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Abstract

The nccrFOAM suite is a collection of nonlinear coupled constitutive relation (NCCR)
solvers for rarefied and microscale gas flows with vibrational non-equilibrium, in conjunction
with the conservation laws implemented in the foam-extend framework which is an open-
source solver with a General Public License (GPL 3). nccrFOAM solvers are developed as an
extension to the dbnsTurbFoam solver by implementing additional algebraic constitutive
relations for the non-conserved quantities of the stress tensor and heat flux vector. In contrast
to Navier-Stokes-Fourier (NSF) solvers that employ first-order constitutive relations to
calculate non-conserved quantities and consequently suffer from obvious shortcomings when
simulating gas flows in high non-equilibrium, the second-order NCCR framework presents a
novel alternative to simulate rarefied and microscale gas flows in a better and a more intuitive
manner. In addition to the solver for monoatomic gases, the solvers are for the first time
implemented for diatomic and polyatomic gases with translational-rotational and vibrational
degrees of freedom based on second-order constitutive models in a three-dimensional
framework. Towards this, a new foam-extend library has been written based on the two-
temperature formulation to handle the translational-rotational and vibrational modes. The new
foam-extend solver was validated for several representative problems, and an exhaustive list of
tutorials is documented. The solver will certainly benefit the rarefied and microscale gas
dynamics and hypersonics communities at large interested in flows involving high degrees of
rarefaction, speed, and temperature variations.

Keywords: OpenFOAM; rarefied and microscale gases; second-order constitutive models;

two-temperature formulation; vibrational non-equilibrium
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PROGRAM SUMMARY

Program Title: nccrFOAM

Licensing provisions: GNU General Public License 3 (GPLv3)
Programming Language: C++

Supplementary material: Shock Structure case files

Nature of the Problem: nccrFoam suite is developed to simulate rarefied and microscale gas
flows with vibrational non-equilibrium where the second-order effects of the constitutive
models in terms of non-conserved variables such as stress tensor, excess stress (in case of non-
monoatomic gases), and heat flux are no longer negligible.

Solution Method: nccrFoam suite is an extension of the foam-extend based dbns solver where
the algebraic relations for non-conserved moments are solved using an alternative numerical
method utilizing the tensor operations in the OpenFOAM framework. The two-temperature
formulation for high-temperature flows was developed with multiple vibrational relaxation
models with a new supporting dbnsv library.

1. Introduction

Advances in computational fluid dynamics (CFD), along with the advent of high-
performance computing, have transformed our understanding of fluid physics and made
profound contributions to the study of theoretical and experimental fluid dynamics. The most
widely used governing equations for modeling fluid flows are the Navier-Stokes-Fourier (NSF)
equations. The higher-order moments, viscous stress and heat flux, appearing in the
conservation laws of momentum and energy of the NSF equations are closed using Navier and
Fourier’s constitutive laws, respectively. These laws are first-order approximations based on
the first derivatives of flow velocity and temperature multiplied by viscosity and thermal
conductivity, respectively, and are only valid in states not far from thermal non-equilibrium.
Most industrial and scientific applications are simulated using NSF-based CFD codes.
However, there are important fluid flows for which the application of the NSF equation is
questionable. In this work, we are mainly concerned with these applications: rarefied and

microscale and high-temperature non-equilibrium gas flows.

Rarefied gas flows—gas flows in a low-density state—are present in a wide range of
scientific and technological problems. Such flows can affect hypersonic vehicles flying at very
high altitudes and the propulsion systems of spacecraft navigating in space [1]. In addition,
vacuum devices operating on the ground, such as gas deposition manufacturing processes in

near-vacuum conditions, are yet another interesting application of rarefied gases.



The flow of systems related to rarefied gases can be classified using the Knudsen number
(representing the altitude) and the Mach number (representing the flow speed) [2—4]. Note that
at least two non-dimensional parameters—for example, the Reynolds and Mach (or Knudsen
and Mach) numbers—are necessary to fully classify the gas flow regimes. The degree of non-
equilibrium measured by the product of the Mach number and the Knudsen number (viscous
force/pressure) reaches the highest for re-entry vehicles, followed by high hypersonic glider
vehicles, and computer hard disk drives. In the case of re-entry vehicles, the degree of thermal
non-equilibrium is sufficiently high at an altitude of 60 to 65 km where the maximum heat flux

occurs, and so there is a limit to the validity of the NSF theory at higher altitudes.

Microscale gas flows—qgas flows associated with micron- or sub-micron-sized devices—
exist in many scientific and technological problems today. Some of these flows include internal
flows through micro-channels, micro-pumps and micro-turbines, and external flows around
micro-particles. In these flows, gas-surface interactions are of the same order or even dominant
over the gas-gas bulk interactions, leading to interesting physics, such as velocity slip and
temperature jumps on solid surfaces. These applications are also classified as flows away from
thermal non-equilibrium due to the small characteristic length of the flow domain.

