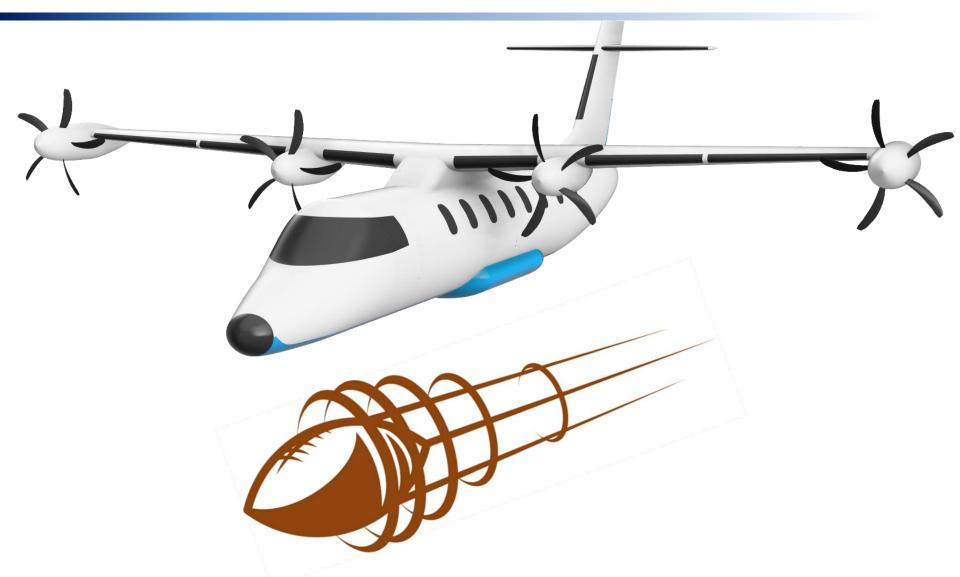
Issues in Developing Hydrogen Fuel Cell Commuter Aircraft: Retrofit vs From Scratch

March 20th (Wed), 2024

Rho Shin Myong

Professor, College of Space and Aeronautics (CSA) Gyeongsang National University (GNU) Jinju, Republic of Korea *myong@gnu.ac.kr*


Rho Shin Myong

Ph.D. in Aerospace Eng. (1996), University of Michigan Research Associate (1997-99), NASA Goddard Space Flight Center Director (2017), (Engineering) Research Center for Aircraft Core Technology Director (2022), Aerospace Systems Research Center Leader (2023), Mega Project for Hydrogen Fuel Cell Commuter Aircraft

Talk 1/20Korea-US 2024 Workshop on Carbon-free Aviation Using Electrified PropulsionR. S. Myong, Gyeongsang National University, Republic of KoreaMarch 20th (Wed), 2024 - Bldg. 407, GNU, Jinju, Republic of Korea

Talk 2/20Korea-US 2024 Workshop on Carbon-free Aviation Using Electrified PropulsionR. S. Myong, Gyeongsang National University, Republic of KoreaMarch 20th (Wed), 2024 - Bldg. 407, GNU, Jinju, Republic of Korea

Overview of Hydrogen Commuter Mega Project

Technology for commuter-class aircraft using hydrogen-fuel-cellpowered hybrid distributed electric propulsion

10 including GNU (Leading), UNIST, KERI, KAI, Hanwha Aerospace Co. 2 Local Government: Gyeongnam & Ulsan

