
Adaptive Robust Servo LQR Control for Aircraft under a Wide
Range of Icing Conditions

Amin Rabiei Beheshti1, Yoonsoo Kim1, Rho Shin Myong1,*

1Graduate School of Mechanical and Aerospace Engineering and ACTRC, Gyeongsang National University, Jinju,
Gyeongnam 52828, Republic of Korea

*Corresponding author: myong@gnu.ac.kr (R. S. Myong)

Abstract

Icing can significantly affect aircraft stability and control derivatives, compromising flight safety and performance.

Aircraft may encounter a wide range of icing conditions, from moderate to severe. To address this, autopilots must

handle aircraft recovery in icing conditions. In this study, we propose an Adaptive Robust Servo Linear Quadratic

Regulator (ARS-LQR) approach to simultaneously control the aircraft’s altitude and forward velocity under a wide

range of icing conditions. The ARS-LQR approach, which obtains linear models by linearizing around the local

trajectory, may seem classical, but it introduces a practical element by incorporating an exponential multiplier into the

cost function. This element ensures local stability with a relatively large stability margin, even in severe icing conditions,

making it particularly valuable for aircraft control engineers dealing with certification requirements. This theoretical

support distinguishes it from many recent techniques, including AI-based ones, lacking such backing. A comprehensive

comparison study validates the theoretical advantage of ARS-LQR over Adaptive Neural Nonlinear Dynamic Inversion

(AN-NDI) in tracking altitude and forward velocity references in severe icing conditions. Existing control techniques

do not address the full spectrum of aircraft icing conditions. Computer simulations emphasizing longitudinal motion

provide an efficient and stable solution for severe icing challenges.

Keywords: Aircraft icing, Adaptive control, Linear Quadratic Regulator, Local stability, Neural Dynamic Inversion,
Severe icing
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1 Introduction

1.1 Motivation

Since 1948, aircraft icing has been a subject of significant attention in aviation research, as supported by the data in

Tables 17, 18, and 36 from [1]. Notably, the Air Safety Foundation’s analysis of over 3000 aircraft accidents revealed

that icing played a critical role in approximately 13 % of these incidents [2, 3]. Furthermore, NASA’s comprehensive

examination of statistical studies, encompassing 16 years from 1988 to 2003, highlighted trends in incidents associated

with icing [4], focusing on loss of control in icing conditions [5]. As a result, the number of studies on aircraft icing has

increased significantly over the last 50 years [6]. Ice buildup on aircraft surfaces significantly endangers flight safety,

impacting aerodynamic performance and dynamic response. Ice on wings and tails can reduce lift coefficients, causing

abrupt downward pitches and increasing drag, necessitating more engine power [7–12].

Additionally, aircraft can encounter a broad spectrum of icing conditions in real-world scenarios [2]. Lampton and

Valasek proposed a method for assessing icing effects on airplane dynamics, stability, and control [11]. Aerospace

engineers aim to enhance flight safety in icing conditions by developing ice prevention and removal techniques [13].

While effective, ice Protection Systems (IPS) have limitations, such as incomplete coverage and high energy demands,

making total ice elimination impractical [14]. Consequently, developing autonomous flight control systems to prevent

control loss is paramount [15].

Extensive research, particularly under NASA’s Tailplane Icing Program (TIP), focused on the effects of ice

accumulation on the wings and tails of aircraft, notably the DH-6 Twin Otter, to ensure flight safety and control [16–21].

These findings highlighted the critical influence of ice accretion on aerodynamic properties and aircraft stability. In

[11, 22], a six-degree-of-freedom tool was used to assess the dynamical response, stability, and control specifications of

a Cessna 208 Caravan aircraft during various flight phases in icing conditions. Deiler [23, 24] introduced an incremental

model extension (Δ model) to analyze the longitudinal and lateral dynamical response of an aircraft with degraded

stability, and control derivatives in icing conditions. New approaches presented in [25, 26] to estimating the flight

envelope of a helicopter in icing conditions based on zonotopic Kalman filtering and reachability analysis, followed by

Linear Quadratic Regulator (LQR) and 𝐻∞ control to stabilize the attitude dynamics.

Despite the tremendous development of aerodynamic modeling for various aircraft in icing conditions, there has been

little research on aircraft control in icing conditions. In [27], a robust control technique combined with reinforcement

learning (RL) was introduced to recover aircraft from high angular rate upsets. The H2 state feedback control was

used in [28] as a control law in icing conditions. Hossain et al. [29] modified the pitch attitude hold autopilot of a

DH-6 Twin Otter, utilizing a standard Proportional-Integral-Derivative (PID) controller to account for icing effects.

However, this controller is not adaptive, and its coefficients remain constant, which is not ideal for icing conditions,
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requiring a specified fixed linear state-space model. Hartley [30] applied predictive control to a large Airbus aircraft in

icing conditions in combination with the Extended Kalman Filter to estimate the lift and pitching moment derivatives.

Bugajski et al. Morton et al. [31] presented results of global stability for a nonlinear aircraft pitch-axis model using

Nonlinear Dynamic Inversion (NDI). However, NDI has some drawbacks. The stability analysis for NDI-based control

is often restricted, and NDI can be highly sensitive to inversion errors and modeling uncertainties.

The weaknesses mentioned above of NDI have prompted researchers to explore a combination of robust and adaptive

controls, which has proven successful in aerospace applications. For example, Wei et al. [32] employed adaptive neural

network-based nonlinear dynamic inversion (AN-NDI) to control aircraft flight in icing conditions. However, AN-NDI,

an online adaptive gain scheduling tool, necessitates numerous time-consuming simulations and may not guarantee

stability [33]. Padhi et al. [33] combined NDI control with neural adaptive control to enable high-performance aircraft

to follow a desired path while rejecting uncertainties. Bradtke et al. suggest that combining LQR with solid performance

characteristics, stability margin, and adaptive control techniques can enhance robustness [34, 35].

Furthermore, although LQR is originally designed for linear time-invariant (LTI) systems, it can be extended to

handle specific nonlinear systems by linearizing around the local trajectory [36, 37]. This approach provides a local

approximation of the optimal control solution for the nonlinear system, allowing LQR to be applicable in a broader

range of control scenarios [38, 39]. Robust LQR is a critical flight control approach due to its ability to balance aircraft

performance and stability under uncertainties and disturbances [34, 40]. Notably, it demonstrates promise in mitigating

the negative impact of icing conditions on aircraft dynamics. Elkhatem et al. [41] designed an LQR-PI controller, a

fusion of LQR and proportional-integral control, achieving zero steady-state error. However, these approaches are based

on linear time-invariant (LTI) systems, with state-space matrices assumed to be constant. Further works on adaptive

robust techniques in the presence of uncertainties are explored in [42, 43].

1.2 Related Work

The proposed ARS-LQR method in this paper might resemble classical control techniques. Yet, it introduces a distinctive

and valuable practical component. Theoretically, it integrates an exponential multiplier into the cost function, ensuring

local stability even in severe icing conditions with substantial margins (6 dB gain margin and 60-degree phase margin)

[34]. This theoretical innovation holds significant interest for aircraft control engineers concerned with stringent

certification demands, as recent adaptive or AI-based techniques lack comparable theoretical support.

Compared to other robust control methods, such as Nonlinear Model Predictive Control (NMPC) [44], L1 Adaptive

Control [45], Optimal Deep Learning Control, and Model Reference Adaptive Control (MRAC) [34], Adaptive Robust

Servo LQR (ARS-LQR) offers significant advantages in terms of computational complexity and ease of implementation.

The ARS-LQR method involves fewer computational calculations, typically on the order of O(𝑛3), thanks to its use
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of simple linear models. In contrast, NMPC, with its nonlinear nature and the need to solve an optimization problem

at each time step, can be computationally expensive, often requiring O(𝑛4) computations. NMPC is also sensitive to

uncertainties and disturbances, which can lead to suboptimal performance or instability. Moreover, NMPC requires

complex and time-consuming parameter tuning, including the prediction horizon, cost function weighting factors, and

uncertainty estimation. 𝐿1 Adaptive Control has a more complex control formulation than ARS-LQR and involves

estimating states, uncertainties, and adaptation law. It requires the rough tuning of multiple parameters, including

the 𝐿1 adaptation gain, estimation gain, weights used in cost functions, and filter cutoff frequency. Optimal Deep

Learning Control relies on training a neural network, making it computationally expensive and challenging in terms

of robustness and stability. The computational complexity of Optimal Deep Learning Control depends on the neural

network architecture, typically scaling with O(𝑛𝑚), where m denotes the number of neurons per layer. Optimal Deep

Learning Control requires rough tuning of hyperparameters, such as the number of layers and neurons, learning rate,

and regularization parameters. On the other hand, ARS-LQR offers proven local stability, simplicity in terms of linear

models, and a reduced number of tuning parameters. It primarily requires tuning the weighting factors 𝑄 and 𝑅 in

the cost function. The limitations of ARS-LQR include its applicability, its mainly suited to slow-varying parameter

dynamics systems, and the requirement for disturbance estimation in nonlinear equations. The choice of control method

depends on the specific application and involves trade-offs between computational complexity, model complexity,

stability, robustness, and tuning requirements. Detailed comparisons of these control methods are summarized in Table

1.