Hypersonic rarefied gas flows have an additional complication in the form of vibrational
non-equilibrium. The kinetic energy in the hypersonic gas flow transforms into thermal energy
across a shock structure. The thermal energy is restricted to the translational degree of freedom
immediately downstream of the shock front. The ambient gas in Earth’s atmosphere is mainly
composed of diatomic molecules. In the region further downstream from the shock front, the
high-energy gas molecules collide with each other resulting in energy redistribution among the
three internal modes (translational, rotational, and vibrational) of energy. The number of
collisions required to establish equilibrium between the translational and the vibrational
degrees of freedom is considerably higher than those required for the equilibration of
translational and rotational degrees of freedom. It is generally assumed that the translational-
rotational or simply trans-rotational equilibrium is established instantly and the two modes of
internal energy can be combined to give a trans-rotational degree of freedom. In contrast to
this, the slower vibrational-translational (\VT) relaxation leads to a region in the domain where
there is a definite difference in the energy stored in the trans-rotational modes and the
vibrational modes. Park [5] proposed a two-temperature framework to model this non-

equilibrium. In this framework, to handle the VT relaxation process, a separate partial



differential equation for the vibrational energy is added to the existing NSF conservation laws

that contain a non-zero source term.

Various methods are employed to understand the different flow regimes as a function of
non-equilibrium parameters (rarefaction and compressibility). They include the zeroth-order
Euler equations which are appropriate for gas flows in local thermal equilibrium (LTE), the
first-order Navier-Stokes-Fourier equations used in flows near LTE, and higher-order methods
for studying flows far from LTE. Other popular particle-based methods are employed to study
rarefied gas flows, especially at higher Knudsen numbers, such as the Lattice Boltzmann
method (LBM) [6,7] and direct simulation Monte Carlo (DSMC) [8-13]. Several PDE-based
higher-order methods have also been reported, such as the Burnett equation [14-16], super-
Burnett equations [17-19], R-13 moment equations [20—21], generalized hydrodynamics (GH)
[22-26], extended thermodynamics (ET) [27,28] and rationalized extended thermodynamics
(RET) [29,30]. Furthermore, various Kinetic schemes have been proposed, including the
discrete velocity method [31], the unified gas-kinetic scheme [32], the discrete unified gas-
kinetic scheme [33], and the gas-kinetic unified algorithm [34]. Recently, a novel solver based
on a combination of kinetic flux solver, discrete velocity method, and moment method was
also developed to simulate flows from continuum to rarefied regimes at moderate Knudsen
number [35].

Compared to the first-order NSF-based CFD algorithms, the PDE-based higher-order
methods are more suitable for simulating highly non-equilibrium flows. However, many of
these methods have additional theoretical or numerical drawbacks. For example, the Burnett
equation uses higher-order derivatives of the flow properties to close the open terms related to
viscous stress and heat flux in the constitutive equation. However, the use of higher-order
derivatives requires additional boundary conditions that greatly increase the modeling
complexity of the method [36]. Moreover, as the degree of thermal non-equilibrium increases,
the boundary condition modeling related to gas-surface interaction becomes more important,

but an accurate higher-order boundary condition has not been developed so far.

Myong’s nonlinear coupled constitutive relations (NCCR) [3,4,37,39-43,44-48], which
were systematically derived from the Boltzmann kinetic equation based on Eu’s modified
moment method [25,26,38] and Myong’s closing-last balanced closure [2], are novel
alternatives to previous methods. Firstly, they are derived to fully comply with the second law

of thermodynamics by ensuring non-negative entropy production [24,25] under all flow
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conditions. Secondly, the constitutive equations for the non-conserved quantities in their
original formulation are a set of algebraic relations that, although nonlinear and coupled in
nature, are simpler than solving the partial differential equations that appear in many of the
higher-order methods. The NCCR was initially developed based on the explicit finite volume
method (FVM) for one- and two-dimensional flow problems [3,4,37]. The NCCR has been
implemented recently into a three-dimensional mixed modal discontinuous Galerkin (DG)
framework, where auxiliary variables were introduced to solve the implicit algebraic NCCR of
non-conserved variables [39—43]. The NCCR has also been studied by other researchers [44—

48] who have used the implicit finite volume method (FVM) as a basic numerical scheme.

Previous higher-order methods have traditionally focused on investigating monoatomic gas
flows and have only begun to consider diatomic and polyatomic gas flows rather recently. For
instance, in 2015 Ruggeri et al. [29] extended the RET framework beyond the monoatomic gas
and developed a relevant theory for polyatomic gases, both in rarefied and dense conditions.
On the other hand, Myong and his collaborators have extended the NCCR framework to
diatomic and polyatomic gases based on the Boltzmann-Curtiss equation [49,50] and have
developed second-order NCCR models since 2004 [37,39-42].

Unlike the original Boltzmann kinetic equation, the Boltzmann-Curtiss Kkinetic equation
additionally introduces the angular momentum and azimuth angle associated with the rotational
mode of molecules to the kinetic formulation. In the NCCR framework, the bulk viscosity of
diatomic and polyatomic gases was viewed as a quantity directly related to the relaxation time
associated with the rotational degrees of freedom. It was shown by McCourt et al. [51, p. 276]
that the excess normal stress appearing in the conservation law of momentum is equivalent to
the difference between the translational and rotational temperatures. Thus, the hydrodynamic
equation can be formulated in two ways: either introducing the excess normal stress and
keeping the one temperature (Tirans-rot) CONcept or introducing two temperatures (Tirans & Trot)
but no excess normal stress. The former was employed in Myong’s study [37,39-42] because
it is a natural extension of the first-order Navier-Fourier constitutive laws, and the one-

temperature hydrodynamics is more naturally connected to the laws of thermodynamics.