Budget

Project Title

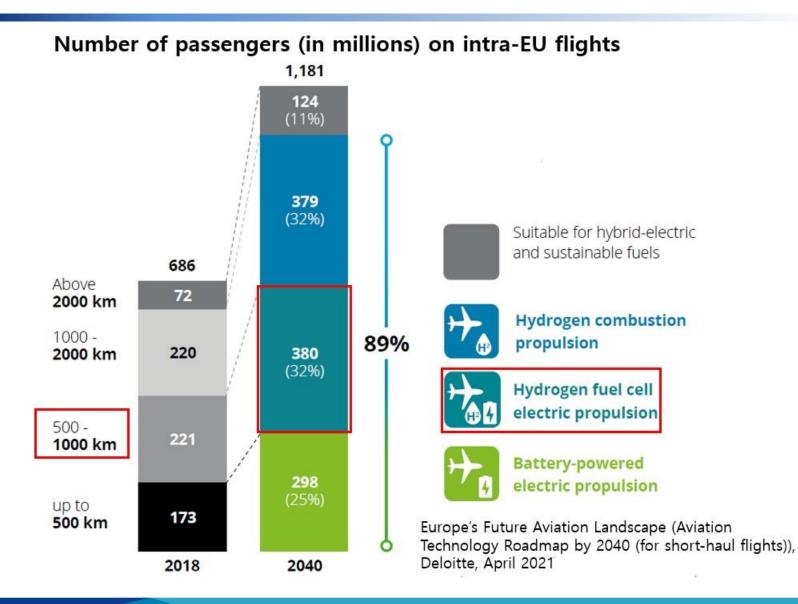
Participating Organizations

> 6.42 Million USD (1 Phase; 2023-25) 61.1 Million USD (2-3 Phase; 2026-2032)

Talk 3/20Korea-US 2024 Workshop on Carbon-free Aviation Using Electrified PropulsionR. S. Myong, Gyeongsang National University, Republic of KoreaMarch 20th (Wed), 2024 - Bldg. 407, GNU, Jinju, Republic of Korea

Roadmap: Europe's Future Aviation

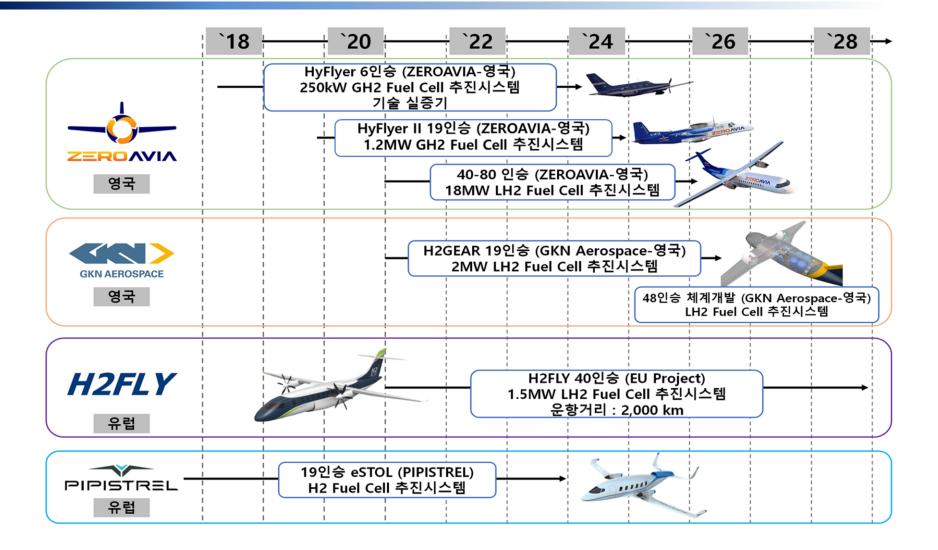
Key features of zero-carbon and zero-emissions aircraft by 2040


Hydrogen is reacted in a fuel cell to provide electricity to electric motors and then spin propellers or ducted fans to generate thrust

- ✓ Near-Zero emissions (water is still produced)
- ✓ Quieter engines
- Economy of scale benefits from synergies with other hydrogen dependent industries

Europe's Future Aviation Landscape (Aviation Technology Roadmap by 2040 (for short-haul flights)), Deloitte, April 2021

