A Thesis for the Degree of Doctor of Philosophy

Computational Modeling of In-Flight Ice Accretion and Shedding on Rotorcraft using Hybrid Lagrangian-Eulerian Framework

By Bidesh Sengupta

Department of Mechanical and Aerospace Engineering Graduate School Gyeongsang National University August, 2022

Computational Modeling of In-Flight Ice Accretion and Shedding on Rotorcraft using Hybrid Lagrangian-Eulerian Framework

A dissertation submitted to the Faculty of the Graduate School of the Gyeongsang National University

By

Bidesh Sengupta

In partial fulfilment of the requirements for the degree of Doctor of Philosophy

August, 2022

Prof. Rho Shin Myong, Dissertation Supervisor

Prof. Hakjin Lee, Dissertation Co-supervisor

Approved by committees of the Graduate School of Gyeongsang National University in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Dissertation Committee:

Prof. Hakjin Lee

Chairman

Prof. Dr. Jae Hyun Park

Dr. Ji Hong Kim

Prof. Prince Raj Lawrence Raj

Prof. Rho Shin Myong

Supervisor

Date: 2022.07

Department of Mechanical and Aerospace Engineering Graduate School Gyeongsang National University

Acknowledgment

To whoever I have interacted with in my life.

BIDESH SENGUPTA July 15, 2022

Table of contents

Ackno	wledgement	iii
Table	of contents	iv
List of	figures	viii
List of	tables	xiv
Abstra	ct	XV
Abstra	ct in Korean	xvii
Introdu	uction	1
Chapte	er 1. Atmospheric Icing and Ice Shedding	7
1.1	In-flight icing	7
1.2	Types of ice	8
1.3	Factors affecting ice accretion	9
1.3.1	Environmental parameters	9
1.3.2	Flow parameters	11
1.3.3	Surface condition	13
1.4	Aircraft icing certification	14
1.4.1	Accepted means of compliance	17
1.4.2	Icing certification of helicopters	21
1.5	Ice accretion modeling	24
1.6	Previous numerical methods	25
1.6.1	LEWICE	25
1.6.2	ONERA	32
1.6.3	FENSAP	36
1.7	Ice shedding	37
Chapte	er 2. Mathematical modeling	42
2.1	Hybrid (NVLM+VPM+FVM) compressible air solver for rotorcraft	43
2.1.1	Non-linear Vortex Lattice Method (NVLM)	43
2.1.2	Airfoil look-up table	44
2.1.3	Semi-empirical models for airfoil aerodynamics	45
2.1.4	Vortex strength correction	48
2.1.5	Vortex particle method (VPM)	49

2.1.6	Viscous Vortex particle method (VVPM)	53
2.1.7	Fast Multipole Method (FMM)	60
2.1.8	NVLM/VPM and CFD coupled method	66
2.1.9	Boundary condition of coupled solver	70
2.1.10	Discretization of convective flux	72
2.1.11	Discretization of viscous flux	72
2.1.12	Preconditioning of flux matrix	74
2.1.13	Temporal discretization of coupled solver	74
2.2	Eulerian-based droplet modeling	75
2.2.1	Governing equation of SWDE	76
2.2.2	Spatial discretization of SWDE	77
2.2.3	High order solution reconstruction	79
2.2.4	Finite volume formulation	81
2.2.5	Temporal discretization of SWDE	82
2.2.6	Boundary condition for droplet solver	83
2.3	Ice accretion modeling	84
2.3.1	PDE-based ice accretion model	84
2.3.2	Compatibility relations	93
2.3.3	System of equations to solve	94
2.3.4	Finite volume formulation	94
2.3.5	Pure rime ice model	98
2.3.6	Ice growth and node displacement	98
2.4	Ice shedding	99
2.4.1	Identification of ice break-up, shape, and location	99
2.4.2	6-DoF equations of motion	104
2.4.3	Artificial Neural Network	106
2.4.4	Monte Carlo	107
2.4.5	Summary of methodology	108
2.5	Parallelization	110
2.5.1	Parallelization of finite volume solvers	111
2.5.2	MPI based parallel air and droplet solver	114

