∇∇ ·u)−Qr · (∇∇∇u)−Cp,rΠΠΠ ·∇∇∇Tr

−
Cp,r p

kr

{
kr∇∇∇(lnTr)+Qrq(κ)

}
= 0 (24)

It was noted in the past that Eu’s canonical distribution function in the exponential form might

have some difficulty when it is truncated to a finite number of terms. A numerical difficulty may

arise when calculating the normalization factor associated with the canonical distribution function

because the heat flux contribution containing the third-order term for the integrand may give rise

to the divergence causing a problem. Eu showed, however, that this difficulty can be avoided if

the set is truncated in such a way as to produce a truncated distribution function in the fourth-order

for the integrand while ensuring convergence of the integral2.

B. Non-Dimensionalization of multi-temperature NCCR

The multi-temperature NCCR relations were non-dimensionalized using relevant reference val-

ues of the properties.

x∗ = x/L, η∗ = η/ηre f , u∗ = u/ure f

p∗ = p/pre f ρ∗ = ρ/ρre f , E∗ = E∗/u2
re f

E∗
r = E∗

r /u2
re f , T ∗

(t/r) = T(t/r)/Tre f , t∗ = 1/(L/ure f ),

where ∆T is the difference between the wall temperature and local temperature and L is the length

scale.The conservation laws in their non-dimensional form are given below.
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k∗(t/r) = k(t/r)/k(t/r)re f , C∗
p(t/r) = Cp(t/r)/Cp(t/r)re f

ΠΠΠ∗ = ΠΠΠ/(ηeure f /L), Q(t/r)
∗ = Q(t/r)/(κ(t/r)∆T/L)

∂
∂ t∗

ρ∗+∇∗∇∗∇∗ · (ρ∗u∗) = 0 (25)

∂
∂ t∗

(ρ∗u∗)+∇∇∇∗ ·
( 1

Nδ Re
p∗I+ρ∗u∗u∗

)
+∇∇∇∗ ·

(
ΠΠΠ∗ 1

Re

)
= 0 (26)

∂
∂ t∗

(ρ∗E∗)+∇∇∇∗ ·
(

ρ∗E∗+ p∗
1

Nδ Re

)
u∗+{ 1

Re

}
∇∇∇∗ ·

{
ΠΠΠ∗ ·u∗+

( Qr
∗

EcrPr
+

Qt
∗

EctPr

)}
= 0 (27)

∂
∂ t∗

(ρ∗E∗
r )+∇∇∇∗ · (ρ∗E∗

r )u
∗+

{ 1
Re

}
∇∇∇∗ ·

( Qr
∗

EcrPr

)
= S∗r (28)

where the Reynolds number (Re), Prandtl number (Pr), Eckart number (Ec(t/r)), Mach number

(M) and other non-dimensional parameters are defined as

Nδ =
ηre f ure f

pre f L
, Re =

ρre f ure f L
ηre f

, ∇∇∇∗ =
∂

∂x∗ , M =
ure f√
γRTre f

Ec(t/r) =
u2

re f

Cp,(t/r)re f ∆T
,Pr =

C(p,t)re f ηre f

κ(t)re f
=

C(p,r)re f ηre f

κ(r)re f

The non-dimensionalized form of the source term is given below.

S∗r =
1

γM2
ρ∗(T ∗

t −T ∗
r )

Zrτ∗
(29)

The Eqns. 22, 23 and 24 can be approximated further following Myong’s approximation36

for monoatomic gases which are assumed for the current case of diatomic gases. The final set of

equations in non-dimensional form for stress tensor, translational, and rotational heat flux are given

below.

−2[ΠΠΠ∗ ·∇∇∇∗u∗](2)− 1
Nδ

p∗

η∗{ΠΠΠ∗q(κ∗Nδ )+2η∗[∇∇∇∗u∗](2)} = 0

(30)

−PrΠΠΠ∗ ·∇∇∇∗T ∗
t − Pr

Nδ

p∗

k∗t
{k∗t T ∗

t ∇∇∇∗(lnT ∗
t )+Qt

∗q(Nδ κ∗)} = 0

(31)

−PrΠΠΠ∗ ·∇∇∇∗T ∗
r − Pr

Nδ

p∗

k∗r
[k∗r T ∗

r ∇∇∇∗(lnT ∗
r )+Qr

∗q(Nδ κ∗)] = 0

(32)
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The non-linear term κ is non-dimensionalized as given below.

