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Abstract 
This paper proposes a numerical method for predicting the far-field noise using Ffowcs 

Williams-Hawkings (FW−H) equation with high-order finite-difference method for the time 

derivative. The results of this method for second-, fourth-, and sixth-order finite difference 

approximations are compared with that of analytic applications, such as monopole and dipole. It 

is observed that the use of the high-order time derivatives is an efficient approach to improve the 

prediction accuracy of the radiated acoustic pressure, particularly when the temporal resolution is 

not sufficiently high owing to the limited time step size. Our findings in this study provide evidence 

that for higher-order approximations, the RMS error for the first and second derivatives is smaller. 

In addition, the RMS error for the sixth-order approximation decreases considerably compared to 

that for the second-order approximation, with an increase in the number of points per period. This 

study and its results are expected to serve as a guide for noise prediction, indicating the temporal 

accuracies of the acoustic analogy according to the high-order approximation of time derivatives. 
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1. Introduction 
With the improvements in the computational capacity of computers and the advent of powerful 

clusters, computational fluid dynamics (CFD) has emerged as a useful tool to solve engineering 

problems involving aerodynamic noise predictions [1, 2]. The results of CFD simulations can 

provide an insight into the noise generation mechanism and complex flow physics in the near field 

of sound sources, especially when the experimental methods are extremely demanding. However, 

the simulation process still requires a substantial amount of computational resources, thus resulting 

in increased costs associated with the high-density grids and small size of time steps to calculate 

far-field acoustics. In addition, the grid-based CFD method experiences excessive numerical 

dissipation on coarse grids; hence, the acoustic wave tends to dissipate quickly after traveling from 

the noise source. Therefore, high-order and high-resolution numerical schemes have been 

proposed to compute far-field acoustic pressures and acoustic fields near sources.  

The most commonly employed technique for predicting far-field noise is the acoustic analogy 

approach, which utilizes the Ffowcs Williams-Hawkings (FW-H) equation [3]. This is primarily 

because the direct application of CFD simulations to obtain the acoustic solution is a time-

consuming process. Hence, the prediction of acoustic sources using CFD simulations and that of 

acoustic wave propagation using the integral formulation of acoustic analogy are combined to 

calculate the resulting far-field noise [4-6]. Although this hybrid method is efficient and useful 

approach to evaluating the far-field acoustic, its applications can be limited by the quality of input 

data, such as spatial and temporal resolutions, obtained from either the numerical simulations or 

measured pressure data from wind tunnel tests [7, 8]. Typically, the time step size used in 

numerical simulations is much smaller than the time step needed to accurately capture the acoustic 

waves in the calculations. This is because the temporal resolution of the simulations is determined 

by the smallest step in the spatial grid [9]. Hence, previous studies [10-13] focused on improving 

spatial resolution with high-order and high-resolution numerical scheme for capturing the details 

of acoustic features near the sources more accurately. 

The literature survey showed that the temporal resolution plays a critical role in ensuring the 

precision of noise calculations. Ziegenbein and Oh [14] revealed that sufficient temporal resolution 

is required to achieve good agreement between experimental results and predictions when blade 

vortex interaction (BVI) occurs. The time-resolved particle image velocimetry (PIV) measurement 
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has been used to obtain the input data to predict far-field noise [15-17]. It was reported that 

insufficient temporal resolution leads to spurious high intensity source terms [16] and a significant 

Taylor truncation error [17]. Brentner et al. [18] investigated the temporal resolution effects on the 

noise prediction accuracy of BVI events using the experimental data from the DNW model [19]. 

They compared the acoustic predictions calculated by the measured data with the different rates of 

256, 512, and 1024 points per rotor revolution (pts/rev). It is found that 1024 pts/rev is sufficient 

to predict the peak amplitude of BVI noise using straightforward second-order accurate, central 

difference approximation in the temporal scheme.  