Chapter 3. Validation of solver modules	
---	--

117

3.1	Validation of NVLM and FMM	117
3.1.1	Caradonna Tung rotor	117
3.1.2	OH-13E rotor	126
3.2	Validation of air solver	136
3.2.1	Flow over sphere	136
3.3	Validation of coupled solver	138
3.3.1	GIT rotorcraft model	138
3.3.2	ROBIN rotorcraft model	144
3.4	Validation of droplet solver	155
3.4.1	Collection efficiency computation on sphere	155
3.5	Validation of ice accretion solver	157
3.6	Verification and Validation of ice shedding solver	158
3.6.1	Verification with analytical solution	159
3.6.2	Validation with experimental result	160
Chapte	er 4. Application of ice solver	162
4.1	Collection efficiency	162
4.1.1	Effect of advance ratio	162
4.1.2	Effect of rotor thrust coefficient	170
4.2	Ice accretion	175
4.2.1	Effect of advance ratio	175
4.2.2	Effect of rotor thrust coefficient	180
Chapte	r 5. Application of ice shedding solver	185
5.1	Numerical simulations using the aerodynamic and ice accretion	185
5.2	Trajectory analysis and Monte Carlo simulation on the engine intake and tail rotor planes	193
5.3	Footprint analysis on the engine intake plane	195
5.3.1	Effect of flow conditions	195
5.3.2	Effect of initial break-off locations	197
5.3.3	Effect of initial break-off locations	199
5.4	Footprint analysis of the tail rotor plane	203

5.4.1Effect of flow conditions2035.4.2Effect of ice shapes206

5.5	Ice shedding characteristics in rotorcraft	208
5.5.1	Hovering	208
5.5.2	Forward flight	209
Chapter	Chapter 6. Conclusion and Future Works	
Appendix A. System of Solutions for Ice Solver		215

Table of figures

Figure 1-1	Ice accretion effect on an airplane	7
Figure 1-2	Parameters affecting ice accretion	9
Figure 1-3	Temperature effects on ice accretion	10
Figure 1-4	Droplet diameter effect on ice accretion	11
Figure 1-5	Airspeed effect on ice accretion	12
Figure 1-6	Angle of attack effect on ice accretion	13
Figure 1-7	Size of the exposed body effect on ice accretion	14
Figure 1-8	Appendix C cloud conditions at continuous maximum (left)	15
	and intermittent maximum (right) clouds [20]	
Figure 1-9	Appendix O cloud conditions for freezing drizzle and rain	16
Figure 1-10	AC29.1419 envelop for continuous (left) and intermittent (right)	22
	icing	
Figure 1-11	AC29.1419 envelop for mean effective drop diameter (left) and	23
	intermittent droplet diameter (right) with LWC [23]	
Figure 1-12	Total and local droplet collection efficiency definition by	29
	LEWICE	
Figure 1-13	Mass balance for a control volume	30
Figure 1-14	Energy balance for a control volume	31
Figure 1-15	ONERA thermodynamic grid along the runback paths [26]	34
Figure 1-16	To maintain a quasiconstant cell width runback path line may	35
	disappear or appear in ONERA [26], running back water is	
	mixed or split	
Figure 1-17	The schematic diagram for the flow field of a rotorcraft with	41
	four blades and ice break-off mechanism	
Figure 2-1	Rotor wake modeling using a vortex particle method (VPM)	54
Figure 2-2	Near N(B) and far F(B) interaction nodes for a target node B	60
Figure 2-3	Far interactions broken into parts evaluated hierarchically at	61
	different levels in the tree	
Figure 2-4	Left: Multipole expansion of a leaf octant computed directly	63
	from source points. Right: Multipole expansion of a non-leaf	