κ =
((mkBTre f )

1/4

dre f
√ηre f

) T ∗1/4
t Nδ

2d∗√η∗p∗

[
ΠΠΠ∗ : ΠΠΠ∗+2εt

η∗

k∗t T ∗
t

Qt
∗ ·Qt

∗+2εr
η∗

k∗r T ∗
r

Qr
∗ ·Qr

∗
]1/2

(33)

where

ε(t/r) =
∆T k(t/r)re f

(ηre f u2
re f )

∆T
Tre f

=
1

Ec(t/r)Pr
1

Tre f /∆T
(34)

and m is the mass of a molecule, kB is the Boltzmann constant, and dre f is the reference diameter.

The viscosity formula for simple gas using power law molecular interaction is6 given below.

η =

5
√(

kBmTt
π

)(
1
d2

)
8Γ

(
4− 2

ν−1

)
A2(ν)

, d =
( K

2kBTt

) 1
ν−1 (35)

⇒ η ∝ T

(
1
2+

2
ν−1

)
t , d ∝ T

(
1

1−ν

)
t

where ν is the exponent of the inverse power laws. Using the above relations for η and d, the

expression T ∗1/4
t

d∗√η∗ evaluates to 1 and((mkBTre f )
1/4

dre f
√ηre f

)
=

[
8
√

π
5

Γ
(

4− 2
ν −1

)
A2(ν)

]1/2

(36)

Myong36 defined a parameter c as given below.

c =
1
2

[
8
√

π
5

Γ
(

4− 2
ν −1

)
A2(ν)

]1/2
(37)

Using the above definition of c, κ can be written as given below.

κ = Nδ κ∗ =
cNδ
p∗

[
ΠΠΠ∗ : ΠΠΠ∗+2εt

η∗

k∗t T ∗
t

Qt
∗ ·Qt

∗+2εr
η∗

k∗r T ∗
r

Qr
∗ ·Qr

∗
]1/2

(38)

The value of c depends on the exponent in the power law model of inter-molecular interaction.

For several values, they are calculated and tabulated in Table I.

The Hard sphere model is obtained with ν = ∞, Maxwell’s model with ν = 5 and the Variable

Hard Sphere (VHS) model with ν = 9.

Thermal conductivities are defined using the same value of the Prandtl number (Pr). The

non-dimensional relations for thermal conductivities can be derived using the definition of Pr =

(ηCp(t/r))/(k(t/r)). Heat capacities are assumed to be independent of temperature.

k∗t = η∗, k∗r = η∗ (39)
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TABLE I. Calculated values of c

ν s =
( 1

2 +
2

ν−1

)
A2 Γ c

5 1 0.436 Γ(3.5) = 3.32335 1.01356

7 0.833 0.357 Γ(3.6667) = 4.01222 1.00773

9 0.75 0.332 Γ(3.75) = 4.2299 1.02034

11 0.7 0.319 Γ(3.8) = 4.69417 1.02927

15 0.643 0.309 Γ(3.85714) = 5.02913 1.04965

21 0.6 0.307 Γ(3.9) = 5.29933 1.07398

25 0.583 0.306 Γ(3.91667) = 5.40909 1.08328

→ ∞ 0.5 0.333 Γ(4) = 6 1.19019

The equation of state (p = ρRT ) can be non-dimensionalized as given below. Since pressure is

predominantly a phenomenon observed due to the translational motion ofmolecules, only reference

to translational temperature was made in the equation of state.

p∗ = ρ∗T ∗
t (40)

For the speed of sound a2 = γRTt , we have

a∗2 = T ∗
t /M2 (41)

The energy term ρE = 1
2ρu2 + 3

2ρRTt +ρRTr can be written in the non-dimensional form as

given below.