Europe's Future Aviation Landscape



Talk 5/20

R. S. Myong, Gyeongsang National University, Republic of Korea

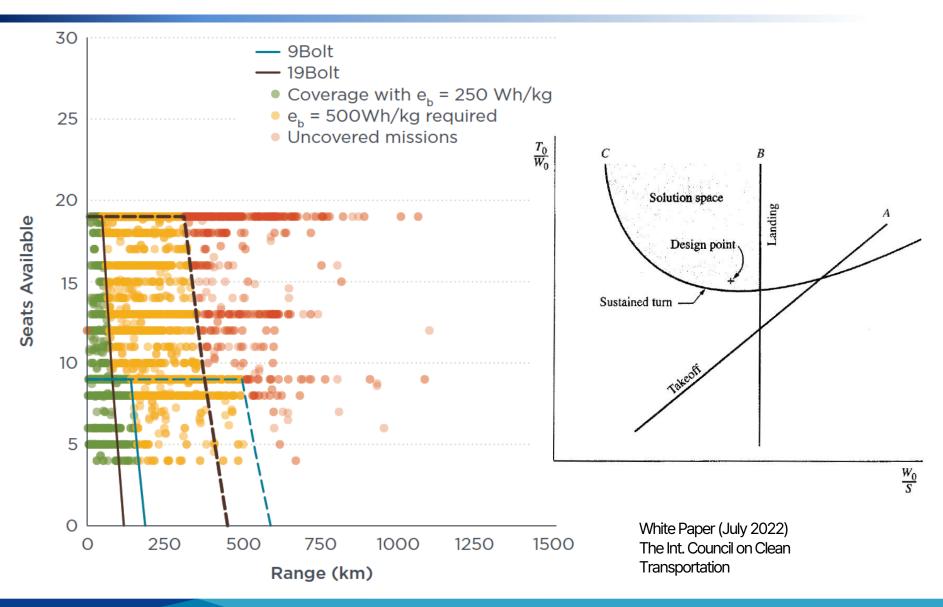
Korea-US 2024 Workshop on Carbon-free Aviation Using Electrified Propulsion ublic of Korea March 20th (Wed), 2024 - Bldg. 407, GNU, Jinju, Republic of Korea

Hydrogen Aircraft Programs Worldwide

Talk 6/20Korea-US 2024 Workshop on Carbon-free Aviation Using Electrified PropulsionR. S. Myong, Gyeongsang National University, Republic of KoreaMarch 20th (Wed), 2024 - Bldg. 407, GNU, Jinju, Republic of Korea

19-passenger (Part 23) Conventional Aircraft

Aircraft	Beechcraft 1900	Embraer 110	Jetstream 31
Image			MAETUR CAS INTE
MTOW (lb)	16,600	13,000	16,200
Empty Weight (lb)	10,140	8,490	10,400
Range (km)	2,370	1,960	1,260
Take-off/Landing Distance (m)	1,750 or 1,160	1,230	1,380
CO ₂ Emissions (kg) (TO/L)	392.8	242.2	295.3
CO ₂ Emissions (kg/min) (Cruise)	12.3	7.1	14.3

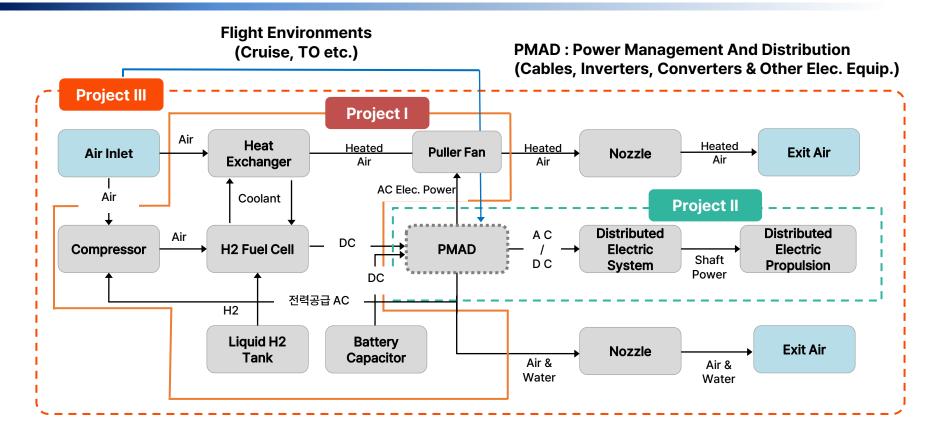

Talk 7/20Korea-US 2024 Workshop on Carbon-free Aviation Using Electrified PropulsionR. S. Myong, Gyeongsang National University, Republic of KoreaMarch 20th (Wed), 2024 - Bldg. 407, GNU, Jinju, Republic of Korea

