A Thesis for the Degree of Doctor of Philosophy

Computational simulation of Boltzmann-based hydrodynamic models for rarefied and microscale gases and viscoelastic fluids in highly non-equilibrium state

By Tushar Chourushi

Department of Mechanical and Aerospace Engineering Graduate School GYEONGSANG NATIONAL UNIVERSITY

February, 2022

Computational simulation of Boltzmann-based hydrodynamic models for rarefied and microscale gases and viscoelastic fluids in highly non-equilibrium state

A Dissertation Submitted to the Faculty of the Graduate School of the Gyeongsang National University

> By Tushar Chourushi

In partial fulfillment of the requirements for the degree of Ph.D. in Engineering

February, 2022

Prof. Dr. Rho Shin Myong, Dissertation Supervisor

Approved by the Committees of the Graduate School of Gyeongsang National University in partial fulfilment of the requirements for the degree of Ph.D. in Engineering

Dissertation Committee:

Prof. Dr. Hakjin Lee____

Chairman

Prof. Dr. Jae Hyun Park

<u>Dr. Ji Hong_Kim</u>

Dr. Satyvir Singh___

Prof. Rho Shin Myong

Supervisor

Date: 2022.02

Department of Mechanical and Aerospace Engineering GRADUATE SCHOOL GYEONGSANG NATIONAL UNIVERSITY

Acknowledgement

To begin with, I will lend the words of Sir Isaac Newton's letter to the Hooke in 1675, "*If I have seen further, it is by standing on the shoulders of giants.*" In this sense, I would like to extend my sincere thanks to many giants.

First and foremost, I would like to express my deepest gratitude to my academic advisor Prof. *Rho Shin Myong* for providing me the opportunity to pursue Ph.D. studies under his supervision. I am thankful for all his support, encouragement, and valuable suggestions during this thesis. From him, I learned how to approach a scientific research problem. He is a great mentor in both research and life.

I sincerely would like to thank my Ph.D. dissertation committee members: Professor Hakjin Lee and Professor Jae Hyun Park from the Department of Aerospace engineering of Gyeongsang National University, South Korea; Dr. Ji Hong Kim of Korea Aerospace Industries, LTD, and Dr. Satyvir Singh from Nanyang Technological University, Singapore, for their constructive criticism that helped me finalize this dissertation.

I am also grateful to all my colleagues in Aerospace Computational Modeling Laboratory. My special thanks to Dr. Satyvir Singh, Prof. Tapan K. Mankodi of IIT Guwahati, Bidesh Sengupta, and Dr. Kishore K. Kammara for their help and support, during the Ph.D. program.

My family, particularly my daughter, my wife, my parents, and my sister also deserve a big thank you, for their unconditional love and support during my tough moments of life. Finally, I would like to acknowledge the support from the Brain Korea 21 plus (BK 21+) program and the National Research Foundation (NRF) of South Korea (NRF 2017-R1A5A1015311 and 2017-R1A2B2007634). In this spirit:

"The greatest glory in living lies not in falling, but in rising every time we fall." - Nelson Mandela.

Dedication

To my beloved daughter, wife, and parents (Thanks for the care and support)

Table of Contents

Acknowledgement	iii
Dedication	iv
Table of Contents	V
List of Figures	xii
List of Tables	xxi
Nomenclatures	xxii
Abstract	xxix
Abstract in Korean	xxxi
Chapter 1. Introduction	1
1.1 Rarefied and microscale gases and viscoelastic fluid flows	1
1.2 Motivation	1
1.3 Background	2
1.3.1 Review of important works on 'microscale cylindrical Couette'	2
1.3.2 Review of important works on 'hypersonic re-entry vehicles'	4
1.3.3 Review of important works on 'high Weissenberg number singularity' .	6
1.4 Objectives	7
1.5 Outline	7
Part I: Rarefied and microscale gas flows	10
Chapter 2. Basics of gas kinetic theory	11
2.1 Classification of gas flow regimes	11
2.1.1 Classification based on Knudsen number	11
2.1.2 Classification based on Tsien's parameter	13
2.1.3 Estimation of mean free path	14
2.2 Microscopic and macroscopic flow properties	15