ρ∗E∗ =
1
2

ρ∗u∗2 +
( 1

Nδ Re

)(3
2

T ∗
t +T ∗

r

)
(42)

The non-dimensional specific heat capacity,C∗
p,(t/r) is numerically equal to 1 sinceCp,(t/r)re f =

Cp,(t/r) as translational or rotational degrees of freedom are fully excited and hence independent of

temperature. If only terms containing N−1
δ in Eqns. (30), (31) and (32) are considered, we have

ΠΠΠ∗q(Nδ κ∗) = −2η∗[∇∇∇∗u∗](2) =ΠΠΠ∗
0 (43)

Qt
∗q(Nδ κ∗) = −k∗t T ∗

t ∇∗∇∗∇∗(lnT ∗
t ) = Qt

∗
0 (44)

Qr
∗q(Nδ κ∗) = −k∗r T ∗

r ∇∗∇∗∇∗(lnT ∗
r ) = Qr

∗
0 (45)
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If the product of above definitions of Π∗Π∗Π∗, Qt
∗ and Qr

∗ is formed

[q(Nδ κ∗)]2
( c

p∗

)2
[ΠΠΠ∗ : ΠΠΠ∗+Qt

∗ ·Qt
∗/(T ∗

t /2εt)+Qr
∗ ·Qr

∗/(T ∗
r /2εr)] =( c

p∗

)2
[ΠΠΠ∗

0 : ΠΠΠ∗
0 +Qt

∗
0 ·Qt

∗
0/(T

∗
t /2εt)+Qr

∗
0 ·Qr

∗
0/(T

∗
r /2εr)] (46)

⇒ q[(Nδ κ∗)]κ∗ = κ∗
0 (47)

Multiplying Nδ to Eqn. (47) and using Eqns. (43, 44, 45) we can obtain the non-linear fluxes

in their simplest forms.

ΠΠΠ∗ =
sinh−1(Nδ κ∗

0 )

(Nδ κ∗
0 )

ΠΠΠ∗
0, Qt/r

∗ =
sinh−1(Nδ κ∗

0 )

(Nδ κ∗
0 )

Qt0/r0
∗

(48)

The Eqns. 30, 31, 32 can be further simplified using Eqns. 43,44, 45.

−2Nδ
η∗

p∗
[ΠΠΠ∗ ·∇∇∇∗u∗](2)−{ΠΠΠ∗q(κ∗Nδ )−ΠΠΠ∗

0} = 0 (49)

Nδ
p∗

ΠΠΠ∗ ·Qt
∗
0 − [Qt

∗q(Nδ κ∗)−Qt
∗
0] = 0 (50)

Nδ
p∗

ΠΠΠ∗ ·Qr
∗
0 −{Qr

∗q(Nδ κ∗)−Qr
∗
0} = 0 (51)

where

∇∇∇∗û∗ =−2Nδ
η∗

p∗
∇∇∇∗u∗ , Π̂ΠΠ∗

=
Nδ
p∗

ΠΠΠ∗ (52)

Q̂∗
t =

Nδ
p∗

Qt
∗√

T ∗
t /2εt

, Q̂∗
r =

Nδ
p∗

Qr
∗√

T ∗
r /2εr

(53)

and

κ = cR̂, q(cR̂) =
sinh(cR̂)

cR̂
(54)

if R̂ =
[
Π̂ΠΠ∗

: Π̂ΠΠ∗
+ Q̂∗

t · Q̂∗
t + Q̂∗

r · Q̂∗
r

]1/2
(55)

The final non-dimensional form of the NCCR equations are

Π̂ΠΠ∗
q(cR̂) = Π̂ΠΠ∗

0 +[Π̂ΠΠ∗ ·∇∇∇∗û∗](2) (56)

Q̂∗
t q(cR̂) = Q̂t

∗
0 +Π̂ΠΠ∗ · Q̂t

∗
0 (57)

Q̂∗
r q(cR̂) = Q̂r

∗
0 +Π̂ΠΠ∗ · Q̂r∗0 (58)
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The above equations can be simplified further for one dimensional cases. (The superscript ∗

and the subscripts xx and x have been dropped for simplicity.)

