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Analytical results on MHD intermediate shocks
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Abstract. The admissibility of MHD intermediate shocks
has been a matter of much debate over the years. Though
the legitimacy of such shocks was shown in a recent series of
investigations by Wu, rigorous analytical proof of the results
was considered being unsettled. In this paper, as a step
towards developing such proof, we present a theory of MHD
shocks. On the basis of global analysis, we develop a shock
admissibility condition. Using this theory, we explain how
intermediate shocks and compound waves are generated.

Introduction

The nature of shock waves is of importance to the under-
standing of physical phenomena arising in various mediums.
Since shock waves are omnipresent in space plasmas, for ex-
ample, magnetic field reconnection [Lin & Lee, 1994], they
have been studied with great intensity. However, the math-
ematical analysis involves awkward algebra, so that their
exact properties are not well understood.

In the past, the evolutionary theory was used to select
physically relevant shocks [Akhiezer et al., 1959]. According
to this theory, intermediate shocks, which can be defined as
shocks that lead to a transition from super-Alfvénic to sub-
Alfvénic flow, are considered inadmissible. In the framework
of this theory, the rotation of transverse magnetic field is
achieved only by the rotational discontinuity.

Contrary to this theory, it was shown by the pioneering
numerical experiments of Wu (1987) that some intermedi-
ate shocks can exist, whereas the rotational discontinuity
cannot exist. A similar conclusion was drawn in the study
of evolutionary conditions of intermediate shocks by Hada
(1994). Wu (1995) also found that the evolution and struc-
ture of intermediate shocks are related, so that the global so-
lutions can be affected by the local structure. Furthermore,
the structure of resistive-dispersive intermediate shocks has
been studied by Hau and Sonnerup (1990). A number of
simulations of kinetic structure of intermediate shocks have
been also carried out using hybrid codes [Krauss-Varban et
al., 1994; Karimabadi et al., 1995]. It was shown that there
exist some discrepancy between predictions of resistive MHD
and kinetic results.

Now, it seems that the existence of intermediate shock
has been accepted, even though criticisms persist [Markovskii
& Somov, 1996]. Steinolfson and Hundhausen (1990) identi-
fied intermediate shocks from the numerical computation of
the two-dimensional MHD equations. Even an observation
of an intermediate shock has been reported by Chao et al.
(1993). However, rigorous analytical proof of the results
was still considered being unsettled. The reason is that the

Copyright 1997 by the American Geophysical Union.

Paper number 97GL53006.
0094-8534/97/97GL-53006$05.00

development of such proof involves the analytical study on
the MHD Riemann problem. In particular, some questions–
how intermediate shocks are generated, under what circum-
stances they can exist–remain unsolved.

In this paper, we try to answer these questions. Our
study can be regarded as an analytical counterpart of the
findings of Wu and is similar to Hada’s work, but it is unique
in the sense that we consider the resistive MHD equations in
the context of Riemann problem and identify the nonlinear
interaction of slow and fast modes. Detailed mathematical
aspects can be found in a reference [Myong & Roe, 1997].

Analytical results

The MHD system yields seven types of wave motion
whose speeds satisfy cs ≤ ca ≤ cf , where Alfvén wave speed
ca =

√
τ |Bx| and cf,s are the fast and slow wave speeds,

given by

2c2f,s/τ = γp + B ·B±
[(
γp + B ·B

)2
− 4γpB2

x

]1/2
, (1)

where τ, p,B, γ represent specific volume, pressure, mag-
netic fields, and the specific heats ratio. When acoustic
wave is defined as a2 = τγp and the magnitude of trans-
verse magnetic field vanishes ,
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The Alfvén wave interacts with one of the magnetoacoustic
waves. When c2a = a2, it reduces to
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2
. (4)

This point is called the umbilic point, and represents the
interaction of all three waves.

MHD shock waves

It is well known that the MHD Hugoniot and wave tra-
jectories are all either coplanar or purely rotational. There-
fore we may consider the MHD shock relations only in
(τ, u, v,B⊥, p) phase space, where B2

⊥ = B2
y + B2

z and u, v

represent the velocity. If τ depends only on p and B⊥, it
follows from (1) that cf,s are determined only by p and B⊥
as well. Thus the following non-dimensional variables can
be chosen.

U ≡
(
U =

γp

B2
x

=
a2

c2a
, V =

B⊥
Bx

)
. (5)

Then a new symmetric Rankine-Hugoniot relation can be
found for one-directional shocks,

[Ut]
(
γ(γ − 1)[V ]3/4 + γŪ [V ]− V̄ [U ]

)
− γ[U ][V ] = 0, (6)

where [Ut] = [U ] + γV̄ [V ] and [Q], Q̄ denote (QR−QL) and
(QR + QL)/2. L,R denote the downstream and upstream
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states. It can be readily extended to determine the shock
jump, since it is only quadratic in U .