Although the temporal order of the time derivative for acoustic analogy is the important factor, 

as well as temporal resolutions, limited research has been devoted toward improving the temporal 

accuracy of acoustic propagation. The FW–H acoustic analogy with a second-order finite-

difference approximation for the time derivative is more generalized for far-field acoustic 

predictions [20-22]. Hence, it is essential to develop a higher-order finite-difference method for 

the time derivative, in order to predict the radiated noise associated with high frequencies for a 

limited time step size in the numerical simulations. This is because a smaller step size significantly 

increases the required computational time and increasing the time step while maintaining accuracy 

can be used to reduce the amount of data stored.  

This paper proposes a numerical technique for predicting aerodynamic noise to improve 

temporal accuracy using the FW–H equation with high-order time derivatives. The impacts of 

second-, fourth-, and sixth-order finite-difference approximations for the time derivatives were 

examined by solving analytic application problems, such as those involving monopole and dipole 

sources. The numerical results highlighted the advantages of using a higher-order scheme. 

Moreover, the findings of this study are expected to serve as a guide for improving the numerical 

accuracy of higher-order time derivatives for predicting acoustic propagation in order to determine 

the target frequency. 

 

2. Numerical method  

2.1. Ffowcs Williams and Hawkings (FW–H) equation 
Lighthill [23, 24] first suggested the concept of acoustic analogy with a formulation based on 

the mass and momentum conservation equations of the compressible Navier–Stokes equation. This 
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formulation describes the theory of aerodynamic sound generation and radiation as a result of 

fluctuating fluid flow, as distinct from the sound produced by the vibration of solids. Curle [25] 

modified Lighthill’s acoustic analogy for considering the effect of solid boundaries. Ffowcs 

Williams and Hawkings [3] derived the FW–H equation to account for the effect of solid 

boundaries in arbitrary motion using generalized functions. Further, Lowson [26, 27] and Farassat 

[28, 29] applied the FW–H equation to predict rotor noise. Di Francescantonio [30] used the FW–

H equation with a permeable surface as the Kirchhoff approach [31, 32] to capture the quadrupole 

noise associated with the high-speed impulsive noise of helicopter rotors. Farassat formulated the 

integral solution of the FW–H equation, which is one of the most important formulae in the field 

of aeroacoustics and is usually employed for hybrid computation [33-35]. 

In this study, we employed the acoustic analogy approach, utilizing time-domain integral 

formulations of the FW-H equation with a permeable surface, to predict far-field noise. The FW-

H equation, derived from the rearrangement of the Navier-Stokes equations, takes the form of an 

inhomogeneous wave equation. It includes a volume source term (quadrupole) and two surface 

source terms (dipole and monopole) [36]; this is expressed in Eq. (1). The first term on the right-

hand side (RHS) of Eq. (1) indicates the flow-induced noise, and the second and third terms denote 

the loading and thickness noises, respectively. This equation provides an accurate theoretical 

solution for describing the noise propagation from the acoustic source to the observer at the far 

field.  
2

2 ( , ) [ ( )] [ ( )] [ ] ( )ij i o n
i j i

p t T H f L f U f
x x x t

δ ρ δ∂ ∂ ∂′ = − +
∂ ∂ ∂ ∂

x
         (1)  

where x is an observer position, t is the observer time, and p' is the acoustic pressure at the 

observer position. The term with the subscript of o indicates the fluid variables at the quiescent 

medium in the RHS of Eq. (1). H(f) is the Heaviside function, and δ(f) is the Dirac delta function. 

The Lighthill stress tensor Tij represents the volume source term with quadrupole acoustic 

radiation [24].  
2( )ij i j ij o o ijT v v p cρ ρ ρ δ= + − −              (2)  

Li is the unsteady loading vector on the source surface, which is the dipole source term, and Un 

is the unsteady flow vector of the source, which is the monopole source term, as in Eqs. (3) and 

(4).  
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( )i ij j i n nL p n u u vρ= ∆ + −             (3)  

( )n o n n nU v u vρ ρ= + −                   (4)  

 

where un and vn are the fluid and perturbation velocities normal to the source surface, 

respectively. 