This paper is organized as follows: Section 2 focuses on aircraft flight dynamics and the applied icing model. A

detailed discussion of the formulation of the control issue follows this. The AN-NDI technique is elaborated on first in

Section 3.1, followed by an explanation of the ARS-LQR method in Section 3.2. Section 4 presents the simulation

results, and Section 5 summarizes the research’s findings. The present study employs the workflow described in Fig.1 to

construct the proposed autopilot for aircraft operating in icing conditions.
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Table 1 Comparison of Control Methods with ARS-LQR

Items ARS-LQR NMPC L1 Adaptive Con-
trol

Optimal Deep
Learning Control

AN-NDI

Properties
• Less computa-

tional calcula-
tions (O(𝑛3))
due to the use of
linear models

• Simple linear
models.

• Proven local sta-
bility with a ro-
bustness margin
(significantly im-
portant for air-
craft certification)

• Fewer tuning
parameters (only
weighting factors
𝑄 and 𝑅)

• Computational com-
plexity (O(𝑛4)) due
to its nonlinear na-
ture and the need
to solve an optimiza-
tion problem at each
time step

• Rough estimates of
uncertainties

• More sensitive to un-
certainties and dis-
turbances, depen-
dent on the accuracy
of the model, the
chosen optimization
algorithm, and the
effectiveness of the
tuning process.

• Several parameters
to adjust (often time-
consuming)

• Need for estimation
of states and uncer-
tainties, and adapta-
tion law, adding to
the complexity

• Rough (No sys-
tematic) tuning of
multiple parame-
ters, such as 𝐿1
adaptation gain 𝑘𝑎 ,
estimation gain 𝑘𝑒,
weights 𝑊 used
in cost functions,
and filter cutoff fre-
quency 𝜔𝑐

• Computational
complexity heav-
ily depending on
neural network ar-
chitecture (O(𝑛𝑚),
where m is the
number of neurons
per layer)

• Being formulated
as either model-
free (offline) or
model-based, with
different require-
ments

• Little evidence of
robustness and sta-
bility

• Need for tuning of
hyperparameters

• Utilizing RBFs to
estimate uncertain-
ties to take advan-
tage of global ap-
proximator

• Making use of Lya-
punov function in
control design for
stability guarantee

Limitations
• Applicable to

slowly varying
parameter dynam-
ics systems

• Requires distur-
bance estimation
in nonlinear equa-
tions

• Real-time im-
plementation:
processing power
and time constraints,
especially for large-
scale systems

• Limited robustness
due to model uncer-
tainties and distur-
bances

• Challenging: fast-
varying dynamics
systems.

• Robustness may
come into question
in some scenarios

• Performance
limitations align
with hardware
constraints

• Real-time im-
plementation
problems due to
robustness and
stability

• Computational ca-
pacity source prob-
lems for training
large amounts of
data

• Control matrix
must have a matrix
inverse

• Uncertainties
should be bounded

Assumptions
• Assuming a lin-

ear model at each
time step

• Bounded norm of
A and B matrices

• Changes of sys-
tem parameters
within a range of
200–300 percent
from their nomi-
nal values

• Full State Avail-
ability

• Controllability of
A and B, and ob-
servability of A
and C

• Known System Dy-
namics

• State Observability
• Continuity and Dif-

ferentiability of cost
function and model

• Boundedness of pa-
rameter estimation

• Boundedness of
partial derivatives

• Availability of
sufficient training
data

• In model-based al-
gorithms: requires
the availability of
exact and known
system dynamics

• Assuming there is
an inverse matrix of
the control matrix

• Assuming equa-
tions can be written
in affine form

• Ensuring bounded-
ness of parameter
estimation

• Dealing with the
challenge of requir-
ing numerous tun-
ing parameters
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Fig. 1 Control system architecture for aircraft in icing condition

2 Aircraft Flight Dynamics

2.1 Fully nonlinear equations of motion

Assuming the aircraft is a point mass concentrated at its center of gravity, its performance and the fully nonlinear model

of an aircraft is derived from Newton’s second law in an axis system (body-axis) fixed to a center of gravity. According

to Figure 1.10 of reference [46], 𝑥𝑏 is along the body towards the nose of the aircraft, 𝑦𝑏 is toward the right wing, and

𝑧𝑏 is perpendicular to the 𝑥𝑏 − 𝑦𝑏 plane downward. In the wind axis system, the aircraft’s velocity vector, which points

in the direction that the aircraft is moving, is aligned with the x-axis (𝑥𝑤), and like the body axis, 𝑦𝑤 is oriented toward

the right wing.

The general nonlinear equations of an aircraft’s motion come in the form of

¤x = f(x,u) (1)
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where u is the inputs from the control surfaces and the throttle, and x represents all states. The full nonlinear

equations are shown below.

𝑋 − m𝑔 sin 𝜃 = m( ¤𝑢 + 𝑞𝑤 − 𝑟𝑣) (2)

𝑌 + m𝑔 cos 𝜃 sin 𝜙 = m( ¤𝑣 + 𝑟𝑢 − 𝑝𝑤) (3)

𝑍 + m𝑔 cos 𝜃 cos 𝜙 = m( ¤𝑤 + 𝑝𝑣 − 𝑞𝑢) (4)

L = 𝐼𝑥𝑧 ¤𝑝 − 𝐼𝑥𝑧 ¤𝑟 + 𝑞𝑟 (𝐼𝑧 − 𝐼𝑦) − 𝐼𝑥𝑧 𝑝𝑞 (5)

M = 𝐼𝑦 ¤𝑞 + 𝑟𝑞(𝐼𝑥 − 𝐼𝑧) + 𝐼𝑥𝑧 (𝑝2 − 𝑟2) (6)

N = −𝐼𝑥𝑧 ¤𝑝 + 𝐼𝑧 ¤𝑟 + 𝑝𝑞(𝐼𝑦 − 𝐼𝑥) + 𝐼𝑥𝑧𝑞𝑟 (7)

𝑝 = ¤𝜙 − ¤𝜓 sin 𝜃 (8)

𝑞 = ¤𝜃 cos 𝜙 + ¤𝜓 cos 𝜃 sin 𝜙 (9)

𝑟 = ¤𝜓 cos 𝜃 cos 𝜑 − ¤𝜃 sin 𝜙 (10)

¤𝜃 = 𝑞 cos 𝜙 − 𝑟 sin 𝜙 (11)

¤𝜙 = 𝑝 + 𝑞 sin 𝜙 tan 𝜃 + 𝑟 cos 𝜑 tan 𝜃 (12)

¤𝜓 = (𝑞 sin 𝜑 + 𝑟 cos 𝜙) sec 𝜃 (13)

where m and 𝑔 represent aircraft mass and gravity acceleration, respectively. 𝑢, 𝑣, 𝑤 are velocity components in

the 𝑥𝑏, 𝑦𝑏, and 𝑧𝑏 directions, and 𝑝, 𝑞, 𝑟 represent angular rates (roll, pitch, and yaw rate), respectively. 𝜙, 𝜃, and 𝜓

represent the Euler angles, and 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 , and 𝐼𝑥𝑧 denote the moment/product of inertia of the aircraft around the body

axis. 𝐼𝑥𝑦 and 𝐼𝑦𝑧 are taken to be zero since the aircraft is assumed to be symmetric about the 𝑥𝑏 − 𝑧𝑏 plane. 𝑋,𝑌, 𝑍 , and

L,M,N are forces (longitudinal and side forces) and moments around 𝑥𝑏, 𝑦𝑏, and 𝑧𝑏 (roll, pitch, yaw), respectively.

Gravity, aerodynamics, and thrust are the three main forces acting on the aircraft. Aerodynamic forces have components

acting along the wind axis, which must be transferred to the body axis using the rotation matrix shown in Eq. (14).

RO =

©«
cos𝛼 0 − sin𝛼

0 1 0

sin𝛼 0 cos𝛼

ª®®®®®®®¬
(14)

The following are the longitudinal forces and moments.

