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Abstract  

The nccrFOAM suite is a collection of nonlinear coupled constitutive relation (NCCR) 

solvers for rarefied and microscale gas flows with vibrational non-equilibrium, in conjunction 

with the conservation laws implemented in the foam-extend framework which is an open-

source solver with a General Public License (GPL 3). nccrFOAM solvers are developed as an 

extension to the dbnsTurbFoam solver by implementing additional algebraic constitutive 

relations for the non-conserved quantities of the stress tensor and heat flux vector. In contrast 

to Navier-Stokes-Fourier (NSF) solvers that employ first-order constitutive relations to 

calculate non-conserved quantities and consequently suffer from obvious shortcomings when 

simulating gas flows in high non-equilibrium, the second-order NCCR framework presents a 

novel alternative to simulate rarefied and microscale gas flows in a better and a more intuitive 

manner. In addition to the solver for monoatomic gases, the solvers are for the first time 

implemented for diatomic and polyatomic gases with translational-rotational and vibrational 

degrees of freedom based on second-order constitutive models in a three-dimensional 

framework. Towards this, a new foam-extend library has been written based on the two-

temperature formulation to handle the translational-rotational and vibrational modes. The new 

foam-extend solver was validated for several representative problems, and an exhaustive list of 

tutorials is documented. The solver will certainly benefit the rarefied and microscale gas 

dynamics and hypersonics communities at large interested in flows involving high degrees of 

rarefaction, speed, and temperature variations. 

Keywords: OpenFOAM; rarefied and microscale gases; second-order constitutive models; 

two-temperature formulation; vibrational non-equilibrium  
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PROGRAM SUMMARY 

Program Title: nccrFOAM 

Licensing provisions: GNU General Public License 3 (GPLv3) 

Programming Language: C++ 

Supplementary material: Shock Structure case files 

Nature of the Problem: nccrFoam suite is developed to simulate rarefied and microscale gas 

flows with vibrational non-equilibrium where the second-order effects of the constitutive 

models in terms of non-conserved variables such as stress tensor, excess stress (in case of non-

monoatomic gases), and heat flux are no longer negligible.  

Solution Method: nccrFoam suite is an extension of the foam-extend based dbns solver where 

the algebraic relations for non-conserved moments are solved using an alternative numerical 

method utilizing the tensor operations in the OpenFOAM framework. The two-temperature 

formulation for high-temperature flows was developed with multiple vibrational relaxation 

models with a new supporting dbnsv library. 

1. Introduction 

Advances in computational fluid dynamics (CFD), along with the advent of high-

performance computing, have transformed our understanding of fluid physics and made 

profound contributions to the study of theoretical and experimental fluid dynamics. The most 

widely used governing equations for modeling fluid flows are the Navier-Stokes-Fourier (NSF) 

equations. The higher-order moments, viscous stress and heat flux, appearing in the 

conservation laws of momentum and energy of the NSF equations are closed using Navier and 

Fourier’s constitutive laws, respectively. These laws are first-order approximations based on 

the first derivatives of flow velocity and temperature multiplied by viscosity and thermal 

conductivity, respectively, and are only valid in states not far from thermal non-equilibrium. 

Most industrial and scientific applications are simulated using NSF-based CFD codes. 

However, there are important fluid flows for which the application of the NSF equation is 

questionable. In this work, we are mainly concerned with these applications: rarefied and 

microscale and high-temperature non-equilibrium gas flows. 

Rarefied gas flows—gas flows in a low-density state—are present in a wide range of 

scientific and technological problems. Such flows can affect hypersonic vehicles flying at very 

high altitudes and the propulsion systems of spacecraft navigating in space [1]. In addition, 

vacuum devices operating on the ground, such as gas deposition manufacturing processes in 

near-vacuum conditions, are yet another interesting application of rarefied gases.  
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The flow of systems related to rarefied gases can be classified using the Knudsen number 

(representing the altitude) and the Mach number (representing the flow speed) [2–4]. Note that 

at least two non-dimensional parameters—for example, the Reynolds and Mach (or Knudsen 

and Mach) numbers—are necessary to fully classify the gas flow regimes. The degree of non-

equilibrium measured by the product of the Mach number and the Knudsen number (viscous 

force/pressure) reaches the highest for re-entry vehicles, followed by high hypersonic glider 

vehicles, and computer hard disk drives. In the case of re-entry vehicles, the degree of thermal 

non-equilibrium is sufficiently high at an altitude of 60 to 65 km where the maximum heat flux 

occurs, and so there is a limit to the validity of the NSF theory at higher altitudes. 