On comparing Eq. (1) with Lighthill’s formulation, it can be observed that the source term in 

the FW–H equation contains two more components for representing monopole and dipole sources, 

in addition to the Lighthill’s stress tensor. The volume source term in the FW–H equation can be 

omitted to avoid complicating the volume integration in practical applications. Farassat derived 

the integral solution of the FW–H equation, termed Farassat’s formulation 1A, by neglecting the 

quadrupole source term. This formulation only contains the thickness and loading source terms, as 

shown in Eq. (5), because the quadrupole source term has already been included in the permeable 

surface [37]. The subscripts T and L correspond to the thickness and noise components, 

respectively.  

The FW-H equation has been utilized for permeable surfaces encompassing all physical noise 

sources, thereby eliminating the necessity to calculate the quadrupole contribution: 

 

( , ) ( , ) ( , )T Lp t p t p t′ ′ ′= +x x x                                     (5)  

2

2 32
0 0

1 ( ) 1 ( )( , )
4 41 1

o n n o n r r
T

f fr rret ret

U U U rM cM cMp t dS dS
r M r M
ρ ρ

π π= =

   + + −′ = +   
− −      

∫ ∫x 

 

     (6)  
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π

= =

=
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 + −
+  

−  

∫ ∫

∫

x




              (7) 

rt
c

τ = −                                                               (8) 

 

where [ ]ret in Eqs. (6) and (7) indicates that the values enclosed within the symbol are assessed 

at the retarded-time (τ), defined as in Eq. (8). Here, r is the radiation distance from the source 
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position (y) to the observer position (x), and c is the speed of sound. The observer time (t) 

corresponds to the moment when the sound reaches the observer's location. On the other hand, the 

retarded time or source time (τ) refers to the time at which the acoustic signal that reaches the 

observer at time (t) was originally emitted from the source. The RHSs of Eqs. (6) and (7) are 

mainly associated with the local acceleration of the surface and the net force acting on the fluid, 

respectively. The dots imply the time derivative terms, i.e., �̇�𝑈n, �̇�𝐿r, and �̇�𝑀r. Therefore, the order of 

the finite-difference approximation for the time derivative can affect the accuracy of the numerical 

predictions.  

 

2.2. Source-time dominant algorithm 
The numerical algorithm is required to provide the acoustic solution from the analytical 

formulation. The most common methods for finding the time history of the acoustic pressure are 

the retarded-time algorithm or source-time dominant algorithm. For the retarded-time algorithm, 

it is necessary to maintain a fixed observer position (x) and observer time (t) throughout the 

numerical integration process. Although the retarded-time approach has proven to be robust, the 

coordinate transformation for each point on the noise source grid is needed to find the particular 

source time, hence satisfying the retarded-time equation in Eq. (8) for each observer time at which 

the solution is desired. The source-time dominant algorithm presents an alternative to the retarded-

time approach. In this method, the source time (τ) is fixed in advance instead of determining the 

observer time and estimating when the acoustic signal will reach the observer. This method offers 

a different perspective by focusing on the emission time from the source rather than the arrival 

time at the observer. Although the traveling time from each source point to the observer location 

is different, the observer time can be computed analytically by adding the traveling time to the 

emitted source time; hence, determining the observer time is more straightforward than finding the 

retarded time. In the source-time dominant approach, a sequence of observer times is generated, 

which are unequally spaced. To combine the contributions from all noise sources at a specific 

observer time, it is essential to interpolate the time history of the acoustic signal at the observer 

position. This interpolation process ensures that the acoustic signals from different noise sources 

are synchronized and can be summed together. The source-time dominant algorithm is more useful 

for predicting the far-field noise using the discrete time-dependent input data obtained from CFD 
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simulation [20, 38, 39]. In addition, since the calculation process of this algorithm is inherently 

parallel, efficient memory management is possible for massive computation [40].  

In this study, the source-time dominant algorithm is implemented for predicting the radiated 

acoustic pressure at the observer position, and its schematic diagram is shown in Fig. 1. First, 

choose a source panel with a whole source time signal based on the center of the panel, and then 

calculate when the signal reaches the observer. After finding the observer time emitted from the 

source panel, calculate the time derivative of the fluid properties from the source panel and 

compute radiated acoustic pressure at the observer position using Eqs. (6) and (7). Lastly, a single 

loop is completed when the acoustic signal for the observer position is interpolated to store at the 

desired observer time with the equal time step size. The Lagrange polynomial interpolation [41] is 

utilized in this study. 

