
1

Quantum algorithm for nonlinear Burgers’ equation for high-speed

compressible flows

Esmaeil Esmaeilifar (اسماعیل اسماعیلی فر)a, Doyeol Ahn (안도열)b, Rho Shin Myong (명노신)a,*

aSchool of Mechanical and Aerospace Engineering, and ACTRC, Gyeongsang National University, 501

Jinjudaero, Jinju, Gyeongnam 52828, South Korea

bDepartment of Electrical and Computer Engineering, University of Seoul, 163 Seoulsiripdae‐Ro,

Tongdaimoon‐Gu, Seoul 02504, South Korea

*Corresponding author. E-mail address: myong@gnu.ac.kr (R.S. Myong)

Abstract

Recent advances in quantum hardware and quantum computing algorithms promise significant

breakthroughs in computational capabilities. Quantum computers can achieve exponential improvements

in speed versus classical computers by employing principles of quantum mechanics like superposition

and entanglement. However, designing quantum algorithms to solve the nonlinear partial differential

equations governing fluid dynamics is challenging due to the inherent linearity of quantum mechanics,

which requires unitary transformation. In this study, we first address in detail several challenges that arise

when trying to deal with nonlinearity using quantum algorithms and then propose a novel pure quantum

algorithm for solving a nonlinear Burgers’ equation. We employed multiple copies of the state vector to

calculate the nonlinear term, which is necessary due to the no-cloning theorem. By reusing qubits from

the previous time steps, we significantly reduced the number of qubits required for multi-step simulations,

from exponential/quadratic scaling in earlier studies to linear scaling in time in the current study. We also

employed various advanced quantum techniques, including block-encoding, quantum Hadamard product,

and the linear combination of unitaries, to design a quantum circuit for the proposed quantum algorithm.

The quantum circuit was executed on quantum simulators, and the obtained results demonstrated

excellent agreement with those from classical simulations.

Keywords: Quantum computing; nonlinear partial differential equation; Burgers’ equation;

computational fluid dynamics

2

1. Introduction

Computational fluid dynamics (CFD) is a crucial tool for simulating fluid flows in a diverse range of

scientific and industrial fields. However, in applications ranging from aerospace engineering to weather

predictions, CFD simulations are highly demanding of computational resources, since they require

multiscale simulations. For instance, the computational cost of a turbulent flow simulation grows

proportionally to Re3, and to perform direct numerical simulations on a full airplane requires huge

exascale supercomputers [1, 2]. On the other hand, quantum computers can achieve an exponentially

improved speed compared to classical computers, by employing the inherent parallelism in quantum

mechanics and overcoming the classical limitations of dimensionality. While utilizing quantum

computers to solve fluid dynamics can be a significant advance, designing efficient quantum algorithms

(QA) for CFD is highly challenging, given the constraints imposed by the postulates of quantum

mechanics, such as unitary transformations and the no-cloning theorem. It is not surprising that most

studies regarding quantum algorithms for CFD are limited to solving linear partial differential equations,

such as the heat equation [3, 4], Lattice Boltzmann Method (LBM) [5-9], collisionless Boltzmann

equation [10], Poisson equation [11-13], linear advection-diffusion equations [14, 15], while for nonlinear

partial differential equations hybrid classical-quantum approaches [16-20] are used.

The potential exponential speed-up of quantum computers compared to the classical counterpart is

based on the features of quantum superposition, entanglement, and interference. While classical

computers use bits as the basic unit of information, quantum computers use qubits. The main difference

is that classical bits can be either in state zero or one, while qubits can be in a state in superposition of

their basis states. Based on the postulates of quantum computing [21], the state of any quantum system

can be described by a state vector, a complex unit vector in Hilbert space. Any change in the state of the

quantum system is described by unitary transformations, which are linear maps that preserve the norm.

Although the state of a quantum system is described by a superposition of its basis states, it collapses to

one of its basis states once it is measured. In other words, the realization of the state vector requires

3

multiple measurements to retrieve the amplitudes of the state vector based on the probability of

measurement outcomes. Finally, the state space of a multi-qubit system is the tensor product of state

spaces.

While in classical computers, information is encoded according to its computational basis, in quantum

computers, the information can be encoded in amplitudes of state vectors as well as the computational

basis. For an n-qubit system, there are N=2n basis states, and the information can be encoded using the

amplitudes of the state vector. For instance, if we have a classical vector with N elements, we only need

logn N= qubits to encode the information in the amplitudes of the state vector as
1

N

i

i

i 
=

= with

2

1

1
N

i

i


=

= , where
i

 is the amplitude and 2

i
 is the probability of collapsing the vector state to the basis

state of i . The amplitudes are complex numbers which are closely related to the probabilities.

Despite the potential benefits of quantum algorithms over classical ones, implementing efficient

quantum algorithms for scientific calculations, especially nonlinear partial differential equations like

Navier-Stokes can be challenging because of the constraints imposed by the postulates of quantum

mechanics.

First, any operation on the state vector must be a unitary transformation, which is not the case for most

scientific calculations. Second, the no-cloning theorem prevents duplicating the state vector. In classical

computing, we always use copies of vectors to calculate terms like 2
u or u u x  , but this is not directly

possible in quantum computing. This leads to another difficulty when calculating scientific functions like

sine, cosine, exponentials, and logarithms, which are repeatedly used in scientific calculations.

Third, retrieving information from the state vector is performed probabilistically, requiring multiple

measurements to construct the classical data. This can be challenging when we need to post-select the

measurements to retrieve the information hidden in the desired state from the whole state vector. Since

4

getting the desired results is probabilistic, we may need to take an enormous number of measurements to

obtain the results with acceptable accuracy.

Fourth, in CFD algorithms, we usually need to march in time, which requires multiple iterations.

However, we do not have classical access to the state vector when executing the quantum algorithm. As

a result, implementing a time-dependent quantum operator is extremely challenging. The naïve approach

of measuring the state vector, updating the operator based on the classical data, and reinitializing the

quantum circuit increases the computational cost and destroys the quantum advantage.

Finally, even if we could design an efficient quantum algorithm that is faster than the classical

algorithm, an inefficient initialization of the quantum state vector can destroy the quantum benefit. In

summary, designing an efficient quantum algorithm for fluid dynamics requires efficient initialization, a

quantum algorithm for handling non-unitary and nonlinear transformations, a time marching strategy for

multiple iterations, and post-selecting the desired state to obtain the classical results.

In addition to the challenges of developing quantum algorithms, quantum computer hardware

limitations are also obstacles to conducting real simulations with quantum computers. Today's quantum

computers are still relatively noisy intermediate-scale quantum (NISQ) devices, characterized by their

limited qubit numbers and high error rates. Effective quantum error correction (QEC) is essential for these

systems to perform reliably, but that requires a vast number of physical qubits to encode a smaller number

of logical qubits [22]. This is because QEC protocols must handle various error types and magnitudes,

necessitating redundancy. Additionally, optimizing quantum circuits to reduce the number of elemental

gates can significantly enhance performance by lowering error rates and improving computational

efficiency [23, 24]. This dual approach of robust error correction and circuit optimization is vital for the

future scalability and practical implementation of quantum computing technologies.

Quantum computing is an active research area, and researchers from various fields are attempting to

develop quantum algorithms to achieve the speed advantage promised by quantum computers. Quantum

5

computing is based on the postulates of quantum mechanics, which makes it highly aligned with the

simulation of quantum physics.

Shor’s algorithm [25], which can find the prime factors of an integer exponentially faster than any

classical algorithm, was a breakthrough that promised scientific calculations in areas other than quantum

mechanics could benefit from quantum computers. More advanced developments in quantum computing

algorithms like quantum phase estimation (QPE) [26], quantum Fourier transform (QFT) [27], and

quantum amplitude amplification (QAA) [28] have opened horizons for finding new applications for

solving scientific and engineering problems. For instance, the HHL algorithm [29], which was developed

based on QFT and QPE, solves linear systems of equations exponentially faster than classical algorithms

for sparse matrices. The HHL algorithm was a milestone in quantum algorithms for scientific

computations since computationally efficient solutions of linear systems of equations are crucial in

different fields including data science, machine learning, and optimization. In addition, the HHL

algorithm provides a way to solve linear differential equations by transforming the linear differential

equations into a linear system of equations utilizing a multi-step discretization [30-32].