2.2.1 Basic molecular gas properties	15
2.2.2 Macroscopic flow properties	16
2.3 Classical Boltzmann-Curtiss kinetic equation	20
2.4 Molecular dynamics simulation	22
2.5 Direct simulation Monte Carlo method	23
2.6 Moments of Boltzmann-Curtiss kinetic equation	24
2.6.1 Collisional invariants	24
2.6.2 Conservation laws	25
2.7 Summary of the Chapter	26
Chapter 3. Boltzmann-Curtiss based hydrodynamic models: I	Rarefied and
microscale gases	
3.1 The moment method	27
3.2 Eu's generalized hydrodynamic equations	30
3.3 Boltzmann-based constitutive models	35
3.3.1 Zero-order model	35
3.3.2 First-order model	36
3.3.3 Second-order balanced closure model	
3.4 Governing equations for numerical simulation	
3.4.1 Conservative form of the conservation laws	40
3.4.2 Dimensionless form of the governing equations	41
3.5 Topological representation of the second-order Boltzmann-Curtiss cons relations	stitutive 44
3.6 Numerical solver for the second-order balanced closure model	47
3.7 Numerical breakdown parameters	53
3.7.1 Bird's breakdown parameter	53
3.7.2 Boyd's breakdown parameter	54
3.7.3 Rayleigh-Onsager's breakdown parameter	54

3.8 Summary of the Chapter	55
Chapter 4. Numerical methodology for rarefied and microscale	gas flows 56
4.1 Discontinuous Galerkin method	56
4.1.1 Merits and demerits of discontinuous Galerkin method	56
4.1.2 Mixed-type modal discontinuous Galerkin method	57
4.1.3 Modal basis function	58
4.2 Numerical integration and flux functions	61
4.3 Time step calculation	66
4.4 Initialization of DG solver	66
4.5 Boundary conditions	67
4.5.1 Far-Field boundary	68
4.5.2 Inviscid wall boundary	68
4.5.3 No-slip viscous wall boundary	69
4.5.4 Viscous slip/jump wall boundary	70
4.5.5 Symmetry boundary	73
4.5.6 Periodic wall boundary	74
4.6 Higher-Order limiters	75
4.6.1 Positivity preserving limiter	75
4.6.2 The Barth Jespersen limiter	76
4.7 Summary of the Chapter	77
Chapter 5. Solution of Boltzmann-Curtiss based hydrodynamic	models for
rarefied and microscale gases	
5.1 Two-dimensional lid-driven cavity flow	78
5.1.1 Verification and validation of lid-driven cavity flows	80
5.1.2 Results for monatomic argon gas in a lid-driven cavity	81
5.2 Two-dimensional cylindrical Couette flow (CCF)	83
5.2.1 Verification and validation of CCF	85

5.2.2 Results for monatomic, diatomic, and polyatomic gas in a CCF	
5.3 Two-dimensional hypersonic re-entry flow	101
5.3.1 Verification and validation of high Mach number flows	103
5.3.2 Results for the hypersonic flow of monatomic, diatomic, and polya re-entry vehicles	atomic gas over 104
5.4 Three-dimensional hypersonic re-entry flow	112
5.5 Summary of the Chapter	118
Part II: Viscoelastic fluid flows	
Chapter 6. Basics of viscoelastic fluids	
6.1 Classification of non-Newtonian fluids	120
6.2 Shear-thinning and shear-thickening flows	124
6.2.1 Shear-thinning fluid flows	124
6.2.2 Shear-thickening fluid flows	125
6.3 Viscoelastic flow phenomena	126
6.3.1 The Weissenberg rod-climbing effect	127
6.3.2 Die swell, barus effect	128
6.3.3 Normal stress differences	129
6.3.4 Extensional flow	130
6.4 Classical Langevin equation	132
6.5 Expression for conformation tensor	133
6.6 Summary of the Chapter	136
Chapter 7. Viscoelastic constitutive models and high Weissenb	erg number
problem	
7.1 Viscoelastic fluids and their non-linear responses	137
7.2 Existing viscoelastic models	138
7.2.1 Linear viscoelastic model	138
7.2.2 Non-linear viscoelastic models	140

7.3 Myong's "sinh" second-order nonlinear coupled constitutive model	142
7.4 Governing equations for viscoelastic fluids	143
7.4.1 Single-phase flow	143
7.4.2 Multi-phase flow	144
7.5 Extensional viscosity plot of viscoelastic models	145
7.6 High Weissenberg number problem and numerical developments	147
7.6.1 Both-side-diffusion approach	148
7.6.2 Log-conformation-reformulation approach	149
7.7 Summary of the Chapter	150
Chapter 8. Numerical methodology for viscoelastic fluid flows	151
8.1 Finite volume method (OpenFOAM)	151
8.1.1 Discretization of the solution domain in OpenFOAM framework	151
8.1.2 Discretization of transport equations	152
8.2 Flux formulation and pressure equation	154
8.3 Formulation of semi-implicit discretized constitutive equation	156
8.4 Discretization of the free surface interface	156
8.5 Solution algorithm	158
8.6 Boundary conditions	160
8.6.1 Dirichlet boundary	160
8.6.2 Neumann boundary	161
8.7 High-Resolution schemes	161
8.7.1 Normalized variable approach	162
8.7.2 High-Resolution Equi-Gradient (HREG) scheme	163
8.8 Summary of the Chapter	165
Chapter 9. Solution of high Weissenberg number viscoelastic flow	vs 166
9.1 Uniaxial extensional flows	166
9.1.1 Extensional viscosity of UCM/Oldroyd-B model	168