Ω ≡
τ

τL
=

4γŪ + γ(γ − 1)[V ]2 − 2[U ]

4γŪ + γ(γ − 1)[V ]2 + 2[U ]
, (7)

[u]

caL
= −ε

√
(1 − Ω)[Ut]

γ
,

[v]

caL
= −ε[V ]

√
γ(1− Ω)

[Ut]
, (8)

where the mass flux defined by m = (u − s)/τ becomes

τLm/caL = −ε
√

[Ut]/(1 − Ω)/γ and s represents the shock
speed. For right-running waves and left-running waves, ε is
1 and −1, respectively.

The following parameters determine the types of shocks
in planar and non-planar problems:(cf,s

τ

)
L,R
− |m|,

( cf,a,s
τ

)
L,R
− |m|. (9)

They depend only on U. The shocks can be classified by
1 − 4 defined in the moving frame as

4 cs 3 ca 2 cf 1.

Among 16 possible shocks, 12 can actually arise in MHD,
but only 6 satisfy the second law of thermodynamics. They
are illustrated in Figs. 1 and 2. Notice that 3→ 4 and 1→ 2
is the same as 2 → 4 and 1 → 3 in planar problem. The
MHD Hugoniot is purely topological, since it can be shown
that the way certain types of shocks appear is unique.

Shock admissibility and compound waves

Some of 6 entropy-satisfying shocks may not be physically
relevant since the MHD system has higher degree of freedom,
2 (planar) or 3 (non-planar). Here we propose a dissipation
admissibility condition in which relevant shocks are regarded
as limits of travelling waves for the resistive MHD. In planar
problem, singularities on the MHD dynamical system are
determined by

γ(τ 2
Lm

2
/ca

2
L)(Ω− 1) + [Ut] = 0, (10)

(τ 2
Lm

2
/ca

2
L)
(
Ω[V ] + VL(Ω− 1)

)
− [V ] = 0. (11)

In general, this planar vector field has four singularities
[Kennel et al., 1989]. Also, it can be shown by Poincaré
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Figure 1. The relationship between the speed of entropy-
satisfying shocks and characteristics in (x, t) space. S1,2

represent slow and fast shocks, while IS1,2,X, O represent
intermediate shocks.
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Figure 2. MHD Hugoniot loci and shock types (γ = 5/3).
Entropy-violating shocks ([U ] > 0) are denoted by dotted
lines. T represents the umbilic point.

transformation [Perko, 1993] that due to the presence of the
umbilic point there are two singularities at infinity if γ > 1.
These are nothing but hydrodynamic singularities, so that
they all are nodes. It follows from Poincaré index theorem
on planar vector field (2N − 2S + 2 = 2, N + S = 4) that
there exist two nodes and two saddles. In this configura-
tion, it is impossible to connect two saddles, meaning that
2 → 3 cannot have viscous profiles. Consequently the vec-
tor field is structurally stable by Peixoto’s theorem. Thus
the results may be valid even in situations deviating from
the assumption of current analysis, equal dissipation coef-
ficients. A global phase portrait is given in Fig. 3. In
addition to 1 → 2 and 3 → 4, three intermediate shocks
(1→ 3, 2→ 4, 1→ 4) have viscous profiles.

In non-planar problem, global analysis is not available.
The dynamical system becomes structurally unstable since
a local analysis based on (9) shows the existence of saddle-
saddle connections. Thus, as reported by Wu (1995), all four
intermediate shocks including 2→ 3 have viscous profiles.

S(2)

Na(1)

 Nr(4)

Nr Na

S(3)

Figure 3. The MHD planar phase portrait in (U,V ) space.
The connections from infinity are indicated by thin solid
lines. Nr(Na) and S represent repelling (attracting) nodes
and saddles.
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Once intermediate shocks exist, there are chances that
parameters (9) vanish. Such cases can be identified if we
know the behavior of rarefaction waves in U space. It is
known that they are defined by invariants