Despite the progress in developing quantum algorithms for linear PDEs and ordinary differential

equations (ODEs), less attention has been paid to the nonlinear differential equations (DEs) that appear

in various scientific fields. Developing efficient quantum algorithms for nonlinear DEs is challenging

since quantum computing only allows unitary operations. Leyton and Osborne [33] employed multiple

copies of the state vector to implement nonlinearity. However, in their approach, the required resources

scale exponentially in time. In another study, Lloyd et al. [34] employed the mean-field nonlinear

quantum algorithm, where the linear Schrödinger evolution was applied to multiple copies of the original

system to approximate the nonlinear evolution of the state vector. In their approach, the required resources

grow quadratically with time.

Quantum algorithms for CFD applications mostly focus on solving linear equations like the Poisson

equation, the linear advection-diffusion equation, and the heat conduction equation. For instance, Cao et

6

al. [3] used Hamiltonian simulations, while Wang et al. [13] utilized an HHL-based approach to solve the

Poisson equation. Developing quantum algorithms for the Lattice Boltzmann method is also popular since

it has a simple mathematical structure involving only arithmetic computations over a single variable, the

distribution function [7]. Budinski [7] developed a quantum algorithm for the linear advection-diffusion

equation using LBM. A block-encoding technique was used to encode the linear collision operator, and a

quantum walk was utilized for the propagation step. In his work, the process involved in a single time

step was encoded in a quantum computer while re-normalizing the post-selected state vector was

performed classically. He extended his work to solve incompressible Navier-Stokes equations by

developing a quantum LBM algorithm for the stream function-vorticity equation [8]. Another approach

is based on the analogy between quantum mechanics and hydrodynamics proposed by Madelung, where

the goal is to solve fluid dynamics using the Schrödinger equation [35, 36].

Despite these efforts, studies that solve equations with nonlinear terms are limited, as summarized

in Table 1. Gaitan [18] utilized the quantum ODE solver introduced by Kacewicz [37] to solve the Navier-

Stokes equations. The algorithm starts with space discretization while leaving time as a continuous

parameter. Replacing all of the spatial partial derivatives with approximate algebraic expressions, flux

gradients reduce to a function of the conserved variables. The result of spatial discretization is to reduce

the NS PDEs to a system of coupled ODEs, / []d dt f=u u .

The only part of the quantum ODE solver that requires a quantum computer is for approximating the

time integral, as the Riemann summation uses the quantum amplitude estimation algorithm (QAEA).

Because QAEA can achieve a quadratic speed-up over classical methods when performing the numerical

integration, the Q-ODE solver can reach an exponentially higher speed than classical deterministic

algorithms, and quadratically faster than classical random algorithms. Surprisingly, this straightforward

use of the quantum ODE solver for solving Navier-Stokes PDEs went unnoticed for 14 years. Following

this study, Oz et al. [38] utilized the quantum ODE algorithm to solve Burgers’ equation, and Basu et al.

[39] utilized the Q-ODE algorithm to compute the dispersal of submarine volcanic tephra.

7

Table 1 Quantum algorithms for the quantum computation of nonlinear fluid dynamics.

Approach Details of approach Implementation remarks

Nonlinear

Q-ODE Solver

Employs a classical approach to calculate the

nonlinear flux functions and QAE algorithm for

the numerical integration

QA for NSEs [18] and Burgers’ eq. [38]

without quantum circuit implementation

Hybrid Quantum-

classical

Evaluate the cost function in a quantum computer

and optimization of variational parameters λ in a

classical computer

QA and circuit design to solve NSEs [42]

Carleman

Linearization

Employing the Carleman approach to linearize the

nonlinear PDEs, suitable for LBM, but not NSEs

1-QA and circuit design for Burgers’ eq.

[40] (small Reynolds numbers)

2-QA and circuit design for LBM for

incompressible fluids [6] with nonlinear

collision

Encoding nonlinear

terms in the comp.

basis

Converts the solution to the computational basis

for nonlinear terms, once computed using

classical approaches, converts back to amplitudes

Quantum algorithm and circuit design for

LBM for Burgers’ eq. [41] by nonlinear

lattice model

Multiple copies of the

state vector (present)

Employing multiple copies of the state vector to

calculate nonlinear terms directly with significant

improvement over complexity in time

Pure QA and circuit implementation for

Burgers’ equation

One popular approach is to circumvent nonlinear terms by employing variational quantum computing,

where a cost function C(λ) is evaluated in the quantum computer. In contrast, the variational parameter λ

is optimized using a classical computer [42]. Another approach is to find a map between the original

nonlinear equation and the corresponding linearized equation in higher dimensions. The Carleman

linearization technique approximates the nonlinear equation by an infinite sequence of linear equations.

However, the ratio between nonlinearity and dissipation, R (similar to Reynolds number, qualitatively)

should be relatively weak to efficiently find a solution for a dissipative nonlinear equation [40]. For

instance, Liu et al. [40] could solve the viscous Burgers equation for small Reynolds numbers and low

nonlinearity to dissipation ratios (R < 40) using the quantum Carleman technique. Recently, Itani et al.

[6] developed a quantum algorithm for LBM to simulate incompressible fluids, and the Carleman

linearization technique was used to encode nonlinear collisions in the quantum algorithm. Steijl [43]

introduced another approach that encodes the nonlinear terms on a computational basis. For evaluating

the nonlinear terms in this approach, the solution, which is encoded in amplitudes of the quantum state,

8

is converted to a computational basis using analog-to-digital conversion. Once the information is

available on a computational basis, strategies in the classical algorithms can be employed to calculate the

nonlinear terms. Finally, the information is converted to amplitudes of the quantum state using the digital-

to-analog conversion. Steijl [41] utilized this approach to design a quantum circuit for a nonlinear lattice

model, which facilitates the evaluation of nonlinear terms using encoding on a computational basis.

However, none of the existing quantum algorithms mentioned in Table 1 directly dealt with the

nonlinear terms appearing in the nonlinear partial differential equations of fluid dynamics. To address

this issue, we proposed a novel pure quantum algorithm that directly calculates the nonlinear term by

employing multiple copies of the state vector. We also developed complete quantum circuits for the

proposed algorithm and then executed them on a quantum simulator. In the proposed quantum algorithm,

the number of resources required for multi-step simulation grows linearly in time, which shows significant

improvement over the algorithms proposed by Leyton and Osborne [33] (exponential growth) and Lloyd

et al. [34] (quadratic growth).

In this study, we chose Burgers’ equation to develop a quantum algorithm for fluid dynamics for

application to high-speed compressible flows. This equation is a simplified model of the conservation

laws for the compressible NSEs [44, 45]. Despite being a single PDE, it has a similar structure and the

same type of quadratic nonlinearity as NSEs [46]. Moreover, the nonlinear term in the Burgers’ equation

captures two critical nonlinear phenomena in high-speed gas flows: the self-steeping shock structure [47,

48] for continuous and discontinuous initial data, and the evolution of turbulent structures for random

initial data. Burgers’ turbulence is the study of the solutions to the Burgers’ equation with random initial

conditions or random forcing, which appear as one of the simplest instances of a nonlinear system out of

equilibrium. As a result, Burgers’ equation itself has interesting features that have attracted renewed

interest in the last decades for applications in cosmology, statistical physics, and fluid dynamics [46].

The quantum algorithm for nonlinear Burgers’ equation was implemented as a quantum circuit using

advanced quantum linear algebra techniques, including block-encoding for encoding non-unitary matrices,

9

quantum Hadamard product for elementwise multiplication, a linear combination of unitaries to

add/subtract the terms, and a compression gadget technique for time evolution. We also solved the linear

advection equation using a quantum algorithm based on the block-encoding technique as a preliminary

study.