	octant computed from the upward equivalent density of its	
	children [4]	
Figure 2-5	Left: Local expansion from upward-equivalent source	64
	distribution of a well-separated octant. Right: Local expansion	
	from downward-equivalent source distribution of the parent	
	octant [4]	
Figure 2-6	Upward Pass: constructing multipole expansions and	65
	Downward Pass: constructing local expansions, evaluating	
	near interactions	
Figure 2-7	Cell-Centered scheme: Linear reconstruction	80
Figure 2-8	Wall boundary condition for droplet impingement	84
Figure 2-9	Shallow water icing model control volume	85
Figure 2-10	Mass (left) and energy (right) balance	86
Figure 2-11	Flow chart of ice accretion solver	97
Figure 2-12	Different possible forces that can act on ice fragment subjected	100
	to various flow field conditions	
Figure 2-13	Representative shapes of ice break-off from the surface: (a)	102
	rectangle, (b) disc, (c) ellipse, and (d) glaze ice shape (GIS)	
Figure 2-14	Representative ice break-up locations (with coordinates) for	103
	shedding sensitive to critical components of rotorcraft	
Figure 2-15	Flow chart of ice shedding simulation methodology	110
Figure 2-16	The flow of unified shell program for parallel processes	110
Figure 2-17	The mesh partition by ParMETIS. Different colors represent	112
	sub-domains owned by different processors	
Figure 2-18	Point-to-point communication	113
Figure 2-19	Flow chart of explicit air flow solver	116
Figure 2-20	Flow chart of explicit air flow solver	116
Figure 3-1	Comparison of integrated thrust coefficients at the pitch angles	119
	of 5°, 8°, and 12°.	
Figure 3-2	Comparison of sectional thrust coefficient for (a) $\theta_c = 5^{\circ}$, (b) θ_c	122
	= 8° and (c) θ_{c} = 12°	
Figure 3-3	Comparison of tip vortex trajectory for (a) $\theta_c = 5^\circ$, (b) $\theta_c = 8^\circ$	123
	and (c) $\theta_c = 12^{\circ}$	

Figure 3-4	Comparison of evolution of wake structures predicted by VPM	124
	simulations with FMM (top) and direct (bottom) methods	
Figure 3-5	Comparison of the evolution of vortical structures predicted by	125
	VPM simulations with FMM (top) and direct (bottom)	
	methods	
Figure 3-6	Comparison of time profiling with respect to number of	126
	particles for FMM and Direct computation	
Figure 3-7	Comparison of predicted rotor wake downwash with	130
	experimental data for	
	OH-13E rotor in hover at the collective pitch angle of 10.75°	
Figure 3-8	Comparison of predicted rotor wake downwash with	131
	experimental data for OH-13E rotor in hover at the collective	
	pitch angle of 6.25°	
Figure 3-9	Comparison of contour plots of the rotor wake downwash	132
	predicted by VPM simulations with FMM (top) and direct	
	(bottom) methods	
Figure 3-10	Comparison of the evolution of vortical structure predicted by	134
	VPM simulations with FMM (top) and direct (bottom)	
	methods	
Figure 3-11	Comparison of the evolution of wake and vortical structures	134
	predicted by VPM simulations with FMM (top) and direct	
	(bottom) methods	
Figure 3-12	Comparison of time profiling with respect to the number of	135
	revolutions for FMM and Direct computation	
Figure 3-13	Comparison of time profiling with respect to the number of	136
	processors for FMM and Direct computation	
Figure 3-14	Pressure distribution (a) and pressure coefficient (b)	137
	distribution around sphere (P static =95840 Pa, U_{∞} = 75 m/s,	
	$T_{\infty} = 280 \text{ K}$) [5]	
Figure 3-15	Heat transfer coefficient (hc) distribution around sphere (Pstatic	138
	=95840 Pa, $U_{\infty} = 75 \text{ m/s}$, $T_{\infty} = 280 \text{ K}$) [5]	