9.1.2 Extensional viscosity of Giesekus model	169
9.1.3 Extensional viscosity of PTT model	170
9.1.4 Extensional viscosity of Myong's "sinh" second-order NCCR model	171
9.1.5 Validation of extensional viscosity of Myong's "sinh" second-order NCCR n	nodel
with the experiment	173
9.2 Two-dimensional (2D) shear flows	174
9.2.1 Shear viscosity of UCM/Oldroyd-B model	175
9.2.2 Shear viscosity of Giesekus model	176
9.2.3 Shear viscosity of PTT model	177
9.2.4 Shear viscosity of Myong's "sinh" second-order NCCR model	178
9.2.5 Validation of shear viscosity of Myong's "sinh" second-order NCCR model the experiment	with 179
9.3 Comparison of shear viscosity of different viscoelastic models using the traceless formulation	180
9.4 Two-dimensional (2D) fluid systems	182
9.4.1 Flow over a confined cylinder	182
9.4.2 Free-surface flows	194
9.5 Summary of the Chapter	208
Chapter 10. Conclusions and future works	. 210
10.1 Concluding remarks	210
10.1.1 Conclusions regarding the rarefied and microscale gas flows	210
10.1.2 Conclusions regarding the viscoelastic fluid flows	212
10.2 Scope of future works	213
10.2.1 Vibrational nonequilibrium effects	213
10.2.2 Unsteady turbulent flows	214
10.2.3 Multiphase viscoelastic flows	214
Appendix A. Derivation of conservation laws and constitutive equat	tions
from the Boltzmann-Curtiss kinetic equation	. 216

Appendix B. Analytic solutions for cylindrical Couette flow of compress	ible
gas with Maxwell slip and Smoluchowski jump conditions	230
Appendix C. Quadrature points for numerical integration	237
Appendix D. Calculation of extensional viscosity for viscoelastic fluid	240
Bibliography	243

List of Figures

Figure 5-6. Comparison of heat flux stream traces overlaid on the temperature contours for different Knudsen numbers: (a) Kn = 0.00259; (b) Kn = 0.0259; (c) Kn = 0.05, at M = 0.16. (Source: Chourushi et al., *Journal of Computational Fluids Engineering* (2018)).

Figure 5-7. Sketch of the computational domain for cylindrical Couette flow (CCF). 84

Figure 5-13. Profiles of non-classical effects of gas ($\gamma = 5/3$) for $f_b = 1.0$ along the radial direction, at Kn = 0.1,1.0, and M = 0.5: (a) non-zero normal stress difference; (b) non-

Figure 5-28. Plot of aerothermodynamic data for hypersonic rarefied argon gas flow over the OREX (left) and Apollo (right) re-entry vehicles for varying degrees of rarefaction (N_{δ}) ,