Jf,s = U(q − 1)−α + α

∫
q−2(q − 1)−(α+1) dq, (12)

where q(U,V ) = c2f,s/a
2 (0 < qs ≤ 1, 1 ≤ qf < ∞) and

α = γ/(2 − γ). When γ = 2, Jf,s = qf,s The general
appearance is similar to the parabola. It can be shown
that the jumps, likewise the shock jumps, are determined
only in U space. Using this information, it can be shown
that parameters (9) vanish at three points in Fig. 4, BL,
DL satisfying cs(UL) = τL|m(UL ,U)|, and CL satisfying
cf (U) = τ |m(UL ,U)|. The point DL defines a slow rar-
efaction wave R1 followed by an intermediate shock IS1,
which is called a slow compound wave C1. Similarly, the
point CL defines an intermediate shock IS2 followed by a
fast rarefaction wave R2, which is called a fast compound
wave C2. Those compound waves are responsible for the
inadmissibility of 2→ 3 intermediate shocks in planar prob-
lem. However, the case for BL is different since BL always
lies between two admissible shocks (IS2,O). In Figs. 4 and
5, physically admissible waves in planar problem including
compound waves are illustrated.

Riemann problem

The Riemann problem concerns the evolution of an arbi-
trary initial discontinuity. Using wave curves, we can con-
struct the analytical solution. For a given downstream state,
by moving an intermediate state along R1 and S1, we can
determine a fast wave that connects with a particular up-
stream state. An example is given in Fig. 6. Notice that
the change of magnetic field always involves intermediate
shocks. Up to now, only half of the Riemann problem is
considered. In the full Riemann problem, the solution con-
sists of two one-directional solutions, for instance, C1R2 for
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Figure 4. MHD wave curves.

f

s
f

s a

a
sf

s

f

a

a

C1 C2

f

s f

s

a a

C1C2

f=a

s
f

s a
sf f

a

a=s switch-off switch-on

f s

parallel
a=s f=a

Figure 5. The configuration of compound waves and spe-
cial shocks in (x, t) space.

left-running waves and S1R2 for right-running waves. If the
contact discontinuity (C) is present, then the solution is
R2C1 C S1R2. In this process, a wave combination will de-
termine uniquely the velocity differences since all jumps de-
pend wholly on U. In other words, a particular set of three
points in U space is just enough to determine the Riemann
solution.

In non-planar problem, the Riemann problem becomes
ill-posed. This can be easily seen by noticing that two differ-
ent solutions, one as it stands (C1R2) and another (R1RdR2)
obtained by inserting a rotational discontinuity (Rd), are
possible for an initial discontinuity. They involve different
internal structures. Therefore, as Wu argued, it is neces-
sary to specify precisely the local structure of intermediate
shocks. Finally, it should be mentioned that the second so-
lution may not be possible in some cases. Such cases involve
switch-on, switch-off, and parallel shocks.
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Summary and discussion

We presented an analytical theory on MHD intermediate
shocks in the context of Riemann problem. On a phase
space, the shock properties have been described in more
clear manner. It is expected that more information can be
drawn once observational data are interpreted using these
variables. The present theory can also describe all pic-
tures of the evolution of shock waves arising in the resistive
MHD including intermediate shocks for an initial discon-
tinuity separating two plasmas. According to this theory,
intermediate shocks-some of which belong to slow and fast
compound waves-involve in the magnetic reconnection pro-
cess, interplanetary shock interaction, and cometary shocks,
rather than rotational discontinuities.

For the physical meaning of ill-posedness of the non-
planar Riemann problem, it seems that a convincing expla-
nation is not yet available. However, the fact that intermedi-
ate shocks experience the relatively high entropy dissipation
rate can lead to an explanation: the nonlinear evolution
can be described only by planar shocks at the very large
time, but intermediate shocks, time-dependent in general,
are need to explain intermediate-time behavior.

On the other hand, once the effect of anisotropic pressure
is included, there exist reverse-MHD regions in which slow
wave speed exceeds intermediate wave speed. Some works
on this problem have been reported [Hau & Sonnerup, 1993].
The present analysis is valid for the singularity in which two
waves coincide. It is not clear to what extent the present re-
sults will remain unchanged. Clearly, further investigations
into these problems including kinetic descriptions will reveal
more accurate descriptions of intermediate shocks.

Acknowledgments. The author is grateful to P. L.
Roe and T. E. Holzer for their interests and encouragements.
He would like to thank referees for their constructive comments.
The paper was drafted while the author held a National Research
Council-(NASA GSFC) Research Associateship.

References
Akhiezer, A. I., Lubarski, G. J. and R. V. Polovin, The Stability of

Shock Waves in Magnetohydrodynamics, Soviet Phys. JETP
8, 507-511, 1959.

Chao et al., Observations of an Intermediate Shock in Interplan-
etary Space, J. Geophys. Res. 98, 17443, 1993.

Hada, T., Evolutionary conditions in the dissipative MHD sys-
tem: Stability of intermediate MHD shock waves, Geophys.
Res. Lett. 21, 2275-2278, 1994.
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