Figure 3-16	Wake structure around GIT fuselage along with surface	140
	pressure for advance ratio $\mu = 0.1$	
Figure 3-17	Thrust coefficient of GIT with respect to revolution at advance	141
	ratio $\mu = 0.1$	
Figure 3-18	Time averaged stream wise velocity at the top crown line of	141
	the fuselage at advance ration $\mu = 0.1$	
Figure 3-19	Time averaged down wash velocity at the top crown line of the	142
	fuselage at advance ration $\mu = 0.1$	
Figure 3-20	Time averaged pressure coefficient at the top crown line of the	142
	fuselage at advance ration $\mu = 0.1$	
Figure 3-21	Wake structure around ROBIN fuselage along with surface	146
	pressure distribution	
Figure 3-22	Probe locations for unsteady pressure on ROBIN fuselage	147
Figure 3-23	Cp comparison at different probe location for ROBIN case 1	147
Figure 3-24	Cp comparison at different probe location for ROBIN case 2	153
Figure 3-25	Collection efficiency comparison at a section of a sphere at	156
	LWC = 0.2 g/m ³ , and MVD = 18.7 μ m	
Figure 3-26	Liquid water content (LWC) contour around the sphere	157
Figure 3-27	Ice shape comparison at a section of a sphere at $LWC = 0.2$	158
	g/m^3 , and MVD = 18.7 μm	
Figure 3-28	Ice shape contour of a sphere at LWC = 0.2 g/m^3 , and MVD =	158
	18.7 μm	
Figure 3-29	Rotation of the rectangular flat plate about the semi-major axis	160
	perturbed by an impulsively applied moment	
Figure 3-30	Validation of the 6-DoF code for (a) RFP12 and (b) RFP6	161
	configurations	
Figure 4-1	(a) Coupling algorithm using CFD grid and NVLM with	164
	VPM, (b) Stream wise velocity field around the fuselage, (c)	
	Down wash velocity field around the fuselage	
Figure 4-2	The iso-surface at Q=1000 for different advance ratios with	166
	constant target thrust coefficient ($C_T = 0.008$)	
Figure 4-3	Collection efficiency for different advance ratios with constant	168
	target thrust coefficient ($C_T = 0.008$)	

Figure 4-4	The droplet velocity field (top: stream wise velocity, bottom:	169
	down-wash velocity) at different advance ratio ($\mu = 0.051$,	
	0.151 and 0.232 respectively)	
Figure 4-5	The iso-surface at Q=1000 for different target thrust coefficient	172
	with constant advance ratios ($\mu = 0.151$)	
Figure 4-6	Collection efficiency for different target thrust coefficient with	174
	constant advance ratios ($\mu = 0.151$)	
Figure 4-7	The droplet LWC field at different thrust coefficients ($C_T =$	175
	0.004, 0.006 and 0.006 respectively)	
Figure 4-8	Ice accretion location for different advance ratios with constant	178
	target thrust coefficient ($C_T = 0.008$)	
Figure 4-9	Ice accretion mass (top) and ice height at fuselage mid-plane	179
	(bottom) for different advance ratios with constant target thrust	
	coefficient ($C_T = 0.008$)	
Figure 4-10	Total mass of ice accretion for different advance ratios with	180
	constant target thrust coefficient ($C_T = 0.008$)	
Figure 4-11	Ice accretion location for different target thrust coefficient with	183
	constant advance ratios ($\mu = 0.151$)	
Figure 4-12	Ice accretion mass (top) and ice height at fuselage mid-plane	184
	(bottom) for different target thrust coefficient with constant	
	advance ratios ($\mu = 0.151$)	
Figure 5-1	Visualization of rotor wakes using Q-criteria (Q=1000) with	188
	various forward flight speed; (a) $\mu = 0.2$, (b) $\mu = 0.15$, (c) $\mu =$	
	0.075, and (d) hovering	
Figure 5-2	Ice accretion shapes on the fuselage with various forward	192
	flight speed; (a) $\mu = 0.2$, (b) $\mu = 0.15$, (c) $\mu = 0.075$, and (d)	
	hovering	
Figure 5-3	Mass distribution of ice accreted on the fuselage along the	193
	longitudinal direction. The horizontal coordinates $x = 0, 2$	
	represent the nose and tail of the fuselage, respectively	
Figure 5-4	Engine intake and tail rotor planes considered for the	194
	computation of footprint density and Monte Carlo probability	
	density	