Recently, Mankodi and Myong [52] developed a new set of governing equations based on
the two-temperature (Tiransrot & Tvib) formulation to simulate the second-order effects of
diatomic and polyatomic gases with activated vibrational degrees of freedom and vibrational-

transrotational non-equilibrium. The new set of equations included an additional equation of
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vibrational energy and a constitutive equation of the vibrational heat flux. The constitutive
equations of the viscous stress tensor, excess normal stress, transrotational heat flux, and
vibrational heat flux showed interesting coupling effects leading to unique nonlinear problems.
Moreover, analysis of a strong shock structure highlighted the interplay between the second-
order effects in the constitutive relations and the vibrational-transrotational non-equilibrium.
Furthermore, the analysis showed that the results of the second-order models were in better
agreement with the direct simulation Monte Carlo data when compared with the results of the
first-order models, especially in the profiles and slopes of density, velocity, and vibrational

temperatures.

The theoretical knowledge required to understand the second-order effects in complex flow
situations has a steep learning curve. In addition, the mathematical and computational tasks of
solving the complicated algebraic NCCR model are challenging. To this end, an NCCR solver
based on an open-source framework will benefit the scientific community and industry working
in the study of rarefied and microscale gas dynamics and hypersonics. The present work reports
anew NCCR solver based on the openFOAM framework, nccrFOAM, developed by extending
the dbnsTurbFoam solver in a foam-extend fork. The nccrFOAM suite mainly consists of two
solvers: nccrFOAM for monoatomic, diatomic, and polyatomic gases at low temperature in the
single-temperature (Tians-rot) formulation, and nccrVibFOAM for high-temperature diatomic
and polyatomic gases with vibrational non-equilibrium, having a provision for a wide range of
VT relaxation models in the two-temperature (Tirans-rot & Tvin) formulation. Both solvers can
simulate gas flows with first and second-order constitutive relations. To the best of the authors’
knowledge, the nccrFOAM suite is the first-of-its-kind solver based on second-order
constitutive models developed in an open-source framework to simulate rarefied and

microscale gas flows with vibrational non-equilibrium.

Section 2 explains the derivation of the NCCR models in detail and highlights the novelty
of the NCCR method. In Section 3, an alternative algorithm for solving the coupled tensorial
and vector constitutive equations is presented and compared with the previous iterative
methods. The structure of the nccrFOAM solver, its implementation, and details about
designing a nccrFOAM simulation case are then described in Section 4. In Section 5, the
validation of the nccrFOAM solver is shown for 1D simulations demonstrating the robustness
of the new solver. Further, shock structure simulations for monoatomic, polyatomic gases with

and without vibrational non-equilibrium are performed and their profiles are compared with



those obtained using an in-house FVM solver. Moreover, multi-dimensional NCCR
simulations are also conducted for three representative flows: 1) a 2D hypersonic flow over a
cylinder for monoatomic, diatomic, and polyatomic gases with VT relaxation; 2) a 2D steady-
state compressible Poiseuille flow of argon gas through a micro-channel; and 3) a 3D rarefied
gas flow associated with the impingement of a nozzle jet onto a surface at near-vacuum
condition. The flow properties obtained with the first- and second-order constitutive relations
are also briefly discussed. Finally, a summary of the present work along with a remark on future
research is provided in Section 6.

2. The second-order NCCR model with vibrational non-equilibrium
2.1. Derivation of the second-order NCCR model with vibrational non-equilibrium

Generally, diatomic and polyatomic gas molecules are in their vibrational ground states at
standard temperature conditions. At lower temperatures, the governing equation for
understanding the statistics of diatomic and (linear) polyatomic gas flows at relatively low
temperatures is given by the Boltzmann-Curtiss Kinetic equation [49] which has additional
dependent variables in the form of angular momentum and azimuthal angle. At higher
temperatures, the vibrational modes are activated, and the molecules can reside in one of the
higher vibrational quantum levels. The statistics for polyatomic gases at such high temperatures
can neither be modeled using the Boltzmann kinetic equation nor the Boltzmann-Curtiss kinetic

equation.

Recently, a modified Boltzmann-Curtiss Kinetic equation was proposed by Mankodi and
Myong [52] for such diatomic and polyatomic gas flows containing molecules in higher

vibrational levels:

aEfi+v-vfi +L-V A =2 53 [av [dQW G, ji K Q)R 7= £, F))
Tk 1

=Y Clf, . f;1

1)

Here f, is the distribution function of the population of molecules at the i vibrational level.
The variables r,,v,, L., and t represent the position, velocity, angular velocity, and time,

respectively. Q is the solid angle. For simplicity, the subscripts are dropped, since the

molecules essentially belong to the same species. The terms with an asterisk in the superscripts
represent the post-collision states. The term W(i, j,|k",17;Q) is the probability of the

interaction among molecules in the i and j ™ vibrational levels undergoing inelastic collision
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to the k ™ and 1™ vibrational quantum levels. The summation over the j™, k™ and | "

vibrational levels ensures that interactions over all possible post-collision combinations of

vibrational levels are handled.

Upon introducing the statistical formula of conserved and non-conserved variables,
differentiating the statistical definitions of total density, total momentum and total energy with
time, combining them with the modified Boltzmann-Curtiss kinetic equation, and invoking the
collision invariance of mass, momentum, and energy, the following conservation laws for mass,

momentum, and energy are obtained:

5 yo, pu 0 (2)
ax pu+V- puu+pl [+V- I+ Al =0,
pe (pe+p)u (IM+Al)-u+Q+Q,

where p is the density, u is the average velocity, p is the hydrostatic pressure, e is the total
energy density, II is the viscous shear stress tensor, A is the excess normal stress, Q is the
heat flux for trans-rotational energy, and Q, is vibrational heat flux. T, T, are trans-rotational

temperature and the temperature associated with the vibrational energy of gas molecules,
respectively. The pressure p and temperature T are related through the equation of state

p=pRT . In contrast, because the vibrational energy (e,) is not a collisional invariant, the

vibrational energy equation has a non-vanishing collisional term as follows,

or) v (peu)+v-Q, = a,.

ot

©)
Here the source term on the right-hand side, @, , is defined as

o, = (pe,(T) - pe,(T.),

Y

where 7, is a relaxation factor.