19-passenger (Part 23) Hydrogen Aircraft

Program	HyFlyerII	H2GEAR	Miniliner
Image	A CONTRACTOR OF THE OWNER		
Company	ZEROAVIA (UK)	GKN Aerospace (UK)	Pipistrel Aircraft (Slovenia) & Textron eAviation (US)
Fuel Type	Compressed Gaseous H2 Fuel Cell	Liquid H2 Fuel Cell	Liquid H2 Hybrid
Powertrain	1.2 MW	1 MW	2 MW (1 MW Each for FC and Battery)
Investment	36 Million USD	57 Million USD	-

Talk 8/20Korea-US 2024 Workshop on Carbon-free Aviation Using Electrified PropulsionR. S. Myong, Gyeongsang National University, Republic of KoreaMarch 20th (Wed), 2024 - Bldg. 407, GNU, Jinju, Republic of Korea

Challenges of Developing Hydrogen Commuter



Talk 9/20

R. S. Myong, Gyeongsang National University, Republic of Korea

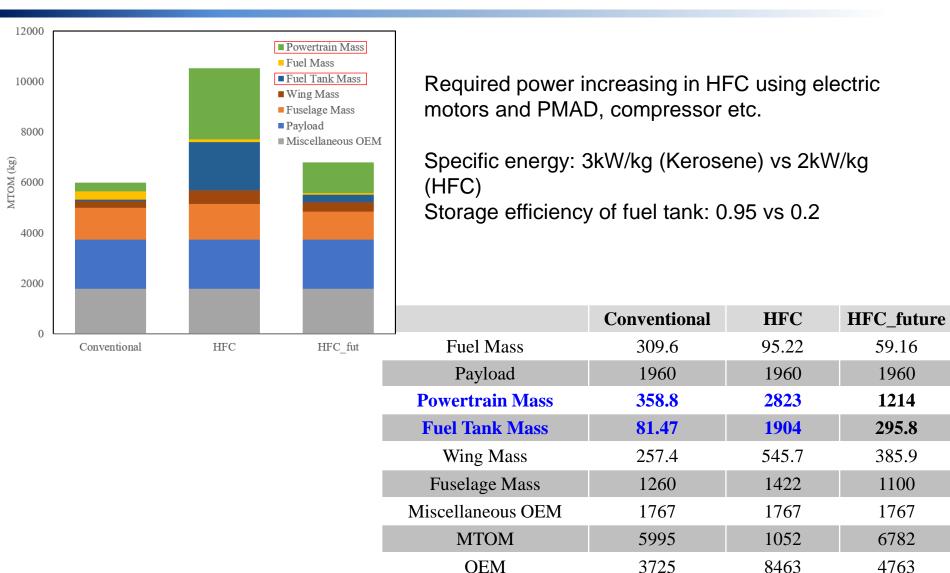
Korea-US 2024 Workshop on Carbon-free Aviation Using Electrified Propulsion ublic of Korea March 20th (Wed), 2024 - Bldg. 407, GNU, Jinju, Republic of Korea

Core Technology for Hydrogen Commuter Project

Requirements

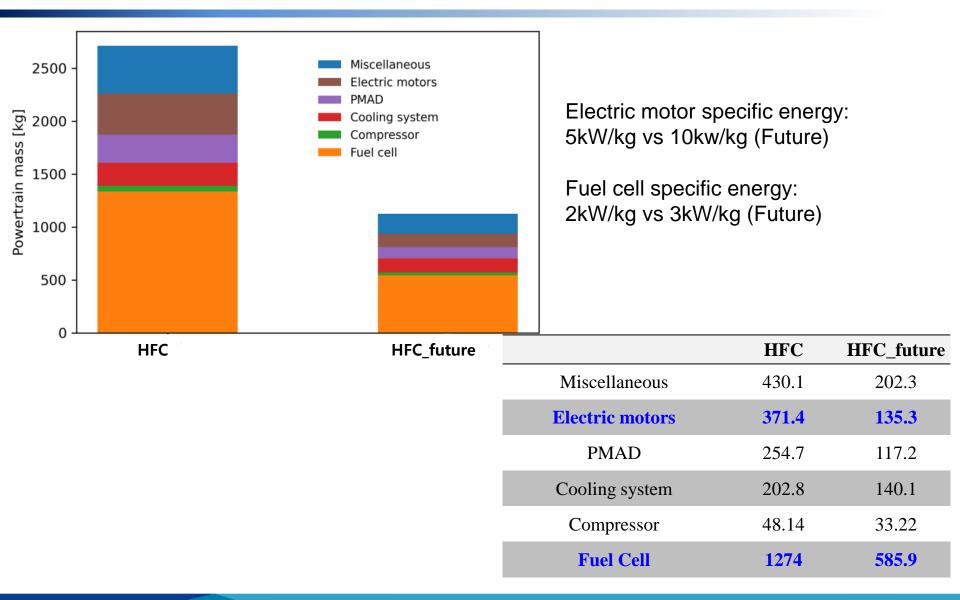
19 Passenger (Part 23), Range (500~1,000 km), Payload (30%), TO/Landing Distance (500~800 m), Carbon Reduction (75~90%), Low Noise (Below 75 dB)