Figure 5-5	Footprint density (left) and Monte Carlo probability density	196
	(right) for different advance ratios: (a) $\mu = 0.2$, (b) $\mu = 0.15$,	
	and (c) $\mu = 0.075$. The vertical numbers represent the actual	
	hits, while the horizontal numbers represent the corresponding	
	percentage	
Figure 5-6	Footprint density (left) and Monte Carlo probability density	199
	(right) for different initial break-off locations: (a) A, (b) B, (c)	
	C, (d) D, and (e) E. The vertical numbers represent the actual	
	hits, while the horizontal numbers represent the corresponding	
	percentage	
Figure 5-7	Footprint and Monte Carlo probability density for different ice	202
	shapes: (a) plate, (b) disc, (c) ellipse, and (d) GIS. The vertical	
	numbers represent the actual hits, while the horizontal numbers	
	represent the corresponding percentage	
Figure 5-8	Footprint density (left) and Monte Carlo probability density	205
	(right) for different advance ratios: (a) $\mu = 0.2$, (b) $\mu = 0.15$, (c)	
	$\mu = 0.075$, and (d) $\mu = 0.0$. The vertical numbers represent the	
	actual hits, while the horizontal numbers represent the	
	corresponding percentage. (e), (f), (g), and (h) visualize the	
	wakes in the corresponding flow fields	
Figure 5-9	Footprint density (left) and Monte Carlo probability density	208
	(right) for different ice shapes: (a) plate, (b) disc, (c) ellipse,	
	and (d) GIS. The vertical numbers represent the actual hits,	
	while the horizontal numbers represent the corresponding	
	percentage	

Table of tables

Table 1	Three-dimensional regularization functions for vortex particle [6]	53
Table 2	Model description of Caradonna-Tung rotor [7]	117
Table 3	Flow conditions of Caradonna-Tung rotor simulation	118
Table 4	Flow description of GIT [9]	139
Table 5	Model description of ROBIN [10]	145
Table 6	Flow description of ROBIN for Case 1 [10]	145
Table 7	Flow description of ROBIN for Case 2 [10]	152
Table 8	Condition for icing with fixed rotor thrust coefficient	176
Table 9	Condition for icing with fixed advance ratio	181

Abstract

Computational Modeling of In-Flight Ice Accretion and Shedding on Rotorcraft using Hybrid Lagrangian-Eulerian Framework

Bidesh Sengupta

Department of Mechanical and Aerospace Engineering Graduate School, Gyeongsang National University Supervised by Prof. Rho Shin Myong Co-supervised by Prof. Hakjin Lee

In-flight icing is a critical threat to the safety of a rotorcraft flying inside a cloud with supercooled droplets. Ice accumulations on the surface of rotorcraft significantly affect the performance of the rotorcraft. Hence, the design of a proper ice protection system can be a feasible option to prevent the adverse effects of ice accretion. For a proper ice protection system design, the aerodynamic, droplet impingement, and ice accretion behavior, along with ice shedding characteristics, need to be mastered.

In this study, a hybrid aerodynamic solver coupling Lagrangian and Eulerian framework to define wake and flow field around fuselage respectively was formulated to predict effectively and efficiently flow field around fuselage at any arbitrary advance ratio considering rotor wake effects. Next, an Eulerian-based droplet impingement code which provides the collection efficiency for air flows around any three-dimensional model containing water droplets is developed. A Finite Volume Method (FVM) is used to solve shallow water-based droplet equations. An unified grid technology is developed to use the same grid in both air and droplet solvers. A PDE-based ice accretion solver is also developed to predict the iced shape on the clean geometry. The ice accretion solver is able to handle all regimes of ice formation in which the water film flow is automatically solved along with the mass of ice and equilibrium temperature. Further, the ice accretion solver is based on FVM, in which the inputs can be easily given from the air and droplet solvers.

The solvers were utilized to predict ice accretion around the ROBIN rotorcraft. An aerodynamic solver was utilized to predict the flow field around the fuselage. After the convergence of the rotor thrust coefficient, the flow field was averaged for one revolution and was used to initialize the droplet solver. The droplet solver calculated collection efficiency on the surface of the fuselage, and then an ice solver was employed to predict ice accretion location and mass. The two parameters, namely, advance ratio and rotor thrust coefficient, were varied in different combinations to study ice accretion, and it was found that the advance ratio had a dominant effect on the ice accretion as compared to the rotor thrust coefficient.

Ice shedding is a critical issue in the rotorcraft system and is a safety concern. Interaction of ice fragments with engine intake and tail rotor may damage the compressor blades and tail rotor, respectively, causing incidents and accidents to the rotorcraft. The present work established a general framework to study the ice shedding problem by including 6-DoF, Artificial Neural Network (ANN), and Monte Carlo (MC) to obtain ice footprint maps on the plane of critical components. In summary, the present work with the creation of several modules provides a concise platform to study ice accretion and ice shedding in a rotorcraft flow field with low computational resources and time with adequate accuracy.