𝐿 = 0.5 𝜌𝑉2
𝑡 𝑆(𝐶𝐿0 + 𝐶𝐿𝛼

𝛼 + 𝐶𝐿𝛿e 𝛿e + 𝐶𝐿𝑞

𝑞𝑐

2𝑉𝑡
) (15)

𝐷 = 0.5 𝜌𝑉2
𝑡 𝑆(𝐶𝐷0 + 𝐶𝐷𝛼

𝛼) (16)

M = 0.5 𝜌𝑉2
𝑡 𝑆𝑐(𝐶𝑚0 + 𝐶𝑚𝛼

𝛼 + 𝐶𝑚𝛿e 𝛿e + 𝐶𝑚𝑞

𝑞𝑐

2𝑉𝑡
) (17)

𝐿 and 𝐷, commonly expressed as the wind axis, represent lift and drag, respectively, while M represents pitching

moment about the 𝑦𝑏 axis. It should be noted that the 𝑦𝑏 axis for both the velocity and body axis are the same and so

the moment vector does not need to be rotated. Air density, angle of attack, chord length, total velocity, wing surface,

and elevator deflections are denoted by 𝜌, 𝛼, 𝑐,𝑉𝑡 , 𝑆, and 𝛿e. Other variables are associated with stability and control

7

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



derivatives. To have a visual understanding of the effects of icing on flight dynamics as shown in Fig.2, it can be seen

that in the above graph (icing conditions), when an aircraft flies through clouds containing supercooled water droplets

(existing below 0 degrees Celsius), icing occurs and can alter the aircraft’s state. In clean conditions, however, there is no

degradation in performance. The two graphs on the right also show the relationship between aerodynamic coefficients

and angle of attack for both conditions. When ice accumulates, the stall angle of attack decreases, and for the same lift,

drag increases. Therefore, designing a robust flight control system that accounts for these conditions is necessary.

Fig. 2 The Impact of Icing on Aircraft Flight Dynamics

2.2 Aircraft equations in affine form

All equations are written in an affine form as shown in Eq. (18), and this form is utilized in the following section for the

AN-NDI control technique.

¤x𝑖 = f𝑖 (x, 𝜽) + g𝑖 (x, 𝜽)u, 𝑖 = 1, . . . , 12 (number of states) (18)

x = [𝑥, 𝑦, ℎ, 𝑢, 𝑣, 𝑤, 𝜙, 𝜃, 𝜓, 𝑝, 𝑞, 𝑟]T (19)

u = [𝛿e, 𝛿a, 𝛿r, 𝛿𝑡 ]T

where f𝑖 (·) and g𝑖 (·) are vector-valued functions of states as well as aircraft parameters (𝜽), such as mass, aerodynamic

derivatives, and moment of inertia. A different affine form model is employed for the relevant states depending on the

control objective. States are represented as x, which includes positions, velocities, Euler angles, and Euler rates of the
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aircraft. The control input u also includes elevator deflection, aileron, rudder, and throttle, of which, for longitudinal

motion, only elevator and throttle are considered. More details on the derivation procedure can be found in [33].

2.3 Icing model

When an aircraft encounters icing, the aerodynamic stability and control derivatives change over time, affecting forces

and moments. It is also important to note that control has yet to be tried to control aircraft that experience a wide

range of icing conditions, unlike other works [20, 32]. The icing effects model aims to create a straightforward yet

physically accurate representation of how ice impacts aircraft flight mechanics. This model is critical in characterizing

and simulating the effects, which is essential for developing the Smart Icing System. The foundation of this model,

which elucidates the aerodynamic changes under icing conditions, is shown in the following equation based on Bragg’s

model [47].

𝐶𝐴iced = (𝐼 + 𝜂ice · 𝐾 ′
𝐶𝐴

) · 𝐶𝐴 (20)

In this case, 𝜂ice indicates the icing severity parameter, which reflects the extent and intensity of icing en-

counters. It is important to note that this parameter is solely influenced by atmospheric conditions rather than

the aircraft itself. The term 𝐾 ′
𝐶𝐴

refers to aircraft-specific factors, accounting for their potential for icing effects.

The parameter 𝐶𝐴 includes any performance, stability, or control parameter affected by ice accretion. In this for-

mulation, the weighting factor 𝐾 ′
𝐶𝐴

is determined by a combination of parameters, which can be summarized as

𝐾 ′
𝐶𝐴

= 𝑓 (IPS, aircraft geometry and configuration, icing conditions). Similarly, the icing severity parameter 𝜂ice is

defined through a function that considers the freezing fraction, accumulation parameter, and collection efficiency. These

interconnected parameters collectively assess the magnitude of icing’s influence on the aircraft’s flight mechanics [48].

As for this research, we know the values of 𝐶𝐴 and 𝐶𝐴iced , but have no access to the values of 𝐾 ′
𝐶𝐴

and 𝜂ice. Therefore,

the following equation, which represents linear interpolation between icing and clean conditions based on [32] to

represent ice growth during time, is used in this work to model the changes in aerodynamic derivatives during the flight

at a specified time. Additionally, a coefficient 𝜅 is introduced to increase the severity of icing for this research artificially:

𝐶𝐴(𝑡) = 𝐶𝐴clean +
𝜅𝐶𝐴ice − 𝐶𝐴clean

Δ𝑡
(𝑡 − 𝑡1) (21)

Here, 𝐶𝐴 denotes a stability or control derivative affected by ice accretion. 𝐶𝐴clean is the value of the derivative in a

clean (no-ice) condition, and 𝐶𝐴ice is the corresponding value in icing conditions, available from the NASA database

[47]. This study introduces 𝜅 as an icing severity parameter ranging from 1 to 3. The time at which ice starts to grow

is 𝑡1, and Δ𝑡 represents the period of ice growth. The proposed model is included in the aforementioned affine form
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equations.

3 Flight Control Design

3.1 Adaptive Neural Nonlinear Dynamic Inversion (AN-NDI)

This section aims to design a neural-adaptive flight control system with nonlinear dynamic inversion that enables

the aircraft to attain a pre-defined altitude and maintain constant forward velocity in icing conditions. The AN-NDI

approach relies on full knowledge of the aircraft’s dynamics; therefore, the system’s performance may deteriorate in

the presence of uncertainties such as icing. In order to resolve this matter, control mechanisms need to be introduced

to counteract the uncertainties. In this approach, a structured Radial Basis Function (RBF) network is employed to

anticipate uncertainties, with the weights updated using a Lyapunov function to ensure robustness. Specifically, the

RBF network is designed to have a predetermined structure, and its weights are learned online to provide adaptation to

changing conditions. The Lyapunov function is used to update the weights and guarantee stability, with the resulting

controller providing robust performance in the face of uncertainties. The flowchart for the neuro-adaptive flight control

method adopted in this study is depicted in Figure 3. It consists of four components, which will be explained in detail in

the subsequent subsections.

Fig. 3 The process of neuro-adaptive control for aircraft flight in icing conditions

By Figure 3, we initially formulate a nominal control design under the assumption of the absence of icing. This

design is constructed by defining three sequential error dynamics. First, Error Dynamics 1 represents the error between

the actual and approximated states error. Subsequently, Error Dynamics 2 characterizes the error between the nominal

state and the approximated state, aiming to ensure that the approximated state closely tracks the nominal state. Finally,

Error Dynamics 3 is introduced to align the desired target forward velocity and altitude. This sequence of error dynamics

is established to guide the actual system toward the desired values. The nominal control design is implemented through
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conventional nonlinear dynamic inversion [49]. In the subsequent subsection, the neural flight control process is

elucidated, emphasizing how Error Dynamics (2 & 3) contribute to adaptive neural flight control of the aircraft in the

presence of model uncertainties arising from icing[32, 33].The pseudocode algorithm for neuro-adaptive flight control

design is shown in Table 2, and its architecture is shown in Figure 4. More details are provided in the following section.

Table 2 Pseudocode algorithm for neuro-adaptive flight control design

1. - Initialize states, aircraft parameters, and aerodynamic derivatives
values in clean conditions.

- Determine constant values of 𝜍𝑖 , 𝛾𝑖 , 𝜎𝑖 , k𝑎𝑖 , and k𝑏𝑖

- Determine the final aerodynamic derivatives in icing conditions.
- At 𝑡 = 0: (no icing, 𝑒𝑎𝑖 = 0).
- Initialize RBF centers

2. Define the reference target (altitude and forward velocity)
3. For 𝑖 = 1 to 𝑇simulation / dt:

3.1. obtain unominal by employing conventional Nonlinear Dynamic
Inversion flight control
3.2. Icing model (refer to Section 2.3).
3.3. Calculate u for nominal model using conventional NDI.
3.4. Real model: ¤x = 𝑓 (x) + 𝑔(x)u + d𝑖 (x, u)
3.5. Get state and control inputs data from 3.3 (longitudinal motion),
X =

[
𝑢;𝑤; 𝑞; 𝜃; 𝛿𝑒; 𝛿𝑡

]
.