Figure 6-4. Die swell in Newtonian and viscoelastic (2 wt% polyacrylamides (PAM)
solution) liquids. (Source: Bandyopadhyay R., Pramana (2013))
Figure 6-5. Schematic representation of extensional flows: (a) uniaxial; (b) biaxial; (c)
planar
Figure 6-6. The relationship between stress $(I_1 \text{ and } I_2)$ tensors for all possible deformation
of a viscoelastic fluid is within the shaded areas. (Source: Bird et al., Wiley-Interscience
(1987))
Figure 7-1. Schematic representation of Maxwell model
Figure 7-2. Plot of extensional viscosities for Oldroyd-B, Giesekus ($\alpha = 0.05$), and second-
order NCCR ($\alpha = 1.0$) models, for the uniaxial extensional flow. (Source: Chourushi T. and
R.S. Myong, ACML-Internal Report, Gyeongsang National University (2021,01))146
Figure 8-1. Schematic representation of space discretization in the finite volume method.
Figure 8-2. Schematic diagram of the solution procedure of PISO algorithm
Figure 8-3. Plot of variables along the positive flow direction: (a) arbitrary control volume
mesh; (b) convected variables and distances. (Source: Leonard B.P., International Journal for
Numerical Methods in Fluids (1988))
Numerical Methods in Fluids (1988)). 163 Figure 8-4. Representation of high-resolution equi-gradient (HREG) scheme on the normalized variable diagram (NVD). (Source: Chourushi T., Applied Mathematics and Computation (2018)). 164 Figure 9-1. Schematic diagram of viscoelastic fluid within stretching rheometer. (Source: Rothstein J.P. and G.H. McKinley, Journal of Rheology (2002)). 167
Numerical Methods in Fluids (1988))163Figure 8-4. Representation of high-resolution equi-gradient (HREG) scheme on the normalized variable diagram (NVD). (Source: Chourushi T., Applied Mathematics and Computation (2018))164Figure 9-1. Schematic diagram of viscoelastic fluid within stretching rheometer. (Source: Rothstein J.P. and G.H. McKinley, Journal of Rheology (2002))167Figure 9-2. Plot of extensional viscosity of Oldroyd-B model with the strain-rate ($\dot{\in}$).169
Numerical Methods in Fluids (1988)).163Figure 8-4. Representation of high-resolution equi-gradient (HREG) scheme on thenormalized variable diagram (NVD). (Source: Chourushi T., Applied Mathematics andComputation (2018)).164Figure 9-1. Schematic diagram of viscoelastic fluid within stretching rheometer. (Source:Rothstein J.P. and G.H. McKinley, Journal of Rheology (2002)).167Figure 9-2. Plot of extensional viscosity of Oldroyd-B model with the strain-rate ($\dot{\in}$).169Figure 9-3. Plot of extensional viscosity of Giesekus model with varying α mobility factor
Numerical Methods in Fluids (1988))
Numerical Methods in Fluids (1988))163Figure 8-4. Representation of high-resolution equi-gradient (HREG) scheme on thenormalized variable diagram (NVD). (Source: Chourushi T., Applied Mathematics andComputation (2018))164Figure 9-1. Schematic diagram of viscoelastic fluid within stretching rheometer. (Source:Rothstein J.P. and G.H. McKinley, Journal of Rheology (2002))167Figure 9-2. Plot of extensional viscosity of Oldroyd-B model with the strain-rate ($\dot{\in}$).169Figure 9-3. Plot of extensional viscosity of Giesekus model with varying α mobility factorand strain-rate ($\dot{\in}$).170Figure 9-4. Plot of extensional viscosity of EPTT model for model parameter $e = 0.0102$
Numerical Methods in Fluids (1988))163Figure 8-4. Representation of high-resolution equi-gradient (HREG) scheme on thenormalized variable diagram (NVD). (Source: Chourushi T., Applied Mathematics and <i>Computation</i> (2018))164Figure 9-1. Schematic diagram of viscoelastic fluid within stretching rheometer. (Source:Rothstein J.P. and G.H. McKinley, Journal of Rheology (2002))167Figure 9-2. Plot of extensional viscosity of Oldroyd-B model with the strain-rate ($\dot{\in}$) .169Figure 9-3. Plot of extensional viscosity of Giesekus model with varying α mobility factorand strain-rate ($\dot{\in}$)170Figure 9-4. Plot of extensional viscosity of EPTT model for model parameter $e = 0.0102$ with the strain-rate ($\dot{\in}$)171
Numerical Methods in Fluids (1988))163Figure 8-4. Representation of high-resolution equi-gradient (HREG) scheme on thenormalized variable diagram (NVD). (Source: Chourushi T., Applied Mathematics andComputation (2018))164Figure 9-1. Schematic diagram of viscoelastic fluid within stretching rheometer. (Source:Rothstein J.P. and G.H. McKinley, Journal of Rheology (2002))167Figure 9-2. Plot of extensional viscosity of Oldroyd-B model with the strain-rate ($\dot{\in}$).169Figure 9-3. Plot of extensional viscosity of Giesekus model with varying α mobility factor170and strain-rate ($\dot{\in}$)170Figure 9-4. Plot of extensional viscosity of EPTT model for model parameter $e = 0.0102$ 171Figure 9-5. Plot of extensional viscosity of "sinh" second-order NCCR ($\alpha = 1$) model with171
Numerical Methods in Fluids (1988))163Figure 8-4. Representation of high-resolution equi-gradient (HREG) scheme on thenormalized variable diagram (NVD). (Source: Chourushi T., Applied Mathematics andComputation (2018))164Figure 9-1. Schematic diagram of viscoelastic fluid within stretching rheometer. (Source:Rothstein J.P. and G.H. McKinley, Journal of Rheology (2002))167Figure 9-2. Plot of extensional viscosity of Oldroyd-B model with the strain-rate ($\dot{\in}$).169Figure 9-3. Plot of extensional viscosity of Giesekus model with varying α mobility factorand strain-rate ($\dot{\in}$)170Figure 9-4. Plot of extensional viscosity of EPTT model for model parameter $e = 0.0102$ with the strain-rate ($\dot{\in}$)171Figure 9-5. Plot of extensional viscosity of "sinh" second-order NCCR ($\alpha = 1$) model withthe strain-rate ($\dot{\in}$).Strain-rate ($\dot{\in}$). <t< td=""></t<>
Numerical Methods in Fluids (1988)) 163 Figure 8-4. Representation of high-resolution equi-gradient (HREG) scheme on the normalized variable diagram (NVD). (Source: Chourushi T., Applied Mathematics and <i>Computation</i> (2018)) 164 Figure 9-1. Schematic diagram of viscoelastic fluid within stretching rheometer. (Source: Rothstein J.P. and G.H. McKinley, Journal of Rheology (2002)) 167 Figure 9-2. Plot of extensional viscosity of Oldroyd-B model with the strain-rate ($\dot{\in}$). 169 Figure 9-3. Plot of extensional viscosity of Giesekus model with varying α mobility factor and strain-rate ($\dot{\in}$) 170 Figure 9-4. Plot of extensional viscosity of EPTT model for model parameter $e = 0.0102$ with the strain-rate ($\dot{\in}$) 171 Figure 9-5. Plot of extensional viscosity of "sinh" second-order NCCR ($\alpha = 1$) model with the strain-rate ($\dot{\in}$). (Source: Chourushi T. and R.S. Myong, ACML-Internal Report, Gyeongsang National University (2021,01)) 172