Π̂q(cR̂) = Π̂0 + Π̂Π̂0 (59)

Q̂tq(cR̂) = Q̂t0 + Π̂Q̂t0 (60)

Q̂rq(cR̂) = Q̂r0 + Π̂Q̂r0 (61)

and

R̂ =
[3

2
Π̂∗2 + Q̂t

∗2
+ Q̂r

∗2
]1/2

(62)

The set of Eqns. 59, 60 and 61 represent a system of non-linear algebraic equations. The non-

linear dependence is evident as each of them contains q(cR̂) term which is defined using the sinh

function. Solving the above set of equations will demonstrate the coupled nature of NCCR non-

conserved moments. The next section presents various sets of graphs that were obtained by solving

Eqns. 59, 60 and 61 iteratively.

III. TOPOLOGICAL ANALYSIS

A topological analysis was carried out to reveal the non-linear behavior of the present NCCR

formulation. Topology is a mathematical concept useful for describing the properties of a system

that remains invariant under continuous transformations. The core idea is that knowledge of the

object is independent of its spatial embedding. For example, Singh et al.50 showed that in the case

of velocity shear, the topology of their constitutive model is governed by a conic section, which

is expressed as a second-degree polynomial equation in the phase space. This topology is always

smooth, having derivatives of all orders everywhere in the conic section. This type of topology

of conic sections has also been observed in other scientific fields, particularly in the elliptical,

parabolic, and hyperbolic orbits of the planets and comets in the solar system, which are governed

by Kepler’s laws.

The NCCR non-conservedmoments are calculated for a given set of NSF non-conserved values.

The topological plots in Fig. 1 were obtained by solving the set of relations for the non-dimensional

non-conserved moments using iterative schemes while keeping a fixed value of Q̂r,0 as 0, 10 and 20

respectively. The plots show three-dimensional sections of the complete four-dimensional space
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FIG. 1. Three-dimensional topology of NCCR Π̂ as a function of NSF Π̂0 and NSF Q̂t,0 at constant values

of Q̂r,0 = a) 0,b) 10 and c) 20 respectively

spanned by the non-conserved moments as four coordinates. The three coordinates are the first-

order NSF formulation of Q̂r,0, Q̂t,0, Π̂0 while the fourth is one among the three NCCR non-

conserved moments.

The surface plots of non-dimensional NCCR stress (Π̂) shown in Fig. 1, follow the similar

trend at various constant values of Q̂r,0 with maximum NCCR Π̂ observed for the zero value of

Q̂r,0. This maximum drops as the value of Q̂r,0 increases. The plots are symmetric with respect to

the Q̂t,0 = 0 plane, which signifies the polarity independence of Π̂ with Q̂t,0. Π̂ values however

exibit a significant increase as Π̂0 changes its sign from -ve to +ve values, highlighting the non-

linear asymmetrical nature of Π̂.

The surface plots of NCCR translational heat flux (Q̂t) shown in Fig. 2 depicts as rotational

symmetry around the Q̂t,0 = 0 axis. Here, the straight grid line in the middle of the contour can
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FIG. 2. Three-dimensional topology of NCCR Q̂t as a function of NSF Π̂0 and NSF Q̂t,0 at constant values

of Q̂r,0 = a) 0,b) 10 and c) 20 respectively

be regarded as the line of symmetry. The maximum and minimum values of Q̂t are the same in

magnitude and are found when Π̂0 is positive. Similar to the previous observation, the magnitude

of both the extrema decreases as Q̂r,0 increases from 0 to 20. The polarity of Q̂t depends on the

polarity of Q̂t,0.

