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Abstract 

Computational Modeling of In-Flight Ice Accretion and 

Shedding on Rotorcraft using Hybrid Lagrangian-Eulerian 

Framework 

 

 

 

 

 

 

In-flight icing is a critical threat to the safety of a rotorcraft flying inside a cloud with 

supercooled droplets. Ice accumulations on the surface of rotorcraft significantly affect the 

performance of the rotorcraft. Hence, the design of a proper ice protection system can be a 

feasible option to prevent the adverse effects of ice accretion. For a proper ice protection system 

design, the aerodynamic, droplet impingement, and ice accretion behavior, along with ice 

shedding characteristics, need to be mastered.   

In this study, a hybrid aerodynamic solver coupling Lagrangian and Eulerian framework 

to define wake and flow field around fuselage respectively was formulated to predict 

effectively and efficiently flow field around fuselage at any arbitrary advance ratio considering 

rotor wake effects. Next, an Eulerian-based droplet impingement code which provides the 

collection efficiency for air flows around any three-dimensional model containing water 

droplets is developed. A Finite Volume Method (FVM) is used to solve shallow water-based 

droplet equations. An unified grid technology is developed to use the same grid in both air and 

droplet solvers. A PDE-based ice accretion solver is also developed to predict the iced shape 
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on the clean geometry. The ice accretion solver is able to handle all regimes of ice formation 

in which the water film flow is automatically solved along with the mass of ice and equilibrium 

temperature. Further, the ice accretion solver is based on FVM, in which the inputs can be 

easily given from the air and droplet solvers.  

The solvers were utilized to predict ice accretion around the ROBIN rotorcraft. An 

aerodynamic solver was utilized to predict the flow field around the fuselage. After the 

convergence of the rotor thrust coefficient, the flow field was averaged for one revolution and 

was used to initialize the droplet solver. The droplet solver calculated collection efficiency on 

the surface of the fuselage, and then an ice solver was employed to predict ice accretion location 

and mass. The two parameters, namely, advance ratio and rotor thrust coefficient, were varied 

in different combinations to study ice accretion, and it was found that the advance ratio had a 

dominant effect on the ice accretion as compared to the rotor thrust coefficient. 

Ice shedding is a critical issue in the rotorcraft system and is a safety concern. Interaction 

of ice fragments with engine intake and tail rotor may damage the compressor blades and tail 

rotor, respectively, causing incidents and accidents to the rotorcraft. The present work 

established a general framework to study the ice shedding problem by including 6-DoF, 

Artificial Neural Network (ANN), and Monte Carlo (MC) to obtain ice footprint maps on the 

plane of critical components. In summary, the present work with the creation of several 

modules provides a concise platform to study ice accretion and ice shedding in a rotorcraft flow 

field with low computational resources and time with adequate accuracy. 

 

 

 

 

 