3.6. Approximated model (with icing):
3.6.1. Estimate d̂(x, u) using Radial Basis function with one hidden
layer:
Φ𝑖 (X) = exp

(
− 1

2 ∥X − 𝑐𝑖 ∥2 /𝜍2
𝑖

)
3.6.2. 𝑐𝑖 obtained by K-Means clustering.
3.6.3. Weight update:

¤̂
𝑊𝑖 = 𝛾𝑖𝑃𝑖𝑒𝑎𝑖Φ𝑖 − 𝛾𝑖𝜎𝑖𝑊𝑖

(𝑃𝑖: Positive definite matrices).
3.7. Calculate 𝑒𝑎𝑖 .
3.8. Calculating control inputs:

u = (g𝑖 (x, 𝜽))−1 [ ¤x𝑑𝑖 −k𝑎𝑖 (x𝑖 −x𝑎𝑖 )−d̂𝑖 (x, u) − f𝑖 (x, 𝜽) −k𝑏𝑖 (x𝑎𝑖 −
x𝑑𝑖 )]

3.8. Go to step 3.1
3.9 End.

3.1.1 Neuro-adaptive flight control design

To design a neuro-adaptive control system based on Figure 3, it is essential to first design nominal control. Subsequently,

the actual system must track the approximated system, which, in turn, follows the nominal control to attain the desired

control inputs. To achieve this objective, the actual system can be represented as:
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Fig. 4 AN-NDI architecture
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¤x𝑖 = f𝑖 (x, 𝜽) + g𝑖 (x, 𝜽)u + d𝑖 (x, u) (22)

Here, the term d𝑖 represents the uncertainty caused by icing. By estimating d𝑖 , the actual system dynamics can be

approximated as:
¤x𝑎𝑖 = f𝑖 (x, 𝜽) + g𝑖 (x, 𝜽)u + d̂𝑖 (x, u) + k𝑎𝑖 (x𝑖 − x𝑎𝑖 ) (23)

This equation represents the dynamics of a ‘disturbance observer’ [33]. The term d̂𝑖 (x, u) denotes an estimation of

d𝑖 , where d̂𝑖 (x, u) is the adaptation term, and k𝑎𝑖 is a positive definite gain matrix chosen by the designer and tuned

for optimal performance. The objective is to simultaneously ensure x → x𝑎𝑖 and di (x) → d̂𝑖 (x). Once this objective

is achieved, the identified observer dynamics can closely represent the actual system dynamics. In order to calculate

d̂𝑖 (x, u) that guarantees the stability of system, first we subtract the actual and approximated system. By introducing the

variable e𝑎𝑖 , defined as the difference between x𝑖 and x𝑎𝑖 , we can describe the error dynamics as follows:

¤e𝑎𝑖 = d𝑖 (x, u) − d̂𝑖 (x, u) − k𝑎𝑖 (x𝑖 − x𝑎𝑖 ) (24)

To calculate d̂𝑖 (x, u), several nonlinear function approximators can be employed, such as polynomials, the Kronecker

product of certain functions, and neural networks. One of the most well-known and valuable functions approximators

that can capture the uncertainties online is the Radial Basis Function (RBF) [50], notably for adaptive flight control,

which is used in our study (Figure 5). A Radial Basis Function Network (RBFN) is a type of artificial neural network

that uses radial basis functions as its activation functions. In this study, The network’s output is a combination of these

radial basis functions based on the inputs and the neuron parameters. An RBF network consists of three layers: an

input layer, a hidden layer with a nonlinear radial basis activation function, and a linear output layer. The hidden layer

performs a nonlinear mapping from the input space to a higher-dimensional space using a Gaussian function. The output

layer then produces the final result by performing a weighted sum with a linear output. More details are explained in

Section 3.1.1 and Appendix B.2. The following is how we expressed the uncertainties for the actual and approximated

uncertainties:

d̂𝑖 (x, u) = �̂�𝑇
𝑖 Φ𝑖 (X) (25)

d𝑖 (x, u) = 𝑊𝑇
𝑖 Φ𝑖 (X) + 𝜖 (26)

where d𝑖 (x, u) represents the actual parameter uncertainty,𝑊𝑖 is the weight matrix of each output, Φ𝑖 (X) is the basis

function for each channel, and 𝜖 is the error term related to the network. The variable X, as the input vector of an RBF

network, is characterized as a tuple comprising the state vector x and the input vector u. The output of the RBF network
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will be denoted as d̂𝑖 (x, u). Although there are multiple possible forms for the function Φ𝑖 (X), this study has arrived at

a specific expression after conducting numerous trials and errors. The expression is based on the square of the Euclidean

distance between the input vector and the estimated online centers vector, formulated as follows:

Φ𝑖 (X) =



𝑒−1/2( | |X−𝑐1 | |2/100)

𝑒−1/2( | |X−𝑐2 | |2/10)

𝑒−1/2( | |X−𝑐3 | |2/1)

𝑒−1/2( | |X−𝑐4 | |2/0.1)


(27)

Fig. 5 Radial Basis Function Network (One hidden layer)

The online k-means algorithm is employed to identify the values of the 𝑐𝑖 as centroids [51]. Before feeding the

dataset into an activation function, the dataset is normalized using the z-score approach. It is important to note that the

values of 𝑐𝑖 are updated at each time step as new data points come into the algorithm. To derive the weight update rule

in adaptive control problems, various methods exist for calculating unknown weights to estimate uncertainties. Here, we

compute these unknown weights using a Lyapunov function instead of the typical gradient descent approach to calculate

weights in neural networks. This choice is made to ensure system stability. To achieve this, we define the following

Lyapunov function (LF):

𝑉𝑖 =
1
2
[
𝑒𝑇𝑎𝑖P𝑖𝑒𝑎𝑖 +𝑊𝑇

𝑖 𝛾
−1
𝑖 𝑊𝑖

]
(28)

The positive definite LF, denoted by 𝑉𝑖 , consists of two terms: the error term 𝑒𝑇𝑎𝑖P𝑖𝑒𝑎𝑖 and the term 𝑊𝑇
𝑖
𝛾−1
𝑖
𝑊𝑖 ,

where 𝑊𝑖 = 𝑊𝑖 − �̂�𝑖 , and 𝑊𝑖 and �̂�𝑖 denote the actual and estimated weights, respectively. 𝛾𝑖 and P𝑖 are positive
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definite matrices. Finally, the weight update rule is obtained by enforcing the derivative of the LF to be negative, as

detailed in the mathematical procedure and proof (omitted here but available in reference [52]).

¤̂
𝑊𝑖 = 𝛾𝑖𝑃𝑖𝑒𝑎𝑖Φ𝑖 − 𝛾𝑖𝜎𝑖𝑊𝑖 (29)

The positive scalar parameter 𝜎𝑖 controls the speed of weight adaptation by dictating how quickly the weights are

adapted during the learning process. As the static and dynamic derivatives of an aircraft’s aerodynamic coefficients are

impacted by icing, any icing-related uncertainty will only be present in the dynamic equations involving velocities and

angular rates. Thus, for six-degree-of-freedom (6 DOF) flight dynamics, 𝑒𝑎𝑖 will have a total of 6 elements, which

correspond to the errors in the six states: 3 velocity values (𝑢, 𝑣, 𝑤), and three angular rate values (𝑝, 𝑞, 𝑟), and the

number of Φ𝑖 is equal to the number of prespecified clusters.

To construct an effective neuro-adaptive flight control system, it is essential to ensure that the following first-order

error dynamics are satisfied, allowing the estimated states to converge to their nominal values over time. This can be

expressed mathematically as:

( ¤x𝑎𝑖 − ¤x𝑑𝑖 ) + k𝑏𝑖 (x𝑎𝑖 − x𝑑𝑖 ) = 0 (30)

Here, x𝑎𝑖 and x𝑑𝑖 are vectors representing the estimated and nominal states, respectively. It is also assumed that all states

can be measured. The diagonal positive matrix of 𝒌𝑏 represents a set of gains used to tune the control system. Given

that the flight dynamics equations are affine, Eq.(23) can be utilized to rephrase Eq.(30) and determine the necessary

control inputs. Consequently, utilizing neuro-adaptive control can yield the following control inputs:

u =(g𝑖 (x, 𝜽))−1 [ ¤x𝑑𝑖 − k𝑎𝑖 (x𝑖 − x𝑎𝑖 )

− d̂𝑖 (x, u) − f𝑖 (x, 𝜽) − k𝑏𝑖 (x𝑎𝑖 − x𝑑𝑖 )]
(31)

It is crucial to emphasize that the neural-adaptive control design incorporates nominal and approximated dynamics,

including uncertainty estimation. The design can achieve robustness and ensure reliable performance by accurately

determining the uncertainties. However, selecting numerous parameters in the AN-NDI approach to achieve optimal

flight performance to follow the target altitude and velocity can be time-consuming and computationally expensive.