The source term on the right-hand side represents the trans-rotational and vibrational non-
equilibrium and is dependent on the vibrational-trans-rotational relaxation factor (z,). There
are several models for estimating V-T relaxation times, such as the constant collision factor
model, the Millikan-White (MW) model [53], the Millikan-White-Park (MWP) model [5], and
the SSH model [54]. The constant collision factor model employs a non-dimensional relaxation

parameter, and the V-T relaxation time is simply a product of the relaxation parameter and the



local mean collision time. The constant collision factor model, MW, and the MWP vibrational

relaxation models are implemented in the new nccrFOAM.

The constitutive equations for the four undetermined variables—viscous shear stress tensor,
excess normal stress, heat flux, and vibrational heat flux—are derived similarly: first
differentiating the statistical definition of the variables with time and then combining them with
the modified Boltzmann-Curtiss kinetic equation,

p% +V-y™ £ 2[I-Vul® + 2(p+ A)[Vu]® = A™, @
p%w-yxw +27/'(H+AI):Vu+§7'pV-u =AY,

p%+v-y/@’ +y® 1 Vu+Q-Vu +(;—l:'H+H-V(CpT)+(p+A)V(CpT) =A?,
p3Q.1P) (Qét/ P) .y 4Q, VUt TI-V(C, T,) +(p+AWV(C,,T,) = A®,

where ', C andC, , are the ratio of the rotational specific heat capacity energy to specific

heat capacity at constant volume, defined as y' = (5—-3y)/ 2, specific heat capacity at constant
pressure, and vibrational specific heat capacity at constant pressure, respectively.

In the constitutive equations (4), y™*2"?) represent the open high-order terms of the
viscous shear stress, the excess normal stress, the heat flux, the stress, and the vibrational heat
flux, respectively. A™*22)on the right-hand side of Eq. (4) represent the dissipation in the
non-conserved quantities which is attributed to the collisional operator in the kinetic equation.
At this point, it should be mentioned that the constitutive equations (4) are an exact
consequence of the modified Boltzmann-Curtiss equation (1) and are thus capable of capturing

the whole flow physics if they are provided with accurate closure on the open higher-order

terms y ™ PQ) gnd AARR)

Among closure theories, we employ the so-called “closing-last balanced closure,” which
was proposed by Myong in 2014 [2] from a keen observation of the essence of the closure
problem in a complex system: when closing open terms, the number of places to be closed is
two (movement and interaction), rather than one (movement only) and thus the order of

I1,A,.Q.P.Q,

approximations in handling the two terms—Kkinematic (movement) y! Jand dissipation

(interaction) A% terms—must be the same to satisfy balancing; for instance, the second-

(1,A,Q.Qy)

order closure for both terms, {%42P%) and A,



In this balanced closure theory, third-order closure for A™ in the constitutive equation of

viscous shear stress may not be essential; in fact, unbalanced higher-order closure in the
moment method may not provide improved solutions as promised, especially in the case of a
high Mach number shock structure problem [2]. Note that the present closure is not the same
as Eu’s closure [25,26], and the significance of the difference—in the case of the constitutive
equations of heat flux, V-y? +y® :vu=0 vs y? =y =0—should not be overlooked.

The present balanced closure effectively resolves the weakness of Eu’s closure, like

w'® (s (mCCCf )) =0, which was strongly criticized by mathematicians and physicists for its

inconsistency, i.e., that the term <mCCCf> cannot be zero in general, especially in strong

thermal non-equilibrium.

Closing the dissipation A™*22) terms requires special care as well because it is directly
related to the energy dissipation accompanying the irreversible processes, the calortropy
production in the system, and the second law of thermodynamics. We employ the so-called
“cumulant expansion method,” which was developed by Eu in 1980 [23,26] based on a
canonical distribution function in the exponential form, after recognizing the logarithmic form
of the non-equilibrium entropy production. Unlike conventional polynomial expansions, the
cumulant expansion of the distribution function in the series of the 1st-mean, 2nd-variance,
3rd-skewness, 4th-excess (or kurtosis), etc., assures the non-negativity of the distribution

function regardless of the level of approximations.

Furthermore, the temporal dependence in the constitutive equations (4) can be neglected,
owing to the very short relaxation times of the non-conserved variables, being on the order of
1071% second [3,25], compared to those for conserved variables and the characteristic times of
the flow process. This so-called adiabatic approximation simplifies the partial differential-type
constitutive equations into a set of algebraic equations in the Lagrangian frame, which greatly

reduces the numerical complexities involved in solving the constitutive equations.

