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Abstract

Unsteady Computational Simulation of Ice Protection
Systems in Aircraft Icing using the Conjugate Heat Transfer
Method

Esmaeil Esmaeilifar
Department of Mechanical and Aerospace Engineering
Graduate School, Gyeongsang National University

Supervised by Prof. Rho Shin Myong

In-flight icing occurs when an aircraft or rotorcraft fly through icing clouds, and
supercooled water droplets impact the surface of the flying vehicle. Ice accumulation on the
wing, engine inlet, cockpit windows, and pitot tube of aircraft can degrade aerodynamic
performance and handling quality. Designing reliable and efficient ice protection systems is
essential to mitigate the adverse effect of ice accretion and ensure a safe flight. Electrothermal
ice protection systems have become popular due to their compatibility with more electric
aircraft trends and composite structures. Moreover, it can be utilized as a hybrid ice protection
system in conjunction with emerging superhydrophobic coating, which can save a significant
amount of energy.

Employing experimental tests to design ice protection systems is limited due to the high
cost, lack of facilities, and scalability issues. Developing accurate and reliable computational
solvers can significantly decrease costs and speed up the design and certification processes. In
this study, a unified framework was developed to simulate electrothermal ice protection
systems in aircraft icing. The electrothermal ice protection system framework comprises

several solvers, including a compressible Navier-Stokes-Fourier airflow solver, a Eulerian

XViii



droplet impingement solver, an unsteady ice accretion/melting solver, and a heat conduction
solver. These solvers are formulated using partial differential equations and implemented
within a unified finite volume framework. This approach allows for the use of a single grid
system, eliminating the need for additional grid generation specifically for the ice layer.

Ice and conduction solvers were tightly coupled using the conjugate heat transfer method,
where the runback water and ice domain were linked to the multilayer solid domain by
exchanging thermal boundary conditions at the interface. The electrothermal de-icing solver
was validated using experimental data from electrothermal de-icing tests conducted in the
NASA Lewis Icing Research Tunnel. The de-icing process was also studied by analyzing the
runback water film, ice accretion/melting, and temperature distribution on the surface.
Moreover, the air solver was loosely coupled with ice/conduction solvers to update the airflow
based on the transient wall temperature distribution calculated in the ice/conduction solvers.
Interestingly, the anti-icing results obtained by the loosely coupled solver were also compared
with the decoupled solver and experimental data for different anti-icing regimes. Results
obtained by coupled solver are in better agreement with experimental data compared to the
decoupled solver, especially in the leading edge's aft region. Finally, a novel framework was
developed to evaluate the required heat load at running wet, evaporative, and fully evaporative
anti-icing modes.

In order to simulate ice accretion on superhydrophobic surfaces, two modifications were
applied to the droplet and ice solvers. First, the semi-empirical supercooled large droplet model,
which was developed to consider the effects of droplet/wall interaction, was modified to
consider the wettability effects on collection efficiency. Second, the lubrication theory
equations were revisited to modify the shallow water icing model considering the partial slip

boundary conditions. Results show that the droplet deposition rate decreases by increasing the
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surface contact angle. Moreover, increasing the contact angle can result in different ice-type

formations at the same atmospheric and icing conditions.
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