2. Quantum algorithm for solving the linear advection equation

2.1. Governing equation and discretization

The linear advection equation (LAE) is the simplest model in fluid dynamics and provides an

excellent opportunity to start building a quantum framework for computational fluid dynamics

simulations. The linear advection equation describes the transport of a quantity (,)u x t with a constant

velocity of c as follows,

0.
u u

c
t x

 
+ =

 
 (1)

This equation models the propagation of waves or material along the x-axis without any change in shape.

For an initial condition of
0
() (,0)u x u x= , it has an exact solution of

0
(,) ()u x t u x ct= − . We employed

the finite difference method (FDM) to convert the PDE to a set of algebraic equations as follows,

1

1
1 ,

n n n

i i i

t t
u c u c u

t t

+

−

  
= − + 

  
 (2)

where the superscript n shows time and subscript i indicates the space. The explicit Euler scheme was

utilized for temporal discretization, and the upwind scheme was used for spatial discretization. For

quantum implementation, it is convenient to convert this set of algebraic equations into a matrix form as

follows, where 1n n
A

+
=u u ,

10

1 0 0

1 0 0

0 0

0 1 0

0 0 0 1

t t
c c

x x

t t
c c

x x

t
A c

x

t
c

x

t t
c c

x x

  
−     

 
  −

  
 

 =
 
 
 −

 
  

− 
  

. (3)

The linear advection equation is a linear transformation, aligning with quantum mechanics' linear

nature. However, to design a quantum algorithm for solving LAE using a quantum computer, we must

deal with three challenges: quantum state preparation (QSP), non-unitary transformation, and time

evolution. Subsections 2.2, 2.3, and 2.4 will discuss these challenges and their corresponding solutions.

2.2. Encoding data in a quantum computer

2.2.1. Encoding information in the computational basis

The first step in designing a quantum algorithm for LAE is initializing the vector
0
() (,0)u x u x= in

the quantum computer. There are two approaches to encoding information in a quantum computer:

encoding in the computational basis of the state vector and encoding in amplitudes of the state vector. To

develop quantum algorithms, we need both encodings. It is worth mentioning that encoding in the

computational basis follows the same process as in classical computers. Encoding any arbitrary decimal

number on a computational basis requires converting the number to binary. For instance, the binary

representation of 50.8 can be written as 110010.11001100110011001101, where the number of qubits

required for encoding the integer part (nint) depends on how big the number is. On the other hand,

depending on the desired accuracy we need, we can allocate some qubits to truncate the fractional part

(nfrac), which can be shown as follows [43],

integer

1 2 ,int 1 2 ,
.

fractional

n n frac
      =         

(4)

11

2.2.2. Encoding information in amplitudes of basis states

Encoding information in the amplitudes of the state vector is a specific feature of quantum computing.

To encode an N-dimensional vector like  0 1 1

T

N
u u u

−
=u , we only need n=log N qubits. First, we

normalize the vector to have a unit vector,

2

ˆ =
u

u
u

. The goal is to encode the elements of the normalized

vector as the amplitudes of basis states in the state vector as follows,

1

0 2 1

0

ˆ ˆ ˆ ˆ ˆ0 1 1 .
N

i N

i

u i u u u N
−

−

=

= = + +    + −u (5)

Fig. 1 shows a schematic representation of this normalized vector, computational domain, and basis states

for encoding an 8-dimensional vector in three qubits.

Fig. 1. Schematic representation of encoding information of 8 nodes in amplitudes of basis states for

three qubits.

2.2.3. Quantum state preparation

Encoding information on a computational basis is straightforward; we only need to convert the values

to their corresponding binary representations. However, implementing information in the amplitudes of

basis states is not as easy as in the computational basis. The reason is that we have 2n information and

only n qubits. As a result, we need a strategy to find the appropriate rotations required to achieve the

desired values in terms of amplitudes of the state vector. In this study, we used the divide-and-conquer

technique [49] for quantum state preparation. This technique encodes the information in the amplitudes

12

of the state vector using a sequence of controlled rotations. The goal is to calculate these rotation angles

using a state tree where the normalized elements of the vector are located at the bottom. The next level

will be calculated by summing the squares of each of the two elements, 2ˆ ˆ
j

i j n

n i

u u
−

=

= . This process will

be continued until we obtain a value equal to one at the top level of the state tree. This process is illustrated

for a simple case of encoding a vector with 4 elements in Fig. 2. Rotation angles can be calculated by

dividing the elements in the lower level by the elements in the upper level as follows,

1 1 12 3 31

0 1 2

0 3 0 1 2 3

ˆ ˆˆ
2sin , 2sin , 2sin .

ˆ ˆ ˆ

u uu

u u u
  − − −−

− − −

     
= = =     

     
 (6)

(a)

(b)

Fig. 2. (a) Representation of the divide-and-conquer strategy and (b) quantum circuit implementations

for two qubits.

2.3. Quantum algorithm and circuit design for the linear advection equation

In Section 2.1, we showed that the LAE can be converted to a set of algebraic equations where the

advection quantity can be updated as . We aim to employ a set of unitary gates to implement

matrix A as a quantum circuit. The challenge is that matrix A is not unitary since
†

AA I .

1n n
A

+
=u u

13

2.3.1. Implementing a non-unitary transformation using the Block-encoding technique

Block-encoding is a technique for implementing a non-unitary matrix A into a top left block of a

larger unitary matrix UA. As a result, we need to extend the state vector by adding extra ancilla qubits,

 0 0
T

= =v u u . Now, if we apply
A

U v , we obtain A u conditioned on post-selecting 0 on

ancilla qubits as follows [50],

; 0 0 1 .
A A A

A A
U U U A

   
= = = = +    

     

u
v u u (7)

Here, the asterisk is a matrix block that has yet to be determined. While block-encoding dense matrices

is challenging, sparse circulant matrices can be efficiently block-encoded. Hopefully, the LAE operator

and also the operator for calculating the first and second derivatives with periodic boundary conditions

form a circulant matrix as follows,

0

0

0

0

A

  

  



 

  

   
 
 
 =
 
 
    

. (8)

For an N by N matrix, we need n=log2N system qubits, m=log2s ancilla qubits to encode the row indices

of non-zero elements, and one additional ancilla qubit to carry the value of non-zero elements. The

structure of the block-encoding algorithm for embedding s-sparse circulant matrix A can be shown in Fig.

3.

Fig. 3. Schematic circuit representation of block-encoding of an s-sparse matrix.

14

The detailed circuit implementation for the linear advection equation is depicted in Fig.4.

Information of (,)u x t is encoded in the system register (qJ), where three qubits encode values

corresponding to the computational nodes (Nx=8). The circuit starts with quantum state preparation to

initialize the system qubits with
0
()u x . Operator Ds refers to the diffusion operator, which creates an

equal superposition of all basis states in the second register (qL), which can be implemented using the

Hadamard gates. For a circulant matrix with three non-zero elements (equation 8), we need only two

qubits to create four basis states in register L. We define that L=0,1 and 2 correspond to the diagonal,

sub-diagonal, and super-diagonal values of the matrix, respectively. Oracle OA encodes the nonzero

elements of matrix A on the first register (q0) using controlled RY-rotations (controlled on the values

encoded in register L). Oracle OC encodes the structure of the matrix on the system register using

controlled left-shift (subdiagonal) and right-shift (super-diagonal) operations (controlled on the values

encoded in register L). Finally, Oracle Ds
† uncomputes the diffusion operator. Rotation angles can be

calculated as follows [50],

1 1 1

0 1 2
2cos (1), 2cos (), 2cos ().     − − −

= − = = (9)

Details on the derivation of these operators, shift operators, and calculation of rotation angles, as well as

block-encoding of more general matrices, can be found in the reference [50].