Figure 9-6. Comparison of extensional viscosity of "sinh" second-order NCCR model with the measured extensional viscosity in experimental work of Barnes et al. [242] and Ballman

[243] against the strain-rate. (Source: Chourushi T. and R.S. Myong, ACML-Internal Report,
Gyeongsang National University (2021,01))
Figure 9-7. Plot of shear viscosity of UCM/Oldroyd-B model with the shear-rate $(\dot{\gamma})$.176
Figure 9-8. Plot of shear viscosity of Giesekus ($\alpha = 0.15$) model with the shear-rate ($\dot{\gamma}$).
Figure 9-9. Plot of shear viscosity of EPTT model for model parameter $e = 0.0102$ with
the shear-rate $(\dot{\gamma})$
Figure 9-10. Plot of shear viscosity of the "sinh" second-order NCCR ($\alpha = 1.0$) model with
the shear-rate $(\dot{\gamma})$. (Source: Chourushi T. and R.S. Myong, ACML-Internal Report,
Gyeongsang National University (2021,01))
Figure 9-11. Comparison of shear viscosity of "sinh" second-order NCCR model with the
measured shear viscosity in experimental work of Barnes et al. [242] and Ballman [243],
against the shear-rate. (Source: Chourushi T. and R.S. Myong, ACML-Internal Report,
Gyeongsang National University (2021,01))
Figure 9-12. Comparison of shear viscosity of different viscoelastic models using the
traceless formulation with the shear-rate $(\dot{\gamma} = We/\lambda)$: (a) Oldroyd-B; (b) Giesekus; (c) EPTT;
(d) second-order NCCR. (Source: Chourushi T. and R.S. Myong, ACML-Internal Report,
Gyeongsang National University (2021,01))
Figure 9-13. Sketch of the computational domain for the two-dimensional flow over a
confined circular cylinder, with a blockage ratio of 2
Figure 9-14. Comparison of flow variables with the existing experimental work of Baaijens
et al. [249] plotted along the centerline $(x/R=0)$ for Newtonian, Giesekus, and second-order
NCCR constitutive models, at We = 0.216 and Re = 0.0001 : (a) velocity; (b) shear stress; (c)
first normal stress difference. (Source: Chourushi T. and R.S. Myong, ACML-Internal Report,
Gyeongsang National University (2020,10))

Figure 9-15. Comparison of asymptotic variation of drag coefficient for Oldroyd-B model with the existing work of Hulsen et al. [102], Alves et al. [247], and Dou and Phan-Thien-Tanner [252], at varied Weissenberg numbers and Re = 0.0001. (Source: Chourushi T. and R.S. Myong, ACML-Internal Report, Gyeongsang National University (2020,10))......188

Figure 9-16. Residual plot of flow variables of Oldroyd-B model for varied Weissenberg number: (a) We = 1.0; (b) We = 10.0 (numerical breakdown), at Re = 0.0001. (Source:

Figure 9-21. Schematic view of the die-swell geometry, with swell ratio $Sr = L_{max}/L$.

