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Abstract

Computational simulation of Boltzmann-based hydrodynamic models for
rarefied and microscale gases and viscoelastic fluids in highly non-

equilibrium state

Tushar Chourushi
Department of Mechanical and Aerospace Engineering
Graduate School, Gyeongsang National University

Supervised by Prof. Rho Shin Myong

Fluid flows are governed by a complicated nonlinear system of partial differential equations.
In many situations, the mean free path of gas-particle becomes comparable to the characteristic
physical length scale or the relaxation time scale for liquid becomes similar to the characteristic
time scale, of the flow process. At this stage, the flow processes exhibit non-equilibrium as it
significantly deviates from the local state of equilibrium. It is well known that the two-century-
old so-called Navier-Stokes-Fourier equations are based on the vital assumptions of local-
thermal-equilibrium (made by Stokes in 1845 that the bulk viscosity vanishes), and as a result,
their validity may be seriously questioned in states away from the equilibrium. Therefore, it
becomes essential to understand the nonlinear flow phenomena associated with these fluids, to

design the fluid flow system efficiently and accurately.

The thesis explores the Boltzmann-based hydrodynamic models for describing the rarefied
and microscale gas flows, and viscoelastic fluid systems using the higher-order computational
methodology. In the first half of the thesis, the second-order constitutive laws based on Eu’s
generalized hydrodynamics and Myong’s balanced closure, for diatomic (and linear

polyatomic) gas molecules are presented. A computational attempt is made to investigate the
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thermal nonequilibrium associated with different gas types under nonequilibrium conditions.
In the next half, the “sinh” second-order nonlinear coupled constitutive relations (NCCR)
based on the Rayleigh-Onsager quadratic dissipation for viscoelastic fluid are detailed. Next,
a plausible way to overcome the stumbling block of numerical simulations, the so-called High

Weissenberg Number Problem (HWNP) is explored.

In this study, the higher-order, h-adaptivity scheme, the so-called discontinuous Galerkin
(DG) methods were employed for solving the compressible rarefied gas flows to obtain the
solution of the two- and three-dimensional flow problems. A summary of numerical
implementation of various limiters, numerical flux functions, and boundary conditions is
provided for the pedagogical purpose. In the other part of the thesis, the incompressible
viscoelastic fluids were solved using the higher-order finite volume schemes in the framework
of OpenFOAM. Further briefing on discretization techniques for constitutive equations, high-
resolution schemes, the volume-of-fluid method is presented.

The presented methodologies are verified and validated using the analytics, the available
experiments, and the existing results. In the case of rarefied gas flows, various benchmark tests
using the first- and second-order Boltzmann-Curtiss-based models along with the slip and jump
conditions are investigated. The results obtained using the second-order constitutive model
with the slip and jump conditions showed better agreement with the existing studies, under the
nonequilibrium conditions. Correspondingly, various benchmark tests of viscoelastic fluid
using different constitutive models are studied. The results obtained using the viscoelastic
“sinh” second-order NCCR model suggested that the HWNP are effectively overcome in

comparison with the existing viscoelastic models.
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