 

Fig. 1. Schematic of the source-time dominant algorithm. 

The source-time dominant algorithm can be simplified to one forward calculation at each source 

time (τ) by assuming that the observers are stationary and the sources are moving. The forward 

calculation of time is essential not just for determining the source position, but also for evaluating 

the velocity and acceleration of the source panel. The source-time dominant algorithm appears to 
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be efficient. However, when high temporal resolution is necessary, such as in predicting blade-

vortex interaction (BVI) noise [38] and other impulsive noise sources [20], the source-time history 

may require a greater number of data points compared to the acoustic-pressure time history. This 

requirement for additional data points can have an impact on the reduction of computational 

efficiency. The computational cost can be efficiently alleviated by applying high-order time 

derivatives into the source-time dominant algorithm.  

 

2.3. Higher-order finite-difference method for the time derivative 
The second-order central difference approximation for the time derivative is generally 

employed for the FW–H acoustic analogy in the time domain [20, 21]. In this study, the effect of 

the higher-order finite-difference method on the accuracy of predictions of the far-field noise is 

investigated. The second-, fourth-, and sixth-order central difference approximations for the first 

and second derivatives in time can be formulated as shown in Eqs. (9)–(11) and Eqs. (12)–(14), 

respectively, where the superscript j represents the index for the source time step. 

 

           
1 1

2( )
2( )

j j j

iv O τ
τ τ

+ −∂ −
= = + ∆
∂ ∆

y y y                                                      (9) 

2 1 1 2
48 8 ( )

12( )

j j j j j

iv O τ
τ τ

+ − − −∂ − − + −
= = + ∆
∂ ∆

y y y y y                           (10) 

3 2 1 1 2 3
69 45 45 9 ( )

60( )

j j j j j j j

iv O τ
τ τ

+ + + − − −∂ − + − + −
= = + ∆
∂ ∆

y y y y y y y            (11) 

      
2 1 1

2
2 2

2 ( )
( )

j j j j

iv O τ
τ τ

+ −∂ − +
= = + ∆
∂ ∆

y y y y


                                       (12) 

2 2 1 1 2
4

2 2

16 30 16 ( )
12( )

j j j j j j

iv O τ
τ τ

+ + − −∂ − + − + −
= = + ∆
∂ ∆

y y y y y y


                 (13) 

2 3 2 1 1 2 3
6

2 2

2 27 270 490 270 27 2 ( )
180( )

j j j j j j j j

iv O τ
τ τ

+ + + − − −∂ − + − + − +
= = + ∆
∂ ∆

y y y y y y y y


      (14) 

 

The accuracies of the second-, fourth-, and sixth-order central difference approximations were 

compared with the analytic solution before implementing the high-order time derivative in 
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Farassat’s Formulation 1A. We assumed an analytic function with magnitude A = 1, frequency f = 

1 Hz, and ϕ = 0, as defined in Eq. (15). Thus, the first- and second-order time derivatives of the 

analytic function can be expressed as in Eqs. (16) and (17), respectively: 

 

sin( )y A ωτ ϕ= +                         (15) 

analytic cos( )yv Aω ωτ ϕ
τ
∂

= = +
∂

                            (16) 

  
2

2
analytic 2 sin( )yv Aω ωτ ϕ

τ
∂

= = − +
∂


                    (17) 

 

The comparison condition for calculating the time derivatives is 8 points per period. Fig. 2(a) 

shows that the second-order approximation of the first derivative tends to underpredict the peak 

values, whereas the fourth- and sixth-order approximations yield similar results. However, when 

predicting the second derivative, the sixth-order finite-difference approximation shows better 

agreement with the analytic solution, as compared with the second- and fourth-order formulae, as 

shown in Fig. 2(b). Based on our findings, it can be observed that the higher-order formulae of 

finite-difference approximations achieve better results for the predictions of first and second 

derivatives. Fig. 3 presents a comparison of the root mean square (RMS) error for the different 