Further simplifications can be made to the constitutive equations (4) [3]. Pure convective
terms present in the constitutive equations are negligible because they are strictly zero in the
one-dimensional velocity-shear flow and their contributions are not large compared to the other

terms. Also, the (Q,Q,)-Vu terms in the constitutive equations of heat flux can be omitted
because they have the same property (heat flux times viscous stress) as the I-v(C,T,C,T,)

terms.
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Once these tenets—Myong’s closing-last balanced closure, and Eu’s cumulant expansion
based on the canonical distribution function in the exponential form to the explicit calculation
of the dissipation term—are applied to the constitutive equations (4) and after introducing the
adiabatic approximation and aforementioned additional simplifications, the following two-
temperature second-order constitutive model for diatomic and polyatomic gases with

vibrational non-equilibrium can be derived:

[ vu]® + 2(p + A)[VU]® = - P g, , (1), ©
7

2y'(IT+Al):Vu +§y’pv-u =—§y’£Aq2nd (x),

Hy
pC,
m-v(C,T)+(p+A)V(C,T)= —Tqum (x),
pCp,vTv
k

\

H'V(Cp,vTv)—i—(p+A)v(Cp,vTv) = QVQan (K)

A detailed description of the derivation of the modified Curtiss-Boltzmann equation and

associated NCCR model for diatomic and polyatomic gases can be found in previous work [52].

The exact form of the second-order dissipation d,,, (k) and the cumulant expansion x can

be calculated using the cumulant expansion method and the Chapman-Enskog theory,

respectively,

sinh 6
q2nd (K) = (K) ’ ( )
K
U4 T U4 ) 2 12
K:(ka) T H'H+7/!A_+Q'QIT+QV'QV/TV ,

where m is the molecule mass, d is the molecular diameter and molecule mass, « is the
viscosity, g is the bulk viscosity, k is the thermal conductivity, and k, is the vibrational

thermal conductivity.

The quadratic form of the cumulant expansion « is equal to a modified Rayleigh-Onsager
dissipation function [55] and is represented by the sum of the double scalar product between

tensors and the dot product of the heat flux vector, which gives a direct measure of departure

from equilibrium. The second-order approximation of the dissipation term, “ g, (x) ,”

describes the mode of energy dissipation accompanying the irreversible processes and is

directly related to the non-equilibrium entropy production in the system. The subscript “2nd”
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highlights the second-order closure applied to Egs. (5) and (6). The derivation of the hyperbolic

sine function, q,,,(x), can be found in detail in the references [2,22,23,52]. The concept of
dissipation functions for irreversible processes was introduced by Onsager in 1931 [55].
The second-order NCCR (5) is reduced to the following conventional first-order NSF

constitutive relations, when the first-order approximations, the zero bulk viscosity assumption,

4, =0, and the constant C_,C_, assumption are employed,

2 p[vu]® :—£H = M=-24Vu]?, 7
pV-u:—ﬂ—pbA orA=—x,(V-u) = A=0,
pV(C,T) = - pfp Q = Q=—kvT,
PV(C,.T)=- 2, = Q, =k VT,

k

v

meaning that the NSF is simply a subset of the NCCR. It should be mentioned that these first-
order laws were obtained after very crude approximations; all of the kinematic terms except
for the thermodynamic force term were neglected, the dissipation terms were linearized with

Oy (k) =1,and C,C_, were assumed constant.

2.2. NCCR model in the compact dimensionless form

The second-order constitutive relation in the dimensional form can be transformed into a
compact non-dimensional form. The following dimensionless variables and the definitions of
non-dimensional parameters (such as the Mach number (M), Reynolds number (Re), Eckart
number (Ec), Prandtl number (Pr), Knudsen number (Kn), and non-dimensional rarefaction

parameter ( N)) are employed [52]:
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. t . X . M e . u
t = y X = v:va = k = u =
(Ua) = L “Tu T TR T
C
p*zﬁ’ p*zﬁ,T*:l’ C;:—p’ e*=£2’ d*=i,
P, o T, o u; d,
=1 A Q*:L, fb:&,
(440, /L) (#4u,/L) (kT/L) Hy
2 c
M=t Re=ZMb po- U pr_lef 1
J7RT, U, C,T. K, EcPr
2
N(yzyM , Kn= i&
Re 2y M

Here the starred quantities represent the non-dimensional quantities; terms with subscript r are
reference quantities chosen appropriate to the flow problem. The factor f, =z, / 4, isthe ratio

of the bulk viscosity to the shear viscosity. In addition to the above-mentioned non-dimensional
entities, an additional set of non-dimensional quantities and parameters are defined for the

vibrational degrees of freedom:

* k * T * C v * - - by 8
kV: . 1 TV = s ! Cp,v: 2 ’ evze_\gv TV=T—V1 a)\,:' 20)\/ ] ( )
kv r TV,r CP,Vr ur I_/ur prur /(L/ur)
* 2 C .
QV = Qv EC = ur ’ PI’ — p,VrlLl , 1

(kv,rTv,r/L)' ' Cp,v,Tv,r ' kv,r oo ECvPrv .

After those non-dimensional quantities and parameters are substituted into the conservation
laws (2) and (3), the second-order NCCR model (5), and the modified Rayleigh-Onsager
dissipation function (6), and dropping the asterisk superscript for simplicity, the following

conservation laws and NCCR model in a compact form can be obtained:

i puU ] ©)
P yoSIVES L > pl 0 0
0| pu v yM 1 v I+ Al 0
JR— + . +_ . = y
ot| pe ot 1 o lu Re |(II+Al)-u+&Q+¢,Q, 0
pev p 7/M 2 ngv a)v
peu
and
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Mg, (CR) = (L+ A)II, +[IT- V], (10)
AQ,,, (CR) = A, +g f, (I1+Al): VQ,

Qe (CR) = (1+A)Q, + - Q,,

QVand (CF’i) = (1+ A)QV,O + ﬁ : Qv,o;

where

. sinh(cR (11)
and (CR) = (A ) 1
cR

In this expression, the coefficient ¢ was first derived by Myong [3] with a simple gas

assumption:

C

(mk,T,)" | [ 247z o T
(Zdr = H - AWIT4-2/(v 1)]} ,

where v is the exponent of the inverse power laws. The following hat quantities have also been
applied:

~ N, Q, (12)

p
~ N, (=kvT) c oA _ Ny (=kVT) 2

E——:VT’ v = — Y 2 :VTV
R p JT/(22) Quo p JT,/(2¢,)

On the other hand, it is possible to choose dimensionless variables such that the
dimensionless form of inviscid fluxes in the conservation laws is the same as the original
dimensional form of inviscid fluxes. This form is very convenient because it does not require
any modifications to the various flux functions designed to calculate the inviscid fluxes. When

all terms in the conservation laws are normalized using the following variables and parameters,
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*: t 1] *=£’ V*:LV, ﬂ*:ﬁ' k*zhl U*=£|
(L/a,) L 4, K, a,
p = pzl ,0 :ﬁaT = Cp_ 2 £ Il :_2’ d =
prar pl’ Tr ar /TI’ al’ dl’
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together with parameters defined for the vibrational degrees of freedom,
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the dimensionless form of inviscid fluxes in the conservation laws remains the same as the

original dimensional form.

o, pu 0 0 (14)
a| pu - puu+ pl 1 1+ Al B 0
ot| pe (pe+p)u| Re |(II+Al)-u+eQ+¢Q, 0|

Pe, peu £Q, @,

Note that the acoustic speed (a, ), instead of the velocity (u, ), is used in defining the reference
value. On the other hand, the corresponding algebraic constitutive relations (10)-(12) remain

unchanged.

2.3. Velocity slip and temperature jump conditions for multi-dimensional simulation

The velocity slip and temperature jump boundary conditions on the solid surface are
necessary to accurately describe rarefied and microscale gas flows [56-58]. In 1879, Maxwell
introduced a velocity slip boundary condition known as the Maxwell velocity slip condition
[59]. In this boundary condition, the slip in tangential velocity near a solid surface Usglip IS

related to the tangential shear stress II,, and the tangential heat flux Q,,,. This slip condition

can be expressed in the following form [58,59],
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where U, is the velocity vector of a solid surface, and 4, denotes the mean free path. We
assume the solid surface is located at the origin of the normal coordinate. The tangential
momentum accommodation coefficient is denoted by o,(0<o, <1)which determines the
proportion of the molecules reflected from the surface purely diffusely (o, =1) or purely
specular (o, =0). The tangential shear stress and the tangential heat flux are defined in general

coordinates at the surface,

M, =(n-10)-S, (16)
Qtan = Q ' S,

where the S, defined as S=I-n®n using the dyadic product (®), refers to the surface vector in
which normal components are removed. If the constitutive relations of viscous stress and heat
flux are taken as linear with first-order accuracy, the slip condition (15) is simplified in

cartesian coordinates into

—+ k—.
mean ay 4 ]/p ax

2—av]/1 ou 3Pr(y-1), at 17)

uslip ~Upan :( pu
v

By analogy with the Maxwell velocity slip condition, the Smoluchowski jump boundary

condition [60,58] can be written as

o7 . 2—=07 | Avean 2V Q (18)
slip wall or k (}/ +1) Pr normal *
Here T, is the gas temperature at the surface, T, is the temperature of the solid surface,

and o; (0< oy <1) denotes the thermal accommodation coefficient. If the constitutive

relation of heat flux is taken as linear with first-order accuracy, the jump condition (18) is

simplified in cartesian coordinates into

2-o; 2y oT (19)
Tslip _Twall = ﬂ’mean T A\pe AL
o7 (}/ -I-l) Pr oy
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3. Methodologies for solving NCCR

The strategy to numerically solve the conservation laws in conjunction with NCCR has two
main issues. The first issue is the choice of the computational methodology to handle the
conservation laws with various options such as the finite volume method (FVM), finite element
method (FEM), spectral methods, and continuous and discontinuous Galerkin (DG) methods.
For example, our group developed in-house codes based on FVM and a mixed modal DG
method [39-43].

The second issue is how to solve NCCR, (10)-(12), to determine the non-conserved
quantities—viscous stress, excess normal stress, heat flux, and vibrational heat flux—for given
thermodynamic forces (gradients of velocity, trans-rotational and vibrational temperatures).
The first-order NSF calculations are straightforward since these quantities are proportional to
gradients of velocity and temperatures. In contrast, since the second-order NCCR is nonlinear
and highly coupled, an appropriate numerical strategy must be developed. Moreover, the
NCCR of viscous shear stress is in the form of a second-rank tensorial equation, which is
particularly complex to solve in 2D and 3D flow simulations. The viscous shear stress tensor

is traceless and hence contains only 5 independent elements (I1,,, I1,,, I1,,, I1,,, I1,,,
—ﬁn —f[zz). Thus, along with the excess normal stress A and 6 components of the two heat

flux vectors (Ql, (52, QB) and (val, viz , QV,?,), a total of 12 unknowns have to be calculated

from the given 17 known variables ( p,T,Vu,VT,VT,)).

3.1. Method I: Iterative method based on decomposition at the cell interface

One way to drastically reduce the complexity of solving 12 equations is to apply NCCR to
the interface (or edge) of a computational cell, rather than a node. The 3D flow problem can
then be split into three sub-problems in the x,y,z directions in any computational framework.