Figure 9-23. Comparison of jet buckling phenomena for present work (left) and experimental work (right), with input data D = 3 mm, U = 0.5 m/s, and v = 0.010 m²/s; at Re =

List of Tables

Table 1 Physical parameters for monatomic, diatomic, and polyatomic gases [142]......43
 Table 2 Total number of basis functions for the computational element with an accuracy up **Table 3** Bulk viscosity coefficient (f_b) and normalized specific heat ratio Table 4 Summary of thermal and flow characteristics of nonequilibrium monatomic, diatomic, and polyatomic gases in CCF [185].....100
 Table 5 Expressions for conformation tensor of different viscoelastic models.
 135
 Table 6 Normalized functional relationships for a convected variable $\hat{\phi}_f$ based on the High-Resolution Equi-Gradient (HREG) scheme for non-uniform and uniform meshes [230].... 165 Table 7 Experimental parameters for measurement of extensional and shear viscosity of

 Table 8 Classification of various viscometers [244].
 175

 Table 9 Mesh characteristics of the two-dimensional computational domain of confined Table 10 Physical parameters and initial conditions for the viscoelastic fluid in a die swell

Nomenclatures

Greek

α β	-	angle of attack/viscoelastic model parameter
μ μ	_	first coefficient of dynamic (shear) viscosity
μ_b	-	coefficient of bulk viscosity
$\mu_{\scriptscriptstyle E}$	-	extensional viscosity
$\mu_{\rm s}, \mu_{\rm p}$	-	solvent viscosity, polymeric viscosity
$\mu_{\scriptscriptstyle Normalized}$	-	normalized factor
λ	-	second coefficient of viscosity/relaxation time
γ	-	specific heat ratio
К	-	heat conduction coefficient
Θ	-	vector of auxiliary variable
${oldsymbol{\Theta}}_h$	-	approximated auxiliary variable solution
${oldsymbol{\Theta}}_h^L, {oldsymbol{\Theta}}_h^R$		approximated auxiliary solution for left and right state
ξ,η,ζ	-	reference coordinates
ρ	-	density
Γ	-	diffusion coefficient
λ_{mean}	-	mean free path
δ	-	boundary thickness layer of the body
$\pmb{\sigma}, \sigma_{ij}$	-	stress tensor
τ, $ au_{ij}$, Π	-	viscous stress tensor
$\Pi_{xx}, \Pi_{yy}, \Pi_{zz}, \tau_{xx}, \tau_{yy}, \tau_{zz}$	-	normal stress components
$\Pi_{xy}, \Pi_{xz}, \Pi_{yz}, \tau_{xy}, \tau_{xz}, \tau_{yz}$	-	viscous stress components
Δ	-	excess normal stress
$\boldsymbol{\mathcal{E}}, \boldsymbol{\mathcal{E}}_{ij}, \dot{\boldsymbol{\mathcal{E}}}$	-	symmetric or rate-of-strain tensor
γ	-	shear-rate
ω, <i>ω</i> _{ij}	-	anti-symmetric tensor
$ abla \cdot \mathbf{u}$	-	dilatational term
ζ	-	friction coefficient
ζ^{dof}	-	molecular internal degree of freedoms
<i>G</i> dof internal	-	internal energy modes
$\mathcal{E}_{ ext{kinetic}}$	-	specific kinetic energy per unit mass
$\mathcal{E}_{\mathrm{internal}}$	-	specific internal energy per unit mass
$\mathcal{E}_{\text{potential}}$	-	specific potential energy per unit mass

E	-	Hencky strain
ω	-	angular frequency
$\boldsymbol{\omega}_{\scriptscriptstyle B}$	-	vector of angular frequency
μ_{mass}	-	reduced mass of molecule
ν	-	exponent of the inverse power law
ψ	-	azimuth angle/distribution function
$\mathbf{\Lambda}^{(n)}$	-	dissipation term
$\mathbf{\Psi}^{(n)}$	-	high-order moments
Ŷ	-	local calortropy density
$\sigma_{_c}$	-	calortropy production
σ_{u}, σ_{T}	-	momentum, thermal accommodation coefficients
D	-	dimension of the space
$ abla_{v}$	-	gradient with respect to velocity-space
Ω	-	bounded domain of the body
$\Omega_{_h}$	-	approximated domain
Ω_{e}	-	discretization element (local element)
$\partial \Omega$	-	boundary of the domain Ω
$\partial\Omega_{_D},\partial\Omega_{_N}$	-	region of Dirichlet boundary, region of Neumann
\mathbb{D}^k	_	space of polynomial functions of degree at most k
υ	_	test function
$\Omega_e^{\scriptscriptstyle st}$	-	standard element
$J_{x \to \xi}$	-	jacobian of transformation
$P_n^{lpha,eta}$	-	orthogonal Jacobi polynomials
χ	-	flow properties
$\hat{\Lambda}^{x}_{inv}, \hat{\Lambda}^{y}_{inv}, \hat{\Lambda}^{z}_{inv}$	-	inviscid spectral radii
$\hat{\Lambda}_{vis}^{x}, \hat{\Lambda}_{vis}^{y}, \hat{\Lambda}_{vis}^{z}$	-	viscous spectral radii