Moreover, the singularity of the control matrix (g𝑖 (x, 𝜽)) can pose additional challenges. The ARS-LQR technique is an

alternative approach to overcome these problems and ensure local stability.
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3.2 Adaptive Robust Servo Linear Quadratic Regulator (ARS-LQR)

In this section, we develop a flight control system for the altitude/velocity tracking problem utilizing a Robust Servo

Linear Quadratic Regulator strategy for a linear time-varying (LTV) system, considering that the LTV system was

produced from the aircraft’s nonlinear equations of motion. To accomplish this control system design, for each fixed-time

step (frozen time) along the local trajectory of the aircraft, the LTV model was first built online and subsequently

controlled using the optimal control strategy, the so-called Adaptive Robust Servo Linear Quadratic Regulator. This

methodology has recently received much interest and has been proven effective in robotics, quadrotors, and generally

for nonlinear systems [38]. In particular, the linear quadratic regulator (LQR) is one of the best techniques in optimal

control for stabilizing LTI systems to the origin, with a robustness guarantee of 6 dB gain margin and 60◦ phase margin

[34]. Moreover, when coupled with a servomechanism, the system tracks the desired reference with the most minor

tracking error. The servomechanism entails either changing the primary states and control inputs used in the cost

function formula by creating new state-space models or adding/multiplying some functions related to the aims of the

problem, as discussed in the following sections.

Although LQR is most commonly associated with LTI systems [34], it can also be applied to nonlinear systems to

provide a local approximation of the optimal control solution [36, 38]. It should be noted that this work aims to control

the aircraft’s altitude and velocity in icing situations. Two methods are applied. First, the entire state-space model (at

each fixed-time step) is selected for the ARS-LQR design if the reference is equivalent to the initial settings, indicating

that the aircraft is on cruise. When the reference is changed, and the aircraft enters a climb or descent phase, the obtained

state-space model is divided into three parts, one of which is used for velocity control using the ARS-LQR method, and

the other two, known as the inner and outer loops (sequential closure loops), are served for another ARS-LQR design

to control the aircraft’s altitude or pitch angle (a slow dynamic state). The subsequent sections go into more detailed

explanations.

3.2.1 Local approximation of nonlinear equations of motion

The linear time-varying (LTV) model is approximated by linearizing the nonlinear aircraft dynamics along the aircraft’s

trajectory [53]. Although the system matrices in the state-space model are produced by linearizing at each 0.3-second

time, this differs from the conventional concept of time-varying system matrices for LTV systems. Nevertheless, since

we compute these matrices at every time step, we treat them as components of the LTV model. As previously mentioned,

this approach is utilized to implement a time-varying LQR to achieve the desired command tracking. Figure 6 illustrates

the conceptual representation of nonlinear approximations at different operating points. Multiple LTI models are built to

constitute the LTV model for the nonlinear aircraft dynamics.
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Fig. 6 Establishing LTI models at various operating points

To create an LTV model in Figure 6, the relative coordinate system needs to be defined first, as follows:

x̄𝑖 = x𝑖 (𝑡) − x0𝑖 , 𝑖 = 0, 1, 2, . . . , 𝑛,

(n: number of fixed-time steps)

ū𝑖 = u𝑖 (𝑡) − u0𝑖

(32)

where states and control inputs are defined as

x =
[
𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤, 𝜙, 𝜃, 𝜓, 𝑝, 𝑞, 𝑟

]T (33)

u =
[
𝛿e, 𝛿a, 𝛿r, 𝛿𝑡

]T

Here, x̄i shows the deviation of the aircraft’s states at each fixed-time step (ith) from the current trajectory (x0i) of

the aircraft, and ūi represents the deviation in the aircraft’s control input from the current control inputs (u0i) at each

fixed-time step. An operating point is represented by subscript ‘0’, and the current index of the operating point is

indicated by subscript ‘i’. The time-varying linearization of the nonlinear equations of motion around a nominal

trajectory is then applied. Eq. (32) yields the following:

¤xi = f(xi, ui) (34)

¤̄xi = ¤xi − ¤x0i = f(xi, ui) − f(x0i , u0i )

Then, using the first-order Taylor expansion,
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¤̄xi (𝑡) ≈ f (x0i , u0i ) +
𝜕f (x0i , u0i )

𝜕xi
(xi (𝑡) − x0i )︸                                          ︷︷                                          ︸

Ai

+
𝜕f (x0i , u0i )

𝜕ui
(ui (𝑡) − u0i )︸                         ︷︷                         ︸

Bi

−f (x0i , u0i )

= Aix̄i (𝑡) + Biūi (𝑡)

(35)

It is evident from Eq. (35) that the LQR designed for this linearized model is quite similar to that for a typical LTI

model. However, there are some significant distinctions. Since the coordinate system moves with the trajectory, the

linearization to provide A and B matrices (Jacobian in Eqs. (36) and (37)) at each fixed time step is time-varying and

applicable for any state along the trajectory, not just the fixed points.

Ai =



©«

𝜕f1
𝜕x1

. . .
𝜕f1
𝜕x 𝑗

...
. . .

...

𝜕f𝑖
𝜕x1

. . .
𝜕f𝑖
𝜕x 𝑗

ª®®®®®®®¬


𝑖 = 1, 2, . . . , 12

𝑗 = 1, 2, . . . , 12
(36)

Bi =



©«

𝜕f1
𝜕u1

. . .
𝜕f1
𝜕uk

...
. . .

...

𝜕fi
𝜕u1

. . .
𝜕fi
𝜕uk

ª®®®®®®®¬


k = 1, 2, . . . , 4 (37)

Thus, the optimal control obtained from Eq. (35) is ū∗
i , with the following final control input u∗

i :

u∗
i = u0i + ū∗

i (38)

In the section that follows, the ARS-LQR technique of computing u∗
i is covered.

3.2.2 ARS-LQR design

Figure 7 shows the generalized Robust Sevo LQR design employed at each fixed-time step. The time-varying Kx

coefficients, which correspond to the aircraft’s full states, and the time-varying Kỹ coefficients associated with output

measurement are calculated using the ARS-LQR technique.

The conventional LQR procedure needs to be supplemented with an integral term for command tracking. Eq. (39)

18

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Fig. 7 Architecture of the ARS-LQR

is adopted as a typical LTI model for each fixed-time step in this section [34].

¤̄xi (t) = Aix̄i (t) + Biūi (t), i = 0, 1, 2, . . .

ȳi = Cx̄i + Dūi (39)

where x̄i ∈ Rnx , ūi ∈ Rnu , and ȳi ∈ Rny stand for the state, control, and output, respectively. The matrices Ai and Bi are

updated at each fixed-time step. The following conditions must be fulfilled to apply the ARS-LQR technique:

1) The model must be controllable and observable at each fixed-time step.

2) The number of control inputs must be equal to or less than the number of reference tracking, i.e. nref ≤ ny.

The reference command for the ARS-LQR technique can be constant, ramp, or sinusoidal, which will determine the

number of integrators employed in the technique. Ref. [34] contains additional information. ARS-LQR is designed for

an augmented state-space model with variables including error and state derivatives ( ¤̄x), given as follows:

ỹ = y − y𝑟𝑒 𝑓 (40)

where y𝑟𝑒 𝑓 is the reference for altitude and velocity.

¤̄zi = Āiz̄i (t) + B̄i𝜇i (t) (41)

Āi =


0 C

0 Ai

 , B̄i =


D

Bi

 (42)

z̄ = [ỹ, ¤̄xT]T (43)
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𝜇i = ¤̄ui (44)

ARS-LQR works by applying the LQR design procedure to Eq. (41), which lets z̄i converge to zero, implying that ỹ

converges to zero, or the tracking of the reference command input is met at a steady state. A cost function needs to be

defined to use the infinite-horizon LQR technique for optimal control. Optimal control is achieved by minimizing the

following quadratic cost function S as follows:

S =

∞∫
0

1
2
(z̄T

i Qiz̄i + 𝜇T
i Ri𝜇i)dt (45)

where Qi ∈ R(nx+nref )×(nx+nref ) and Ri ∈ Rnu×nu are symmetric weight matrices for the augmented states and control

derivatives, respectively. The values nx, nref, and nu represent the numbers of states, references, and control inputs. The

following standard assumptions are also taken into account:

1) Qi = Qi
T ⪰ 0 ; positive semi-definite

2) Ri = RT
i ≻ 0 ; positive definite

3) The pair (Āi, B̄i) is stabilizable and (Āi,Q
1
2
i ) detectable.