orders of finite-difference approximations depending on the number of points per period. It is 

evident that, for higher-order approximations, the RMS error for the first and second derivatives 

is smaller. In addition, the RMS error for the sixth-order approximation decreases considerably 

compared to that for the second-order approximation, with an increase in the number of points per 

period. Thus, the sixth-order central finite-difference approximation of the first and second 

derivatives provided a more accurate solution than the results obtained by the second- and fourth-

order approximations. The effects of the higher-order formulae of the finite-difference 

approximations on the prediction accuracy of acoustic radiation for monopole and dipole sources 

are discussed in the following section. 
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(a)                                                                     (b) 

Fig. 2. Comparison of second-, fourth-, and sixth-order finite-difference approximations at 8 

points per period: (a) first derivative and (b) second derivative. 

 

Fig. 3. Comparison of RMS error based on the number of points per period for second-, fourth-, 

and sixth-order finite-difference approximations of the first and second derivatives. 
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3. Validation and results  
The acoustic analogy code based on the FW–H equation with the higher-order finite-difference 

method for the time derivative was applied to predict the acoustic pressure radiated from the sound 

sources that were analytically modeled using the stationary monopole and dipole point sources, as 

shown in Eqs. (18) and (19), respectively [42]. Both point sources satisfy that the source 

distributions are compact. The monopole source has an omnidirectional radiation pattern, whereas 

the dipole source has a directional characteristic along the x2-axis. As shown in Fig. 4, both the 

point sources are located at the origin and covered by a Kirchhoff (permeable) surface [32]. The 

acoustic pressures on the Kirchhoff surface with a radius of 1 m were established based on the 

radiation of the monopole and dipole sources with a magnitude A = 1 and frequency f = 10 Hz. 

The observers were placed at a distance of 15 m from the acoustic source position. The data consist 

of velocity, pressure, and density obtained from the velocity potential function and linearized Euler 

equation, as in Eq. (20).  

 

                 ( ), exp
4monopole

ret

A rt i t
r c

φ ω
π

  = −    
x                               (18) 

 ( ) 2 2
3 2, exp exp

4 4dipole
ret ret

Ax iAkxr rt i i
cr c r

φ ω τ ω τ
π π

        = − − − −               
x         (19) 

0 2, , p
t

p
c

φφ ρ ρ
′∂ ′∇ =

∂
′= = −u               (20) 

 

Fig. 4. Point source covered by Kirchhoff surface with radius 1m. 
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Figure 5 depicts the directivity of the acoustic pressure radiated from each acoustic source with 

a target frequency of f = 10 Hz. The validation results are obtained via the second-order 

approximation of the first- and second-time derivatives in high temporal resolutions, with 32 points 

per period for minimizing numerical errors. On comparing the results, it was observed that both 

the directivity and magnitude of the acoustic pressure are consistent with the analytic solution 

computed using Eqs. (18) and (19), respectively. Fig. 6 shows the comparison of the prediction of 

the acoustic pressure signal with the analytic solutions at a radiation directivity of 90º. It can be 

seen that the acoustic pressure signals of the monopole and dipole source are well-matched with 

the analytic solutions. However, the acoustic analogy with the low-order approximation of the time 

derivative provides accurate results for conditions where the resolutions per period are high. In 

low time resolutions per period, the prediction results of the lower-order approximation of time 

derivatives might have lower accuracies than those of the higher-order approximation. The 

prediction results for low time resolutions per period were compared with the acoustic pressure 

signals obtained by applying the Nth-order approximation of the time derivatives for 8 points per 

period. Fig. 7 shows that the results of the fourth- and sixth-order approximations are in close 

agreement with the analytic solution, whereas those of the second-order approximation tend to 

underpredict the acoustic pressure. It is observed that when the time resolutions per period are not 

sufficiently high, the acoustic analogy with the higher-order approximation provides more accurate 

predictions than that with the lower-order approximation.  

 
                                       (a)                                                               (b) 
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Fig. 5. Validation of radiated acoustic directivity for magnitude A = 1, frequency f = 10 Hz: (a) 

monopole source and (b) dipole source.  