The variation in Q̂r with respect to Q̂t,0 and Π̂0 is shown in Fig. 3. For zero value of NSF

Q̂r,0, the NCCR Q̂r is zero for any combinations of Q̂t0, and Π̂0 as shown in Fig. 3(a). For non-

zero values of Q̂r0, the plot is characterized with a dome containing the maximum Q̂r value. This

maximum value increases with an increase in Q̂r,0 value. The NCCR Qr surface shifts upwards

with an increase in the Q̂r0 value, as seen in Fig. 3(b) and (c).
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FIG. 3. Three-dimensional topology of NCCR Q̂r as a function of NSF Π̂0 and NSF Q̂t,0 at constant values

of Q̂r,0 = a) 0,b) 10 and c) 20 respectively

The NCCR translational heat flux (Q̂t) as a function of NSF stress and rotational heat flux for

a constant NSF translational heat flux is shown in Fig. 4. The topology is similar to that observed

in Fig. 3(b). This is intuitive due to the similarity in the governing equations of translational and

rotational heat fluxes.

Fig. 5 shows the plots of various NCCR non-conserved moments as a function of NSF Q̂t,0 and

NSF Q̂r,0 for a constant value of NSF Π̂0 equal to ‘10’. A prominent feature is the presence of a

symmetric dome for the NCCR Π̂ observed in Fig. 5(a) which was found to increase as the value

of Π̂0 increases. The topologies of the NCCR translational and rotational heat flux (Fig. 5(b) and

Fig. 5(c)) are equivalent, with the same maximum and minimum values.

The non-linear relationship between the NSF and NCCR fluxes provides some generalized pat-
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FIG. 4. Three-dimensional topology of NCCR Q̂t as a function of NSF Π̂0 and NSF Q̂r,0 at constant values

of Q̂t,0 = 20 respectively

FIG. 5. Three-dimensional topology of NCCR non-conserved moments as a function of NSF Q̂t,0 and NSF

Q̂r,0 at a constant value of Π̂0 = 10

terns, observed as dome formation in the plots of Q̂r with constant values of Q̂r,0, the twisted

contour plots for Q̂t with constant values of Q̂r,0 and slide contour plots in Π̂ with constant values
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of Q̂r,0. The similarity between the Q̂t and Q̂r fluxes can be concluded from Fig. 3 and Fig. 4 and

from Fig. 5 (b) and 5 (c). Along the same line, the symmetric dome shape observed in Fig. 5 (a)

shows the balanced dependency of NCCR stress Π̂, over Q̂t,0 and Q̂r,0 fluxes.

IV. SHOCK STRUCTURE SIMULATIONS

Shock structure in a monoatomic gas was studied using the generalized hydrodynamics ap-

proach by Ghoul et al.35. Simplified viscosity models such as the power law model were used to

compute the inverse density thickness (δ−1) of shock structures over a range of Mach numbers.

Inverse density thickness (δ−1) is an intuitive measure of shock thickness. It is calculated using

the maximum value of the slope in the density profile and is defined as:

δ−1 =

∣∣∣∂ρ/∂x
∣∣∣
max

ρ2 −ρ1
(63)

where ρ1 and ρ2 are downstream and upstream values calculated using the Rankine-Hugoniot re-

lations. Ghoul et al. found good agreements between the GH shock structure and experimental

results35. The NCCR formulation was extended by Myong4 to study shock waves in diatomic

gases using the bulk viscosity approach. The results obtained through generalized hydrodynamics

and NCCR were comparable to the experimental results at all Mach numbers. Shock structure was

studied using multi-temperature NCCR formulation byMankodi et al.40 forMach numbers ranging

up to 15. A comparison between multi-temperature NSF, multi-temperature NCCR, and DSMC

demonstrated the multi-temperature NCCR was more applicable as the degree of non-equilibrium

increases with Mach number.

Shock structure involves a set of non-dimensional parameters that can be related to the Mach

number of the flow. If the length scale L is taken equal to the mean free path based (λ ) on upstream

conditions (reference conditions taken as the upstream values), we have the following relations

between different non-dimensional parameters and Mach number.