Fig. 4. Quantum circuit implementation for linear advection equation.

15

2.3.2. Time evolution strategy (multi-step simulation)

Implementing a multi-step simulation for unitary matrices is straightforward: we apply the unitary

operator multiple times, depending on the number of iterations required. However, since obtaining the

correct result for non-unitary matrices is conditional, special consideration is necessary for multi-step

simulations involving these matrices. As shown in Section 2.3.1, by applying UA to the extended vector,

we obtain 0 1A + u . If we again apply the block-encoded matrix to this state, the desired results

will be mixed with garbage values as follows,

1

1 1
0 1 0 1 .

A

A
U A u

   
   +  = = +  +            

u
u (10)

To address this issue, we introduce an additional register known as Feynman's clock [30], which encodes

the time. After every iteration, a multi-controlled NOT gate (with the control state of zero), controlled by

the ancilla qubits of the block-encoding, targets the corresponding qubit in the time register. As mentioned

previously, the right values of block-encoding are conditioned on getting zero on ancilla qubits of block-

encoding. By this multi-controlled NOT gate, we entangle the good state of block-encoding with the

corresponding ancilla qubit in the time register. To apply the next block-encoding, we apply our unitary,

controlled on getting one on the ancilla qubit in the time register, ensuring that the unitary operation is

applied to the desired portion of the state vector. However, this approach requires Nt qubits in the time

register for an Nt-step simulation.

An alternative approach involves using the compression gadget [51] method, which only needs

log2Nt qubits in a counter register. For an Nt-step simulation, we initialize the binary form of the integer

number of Nt in the computational basis of the counter register. After each unitary operation, we perform

a conditional subtraction on the counter register. The counter register is reduced to zero when we apply

the last unitary operation. We then post-select the outcome of measurements conditioned on getting zero

on the counter register. Fig. 5 indicates the full circuit implementation for 8 iterations of the linear

advection equation using both Feynman’s clock and the compression gadget approach.

16

(a)

(b)

Fig. 5. Final quantum circuit for multi-step simulation of linear advection equation using (a) Feynman’s

clock and (b) the compression gadget time evolution strategies.

2.4. Numerical results of solving linear advection equation using quantum computing

Fig. 6 compares the numerical results obtained by the classical simulation and quantum simulator

with the exact solution of the linear advection equation. The computational domain was initialized using

an exponential function of
()

2

5
2

0
() (,0)

x

u x u x e
− −

= = . The computational domain consists of 32 nodes

encoded using 5 system qubits. The solutions were obtained for four time steps, with a constant time step

of Δt=1. As seen in Fig. 6, the solution at the final time step has some deviation from the exact solution

and classical simulation. The reason is that with an increasing number of time steps, the probability of

getting the good state (where the solution is encoded) becomes lower, and a huge number of

measurements is needed to get an accurate result. For a practical simulation, an amplitude amplification

algorithm can amplify the amplitude of good states compared to the bad states.

17

Fig. 6. Comparison of numerical results of solving linear advection equation obtained by quantum

simulator compared with classical simulation and exact solution for four-time steps.

3. Pure quantum algorithm for solving nonlinear Burgers’ equation

3.1. Governing equation and discretization

One of the main challenges when designing quantum algorithms for governing equations of fluid

dynamics is calculating nonlinear terms arising in the transport of momentum. Consequently, Burgers'

equation is an ideal candidate as a model equation for fluid dynamics due to its simplicity and nonlinearity.

The viscous Burgers' and inviscid Burgers' equations can be expressed as follows,

2

2
,

u u u
u

t x x


  
+ =

  
 (11)

0,
u u

u
t x

 
+ =

 

where u is the velocity vector, and µ is the viscosity. Employing FDM with an Euler scheme for time, the

upwind scheme for the convective term, and the central difference scheme for the second derivative,

Burgers’ PDE can be discretized in space and time as follows,

18

1

1

1 1

2

,

,

2
.

n n n n n

i i i i i

n n

n i i

i

n n n

n i i i

i

u u tu g th

u u
g

x

u u u
h

x

+

−

− +

= −  + 

 −
=  

 

 − +
=  

 

(12)

Here, n

i
g and n

i
h are the first and second derivatives of u at node i at time n.

To design a quantum algorithm for Burgers’ equation, we can break the problem into four main parts,

which are summarized in Fig. 7. The first challenge is the calculation of the nonlinear term,
u

u
x




 . Based

on the no-cloning theorem, creating an identical copy of an arbitrary unknown quantum state is impossible.

In other words, we cannot make a copy of the velocity, calculate its derivative, and finally multiply the

resultant by the original velocity. To deal with this problem, we employ multiple copies of the velocity

throughout the simulation.

Fig. 7. The main challenges to designing a quantum algorithm for Burgers’ equation and their solutions.

The second challenge is that even with multiple copies of the velocity vector, we cannot directly

perform the elementwise multiplication of two vectors (known as the Hadamard product) since it is not a

unitary transformation. Section 3.3 will explain how we can employ the quantum Hadamard product

(QHP) technique to perform this operation. The third challenge is calculating the first and second

derivatives, which are non-unitary transformations (Section 3.2). The fourth challenge is creating a linear

combination of all the terms in the discretized equation. This can be achieved using the linear combination

of unitaries (LCU) method (Section 3.4).

19

3.2. Implementation of derivative operators using the block-encoding technique

To design a quantum algorithm for Burgers’ equation, we need to calculate the first and second

derivatives of the velocity using quantum algorithms. The calculation of the first and second derivatives

as a matrix operation can be summarized as follows, respectively,

1 1

0 0 0

1 1

1 1 0

1

1

2 2 2

1 1

1 1 1

0 0 1 0 0 1

0 0 1 1 0 0
1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1 1

n n n

x x

n n n

x x

x

n n n

xm m m

n n n

x xm m m

g u u

g u u

x
g u u

g u u

−

 

−

 

−



− − −

−

 − − −

    −   
       

−       
       = = −

       
      
      −      







 
 



, (13)

2 2 2

2 2 2

2

2 2

2 2 2

2 1 1

0 0
1 2 1

1 1

1

2

2 1
2 2

1 1 2
1 1

0
2 1 0 1

0 1 2 1 0
1

0 0 1

2 1

1 0 1 20

n n
x x x

n n
x x x

x

n n

m mx x
n n

m m
x x x

h u

h u

x
h u

h u

−

  

−

  



−
− − 

−
− −

  

 
    − −  
       − −    − 
    = = −        −     
    − −      

 

0

1

2

1

n

n

n

m

n

m

u

u

u

u

−

−

 
 
 
 
 
 
 
 

. (14)

While these operations are not unitary, both are banded sparse matrices that can be easily implemented

as a quantum operator using the block-encoding technique. These matrices have the same structure as

equation (8). As a result, they can be implemented using the circuit shown in Fig. 4. The only difference

is the calculation of rotation angles, which are different from the linear advection equation. It is also worth

mentioning that we use uniform spacing, which allows us to take the
1

x
 and

2

1

x
 out of the matrix. The

reason is that their values can be larger than one, which makes it impossible to calculate the rotation

angles. Moreover, it is easier to calculate rotation angles for the second derivative by taking
2

1

x

−


 out of

the matrix instead of
2

1

x
. As a result, the operator for the second derivative calculates

()1 12

1
2

i i i i
h u u u

x
+ −

−
= − + −


. Rotation angles for the first and second derivatives can be calculated based

on equation (9). Fig. 8 shows the quantum circuit for calculating the first and second derivatives.

20

Fig. 8. Quantum circuit implementation for calculating the first and second derivatives using the block-

encoding technique.

After applying the block-encoding, the derivative will be scaled by 1  . Since we applied the

Hadamard gate to the ancilla qubits four times, α equals four. The state vector for the first and second

derivatives can be written as follows, respectively,

()

()

1

2 2

1

1

1
,

1
0 0 0 0 ,

1 1 1 1
,

m

i

i

D

m

i i

i

u i
u

A D

D u u i
u



  

=

−

=

=

= +  ⊥

=  = −





u

u u

u u

 (15)

and

()

()

2

2 22

2 2

1 1

1

1
0 0 0 0 ,

1 1 1 1
2 .