To obtain optimal control, the following Hamiltonian Jacobian Bellman equation (HJB) is minimized:

min
𝜇i

[
z̄T

i Qiz̄i + 𝜇T
i Ri𝜇i + ( 𝜕S

𝜕z̄i
)T (Āiz̄i + B̄i𝜇i)

]
(46)

To solve Eq. (46), we consider S = z̄T
i Piz̄i, Pi = PT

i ≻ 0 which leads to the following algebraic Riccati equation:

PiĀi + ĀT
i Pi − PiB̄iR−1

i B̄T
i Pi + Qi = 0 (47)

and the corresponding optimal control is obtained, as

𝜇i = −R−1
i B̄T

i Pi︸    ︷︷    ︸
Ki

z̄i (48)

The optimal control is then derived by integrating Eq. (48) at each fixed-time step, considering the operating point as the

initial condition. Then, this control is applied to the nonlinear equations of motion. As ice grows gradually throughout

time, a time-varying artificial stability coefficient Λ is introduced to maintain the stability of the closed-loop system at

each fixed-time step [35], which modifies Eq. (45) as follows:

S1 =
1
2

∞∫
0

(e2Λit) (z̄T
i Qiz̄i + 𝜇T

i Ri𝜇i)dt, Λi ⪰ 0 (49)
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Afterward, a new state-space model, Eq. (52), can be produced by considering Eqs. (50)-(51):

z̆i = eΛitz̄i (50)

�̄�i = eΛit𝜇i (51)

¤̆zi = (Āi + ΛiI)z̆i + B̄i �̄�i (52)

This state-space model is the central system for the ARS-LQR-designed aircraft flight dynamics. It is worth noting that

the artificial stability coefficient Λ appears in the Riccati equation (Eq. (47)), where Āi is substituted by Āi + ΛiI. This

coefficient guarantees a certain degree of stability or ensures that all the eigenvalues of a linear system are located on the

left side of a line at a distance of Λ from the imaginary axis [54]. Λ is defined as a variable, being proportional to the

degree of stability degradation due to icing, e.g.

Λi = 1.1(�̄�(Āi) − �̄�(Ā0)) (53)

Where �̄�(Āi) represents the eigenvalue of Āi being the nearest to the imaginary axis along the real axis, and subscript

‘0’ shows the values in the clean condition. The system is vulnerable to instability because the closed-loop eigenvalues

approach the imaginary axis as the ice grows. Therefore, as shown in Eq. (53), Λi is employed in such a way that the

degree of stability is guaranteed, equivalent to the stability degradation caused by icing, which brings uncertainties to

the system. As a result, the Riccati equation can be written as follows:

P′
i (Āi + ΛiI) + (Āi + ΛiI)TP′

i − P′
i B̄iR−1

i B̄T
i P′

i + Qi = 0 (54)

Then by considering Eqs. (48),(50), and (51),

�̄�i = −R−1
i B̄T

i P′
i︸     ︷︷     ︸

K̄i

z̆i (55)

By looking at Eqs. (50), (51), and (55), we observe that Eq. (55) is the same as (48). Therefore, by considering Λi, only

Riccati equation (54) is modified to handle icing uncertainties. The sequential loop closure based on Eq. (52) that is

used for the climb flight phase is discussed in the following section.

Remark 1 It can be shown that the integral in Eq. (49) is finite with the choice of Λi in Eq. (53), which is proven in

Appendix A.

Remark 2 One of the challenging aspects of the ARS-LQR approach is tuning the Q and R matrices. In the present
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paper, they are tuned in such a way to achieve the following objectives:

1) Reaching the target altitude and forward velocity while maintaining aircraft performance in icing conditions

such as climb rate,

2) Considering all state limitations (maximum and minimum values),

3) Minimizing fluctuations in other states, particularly the angle of attack and pitch angle, and

4) Reducing energy consumption while avoiding control input saturation and fluctuations.

Therefore, these matrices were adjusted through a trial-and-error process tailored to each operational phase, including

both the cruise and climbing phases, to address all the mentioned items.

3.2.3 Sequential loop closure control design

As previously mentioned, the entire set of nonlinear equations is adaptively linearized to create an augmented state-space

model, which is used for the ARS-LQR technique and lets the aircraft successfully track desired states (altitude and

velocity). In the climb phase, finding the appropriate Qi and Ri for the ARS-LQR design can be somewhat tricky when

looking at the entire state-space model for tracking, although it is possible. Accordingly, it was discovered that we

needed more power to control 𝑞 as the fastest state first. Therefore, considering the speed of dynamics associated with

the characteristics of state variables, the large (5th-order) state model is divided into three smaller state models (two

2nd-order and one 1st-order state model).

Consider the following LTI state-space model for the longitudinal flight dynamics of an aircraft, which is obtained

by linearization around an operating point. Jacobian matrices are used to calculate each array of Ai and Bi.



¤̄ℎ

¤̄𝑤

¤̄𝑞

¤̄𝜃

¤̄𝑢



=



a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

︸                              ︷︷                              ︸
Ai



ℎ̄

�̄�

𝑞

𝜃

�̄�



+



b11 b12

b21 b22

b31 b32

b41 b42

b51 b52

︸       ︷︷       ︸
Bi


𝛿e

𝛿𝑡

 (56)

The above system can be simplified and divided into three parts for tracking velocity (�̄�) in the 𝑥𝑏 direction and

altitude (ℎ̄) commands. The independency between the velocity and the remaining state variables in Eq. (56) is a valid

presumption that can be considered for flight control designs under most flying scenarios [40, 55, 56]. Consequently,
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the velocity dynamics is expressed as follows:

¤̄𝑢 = a55�̄� + b52𝛿𝑡 (57)

After that, the velocity dynamics is subjected to the same procedure as the ARS-LQR design in the previous Section.

The remaining flight dynamics of Eq. (56) are considered for altitude tracking, described by



¤̄ℎ

¤̄𝑤

¤̄𝑞

¤̄𝜃


=



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44





ℎ̄

�̄�

𝑞

𝜃


+



b11

b21

b31

b41



[
𝛿e

]
(58)

As demonstrated in Eq. (58), the elevator is only used to control slow dynamics, such as altitude or pitch angle, whereas

the throttle is solely used to control velocity, as shown in Eq. (57). The system shown in Eq. (58) has both short

and long (phugoid) period dynamics, which prompts us to partition it into two phases, inner and outer loops, for the

architecture of the flight control system. The short-period dynamics, which involves 𝑞 and 𝑤, are thus covered by the

following definition: 
¤̄𝑤

¤̄𝑞

 =

a22 a23

a32 a33

︸       ︷︷       ︸
Ai1


�̄�

𝑞

 +

b21

b31

︸︷︷︸
Bi1

[
𝛿e

]
(59)

And the phugoid dynamics is defined as


¤̄ℎ

¤̄𝜃

 =

a11 a14

a41 a44

︸       ︷︷       ︸
Ai2


ℎ̄

𝜃

 +

a12 a13

a42 a43

︸       ︷︷       ︸
Bi2


�̄�

𝑞

 (60)

Both Eqs. (59) and (60) are adopted for altitude tracking. First, the ARS-LQR is used for the outer loop in Eq. (60) to

provide the necessary reference command for the inner loop in Eq. (59). Second, another ARS-LQR is applied to Eq.

(59) to generate the proper elevator input, and the associated closed-loop system is demonstrated to be stable and to

follow commands in icing conditions perfectly. Figure 8 shows the architecture of the ARS-LQR flight control based on

the sequential loop closure, which is utilized for the climb phase.

The suggested flight control system is completed once the altitude loop is closed. The following simulation section

will show the successful working of the proposed control strategy discussed.
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Fig. 8 Sequential loop closure architecture

4 Simulation Results

This section focuses on simulation results achieved with Simulink in MATLAB. It includes comparing open-loop

and closed-loop dynamic responses, with a focus on the longitudinal motion of the nonlinear 6-DOF model of the

modified NASA Lewis DeHavilland DH-6 Twin Otter Icing Research Aircraft in clean and icing conditions[18, Fig.1].

It possesses all of the stability and control derivatives of the clean and icing conditions. Before comparing the two

designed flight control systems, AN-NDI and ARS-LQR, the open-loop dynamic response of the DH-6 Twin Otter was

validated in the clean condition, based on flight data from [57]. It was confirmed that the response matched the actual

flight data well. Table 3 provides the control input limitations, and Table 4 provides the specifications of the DH-6 Twin

Otter.

Table 3 Control Input Limitations for DH-6 Twin Otter

Control Surface Limitations (deg)
Elevator [−25, 25]
Aileron [−17.5, 17.5]
Rudder [−20, 20]

Table 4 Specifications of the DH-6 Twin Otter

Parameters Value
Wing span 19.81 m
Wing area 39.02 m2

Aspect ratio (AR) 10.06
Mean Aerodynamic Chord (MAC) 1.98
Center of gravity (from the nose) 0.572 m
Weight (W) 45,100 N
Maximum thrust per engine 24,230 N

The performance of the two flight control designs (AN-NDI and ARS-LQR) for the DH-6 Twin Otter was investigated

under two assumptions: 1) the longitudinal and lateral flight dynamics are independent, and 2) the sideslip angle is zero.