Re =

√
γπ
2

M1, Nδ = M1

√
2γ
π

(64)

where γ is the ratio of heat capacities and M1 is the upstream Mach number. The mean free path

of the flow in terms of upstream parameters (subscript ‘1’) is given as:

λ =

√
π
2

η1√
RT1ρ1

(65)
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For the shock structure analysis, the ∆T in Eqn. 34 can be taken as Tre f , since there is no

boundary temperature to compare with. The Eckart number Ec(t/r) can be expressed as given

below.

Ect =
γR

Cp,t1
M2

1 and Ecr =
γR

Cp,r1
M2

1 (66)

A separate Eckart number is defined for the translational and rotational modes since their spe-

cific heat capacities are different. The thermal conductivities are calculated using Eucken type

relation.

k(t/r) =
ηCp,(t/r)

Pr
(67)

where the specific heat capacity at constant pressure for rotational and translational degrees are

modeled as:

Cp,t =
5
2

R, Cp,r = R (68)

A one-dimensional domain spanning 60 times the mean free path (based on the driver-side

parameters) and discretized using 500 grid points were used for the shock structure simulations.

The advection upstream splitting method (AUSM) of Liou & Steffen51 was implemented in the

in-house finite volume method code to calculate the inviscid flux at control surfaces. Since higher

gradients are involved, high-resolution schemes such asMonotonic Upstream-centered Scheme for

Conservation Laws (MUSCL) - Hancock algorithm52 were employed to obtain a better resolution.

The viscous flux term is handled using the central difference scheme53. The NCCR formulation

requires solving a system of non-linear equations, which were solved using iterative schemes. The

properties of N2 gas were taken as standard temperature and pressure values of 273.15 K and,

101325 Pa, respectively. The Z∞
r value and other parameters for N2 gas are given in Table II.

For the conditions mentioned in Valentini et al.24, the nitrogen properties were the same as those

given in Table II. However, the viscosity was modified and predicted using a power law for such

low-temperature applications. The time step in the simulation is of the order of 10−8 to 10−10.

Grid-independent tests were performed up to a grid size of 1000, however no appreciable change

was observed.
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TABLE II. Properties of nitrogen

Gas N2

R (J/kgK) 296.72

Pr 0.72

ηre f (Ns/m2) 1.66×10−5

Z∞
r 15.7

T ′ (K) 80

V. RESULTS AND DISCUSSION

Primitive variables such as density, pressure, temperature, and velocity were normalized using

their upstream (X1) and downstream (X2) values. The generic form is given below.

X∗ =
X −X1

|X2 −X1|
(69)

Since velocity decreases in the shock region, it would be more intuitive if it is normalized using

X −X2 in the numerator.

Valentini et al.24 carried outMD simulations at two sets of conditions and compared their results

with experiments. The parameters they considered for their study were.

• M1 = 7.0. T1 = 28.3 K (ρ1 = 0.1 kg/m3)

• M1 = 12.7. T1 = 9.0 K (ρ1 = 0.05 kg/m3)

It can be seen that the temperatures considered by Valentini et al.24 are very close to the charac-

teristic rotational temperature, which for the N2 gas is 2.9 K. The above conditions correspond to

pressures of 839.7176 Pa for the Mach 7 case and 133.524 Pa for the Mach 12.7 case respectively.

The post-shock temperatures are well below the characteristic vibrational temperatures.

To test the validity of the present approach, the two-temperature NCCR formulation was ap-

plied to simulate the shock structure at the conditions studied by Valentini et al.24. Substantial

improvements over the NSF formulation were observed in the upstream section while marginal

improvements were found in the downstream section of the shock structure, as evident from the

normalized density and temperature variations shown in Fig. 6 and Fig. 7, respectively, at Mach
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7. Similar observations in density as well as rotational temperature profiles at Mach 12.7 were

found, as shown in Fig. 8 and Fig. 9. It is noteworthy that the NCCR profiles are very close to the

experimental and molecular dynamics data, especially in the upstream region.

λ

ρ

FIG. 6. Density profile comparison between Experiment, MD, NSF and NCCR formulations at Mach 7.