D

m

i i i

i

A D

D u u u i
u



  
− +

=

= +  ⊥

=  = − + −

u u

u u

 (16)

3.3. Quantum Hadamard product (element-wise multiplication)

The next term we need to calculate is the elementwise multiplication of the velocity vector and its

gradient. This operation can be written as follows,

0 0 0 0

1 1 1 1

2 2 2 2

1 1 1 1

.

n n n n

n n n n

n n n n

m m m m

n n n n

m m m m

u g u g

u g u g

u g u g

u g u g

− − − −

− − − −

     
     
     
     = =
     
     
     
     

u g (17)

21

As mentioned, the elementwise multiplication of two vectors is not a unitary operation since it does not

preserve the norm. This can be easily verified through a simple calculation as follows,

 
2

4

2 22
0 1

2 2 2 2

2

0 1 2 2

2

; 1,

1.
i

in

i i i i

i i i i

T

n i

i

T
u

u uu

u u u u

u u u u= → = = → =

 
= → =     
 

u

u
u u u u

u u u u

 (18)

We employ the quantum Hadamard product technique to perform this operation. Let's assume that our

vectors of u and g have two elements, which enables us to represent each of them with one qubit as

follows,

()

()

0 1

0 1

0 1 ,

0 1 .

u u

g g

= +

= +

u

g
 (19)

The quantum circuit for the quantum Hadamard product is shown in Fig. 9. Based on the postulates

of quantum computing, the state of a multi-qubit system is the tensor product of state spaces of individual

qubits. It can be easily seen that our desired vector of u g is already present in the tensor product

of the two vectors. We need to rearrange them using a CNOT gate, such that we can access the desired

vector as follows,

0 0 0 1 1 0 1 1

0 0 1 1 1 0 0 1

0 : 00 01 10 11 ,

1: 0 01 10 11 .0
CNOT

u g u g u g u g

u g u g u g u g

 = + + +

⎯⎯⎯⎯→ + + +

u g
 (20)

If we post-select the results conditioned on getting zero on the second qubit (which is colored blue in Eq.

(20)), we get an elementwise multiplication of two vectors in the first qubit.

Fig. 9. Quantum circuit for quantum Hadamard product technique.

22

3.4. Linear combination of unitaries

The final step in implementing the quantum algorithm for solving Burgers’ equation is to sum all the

terms we calculated in the previous subsections. The general form of the linear combination of unitaries

can be expressed as follows,

2 1

0

.

m

i i

i

U U
−

=

=  (21)

The value of αi is the weight of the ith unitary, Ui. The general form of the circuit for implementing the

LCU can be seen in Fig. 10. To create a linear combination of 2m terms, we need m ancilla qubits. We

apply a preparation oracle (PREP) on the ancilla qubits, followed by controlled unitaries conditioned on

selecting from the ancilla qubits and targeting the system qubits (SELECT). Finally, we uncompute the

ancilla qubits using PPREP† to create interference and make the summation.

Fig. 10. Schematic of the quantum circuit for the linear combination of unitaries.

To make a uniform combination of unitaries, a preparation oracle can be equivalent to applying

Hadamard gates to all ancilla qubits. Otherwise, RY rotations can be used to create non-uniform

combinations. For instance, assuming 0U = and 0V = , the quantum circuit implementation

of b − can be seen in Fig. 11.

Fig. 11. Quantum circuit for calculating b − using the linear combination of unitaries.

23

For the circuit shown in Fig. 11, the state vector can be calculated as follows,

()

() ()

0 : 0 0 1: 0 cos 0 sin 1 ,

2 : cos 0 sin 1 ,

0 1 0 1
3 : cos sin ,

2 2

1 1
3 : cos sin 0 cos sin 1 .

2 2

 

   

   

       

→ +

+

   + −
+   

   

+ + −

 (22)

Measuring the state vector conditioned on getting 1 on the ancilla qubit guarantees that we will obtain

the desired result. Moreover, the rotation angle can be calculated as follows,

()1

2 2

1 1
cos cos sin .

1 1
b

b b
      −

 
= → − = − 

+ + 

 (23)

3.5. Circuit design for a single-step simulation

3.5.1. Quantum circuit for inviscid Burgers’ equation

For the sake of simplicity, we first start with the circuit implementation of the inviscid Burgers’

equation as shown in Fig. 12. This circuit includes 5 registers: From the top, the first register is the ancilla

qubits for LCU, the second and third registers are ancilla qubits for block-encoding, the fourth and fifth

are the main register and a copy of the main register, which encode the velocity and a copy of velocity,

respectively. We only need log Nx qubits for the main register and its copy to simulate a computational

domain with Nx spatial nodes or cells.

24

Fig. 12. Quantum circuit for one iteration of the inviscid Burgers’ equation.

The evolution of the state vector can be written as follows (the changes are color-coded; any change in

the state vector is colored blue and rearranging the state vector is colored red),

()

()
0

0

00 0

0 0

0 0 0

2 2& ()

2 2& cos sin
0

2 2co

0

c

1
0

1 1
0

s sin 1
0

2os sin 1
0

1
0 0

0 1

2

0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 1 ,

0 0 0 0 0 0 1 ,

0 0

cos 0 sin 1

0

0

0

Y
m m mInit R

m mInit U

u u

m mCNO

m

u

m m

u

mT

u u u

m m

m

H

u u u

u

u

u

u u

u

u

u



 

 









 
    

   

 





 

 

 

 

 +

⎯⎯⎯⎯→

⎯⎯⎯⎯→ +

⎯⎯⎯→ +

⎯

+



⎯ +



→ ()




0

0

0

21
0 0

2

2

0 1

2

0

1 1
0 0 0

1
0 0

2

0 0 ,

0 cos sin 0 0

 0 0 0 .

1

cos sin 0

m

m m

m

m m mX

uu

m

u

u

u

u

u u

u

u u






 

 

 

  





 

−


 ⎯⎯→ + 
 

 +
 

− 

 (24)

After applying the RY(θ) to the ancilla qubit in the LCU register, this qubit is in the state of

cos 0 sin 1 + . This is followed by a controlled unitary targeting on all registers except the ancilla

qubit of the LCU register, which is the control qubit. When the LCU qubit is in the state 0 , it does

nothing, and when it is in the state 1 , this unitary will be applied. As a result, after applying the CNOT

gate, the main register is in the state
0

u when the LCU qubit is in state 0 and it is in the state 0 0
u u

when the LCU qubit is in the state 1 . To take advantage of the quantum amplitude interference feature,

we apply the Hadamard gate to the LCU qubit. As a result, the main register is in the state

0

1
0 0 0

cos sin
u

u u u


 −  (
0

1
0 0 0

cos sin
u

u u u


 + ) when the LCU qubit is in state 1 (0).

Since we need to calculate
1

t
n n n nx

u u u u
+ 
= −  , the main register is in the desired state when the LCU

qubit is in state 1 . Finally, we apply an X gate to the LCU qubit since we prefer to get 0 on ancilla

qubits.

Post-selecting the measurements conditioned on getting zero states on all ancilla qubits and also the

register that holds a copy of the velocity guarantees that we get
1

1
1u

u on the main register. The rotation

25

angle for each iteration is only a function of Δt, Δx, α, and the scaling factor of velocity from the previous

step, which can be calculated as follows,

() () () ()
1 1

2 22 2

1
cos ; sin .

1 1

n

n n

n n

u t x

u t x u t x


 

 
+ +

 
= =

+   +  

 (25)

Here, considering n equal to zero, calculates the rotation angle for the first iteration. Substituting the sinθ

and cosθ in the final outcome of the state vector on the main register conditioned on getting zero on all

other qubits (colored with red in equation 24) returns the scaled velocity vector
1

1
1u

u as follows,

() ()

1

0 0 02 2 2
10

0

1 1 1
.