Latin

L	-	characteristics length scale
Т	-	time
Kn	-	Knudsen number based on the characteristic length scale
Kn_δ	-	Knudsen number based on boundary thickness layer
Kn _{GLL}	-	gradient length local-based Knudsen number
N_{δ}	-	composite number
B_{\max}	-	Bird's breakdown parameter

Boyd's breakdown parameter
Mach number
Reynolds number
Prandtl number
Eckert number
Stanton number
Weissenberg number
normal vector
position vector
particle velocity
bulk velocity vector
cartesian components of the velocity vector
microscopic solvent and bead velocities
end-to-end vector after deformation
Jacobian matrix
number density (molecule per unit volume)
molecular diameter
overall temperature
wall temperature
pressure
mean pressure
Boltzmann constant
Avogadro number
gas constant
orthogonal tensor
fourth-order viscosity coefficient tensor
ratio of bulk viscosity to shear viscosity
molecular mass
total energy
kinetic energy
internal energy
potential energy
vibrational energy
moment of inertia
angular momentum, magnitude of angular momentum
specific heat at constant pressure
specific heat at constant volume
drag coefficient
torque coefficient

S	-	viscosity index number
C	-	peculiar velocity/conformation tensor
$H_{_{total}},h,\hat{h}$	-	total enthalpy, specific enthalpy, enthalpy density
Р	-	pressure tensor
Q	-	heat flux vector
Q_x, Q_y, Q_z	-	heat flux components
T_x, T_y, T_z	-	temperature components
Ι	-	unit tensor
H_{rot}	-	rotational Hamiltonian of the molecule
\overline{E}_{rot}	-	average rotational energy density
$f(\mathbf{v},\mathbf{r},t)$	-	single-particle distribution
$f^{0}(\mathbf{v},\mathbf{r},t)$	-	equilibrium distribution function
f^{c}	-	nonequilibrium canonical distribution function
$\mathbf{F}^{external}$	-	vector of external forces
$C(f, f_2)$	-	collision operator
\mathbf{L}_{r}	-	internal Liouville operator
$h^{(n)}$	-	molecular expression for moments
$\mathbf{Z}^{(n)}$	-	kinematic term arising from the hydrodynamic streaming effect
q_{1st}	-	first-order dissipation term
q_{2nd}	-	second-order dissipation term
k_1	-	first cumulant expansion
Ŕ	-	Rayleigh-Onsager dissipation function
\vec{S}	-	face vector
S_x, S_y, S_z	-	components of face vector
$\Delta \hat{S}^x, \Delta \hat{S}^y, \Delta \hat{S}^z$	-	Projections of the control volume
U	-	vector of conservative variables
\mathbf{U}_h	-	approximated solution of conservative variables
\mathbf{U}_{BC}	-	boundary state variable
$\mathbf{U}_{h}^{L},\mathbf{U}_{h}^{R}$	-	approximate solution for left and right states
$\mathbf{F}^{ ext{inv}}$	-	inviscid flux function
$\mathbf{F}^{\mathrm{vis}}$	-	viscous flux function
N_{δ}	-	non-equilibrium parameter
N_E	-	number of elements
N_F	-	number of faces
N_k	-	number of basis functions

N_{1}, N_{2}	-	first and second normal stress difference
b_k	-	basis function
$\mathbf{H}_{auxiliary}, \mathbf{H}_{auxiliary}^{b}$	-	numerical auxiliary flux, numerical boundary auxiliary flux
$\mathbf{H}_{inviscid}, \mathbf{H}^{b}_{inviscid}$	-	numerical inviscid flux, numerical boundary inviscid flux
$\mathbf{H}_{viscous}, \mathbf{H}^{b}_{viscous}$	-	numerical viscous flux, numerical boundary viscous flux
Μ	-	mass matrix
\mathbf{M}^{-1}	-	inverse of the mass matrix
R (U)	-	residual vector of U variables
T _e	-	affine sub-parametric transformation
Tr	-	Trouton ratio