Apart from the approximations inherent in the generalized hydrodynamics approach followed

in this study, the mismatch observed in the downstream section can be attributed to several other

reasons. The Power law viscosity model, employed here, is an extremely simple model and may

not be a good representation of inter-molecular forces at the low temperatures captured by experi-

ments. Moreover, Parker’s model is a classical model and ignores the quantum effects completely,

which may be significant at such low temperatures. Moreover, the differences observed in the ex-

perimental and DSMC and MD results can be attributed to quantum effects, which were neglected

in such simulations.

To circumvent such complications at extremely low temperatures and pressures, another set of

simulations was performed at the STP conditions, and the shock structure profiles were compared
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λ

FIG. 7. Comparison of rotational temperature profiles from Experiment, MD, NSF and NCCR formulations

at Mach 7.

with those obtained using the DSMC method39. Fig. 10 shows such a comparison at Mach 5. The

conditions at the driver and driven side are listed in Table III.

TABLE III. Property values at Mach 5

Driver Driven

Pressure (Pa) 101325.0 2938424.9

Temperature (K) 273.149 1584.269

Mach 5.0 0.415

From Table III, we find that the post-shock temperature is well below the characteristic tem-

perature for vibrational excitation, which for common gases such as N2 and O2 are 3390 K and

2270 K respectively. However, the involvement of vibrational degrees of freedom may become

important as the Mach number increases as the post-shock temperature at Mach 10 was around,
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λ

ρ

FIG. 8. Comparison of density profiles from Experiment, MD, NSF, and NCCR formulations at Mach 12.7.

5569 K. Nevertheless, in the present work, the vibrational degrees were neglected to keep the anal-

ysis simple. However, a more accurate study should involve three temperatures to characterize the

three different degrees of freedom.

The density profile obtained using NCCR perfectly matches the upstream regions of the DSMC

results. Non-dimensional translational and rotational temperature profiles are shown in Fig. 11

to show the degree of non-equilibrium between the rotational and translational modes of energy.

Compared to the shock structure profiles obtained using the NSF, the NCCR profiles better match

the shock structure profile obtained using the DSMC results at Mach 5. The relative position of

both profiles is also comparable to that of the DSMC. The peak translational temperature achieved

in DSMC was comparable to the NCCR and NSF formulations.

Figure 12 shows the density profiles obtained through multi-temperature NSF and NCCR, in

comparison to the DSMC data at Mach 10. The smooth transition observed in the DSMC data

near the upstream section is effectively captured with the multi-temperature NCCR. The multi-
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λ

FIG. 9. Comparison of rotational temperature profiles from Experiment, MD, NSF, and NCCR formulations

at Mach 12.7.

temperature NSF offers a smooth transition in the upstream region, however, the transition starts

well after the DSMC transition.

A comparison between translational and rotational temperature profiles is shown in Fig. 13.

Both multi-temperature NCCR and NSF lag behind the DSMC data. The multi-temperature NCCR

translational temperature profile bulges out in the middle and runs closely to the DSMC transla-

tional temperature data. The rotational temperature profile from the multi-temperature NCCR is

closer to that of the DSMC, especially in the upstream region. Moreover, the peak value of trans-

lational temperature in the DSMC simulation is higher than in the NCCR and NSF formulations.

It should be noted that the effect of the vibrational degree of freedom will be significant, and it is

expected that a three-temperature formulation may increase the accuracy of the current result.

Figure 14 compares the inverse density thickness profiles obtained using different formulations

with the profile obtained using experiments18 ,54. The NSF multi-temperature (NSF [MT]) formu-
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ρ

FIG. 10. Comparison of density profile profiles from NCCR, NSF, and DSMC at Mach 5

lation profile overestimates the experimental values at all Mach numbers. This trend is similar to

that observed in the monoatomic gas case36. The NSF formulation calculates sharper density pro-

files due to the underestimation of fluxes at all Mach numbers. The NCCR bulk viscosity approach

(NCCR [BV]) shown in Fig. 14 deviates from the experimental values beyond Mach 5. It is how-

ever closer to the experimental value at lower Mach numbers. Since the degree of non-equilibrium

is not very high at lower Mach numbers, it is expected to provide good approximations.