Further, the viscous stress and heat flux components (I1,,, I1,,, I1,,, A, Ql, val) on asurface

in a three-dimensional control volume induced by thermodynamic driving forces (gradients of
velocity and temperatures) can be approximated as the sum of three decomposed solvers; first

on(ou,/ox, 0,0, dT /ox, 0T, /ox,) describing the compression-expansion flow, second on
(0, ou,/ox, 0,0, 0), and third on (0, 0, ou,/ox, 0, 0) describing the velocity-shear

flow, that is,
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f (1,115, 11,5, A,Q,,Q,,) = f,(8u, / 6%,,0,0,3T / &%, 8T, / ax,) + (20)
f,(0,0u,/0x,,0,0,0)+ f,(0,0,0u, / 0x,0,0)

Note that the decomposition of these viscous fluxes has the same spirit as the treatment of
inviscid fluxes: F( pu,, puu, +p, puu,, puu,, (pe+ p)u, , peu, )=Fi( pu,, puu,+p,0,0,

(pe+p)u,, pe,u,)+F2(0,0, puu,,0,0,0) +F2(0,0,0, puu,,0,0).

The iterative procedure can be developed individually for the decomposed solvers. For a
sub-domain determined by the sign of the first-order NSF constitutive laws based on gradients
of velocity and temperatures, it is possible to find iterative functions that always converge over
the whole sub-domain. Similarly, it is possible to solve the decomposed solvers along the y-
and z-direction, and the component-wise values are summed up to obtain the final results. In
the case of the steady-state problem, it was observed that the convergence can be improved by
first solving the entire problem using the first-order NSF constitutive laws and then employing
the NCCR model with the NSF quantities as the initial condition. A detailed description of

method | in multi-dimensional flow problems is given in previous works [4,42].

3.2. Method I1: Undecomposed relaxation method

In the present work, an alternative iterative scheme is presented. The broader objective of
this work is to implement the NCCR theory in the foam-extend based dbnsTurbFoam solver.
The foam-extend is a variant of the OpenFOAM (Open-source Field Operation and
Manipulation) C++ toolbox for CFD. A prime advantage of this toolkit is the efficiency of
tensor algebra programming. This aspect of the OpenFOAM toolbox inspires method II.
However, this strategy can be implemented in conventional FVM and DG in-house codes as
well. Method | begins with calculating the inviscid fluxes, initializing viscous stresses and heat
fluxes as the first-order approximations, calculating the second-order viscous stresses and heat
fluxes using iterative schemes, and finally merging the second-order viscous fluxes to calculate

the conserved quantities at the next time-step using a standard time-integrator.

The procedure of the new alternative scheme does not involve solving the second-order
NCCR iteratively until convergence in each time step. The tensor equations are not
decomposed into a set of component-wise equations in this method. Instead, the tensorial and
vectorial equations for calculating the viscous stresses and heat fluxes, respectively, are solved

directly. The nonlinear coupled algebraic equations are generally difficult to solve using
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analytical methods or using single-step numerical procedures. However, an iterative scheme

with appropriate under-relaxation can solve the equation without much difficulty.

To illustrate the essence of method I1, consider an isothermal monoatomic gas simulation.
In this case, the second-order NCCR of viscous stresses is nonlinear and coupled, but not
related to heat flux. The viscous stress tensor appears at three different places in the implicit
NCCR. To solve the NCCR in its native tensorial form, the viscous stress term multiplied by

the nonlinear term g, (cR) is chosen as the primary unknown, and the value of viscous stress

in the remaining two places is taken from the previous iteration. The tensor equation can then

be directly solved using the following iterative procedure:

(I, +[[1"-va]®) (21)

ﬁn+1 — aﬁn +(1—CZ) _ £ ’
q2nd (C\/Hn . Hn )

where ¢ is the under-relaxation parameter. The quantities with zero as a subscript represent
the first-order NSF approximation. Convergence for this second-rank tensorial equation is
assured for values of the under-relaxation parameter less than 0.1. Such a low value of the
under-relaxation parameter indicates the highly nonlinear nature of the equation, which is

highlighted by the presence of the hyperbolic sine term.

In this study, instead of solving the NCCR iteratively till convergence in each evolution
step, the computation is performed only once per computational cell. In this manner, the
conserved and non-conserved variables converge simultaneously. In other words, the present
code avoids a situation of a nested loop where the outer loop is for the evolution of the
conserved variables along the time direction, and the inner loop is for the iterative method for
calculating the second-order non-conserved variables. However, since the degree of
nonlinearity increases with the coupled nature of the second-order non-conserved variables,
the suggested value of the permissible under-relaxation reduces to 0.01. The final under-

relaxed set in the case of monoatomic gases is

(I, +[II"-va]®) (22)
G (VI T+ Q" Q")
Qu+i"Q,
ong VI T+ Q- Q")

M =aoll" + (1-a)

le :aén +(l—a)
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In the case of diatomic and polyatomic gases with vibrational non-equilibrium, the equations

(10)-(12) in the two-temperature framework provide a total of four systems as follows,

@+ A", +[I1" - v(]@ (23)
g T LTI 425/ (A")? 11, +Q7-Q" + Q) Q)
A, +3f, (1" +A"1):VQ /2
g (11" T+ 27/(A")? 1 £, +Q7-Q" +Q1- Q)
@+ A”)Qo +II" ~QO
Qo (T 1"+ 20/ (A)2 1 £,+Q7-Q"+ Q0 -Q)
1+A")Q,,+1"-Q,,
o (S 1" 1 1" 427/ (A7) / £,+Q7-Q" +Q-Q))

M =all"+(1-a)

A™ = oA" + (1-a)

Q" =+

Q" =aQl +(1-a)

Method Il can make use of OpenFOAM which has a pre-defined library of tensor algebra
operations. The choice of under-relaxation parameter turns out to be critical to the stability of
the simulation. It was observed that in the case of very rare situations such as gases with very

high bulk viscosity ( f_ [ 1), the under-relaxation was an order of magnitude smaller than the

one recommended earlier, which slows down convergence. Method I does not employ any such

under-relaxation parameter and has been proven to lead to convergence in almost all scenarios.