2 1

m m ut
u u u

x uu u t x 

  
−  =  +  

 (26)

The scaling factor for each iteration can also be generalized as follows,

() ()
22 2

1
2 1 .

n n n
u u u t x 

+
= +   (27)

Similar to the rotation angle, the scaling factor for the velocity is also independent of the solution, which

allows us to pre-calculate all the scaling factors and rotation angles. As a result, we do not need to measure

in between to calculate the rotation angles classically. This is important since it allows us to design a pure

quantum algorithm.

3.5.2. Quantum circuit for viscous Burgers’ equation

The quantum circuit for the viscous Burgers’ equation is also similar to the inviscid Burgers’

equation except for an additional term for the second derivative of velocity, as shown in Fig. 13. As a

result, we need to calculate the linear combination of three terms instead of two terms. For this reason,

we need an extra ancillary qubit for the LCU register.

26

Fig. 13. Quantum circuit for one iteration of Burgers’ equation.

Similar to the inviscid Burgers’ equation, we can write the evolution of the state vector for one iteration

of solving viscous Burgers’ equation as follows (the changes are color-coded; any change in the state

vector is colored blue, and rearranging the state vector is colored red),

0 1

0

2

0 0

0

0

2 2

2()&

1
0

1 1
0

() 1
0

2 2& & &

0 0

0 0 0 0 00 0 0 0 00 ,

0 0 0 ,

0 0 0 00 0 0 01

cos cos 00 cos sin 01 sin 10

0

Y Y

m m mInit

m mR R

u

m mInit U CNOT U

m

u

a b c

m m

u

a b

u u

u

u u

u

u

 



    

    

 









   

⎯⎯→

 
 ⎯⎯⎯⎯⎯⎯→
 
 

⎯⎯⎯⎯⎯⎯ →

+ +

⎯ +

 

 

0

0

0 0

2

2

0

02

1

2

2

1 1
0 02

 0 0 0 10 ,

0 0 0

 0 0 0

00 01 10 11

00 01 10 11

mc

u

m mH a

u

mb

u u

m

m

u

u

u u





 

  





 

+

⎯⎯⎯⎯⎯⎯⎯⎯



+ + +

− ++  −

→

 
0

0 0

221
02

2

0

0
1

2

21 1
0 0

 0 0 0 ,

0 0 0 .

00 01 10 11

00

mmc

u

m mm m

u

X

u
a u b u u c u

u





 

 

 

+ 

 ⎯⎯⎯⎯⎯⎯⎯⎯

+ − −

→ − − 
 




 (28)

Here, also, post-selecting the measurements conditioned on getting zero states on all ancilla qubits

guarantees that we get
1

1
1u

u on the main register. Rotation angles can be calculated by comparing the

27

final outcome of the state vector on the main register with our goal of calculating

()2

1 2n n n n n

t t
u u u u u

x x


+

 
= −  − −

 
 as follows,

() ()

() () () () ()

() () () () ()

2 2

1 122 2 22 2

2

1 1
2 22 22 2

1 1
cos ; cos ,

1 1

sin ; sin .

11

n n

n n

n n n

n

n n

nn n

u t x u

u t x t u x u t x

t u x t x

u t xu t x t u x

 
 

  


 

 

+ +

+ +

+  
= =

+   +   +  

   
= =

+  +   +  

 (29)

Substituting these values in the final outcome of the state vector on the main register (colored with red in

equation 28) returns the scaled velocity vector
1

1
1u

u as follows,

() () ()

22

0 0 0 02
1

2 22 2 2 10
0 0

2
0 0 0 01

1
,

2 1

mm m mt t
u u u u

ux x

uu u t x t u x



  

     
−  −    

=

+   +  

 (30)

where the scaling factors for each iteration also can be generalized as follows,

() () ()
222 2 2

1
2 1 .

n n n n
u u u t x t u x  

+
= +   +   (31)

3.6. Multiple copies and reusing qubits

As previously mentioned, we cannot make a copy of the velocity vector and calculate terms like
2

u

or
u

u
x




 due to the no-cloning theorem. As a result, we need to carry a copy of the velocity vector from

the beginning of the simulation to calculate the nonlinear term using the QHP technique. To know how

many copies we need to calculate a simulation with Nt number of iterations, we can simplify the problem

to calculate ()2 tN

u . This clarifies how the number of copies increases with Nt, as shown in Fig. 14.

28

Fig. 14. Schematic representation of number copies required for multi-step calculation of ()2 tN

u

without reusing qubits (left) and with reusing qubits (right).

It can be easily seen that for terms like 2
u (monomial of degree 2), the number of copies increases

exponentially with the number of iterations, which can be expressed as 2 tN
. It is well known that this

approach cannot be practical because, after only 30 iterations, we would need approximately one billion

copies. However, if we reuse the copies from previous iterations, we can exponentially improve the

dependency of the number of copies to time (Nt). If the velocity vector contains Nx nodes, we need log Nx

qubits to encode the velocity in a quantum computer. The number of qubits required for conducting Nt

steps of simulation is equal to 2 logtN

x
N without reusing qubits and (1) log

t x
N N+ when reusing qubits.

The next subsection will explain how we can reuse qubits to solve Burgers’ equation.

3.7. Circuit design for multi-step simulation

Fig. 15 shows the quantum circuit for two steps for solving the inviscid Burgers’ equation. As

discussed in Section 2.3.2, we must add a time register for a multi-step simulation. This register will be

initialized with the binary encoding of Nt in the computational basis of the time register. After each

iteration, we do a conditional subtraction from the time register until this register reaches zero after the

final step. Moreover, we must add a copy of all registers mentioned in the previous section for each

simulation step.

29

Fig. 15. Quantum circuit for two iterations of the inviscid Burgers’ equation.

We designed the quantum algorithm such that it takes
n

u from the previous iteration and gives
1n+

u

at the end of the controlled unitary in the main register (U). For calculating
1n+

u , we need to have
n

u

in the CU register to calculate the Hadamard product (n nCU U
u u). To add the terms that appear in

the Burgers’ equation, we use the LCU technique on the main register. All other qubits must be in the

same state (here, zero state) to get the proper amplitude interference. As a result, we must prepare
n

u

for the CU register inside the controlled unitary (Un). Otherwise, we will get the wrong results at the end

of the simulation. Consequently, the quantum circuit for multi-step simulation adopts a fractal structure,

as shown in Fig. 16.

30

Fig. 16. Fractal structure of unitaries in the quantum circuit of the multi-step simulation of the Burgers’

equation.

The red dotted line in Fig. 15 indicates that we are reusing qubits. If we reuse the qubits without any

consideration, we will have wrong results since the good states are mixed with the bad ones. For instance,

in Fig. 15, the CU register was reused in the second step of the simulation. From the QHP technique

explained in Section 3.3, we know that if we post-select the results conditioned on getting zero on the

copy of the main register (CU), we get an elementwise multiplication of two vectors in the main register

(U). As a result, we need to add the CU register to the list of controlled qubits in the subtract gate to

guarantee that we will apply the next operations on the right portion of the state vector.