In a clean condition, the aircraft is considered to be flying at 1,713 m at 57.25 m/s. To examine the open-loop dynamic

response, the appropriate trim control inputs are determined based on the minimization of the quadratic cost function,

which is the square sum of forces in the 𝑥𝑏, 𝑧𝑏 axes and, pitching moment about the 𝑦𝑏 axis. Trim condition values are
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shown in Table 5.

Table 5 Trim values in the clean condition

Variables 𝛼 (deg) 𝑢 𝑤 𝜃 (deg) 𝛿e (rad) 𝛿𝑡 𝛿r 𝛿a

Trim value 2.49 57.249 2.484 2.486 -0.028 0.056 0 0

The initial altitude and speed were set to 1,713 m and 57.25 m/s, respectively. The aircraft’s open-loop dynamic

responses were then evaluated using the following scenarios:

1) From 0 to 100 s, the aircraft is flying in clean condition, with control inputs set to constant trim values.

2) The aircraft is flying in clean condition from 0 to 1 s, and then ice begins to form on the wing or (and) tail (wing

only for the first setting, tail only for the second setting, both wing and tail for the third setting) during 1 to 100 s,

which are simulated through all stability and control derivatives varying linearly over time.

It should be noted that most ice accumulations last several minutes; however, in these simulations, the severity parameter

is assumed to be from 1 to 3, so some stability and control derivatives vary by more than 500%. The flight test data for

the DH-6 Twin Otter regarding iced stability and control derivatives are associated with 𝜅 = 1 [6]. However, 𝜅 is set to 3

in this paper, which simulates much more severe or extreme situations due to icing. Table 6 presents the stability and

control derivatives changes for both severity levels.

Table 6 Changes in stability and control derivatives for two distinct levels of severity

Severity Coefficient Δ𝐶𝑧0 Δ𝐶𝑧𝛼 Δ𝐶𝑧𝑞 Δ𝐶𝑧𝛿e Δ𝐶𝑥0 Δ𝐶𝑚0 Δ𝐶𝑚𝛼 Δ𝐶𝑚𝑞 Δ𝐶𝑚𝛿e

𝜅 = 1 0 10% 1.35% 9.53% 51.21% 0 9.92% 3.5% 10%

𝜅 = 3 0 30% 4.05% 28.61% 153.65% 0 29.77% 10.52% 30%

Figure 9 indicates changes in ℎ, 𝑢, 𝑉𝑡 , 𝛼, 𝜃, and 𝑞 for the two defined scenarios. Blue, red, green, and black colors

indicate clean, iced wing and tail, iced wing, and iced tail conditions, respectively. According to Figure 9, the highest

altitude loss occurs when both wing and tail are affected by ice, in which case the altitude decreases by about 310 m

during 100 s. Figure 9-(c) demonstrates that the iced tail causes 𝑉𝑡 to increase by about 1.75 m/s, whereas the iced wing

results in a total velocity change of about 0.3 m/s. Figure 9-(d) shows that when both wing and tail or only wing is

affected by ice, the angle of attack increases by 0.17 deg, whereas the angle of attack decreases when only the tail is

affected by ice. Therefore, it is evident that in severe icing conditions, an iced wing may induce a stall as the angle of

attack becomes undesirably large. When both wing and tail are affected by ice, as shown in Figure 9-(f), the pitch rate

fluctuation reaches the maximum amplitude—roughly twice as much as when either wing or tail only is affected by

ice. The following simulation results depict the worst-case scenario of icing on both the wing and tail of the aircraft,

exhibiting the largest variations in altitude and pitch rate. These results provide insights into the effects of icing on the

aircraft’s performance and can inform decisions regarding safe operating conditions in icy environments.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9 States changes in the DH-6 Twin Otter for both clean and icing conditions
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In this study, we applied the AN-NDI and ARS-LQR flight control techniques to the DH-6 Twin Otter aircraft

under icing conditions. Two different flight control objectives were considered to evaluate the effectiveness of the flight

control techniques in challenging icing conditions. The first objective was to maintain a steady altitude of 1,173 m and a

forward velocity of 57.25 m/s during the cruise phase, and the second objective was to climb from an initial altitude of

1,723 m to a target altitude of 1,800 m while maintaining the same cruise velocity of 57.25 m/s. These flight control

objectives are designed to test the ability of the flight control techniques to achieve specific performance goals in the

presence of ice accretion on the aircraft’s wings and tail. In order to achieve the best performance during various flight

phases, it is crucial to select optimal time constants for error dynamics in Eqs.(24) and (30), constant parameters for

weight update rule, number of clusters for RBF, and positive matrices in the defined Lyapunov function for the AN-NDI

flight control technique (Table 7). This process requires a lot of trial and error to fine-tune the control parameters. In

contrast, for the ARS-LQR technique, the key parameters to be selected are the weighting matrices Q and R (Table

8), and the coefficient in Eq. (53), which determine the optimal elevator deflection and throttle input for minimizing

energy consumption, while keeping the non-controlled states (all but altitude and forward velocity) stable. Overall, the

AN-NDI technique involves more parameters and can be more challenging to optimize than the ARS-LQR technique.

Table 7 Parameter values of AN-NDI technique and matrix 𝑃 from Eq. (28)

Parameter 𝑘𝑉 𝑘ℎ 𝑘𝜃 𝑘𝑞 𝑘𝑎1 𝑘𝑎2 𝑘𝑎3 𝑘𝑎4 𝑘𝑎5

Value 10 0.05 0.2 0.33 1.25 0.3 1.25 0.875 0.5

Parameter 𝑘𝑎6 𝑘𝑏1 𝑘𝑏2 𝑘𝑏3 𝑘𝑏4 𝑘𝑏5 𝑘𝑏6 𝜎(𝑖=1:6) 𝛾(𝑖=1:6)

Value 0.5 0.015 0.015 0.015 0.06 0.06 0.06 1 × 10−6 60

Parameter 𝑃 from Eq.(28)

Value diag( [0.7, 0.8, 0.7, 0.075, 0.075, 0.075] )

Table 8 Parameter values for matrices Q and R in climbing and cruising phases of ARS-LQR approach

Climbing Phase

QClimb diag
(
[5 × 10−7, 5 × 10−8, 0.2, 6.5, 0.2, 0.2, 5 × 10−7 ]

)
RClimb diag ( [1, 80] )

Cruising Phase

QCruise diag
(
[1 × 10−11, 5 × 10−13, 0.2, 40, 0.2, 0.2, 1 × 10−6 ]

)
RCruise diag ( [40, 4000] )

To establish the credibility of the AN-NDI approach, we first demonstrate its accuracy of estimated states produced

from estimated dynamics. This is accomplished by directly comparing the actual states, as shown in Figs.10 (a-d). The

Radial Basis Function (RBF) is employed to estimate icing uncertainties. As previously discussed, These uncertainties

are subsequently incorporated into the estimated dynamics. The specifications of RBF networks used in this research,

along with the weight updates throughout time, are detailed in Appendix B.2. Overall, Fig.B2 highlights the adaptability
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of the RBF network in handling uncertainties in flight control due to ice accretion, and the time series plots demonstrate

the network’s dynamic adjustments.

(a) (b)

(c) (d)

Fig. 10 Evaluation of the effectiveness of an RBF neural network using AN-NDI approach

In the case of ARS-LQR, the simulation step time is 0.1 seconds, and linearization of the nonlinear equations of

motion is performed at each 0.3-second interval. The size of the time interval has been thoroughly studied to determine

how it affects the controller’s performance. Various time step sizes were tested during the design process, as shown in

Table 9. The cost function, calculated based on the sum of the squares of the difference of states from reference values

and control inputs (similar to the LQR cost function), indicated an increase in cost values for five steps or more. This

increase leads to aircraft performance degradation under these time intervals. As nonlinearity increases, a minor time

step may be required to capture the system’s dynamics accurately. However, based on Figures B1(a) and (b), which

show the forward velocity (𝑢) and altitude (ℎ) at different time steps, alongside the cost analysis detailed in Table 9, it is

apparent that time steps of 1, 2, and 3 exhibit suitability for this application. Within this investigation, a time step of 3 is

chosen for this study.

A comparison is made between the performance of the ARS-LQR and AN-NDI techniques by evaluating their

closed-loop simulation results for the climb and cruise phases under severe icing conditions. Figures 11-12 show a
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comparison where the reference values for altitude and forward velocity were set to 1,800 m and 57.25 m/s in the climb

phase and 1,713 m and 57.25 m/s in the cruise phase. Since the DH-6 Twin Otter can climb at a maximum rate of about

8 m/s, this was considered when tuning the ARS-LQR parameters and for AN-NDI. Both methods enable the aircraft to

follow the reference, but ARS-LQR exhibited much better performance in fewer oscillations in the angle of attack, total

velocity, pitch rate, throttle, and elevator deflections, with smoother actuator inputs. Figure 12 presents the closed-loop

responses of the aircraft in the cruise phase. The AN-NDI technique showed considerable fluctuations in states and

control inputs, including 𝜃, 𝛿𝑡 , 𝛿𝑒, 𝑞, 𝛼,𝑉𝑡 , compared to the ARS-LQR technique. Although the AN-NDI technique

can adapt to uncertainties and reduce these fluctuations over time, it consumes more energy and may not be desirable.