Talk 10/20Korea-US 2024 Workshop on Carbon-free Aviation Using Electrified PropulsionR. S. Myong, Gyeongsang National University, Republic of KoreaMarch 20th (Wed), 2024 - Bldg. 407, GNU, Jinju, Republic of Korea

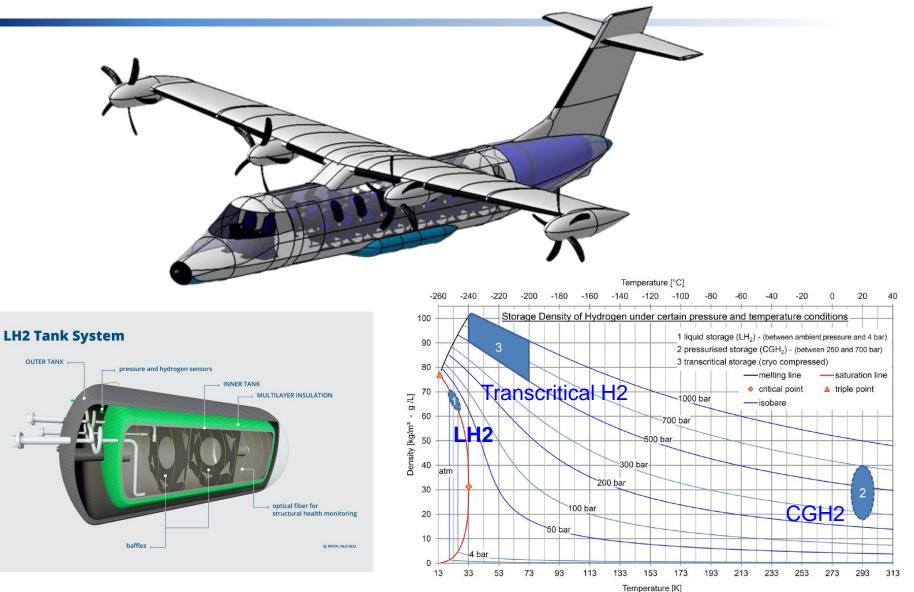

Hydrogen Fuel Cell Commuter: A Case Study

	Conventional	HFC	HFC _{future}
Propeller efficiency	0.8	0.8	0.8
SFC [kg/(kN·s))]	$1.141 \cdot 10^{-6}$	2.492·10 ⁻⁷	2.361.10-7
C _L /C _D	10.98	14.5	14.5
W _{empty} [kg]	3725	8461	4654
Cruise - W _{fuel} [kg]	269.1	76.1	45.75
Climb, Descent - W _{fuel} [kg]	40.4	19.12	12.44
$\mathbf{W}_{\mathbf{fuel total}}$	309.5	95.22	58.19
W _{payload} [kg]	1960	1960	1960
MTOM [kg]	5995	10517	6672
Range _{cruise} [km]	338.1	338.1	338.1
Range _{climb,descent} [km]	57.9	57.9	57.9

$$Range_{cruise} = \frac{\eta_{prop}}{SFC} \frac{C_L}{C_D} \ln \left(\frac{W_{empty} + W_{payload} + W_{fuel}}{W_{empty} + W_{payload}} \right)$$