3.8. The complexity of the quantum algorithm for space and time

The number of resources required to run the quantum algorithm for the Burgers’ equation is growing

logarithmically with space. In other words, we only need logNx qubits for Nx spatial nodes. We need

2logNx qubits for encoding velocity and one copy of velocity for the first step. Also, we need 5 ancilla

qubits to implement the quantum algorithm, including two qubits for LCU and three qubits for block-

encoding. The number of qubits for the time register can be obtained as ()()
tN

2

i 2

Int log i 1
=

 +  . Without

reusing the qubits, the number of copies of the main register increases exponentially with time. As a result,

31

the number of qubits required for solving Burgers’ equation without reusing qubits can be calculated as

follows,

() () ()()
t

t

N

N

2 x t 2

i 2

2 log N 5N Int log i 1 .
=

 + + +  (32)

However, we showed that we could reuse qubits by performing controlled subtraction (the controlled

qubits should include the qubits we are going to reuse) from the time register. By reusing qubits from the

previous steps, we could improve the exponential dependency of computational resources to linear

dependency. As a result, the total number of qubits required for solving Burgers’ equation on Nx points

and for Nt steps can be calculated as follows,

() () ()()
tN

t 2 x t 2

i 2

N 1 log N 5N Int log i 1
=

 + + + +  (33)

3.9. Limitations of executing quantum circuits on quantum computers and simulators

Despite the exponential improvement in the number of qubits in the current algorithm, we cannot

execute this algorithm on quantum computers. The reason is that quantum computers in the noisy

intermediate-scale quantum (NISQ) era have significant limitations that prevent the execution of

complicated quantum algorithms. These systems are characterized by a relatively small number of qubits,

which limits their computational capacity and makes them unable to handle the large-scale quantum

circuits required for complex algorithms. Moreover, the qubits in NISQ devices are highly susceptible to

errors and decoherence due to interactions with their environment, which results in a high error rate during

computations.

As a result, we used quantum simulators to show that our quantum algorithm can solve Burgers’

equation. However, the huge memory required to run quantum circuits on the quantum simulators limits

the number of qubits for simulation. The memory required for a simulation with the Nqubits number of

qubits is  qubitsmax(0,N 16)
2 mb

−
. For instance, the memory requirement for running a quantum circuit with

32

only 36 qubits is approximately 1000 GB. As a result, we could only execute the quantum circuit for 2 or

3 steps on the quantum simulator.

3.10. Numerical results of solving Burgers’ equation using quantum computing

Fig. 17 compares the numerical results obtained from the classical simulation and the quantum

simulator for the inviscid Burgers’ equation. The computational domain was discretized to 32 nodes

(Δx=1) and initialized using an exponential function of
()

2

5
2

0
() (,0)

x

u x u x e
− −

= = . The solutions were

obtained for two time steps, with a constant time step of Δt=0.4.

(a) (b) (c)

Fig. 17. Comparison of numerical results of the inviscid Burgers’ equation obtained with the quantum

simulator compared with that from the classical simulation at (a) t=0, (b) t=0.4, (c) t=0.8.

We also executed the same quantum algorithm for a computational domain with 8 nodes to reduce the

number of qubits, which enabled us to perform three-time steps of the inviscid Burgers’ equation. The

results of this simulation are shown in Fig. 18, where the computational domain was initialized using

()
2

2

0
() (,0)

x
u x u x e

− −
= = and Δt was chosen to be 0.5.

33

Fig. 18. Comparison of numerical results of the inviscid Burgers’ equation obtained with the quantum

simulator compared to the results from the classical simulation for Nx=8 and three-time steps.

The numerical results obtained by the quantum simulator were also compared with the classical

simulation for Burgers’ equation, shown in Fig. 19. For this problem, we discretized the domain to 16

nodes (Δx=2), which can be encoded in four system qubits. The computational domain was initialized

with
()

2

6
2

0
() (,0)

x

u x u x e
− −

= = and the solutions were obtained for two time steps with Δt=0.5.

(a) (b) (c)

Fig. 19. Comparison of the numerical results of Burgers’ equation obtained with the quantum simulator

compared with the classical simulation at (a) t=0, (b) t=0.5, (c) t=1.0.

34

4. Conclusions

In this study, we first addressed several challenges that arise when trying to deal with nonlinearities

using quantum algorithms, which are core problems related to solving nonlinear partial differential

equations arising in fluid dynamics. After an extensive literature review and careful analysis, we

established a strategy for designing an efficient quantum algorithm for nonlinear partial differential

equations. We then developed a novel pure quantum algorithm for solving the nonlinear Burgers’

equation as a first step to test the validity of such a strategy.

In the new method, we employed multiple copies of the state vector to calculate the nonlinear term

encoded in amplitudes of the state vector. We showed that by reusing the qubits from the previous steps,

the number of resources required for multi-step simulation scales linearly with time, which is a significant

improvement over previous algorithms. Advanced quantum linear algebra techniques were employed to

design a quantum circuit for the proposed quantum algorithm. The divide-and-conquer algorithm was

used for quantum state preparation to initialize the computational domain. Non-unitary matrices of the

first and second derivative operators were implemented using the block-encoding technique. The quantum

Hadamard product technique was used to perform the non-unitary elementwise multiplication of two

vectors. Finally, the linear combination of unitaries was employed to sum up all the terms that appear in

the discretized Burgers’ equation. The quantum circuit for Burgers’ equation was executed on the

quantum simulators. The results obtained with the quantum simulator showed excellent agreement with

those obtained with classical simulations, demonstrating the feasibility of using the proposed quantum

algorithm for solving the nonlinear Burgers’ equation on future quantum computers.

The focus of this study was to develop a pure quantum algorithm to calculate the nonlinear terms in

the governing equations of fluid dynamics. As a result, we used the upwind scheme for spatial

discretization of the convective terms in a non-conservative form for the sake of simplicity. However,

this approach is limited when shock waves form and the solution becomes discontinuous. For future work,

we plan to develop a quantum algorithm for the Godunov scheme (challenging due to the structure of this

35

scheme and the limitations imposed by quantum computing) to calculate the numerical fluxes in a finite

volume framework. This will help us develop a quantum algorithm capable of solving shock structure

problems using quantum computing. Additionally, given the current limitations of quantum computers—

such as noise and a limited number of qubits—we aim to optimize our quantum circuits to solve Burgers’

equation on real quantum computers.

Acknowledgment

This work was supported by the US AFOSR Grant No. FA2386-22-1-4052. D.A. also acknowledges

partial support provided by COMPA grant No. RS-2024-00422330.

Data availability

The data that support the findings of this study are available from the corresponding authors upon

request.

References

[1] Sauro Succi, Wael Itani, Katepalli Sreenivasan, René Steijl, Quantum computing for fluids: Where do

we stand?, Europhysics Letters 144 (2023) 10001.

[2] Alireza Nejadmalayeri, Alexei Vezolainen, Oleg V Vasilyev, Reynolds number scaling of coherent

vortex simulation and stochastic coherent adaptive large eddy simulation, Physics of Fluids 25 (2013).

[3] Noah Linden, Ashley Montanaro, Changpeng Shao, Quantum vs. classical algorithms for solving the

heat equation, Communications in Mathematical Physics 395 (2022) 601-641.

[4] YY Liu, Zhen Chen, Chang Shu, Siou-Chye Chew, Boo Cheong Khoo, Xiang Zhao, YD Cui,

Application of a variational hybrid quantum-classical algorithm to heat conduction equation and analysis

of time complexity, Physics of Fluids 34 (2022).

[5] C Sanavio, R Scatamacchia, C de Falco, S Succi, Three Carleman routes to the quantum simulation

of classical fluids, Physics of Fluids 36 (2024).

[6] Wael Itani, Katepalli R Sreenivasan, Sauro Succi, Quantum algorithm for lattice Boltzmann (QALB)

simulation of incompressible fluids with a nonlinear collision term, Physics of Fluids 36 (2024).

[7] Ljubomir Budinski, Quantum algorithm for the advection-diffusion equation simulated with the lattice

Boltzmann method, Quantum Information Processing 20 (2021) 57.

36

[8] Budinski Ljubomir, Quantum algorithm for the Navier–Stokes equations by using the stream function-

vorticity formulation and the lattice Boltzmann method, International Journal of Quantum Information

20 (2022) 2150039.

[9] Merel A Schalkers, Matthias Möller, On the importance of data encoding in quantum Boltzmann

methods, arXiv preprint arXiv:2302.05305 (2023).

[10] Blaga N Todorova, René Steijl, Quantum algorithm for the collisionless Boltzmann equation, Journal

of Computational Physics 409 (2020) 109347.