The inverse density (δ−1) profiles calculated using the multi-temperature NCCR formulation

(NCCR [MT]) follow the general trend found in the experimental values. The profile seems to

be shifted by a definite value. Still, there was a better match with the experimental scatter plot at

hypersonic velocities. For lower Mach numbers, the multi-temperature formulation should pre-

dict results similar to those obtained using the bulk viscosity approach. However, the observed

mismatch may be attributed to simplified Zr models. It is expected that a better match may be

observed when a more accurate model is used for the Zr calculation. Nevertheless, the formulation
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λ

FIG. 11. Comparison of temperature profiles from NCCR, NSF, and DSMC at Mach 5

was closer to the experimental values at all Mach numbers compared with the multi-temperature

NSF formulation.

Since the source term in the rotational energy evolution equation is a function of Zr, its accurate

estimation is of utmost importance when predicting various profiles. The present study utilizes

Parker’s model, which is a highly simplified classical approach to inter-molecular energy transfers.

Zr is a function of translational temperature, and Parker’s model provides the explicit analytical

expression for its calculation. However, a better match with experimental results can be obtained if

Zr is taken as a constant value for all Mach numbers. This observation is common to both the multi-

temperature NSF as well as NCCR formulations. Constant shifts in δ−1 profiles can be obtained

when some suitable value of Zr is taken. However, assuming a constant Zr is counter-intuitive.

Accordingly, this underlines the need to find more realistic Zr models to accurately predict highly

non-equilibrium phenomena.
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VI. CONCLUSIONS

Non-equilibrium thermodynamics involves complex phenomena, because of the involvement

of conserved and non-conserved moments working at different scales. The calculation of these

non-conserved moments becomes important as the degree of non-equilibrium increases. Since

lower-order approximations such as NSF formulation fail to model these non-conserved moments

accurately, especially when the degree of non-equilibrium is high, higher-order approximations

should be employed to provide better predictions of non-equilibrium phenomena.

λ

ρ

FIG. 12. Comparison of density profiles from NCCR, NSF, and DSMC at Mach 10

In this work, we derived and implemented the multi-temperature NCCR formulation for gas

flows with rotational-translational non-equilibrium as an alternative to the bulk viscosity approach

for gas flows with internal energy. The present formulation is computationally less expensive,

compared to computationally expensive methods such as the DSMC and the MD methods. How-

ever, it produces much better results than NSF formulations, compared to those obtained using

DSMC/MD simulations.
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The new two-temperature NCCR formulation for diatomic gases was compared with the bulk

viscosity approach and found to be better than the two-temperature NSF. Here, we extended its

range of applications by introducing the rotational energy evolution equation, which accounts for

rotational energy exchanges. The resultant formulation proved to be better at all values of Mach

numbers when compared with the NSF formulation. A topological analysis was also carried out to

demonstrate the nonlinearity present in the current formulation.

However, the limitations of the simplified phenomenological relaxation number-based rota-

tional collision model cannot be overlooked. With improved collision models and better rotational

collision calculations, we may expect the formulation to provide a better match with experimental

results and DSMC/MD simulations at all Mach numbers.

λ

FIG. 13. Comparison of temperature profiles from NCCR, NSF, and DSMC at Mach 10

As mentioned in the previous section, the role of the vibrational degree of freedom becomes

more significant when the Mach number of the flow is increased beyond a certain value. A three-

temperature model to include the effect of vibrational degree of freedom along with rotational
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δ

FIG. 14. Inverse Density thickness comparison

and translational degrees is expected to provide a more realistic picture of the non-equilibrium

phenomena at high Mach numbers. Presently, an extension to multi-species is in progress as most

of the high Mach flow applications will involve air as the common medium.

Multi-species will offer new challenges because of the presence of interspecies molecular col-

lisions. Since the transport coefficients depend highly on the nature of the collisions, they should

be modeled accordingly. Species diffusion and the assumption of common temperature for both

species are some other factors that should be taken into consideration.
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