Talk 11/20

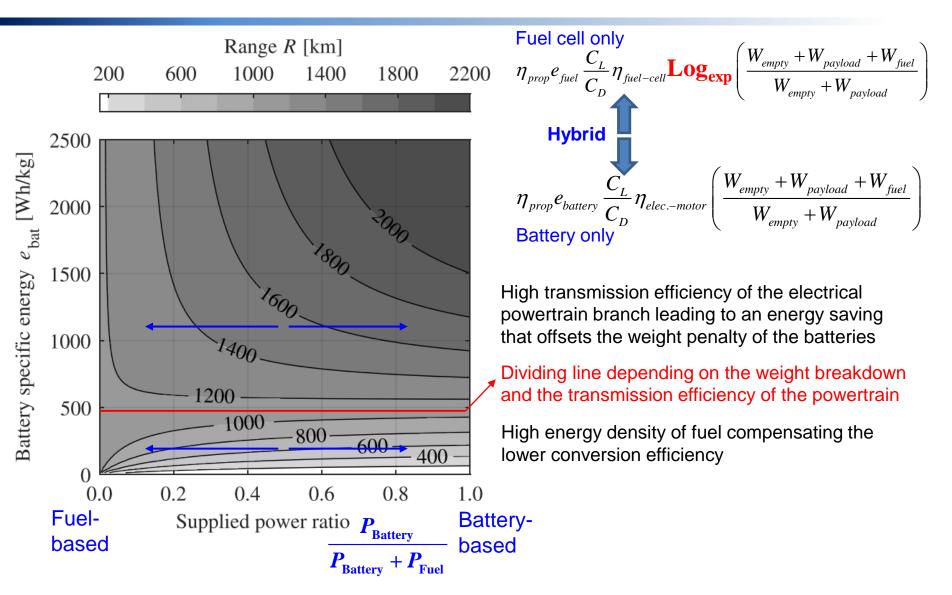
Hydrogen Fuel Cell Commuter: A Case Study


Talk 12/20Korea-US 2024 Workshop on Carbon-free Aviation Using Electrified PropulsionR. S. Myong, Gyeongsang National University, Republic of KoreaMarch 20th (Wed), 2024 - Bldg, 407, GNU, Jinju, Republic of Korea

Hydrogen Fuel Cell Commuter: A Case Study

Talk 13/20Korea-US 2024 Workshop on Carbon-free Aviation Using Electrified PropulsionR. S. Myong, Gyeongsang National University, Republic of KoreaMarch 20th (Wed), 2024 - Bldg. 407, GNU, Jinju, Republic of Korea

Hydrogen Fuel Cell Commuter: RIMP Version 1



Talk 14/20

R. S. Myong, Gyeongsang National University, Republic of Korea

Korea-US 2024 Workshop on Carbon-free Aviation Using Electrified Propulsion ublic of Korea March 20th (Wed), 2024 - Bldg. 407, GNU, Jinju, Republic of Korea

Hybrid: Combination of Fuel Cell and Battery

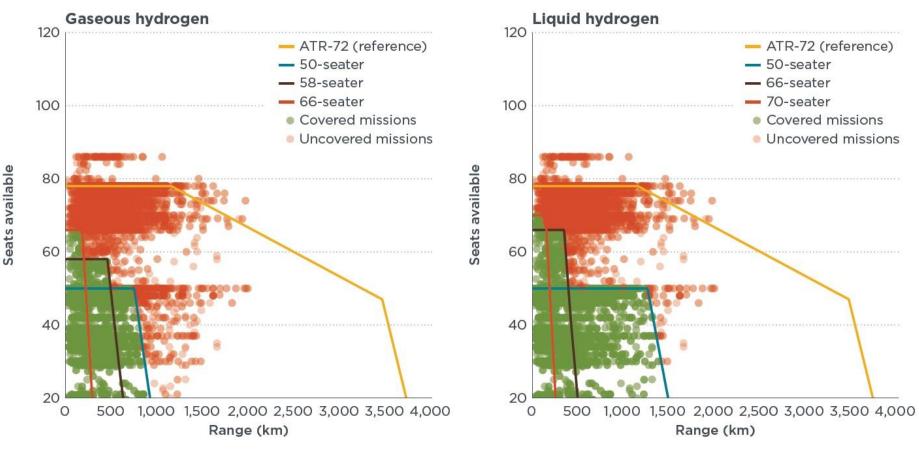
R. S. Myong, Gyeongsang National University, Republic of Korea

Korea-US 2024 Workshop on Carbon-free Aviation Using Electrified Propulsion ublic of Korea March 20th (Wed), 2024 - Bldg. 407, GNU, Jinju, Republic of Korea