Abbreviation

DG	-	Discontinuous Galerkin
FD	-	Finite difference
FV	-	Finite volume
FE	-	Finite element
SD	-	Spectral difference
SV	-	Spectral volume
CFL	-	Courant-Friedrichs-Lewy number
RK	-	Runge-Kutta
RKDG		Runge-Kutta discontinuous Galerkin
TVB	-	Total variation bounded
TVD	-	Total variation diminishing
NVD	-	Normalized variable diagram
CBC	-	Convection boundedness criterion
BAIR	-	Boundedness, accuracy, and interpolative reasonableness
BR1	-	First Bassi-Rebay scheme
BR2	-	Second Bassi-Rebay scheme
DOF	-	Degree of freedom
LDG	-	Local discontinuous Galerkin
NSF	-	Navier-Strokes-Fourier
LTE	-	Local thermal equilibrium
NF	-	Navier-Fourier
NCCR	-	Nonlinear coupled constitutive relations
MD	-	Molecular dynamics
DSMC	-	Direct simulation of Monte Carlo
CCF	-	Cylindrical Couette flow
OREX	-	Orbital Re-entry experiment
HWNP	-	High Weissenberg number problem
BSD	-	Both-side-diffusion
PDPS	-	Positive definiteness preserving scheme
LCR	-	Log conformation tensor representation
SRCR	-	Square root conformation representation

UCM	-	Upper convected derivative
PTT	-	Phan-Thien-Tanner
PS	-	Polystyrene
PAM	-	Polyacrylamides
VOF	-	Volume-of-fluid
CSF	-	Continuum surface force
MULES	-	Multidimensional universal limiter with explicit solution
PISO	-	Pressure-implicit with the splitting of operators
UDS	-	Upwind difference scheme
HRS	-	High-Resolution schemes
HREG	-	High-Resolution equi-gradient scheme
PSD	-	Principal stress difference

Abstract

Computational simulation of Boltzmann-based hydrodynamic models for rarefied and microscale gases and viscoelastic fluids in highly nonequilibrium state

Tushar Chourushi

Department of Mechanical and Aerospace Engineering Graduate School, Gyeongsang National University Supervised by Prof. Rho Shin Myong

Fluid flows are governed by a complicated nonlinear system of partial differential equations. In many situations, the mean free path of gas-particle becomes comparable to the characteristic physical length scale or the relaxation time scale for liquid becomes similar to the characteristic time scale, of the flow process. At this stage, the flow processes exhibit non-equilibrium as it significantly deviates from the local state of equilibrium. It is well known that the two-century-old so-called Navier-Stokes-Fourier equations are based on the vital assumptions of local-thermal-equilibrium (made by Stokes in 1845 that the bulk viscosity vanishes), and as a result, their validity may be seriously questioned in states away from the equilibrium. Therefore, it becomes essential to understand the nonlinear flow phenomena associated with these fluids, to design the fluid flow system efficiently and accurately.

The thesis explores the Boltzmann-based hydrodynamic models for describing the rarefied and microscale gas flows, and viscoelastic fluid systems using the higher-order computational methodology. In the first half of the thesis, the second-order constitutive laws based on Eu's generalized hydrodynamics and Myong's balanced closure, for diatomic (and linear polyatomic) gas molecules are presented. A computational attempt is made to investigate the thermal nonequilibrium associated with different gas types under nonequilibrium conditions. In the next half, the "sinh" second-order nonlinear coupled constitutive relations (NCCR) based on the Rayleigh-Onsager quadratic dissipation for viscoelastic fluid are detailed. Next, a plausible way to overcome the stumbling block of numerical simulations, the so-called High Weissenberg Number Problem (HWNP) is explored.

In this study, the higher-order, *h*-adaptivity scheme, the so-called discontinuous Galerkin (DG) methods were employed for solving the compressible rarefied gas flows to obtain the solution of the two- and three-dimensional flow problems. A summary of numerical implementation of various limiters, numerical flux functions, and boundary conditions is provided for the pedagogical purpose. In the other part of the thesis, the incompressible viscoelastic fluids were solved using the higher-order finite volume schemes in the framework of OpenFOAM. Further briefing on discretization techniques for constitutive equations, high-resolution schemes, the volume-of-fluid method is presented.

The presented methodologies are verified and validated using the analytics, the available experiments, and the existing results. In the case of rarefied gas flows, various benchmark tests using the first- and second-order Boltzmann-Curtiss-based models along with the slip and jump conditions are investigated. The results obtained using the second-order constitutive model with the slip and jump conditions showed better agreement with the existing studies, under the nonequilibrium conditions. Correspondingly, various benchmark tests of viscoelastic fluid using different constitutive models are studied. The results obtained using the viscoelastic fluid conditions with the existing viscoelastic models.