The ARS-LQR technique, on the other hand, outperformed AN-NDI by achieving smoother control inputs with fewer

oscillations, resulting in more efficient energy consumption.

(a) (b) (c)

(d) (e) (f)

Fig. 11 Closed-loop responses of the aircraft in the climb phase under icing conditions using the ARS-LQR and
AN-NDI techniques

Finally, the closed-loop stability was analyzed for ARS-LQR. Unlike AN-NDI, ARS-LQR is based on a sequence of

LTI state-space models, which permits an eigenvalue analysis. As the state-space model is LTI at each time step, we

consider whether all the eigenvalues of each of the closed-loop systems are located in the left half of the complex plane

or not, i.e., �̄�(Āi − B̄iK̄i)1. Figure 13 compares �̄�(Āi) and �̄�(Āi − B̄iK̄i), i.e., the open-loop and closed-loop eigenvalues
1In fact, this eigenvalue analysis only guarantees local stability around each of linearization points, rather than global stability covering the whole

flight envelope. However, thanks to the guaranteed stability margin inherited from the LQR design, the local stability analysis is practically accepted
and believed to cover the whole flight envelope [58]
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(a) (b) (c)

(d) (e) (f)

Fig. 12 Closed-loop responses of the aircraft in the cruise phase under icing conditions using the ARS-LQR
and AN-NDI techniques

Fig. 13 �̄�(Āi) and �̄�(Āi − B̄iK̄i) before and after control

being the nearest to the imaginary axis. Notably, in this analysis, �̄� specifically denotes the maximum eigenvalue of the

closed-loop at each three-time step, evaluated across 100 different initial conditions. This approach demonstrates that it

has zero eigenvalues before applying control, but the eigenvalues are relocated to the left half of the complex plane after

control at all times. These extensive simulations show that the autopilot can achieve the desired altitude and forward
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velocity in icing conditions. Therefore, together with the robustness property of LQR, we logically conclude that the

aircraft exhibits local stability even in the presence of icing, and ARS-LQR is acceptable for use in practical applications.

5 Conclusion

The primary objective of this study was to investigate the performance of the Adaptive Robust Servo Linear Quadratic

Regulator (ARS-LQR) when implemented as the core of a flight control system. Additionally, we employed the Adaptive

Neural Nonlinear Dynamic Inversion (AN-NDI) for comparison. An online Radial Basis Function (RBF) network

was utilized to predict uncertainties, and a Lyapunov function was defined to build the adaptive control law in the

AN-NDI. The ARS-LQR was designed by constructing an online Linear Time-Varying system generated by linearizing

the nonlinear aircraft equations around the local trajectory of the aircraft at each fixed-time step. This allowed the design

of an LQR at each time step using new system matrices. Although it may resemble classical control techniques, the

proposed ARS-LQR introduces a distinctive and highly practical element. Theoretically, it incorporates an exponential

multiplier into the cost function to ensure local stability, even under severe icing conditions, with substantial margins

(6 dB gain margin and 60-degree phase margin). This theoretical merit is of significant interest to aircraft control

engineers. To validate this, a comprehensive comparative study demonstrates ARS-LQR’s superior performance in

tracking altitude and forward velocity references during severe icing. Importantly, as far as the authors’ knowledge

extends, no control technique has been proposed for aircraft encountering such a wide range of icing conditions (from

moderate to severe). The simulation results indicated that in icing conditions, ARS-LQR outperformed AN-NDI by

enabling the aircraft to follow altitude and forward velocity references, and oscillations in states that were present in

AN-NDI were removed. Furthermore, the number of parameters required for tuning in ARS-LQR was at least half

of those needed for AN-NDI, making it more computationally efficient. Moreover, simulations conducted under 100

different initial conditions and the analysis of the maximum eigenvalue at each three-time step affirm the local stability

of the designed flight control system in icing conditions.

Future research could include input constraints in the Model Predictive Control (MPC) framework and consider

integrating ARS-LQR with Reinforcement Learning and Control Barrier Functions for more safety-critical situations.
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Appendix A. Proof of Remark 1

Proof. Algebraic Riccati equation according to Eq. (54) is as follows:

P′
i (Āi + ΛiI) + (Āi + ΛiI)TP′

i − P′
i B̄iR−1

i B̄T
i P′

i + Qi = 0 (A.1)

According to the standard LQR theory [34], all eigenvalues of (Āi + ΛiI − B̄iK̄i) shall be located on the left side of the

complex plane, i.e., Āi + ΛiI − B̄iK̄i is Hurwitz.

S1 =
1
2

∞∫
0

(e2Λit) (z̄T
i Qiz̄i + 𝜇T

i Ri𝜇i)dt, Λi ⪰ 0 (A.2)

𝜇i = −R−1
i B̄T

i P′
i︸     ︷︷     ︸

K̄i

z̄i (A.3)

substituting 𝜇i from (A.3) into (A.2) yields the following:

S1 =
1
2

∞∫
0

(e2Λit) [z̄T
i (Qi + P′

i B̄iR−1
i B̄T

i P′
i )︸                     ︷︷                     ︸

Q̄

z̄i]dt, Λi ⪰ 0 (A.4)

where Q̄ is positive semidefinite. For the state model below

¤̄zi = Āiz̄i + B̄i𝜇i (A.5)

substituting 𝜇i from (A.3) into (A.5) yields the following:

¤̄zi = (Āi − B̄iK̄i)z̄i (A.6)

Clearly, the solution of (A.6) is given as

z̄i = e(Āi−B̄iK̄i )t z̄0 (A.7)

where z̄0 is the initial state of z̄𝑖 . By substituting (A.7) into (A.4), the following equation is obtained

S1 =
1
2

∞∫
0

(e2Λit)z̄T
0 [e

(Āi−B̄iK̄i )
TtQ̄e(Āi−B̄iK̄i )t]z̄0dt, Λi ⪰ 0 (A.8)
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As e2Λit is a scalar function, then (A.8) can be written as follows:

S1 =
1
2

∞∫
0

z̄T
0 [e

(Āi+ΛiI−B̄iK̄i )
TtQ̄e(Āi+ΛiI−B̄iK̄i )t]z̄0dt, Λi ⪰ 0 (A.9)

With a vector defined as

𝑦 = Q̄
1
2 e(Āi+ΛiI−B̄iK̄i )tz̄0 (A.10)

the cost function can be written as

S1 =
1
2

∞∫
0

| |𝑦 | |2dt (A.11)

where ∥𝑦∥ denotes the 2-norm of 𝑦, and it becomes zero as 𝑡 tends to infinity because (Āi + ΛiI − B̄iK̄i) is Hurwitz.

Consequently, S1 is finite with a sensible choice of Λi, such as the one in Eq. (53).

Appendix B.

Appendix B.1: Effects of Time Steps on Controller’s Performance

Effects of time steps on the controller’s performance are shown in Figures B1(a) and (b), and cost values calculated for

different time steps are presented in Table 9.

(a) (b)

Fig. B1 Comparison of forward velocity and altitude variations at different time steps
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Table 9 Comparison of cost function values based on different linearized models at different time steps

Time Steps 1 2 3 5 8 10
Cost Values 61742 59904 59900 60218 60811 61436

15 20 30 40 50 70 100
60510 61249 62377 62843 64145 68051 71772

Appendix B.2: Weight Update of RBFN

RBFN weights are updated to capture uncertainties brought by icing, as shown in Fig. B2, and RBF network specifications

are shown in Table 10.

Fig. B2 Weight Update of RBF Networks Used in Neuro-Adaptive Flight Control
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Table 10 RBFN Specifications

Parameter Description
Network Type Radial Basis Function Network (RBFN)
Number of Hidden Layers 1
Input Dimensions 13 (9 states, 4 control inputs)
Centers of Basis Functions Calculated using online k-means clustering
Activation Function (Hidden Layer) Gaussian (Radial Basis Functions)
Output Activation Function Linear
Number of Neurons (Hidden Layer) 4 (same as number of centers for clustering)
Number of Neurons (Output Layer) 6 (Number of uncertainties in ¤𝑢, ¤𝑣, ¤𝑤, ¤𝑝, ¤𝑞, ¤𝑟 equations)
Weight Dimensions 4 × 6 (4: number of clustering centers, 6: number of uncertainties in

equations)
Training Algorithm Lyapunov function-based weight updates
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