[11] Yudong Cao, Anargyros Papageorgiou, Iasonas Petras, Joseph Traub, Sabre Kais, Quantum

algorithm and circuit design solving the Poisson equation, New Journal of Physics 15 (2013) 013021.

[12] Beimbet Daribayev, Aksultan Mukhanbet, Timur Imankulov, Implementation of the HHL algorithm

for solving the Poisson equation on quantum simulators, Applied Sciences 13 (2023) 11491.

[13] Shengbin Wang, Zhimin Wang, Wendong Li, Lixin Fan, Zhiqiang Wei, Yongjian Gu, Quantum fast

Poisson solver: the algorithm and complete and modular circuit design, Quantum Information Processing

19 (2020) 1-25.

[14] Peter Brearley, Sylvain Laizet, A quantum algorithm for solving the advection equation using

Hamiltonian simulation, arXiv preprint arXiv:2312.09784 (2023).

[15] Julia Ingelmann, Sachin S Bharadwaj, Philipp Pfeffer, Katepalli R Sreenivasan, Jörg Schumacher,

Two quantum algorithms for solving the one-dimensional advection-diffusion equation, arXiv preprint

arXiv:2401.00326 (2023).

[16] Reuben Demirdjian, Daniel Gunlycke, Carolyn A Reynolds, James D Doyle, Sergio Tafur,

Variational quantum solutions to the advection-diffusion equation for applications in fluid dynamics,

Quantum Information Processing 21 (2022) 322.

[17] Jeffrey Yepez, An efficient quantum algorithm for the one-dimensional Burgers equation, arXiv

preprint quant-ph/0210092 (2002).

[18] Frank Gaitan, Finding flows of a Navier–Stokes fluid through quantum computing. npj Quantum

Information, 6 (1), 1-6, in, DOI, 2020.

[19] Frank Gaitan, Finding Solutions of the Navier‐Stokes equations through quantum computing—

Recent progress, a generalization, and next steps forward, Advanced Quantum Technologies 4 (2021)

2100055.

[20] Xiang Rao, Performance study of variational quantum linear solver with an improved ansatz for

reservoir flow equations, Physics of Fluids 36 (2024).

[21] Michael A Nielsen, Isaac L Chuang, Quantum computation and quantum information, Cambridge

University Press, 2010.

[22] Doyeol Ahn, Non-Markovian cost function for quantum error mitigation with Dirac Gamma matrices

representation, Scientific Reports 13 (2023) 20069.

[23] J-H Bae, Paul M Alsing, Doyeol Ahn, Warner A Miller, Quantum circuit optimization using quantum

Karnaugh map, Scientific Reports 10 (2020) 15651.

37

[24] Byeongyong Park, Doyeol Ahn, Reducing CNOT count in quantum Fourier transform for the linear

nearest-neighbor architecture, Scientific Reports 13 (2023) 8638.

[25] Peter W Shor, Algorithms for quantum computation: discrete logarithms and factoring, in:

Proceedings 35th annual symposium on foundations of computer science, IEEE, 1994.

[26] A Luis, J Peřina, Optimum phase-shift estimation and the quantum description of the phase

difference, Physical Review A 54 (1996) 4564.

[27] Don Coppersmith, An approximate Fourier transform useful in quantum factoring, arXiv preprint

quant-ph/0201067 (2002).

[28] Gilles Brassard, Peter Hoyer, Michele Mosca, Alain Tapp, Quantum amplitude amplification and

estimation, Contemporary Mathematics 305 (2002) 53-74.

[29] Aram W Harrow, Avinatan Hassidim, Seth Lloyd, Quantum algorithm for linear systems of

equations, Physical Review Letters 103 (2009) 150502.

[30] Dominic W Berry, High-order quantum algorithm for solving linear differential equations, Journal

of Physics A: Mathematical and Theoretical 47 (2014) 105301.

[31] Dominic W Berry, Andrew M Childs, Aaron Ostrander, Guoming Wang, Quantum algorithm for

linear differential equations with exponentially improved dependence on precision, Communications in

Mathematical Physics 356 (2017) 1057-1081.

[32] Andrew M Childs, Jin-Peng Liu, Aaron Ostrander, High-precision quantum algorithms for partial

differential equations, Quantum 5 (2021) 574.

[33] Sarah K Leyton, Tobias J Osborne, A quantum algorithm to solve nonlinear differential equations,

arXiv preprint arXiv:0812.4423 (2008).

[34] Seth Lloyd, Giacomo De Palma, Can Gokler, Bobak Kiani, Zi-Wen Liu, Milad Marvian, Felix

Tennie, Tim Palmer, Quantum algorithm for nonlinear differential equations, arXiv preprint

arXiv:2011.06571 (2020).

[35] Zhaoyuan Meng, Yue Yang, Quantum computing of fluid dynamics using the hydrodynamic

Schrödinger equation, Physical Review Research 5 (2023) 033182.

[36] Stefano Riva, Carolina Introini, Antonio Cammi, A finite element implementation of the

incompressible Schrödinger flow method, Physics of Fluids 36 (2024).

[37] Bolesław Kacewicz, Almost optimal solution of initial-value problems by randomized and quantum

algorithms, Journal of Complexity 22 (2006) 676-690.

[38] Furkan Oz, Rohit KSS Vuppala, Kursat Kara, Frank Gaitan, Solving Burgers’ equation with quantum

computing, Quantum Information Processing 21 (2022) 1-13.

[39] Biswajit Basu, Saravanan Gurusamy, Frank Gaitan, A quantum algorithm for computing dispersal

of submarine volcanic tephra, Physics of Fluids 36 (2024).

38

[40] Jin-Peng Liu, Herman Ø ie Kolden, Hari K Krovi, Nuno F Loureiro, Konstantina Trivisa, Andrew M

Childs, Efficient quantum algorithm for dissipative nonlinear differential equations, Proceedings of the

National Academy of Sciences 118 (2021) e2026805118.

[41] René Steijl, Quantum circuit implementation of multi-dimensional non-linear lattice models, Applied

Sciences 13 (2022) 529.

[42] Michael Lubasch, Jaewoo Joo, Pierre Moinier, Martin Kiffner, Dieter Jaksch, Variational quantum

algorithms for nonlinear problems, Physical Review A 101 (2020) 010301.

[43] Rene Steijl, Quantum algorithms for nonlinear equations in fluid mechanics, Quantum Computing

and Communications (2020).

[44] NTP Le, Hong Xiao, RS Myong, A triangular discontinuous Galerkin method for non-Newtonian

implicit constitutive models of rarefied and microscale gases, Journal of Computational Physics 273

(2014) 160-184.

[45] RS Myong, Thermodynamically consistent hydrodynamic computational models for high-Knudsen-

number gas flows, Physics of Fluids 11 (1999) 2788-2802.

[46] Jérémie Bec, Konstantin Khanin, Burgers turbulence, Physics Reports 447 (2007) 1-66.

[47] Omid Ejtehadi, Tapan K Mankodi, Ilyoup Sohn, Byoung Jae Kim, RS Myong, Gas-particle flows in

a microscale shock tube and collection efficiency in the jet impingement on a permeable surface, Physics

of Fluids 35 (2023).

[48] RS Myong, Analytical solutions of shock structure thickness and asymmetry in Navier–

Stokes/Fourier framework, AIAA Journal 52 (2014) 1075-1081.

[49] Israel F Araujo, Daniel K Park, Francesco Petruccione, Adenilton J da Silva, A divide-and-conquer

algorithm for quantum state preparation, Scientific Reports 11 (2021) 6329.

[50] Daan Camps, Lin Lin, Roel Van Beeumen, Chao Yang, Explicit quantum circuits for block

encodings of certain sparse matrices, arXiv preprint arXiv:2203.10236 (2022).

[51] Guang Hao Low, Nathan Wiebe, Hamiltonian simulation in the interaction picture, arXiv preprint

arXiv:1805.00675 (2018).