4. Development of nccrFOAM code
4.1. Introduction to dbnsFoam and dbnsTurbFoam

The rhoCentralFoam solver [61] is the most widely used density-based solver for
compressible flow that comes pre-installed with the official OpenFOAM distribution. This
solver employs the Kurganov and Tadmor (KT) [62], and Kurganov, Noelle, and Tadmor(KNP)
[63] flux schemes for handling the nonlinear terms in the Euler/NSF equations. KT and KNP
flux schemes avoid expensive Jacobian evaluations as they use a central difference-based
formulation instead of solving the Riemann problem for flux calculation. However, it has been
observed that the shock structures computed using the central difference schemes are prone to
dissipative effects. Recently, improved density-based solvers named dbnsFOAM and
dbnsTurbFOAM solvers have been developed and included in the foam-extend framework,
which is another fork of OpenFOAM. The two density-based solvers employ the dbns or

density-based Navier-Stokes library.

Several options are available for time-integrators in the foam-extend framework and can be

employed to track the evolution of the conserved variables over time. The central problem
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when solving the nonlinear system of conservation laws, such as the Euler equation or the
Navier-Stokes-Fourier equation is the calculation of the flux terms at the cell interfaces.
nccrFOAM  employs approximate Riemann solvers [64] to calculate the numerical
approximation of the flux at the interfaces. The dbns library contains several state-of-the-art
approximate Riemann solvers such as the HLLC (Harten-Lax-vanLeer+Contact) family of
solvers [65,66], Roe approximate Riemann solver [67], Rusanov flux [68] schemes, and AUSM
(Advection Upstream Splitting Method) family of flux vector splitting schemes [68, 69]. The
dbnsFOAM and dbnsTurbFOAM solvers also have higher-order reconstruction schemes and a

wide range of options for slope limiters.

4.2.nccrFOAM suite file structure
The new nccrFOAM suite is derived from the dbnsTurbFOAM solver that employs the dbns
library in a foam-extend fork of the OpenFOAM framework. Overall, the development of the

nccrFOAM suite is divided into two parts:

e nccrFOAM: adding the second-order NCCR for monoatomic, diatomic, and polyatomic
gases at a lower temperature in the absence of vibrational non-equilibrium,

e nccrVibFOAM: adding the two-temperature formulation to the NSF solver for handling
non-equilibrium flows, and further adding the NCCR for diatomic and polyatomic gases at

higher temperatures with vibrational non-equilibrium.

The first part of the suite requires initializing new variables for the non-conserved quantities
(viscous stress tensor and heat flux vector for monoatomic gases, and viscous stress tensor,
excess normal stress scalar, and heat flux vector for diatomic and polyatomic gases at lower
temperatures) and adding the appropriate equations for the non-conserved quantities to the
momentum and energy equations in the algorithm. This will be discussed in the next sub-

section in detail.

The second part of the suite requires the manipulation of the foam-extend source code at a
deeper level, which demands a clear understanding of the dbns library. The dbns consists of a
basicNumericFlux class which is a base class for run-time selectable numerical flux methods.
In the creatFields.H file of a dbns-derived solver, an object for numerical flux is initialized
using the New() function belonging to the basicNumericFlux which takes pressure, velocity,
and temperature as input. The main class for flux calculation in the dbns library is the
numericFlux class, which is included in the dbonsFOAM and dbnsTurbFOAM solvers in the

header section. The member functions of the numericFlux class consist of the following:
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« computeFlux(): calls the limiter functions and calculates the higher-order reconstruction
values for pressure, velocity, and temperatures for a Riemann problem

« rhoFlux(): takes the reconstructed Riemann problem initial conditions and returns the flux
for the continuity equation by solving the input flux schemes

 rhoUFIlux(): returns the flux for the momentum equation

« rhoEFIux(): returns the flux for the energy equation

The dbnsFOAM and dbnsTurbFOAM solvers call these functions when solving the three
conservation laws. The inclusion of vibrational non-equilibrium in the flow requires adding the
vibrational energy equation. A new variable, vibrational energy (_ev), also needs to be

appended to the conserved variable vector U, which takes the following updated form: U= p,
pu, pe, pe, 1" The corresponding flux function is F = [ pu, puu+ pl, (pe+p)u , peul’

where the last entry is the flux term for the vibrational energy equation. The dbns library does
not contain a function for calculating flux for the vibrational energy equation and does not take
the vibrational temperature as an additional input. The vibrational temperature needs to be
added to the modified New() function belonging to the basicNumericFlux class to provide the
necessary variables for calculating the vibrational heat flux. The non-equilibrium modeling
requires writing a new dbns library based on the existing dbns library and contains updated
flux functions. Sub-section 4.4 details the new dbnsv library that is added to the existing
framework to implement the NSF and the NCCR theory for diatomic and polyatomic gas flows

with vibrational non-equilibrium.
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