 
                                         (a)                                                                     (b) 

Fig. 6. Comparison of the predicted acoustic pressure signals with second-order finite-difference 

approximations of time derivatives for 32 points per period and analytic solutions at a radiation 

directivity of 90º: (a) monopole source and (b) dipole source.  

 

Fig. 7. Comparison of radiated acoustic pressure signals obtained from monopole source 

(magnitude A = 1, frequency f = 10 Hz) for 8 points per period with second-, fourth-, and sixth-

order finite-difference approximations of time derivatives.  
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Figure 8 shows a comparison of the accuracy of the numerical results obtained from the acoustic 

analogy with the second-, fourth-, and sixth-order approximations of the time derivatives 

depending on the time resolutions per period. The accuracy of the acoustic prediction along the y-

axis can be defined as the numerical prediction results divided by the exact solutions. That is, the 

closer it is to 1, the more accurately predicted it is. The x-axis denotes the time resolutions per 

period, indicating that the temporal resolution of the predictable target frequency can be altered 

based on the predetermined time step size. For higher temporal resolutions (exceeding 16 points 

per period), the analytic solutions differ from all numerical prediction results by less than 4%. 

However, in low temporal resolutions (less than 16 points per period), the numerical results of the 

fourth- and sixth-order approximations are approximately 2–16% more accurate than those of the 

second-order approximation. In particular, for time resolutions of less than 6 points per period, the 

numerical results obtained by the sixth-order approximation differ from the analytic results by less 

than 10%; however, this difference is greater than 24% for the second-order approximation. Thus, 

the second-order approximation can provide sufficiently accurate results when the temporal 

resolution is high; however, the higher-order finite-difference method for the time derivative is 

required to obtain accurate acoustic predictions if the temporal resolution is low, owing to the 

limited time step size. The calculation time of the prediction varies depending on the order of 

approximations to the time derivatives, and its comparison is listed in Table 1. When applying the 

sixth-order approximation, the calculation time increases by only 3%, as compared to that with the 

second-order approximation, owing to the increase in the amount of computation.  
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Fig. 8. Accuracy of far-field acoustic prediction obtained from second-, fourth-, and sixth-order 

finite-difference approximations of time derivatives depending on time resolutions per period 

 

Table 1. Computing time depending on the order of approximations to the time derivatives 

Order Computing Time (s) Difference (%) 

2nd order 3.36 - 

4th order 3.40 1.3% 

6th order 3.46 3.0% 

 

4. Conclusion  
This study aimed to improve the prediction accuracy of far-field radiated acoustic pressures 

with limited temporal resolutions using the formulae for high-order finite-difference 

approximations to the time derivative for the acoustic analogy. The time domain integral 

formulation of the acoustic analogy based on the FW–H equation was used for predicting the far-

field acoustic pressure. The effects of the second-, fourth-, and sixth-order approximations of the 

time derivatives on the prediction accuracy were examined by comparing the numerical results 

with a known exact analytic solution. The comparison results showed that the acoustic analogy of 
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the fourth- and sixth-order approximations afforded 2–16% more accurate results than that of the 

second-order approximation in low time resolutions of 6–16 points per target period. For a time 

resolution of less than 6 points per period, the prediction results obtained by the sixth-order 

approximation indicated a difference of less than 10% from the analytic result; however, for the 

second-order approximation, this difference exceeded 24 %. Thus, the use of the higher-order 

finite-difference method for the time derivative in the acoustic analogy is an efficient approach to 

improve the prediction accuracy of the radiated acoustic pressure, particularly when the temporal 

resolution is not sufficiently high owing to the limited input conditions.  

The findings of this study are expected to serve as a guide for predicting far-field acoustic 

propagation with the time-domain integral formulation of the FW-H equation using higher-order 

time derivatives. However, this study is limited in that it only calculates the prediction accuracies 

for sound propagation on the Kirchhoff surface with stationary monopole and dipole sources as 

input data, as it is challenging to obtain the exact solution for the moving monopole and dipole 

acoustic sources. In the future work, we aim to supplement the noise prediction accuracies for 

moving acoustic sources. 
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