Challenges: Land Operation vs Aviation

	Fuel Cell for Land Operation	Fuel Cell for Aviation
Characteristics	Frequent stop & easy refueling (fast charging critical) Compressed hydrogen gas tank	Non-stop & no refueling (high-capacity charging) Liquid hydrogen tank
Weight & Thermal Management	Moderate	Critical in performance
Required Power	Low required power (100kw for NEXO)	High power required (1.2 MW for 19- passenger commuter) leading to HFC efficiency degradation
Operational Environment	Moderate change (15°C / 1 atm)	Severe change (-30°C / 0.41 atm at altitude of 7 km)
Missions	Moderate variations	High power : TO, landing, re-climbing Low power : cruise, descent, turn
Certification	Standards established	Challenging
Reliability	High level	High reliability required

Critical Future Technologies


Hybrid power system	Optimization of insulation thickness of storage tank Optimal control of fuel cell and battery energy considering flight phases Fuel cell power system considering low-density flight environments Hybrid system involving battery and super-capacitor
Distributed electric propulsion system	High-fidelity methods for computing air flows over wing- fuselage-propeller
High performance commuter	Reducing mass of powertrain and fuel tank (while increasing various efficiency) Sophisticated weight estimation modeling technique for powertrain and fuel tank High-lift, low-noise aerodynamic shape design

Talk 17/20Korea-US 2024 Workshop on Carbon-free Aviation Using Electrified PropulsionR. S. Myong, Gyeongsang National University, Republic of KoreaMarch 20th (Wed), 2024 - Bldg. 407, GNU, Jinju, Republic of Korea

Standardization and Certification

Standardization	 Gaseous and liquid hydrogen storage tanks US CGA H-3-2019: Minimum design and performance applied to cryogenic hydrogen storage tanks) ISO 21011:2008: Design, manufacturing and testing requirements for valves for temperatures below -40 degrees Celsius Hydrogen fuel cell power system (IEC, EUROCAE, SEC, ANSI) Distributed electric propulsion system (ASTM, EASA, SAE)
Certification	Certification standards for hydrogen fuel cell hybrid power systems for aviation (AIR 6464, AS 6858, 6679, 7373) No guideline for PMAD Certification standards for distributed electric propulsion system (DO-311A, F3338-21, AIR 7765 FAR Part 23: In 2016, it was significantly reduced and integrated,
	 but major safety standards such as SLD (supercooled large droplet) icing condition and crashworthiness were strengthened. Issues in certification of retrofitted aircraft with new carbon-free propulsion systems?

Retrofit

White Paper (July 2023) The Int. Council on Clean Transportation

Talk 19/20Korea-US 2024 Workshop on Carbon-free Aviation Using Electrified PropulsionR. S. Myong, Gyeongsang National University, Republic of KoreaMarch 20th (Wed), 2024 - Bldg. 407, GNU, Jinju, Republic of Korea

Retrofit vs From Scratch: Pros & Cons

First deliveries of hydrogen/battery-powered passenger aircraft expected between 2035 and 2040. The complete renewal might take decades. (The lifetime of an aircraft 25 years) The renewal can be accelerated by mostly economics (fuel-efficient aircraft, variation in air traffic demand, lower maintenance costs) and by stricter governmental environmental regulations and financial incentives.

Retrofit	From Scratch
Based on proven technology (but sometimes things can get out of control like the B737-Max)	Taking advantage of new technology developed in last 30-50 years (but sometimes things can get out of control like the MRJ)
Low development cost and certification risk	High development cost and certification risk
Short lifetime (10 years + new 15 years) Performance penalties & inevitable consequences like uselessness of fuel tank inside wings	Full lifetime and popular with customers Good performance and no penalty associated with retrofit
Not an option for everyone (because an aircraft to retrofit must be available) (Mainly for the purpose of demonstrating the feasibility)	Attractive option for latecomers (but investment resources and related infrastructure will be key)

Talk 20/20Korea-US 2024 Workshop on Carbon-free Aviation Using Electrified PropulsionR. S. Myong, Gyeongsang National University, Republic of KoreaMarch 20th (Wed), 2024 - Bldg. 407, GNU, Jinju, Republic of Korea