Microscale gas flows—gas flows associated with micron- or sub-micron-sized devices—

exist in many scientific and technological problems today. Some of these flows include internal 

flows through micro-channels, micro-pumps and micro-turbines, and external flows around 

micro-particles. In these flows, gas-surface interactions are of the same order or even dominant 

over the gas-gas bulk interactions, leading to interesting physics, such as velocity slip and 

temperature jumps on solid surfaces. These applications are also classified as flows away from 

thermal non-equilibrium due to the small characteristic length of the flow domain. 

Hypersonic rarefied gas flows have an additional complication in the form of vibrational 

non-equilibrium. The kinetic energy in the hypersonic gas flow transforms into thermal energy 

across a shock structure. The thermal energy is restricted to the translational degree of freedom 

immediately downstream of the shock front. The ambient gas in Earth’s atmosphere is mainly 

composed of diatomic molecules. In the region further downstream from the shock front, the 

high-energy gas molecules collide with each other resulting in energy redistribution among the 

three internal modes (translational, rotational, and vibrational) of energy. The number of 

collisions required to establish equilibrium between the translational and the vibrational 

degrees of freedom is considerably higher than those required for the equilibration of 

translational and rotational degrees of freedom. It is generally assumed that the translational-

rotational or simply trans-rotational equilibrium is established instantly and the two modes of 

internal energy can be combined to give a trans-rotational degree of freedom. In contrast to 

this, the slower vibrational-translational (VT) relaxation leads to a region in the domain where 

there is a definite difference in the energy stored in the trans-rotational modes and the 

vibrational modes. Park [5] proposed a two-temperature framework to model this non-

equilibrium. In this framework, to handle the VT relaxation process, a separate partial 
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differential equation for the vibrational energy is added to the existing NSF conservation laws 

that contain a non-zero source term. 

Various methods are employed to understand the different flow regimes as a function of 

non-equilibrium parameters (rarefaction and compressibility). They include the zeroth-order 

Euler equations which are appropriate for gas flows in local thermal equilibrium (LTE), the 

first-order Navier-Stokes-Fourier equations used in flows near LTE, and higher-order methods 

for studying flows far from LTE. Other popular particle-based methods are employed to study 

rarefied gas flows, especially at higher Knudsen numbers, such as the Lattice Boltzmann 

method (LBM) [6,7] and direct simulation Monte Carlo (DSMC) [8–13]. Several PDE-based 

higher-order methods have also been reported, such as the Burnett equation [14–16], super-

Burnett equations [17–19], R-13 moment equations [20–21], generalized hydrodynamics (GH) 

[22–26], extended thermodynamics (ET) [27,28] and rationalized extended thermodynamics 

(RET) [29,30]. Furthermore, various kinetic schemes have been proposed, including the 

discrete velocity method [31], the unified gas-kinetic scheme [32], the discrete unified gas-

kinetic scheme [33], and the gas-kinetic unified algorithm [34]. Recently, a novel solver based 

on a combination of kinetic flux solver, discrete velocity method, and moment method was 

also developed to simulate flows from continuum to rarefied regimes at moderate Knudsen 

number [35]. 

Compared to the first-order NSF-based CFD algorithms, the PDE-based higher-order 

methods are more suitable for simulating highly non-equilibrium flows. However, many of 

these methods have additional theoretical or numerical drawbacks. For example, the Burnett 

equation uses higher-order derivatives of the flow properties to close the open terms related to 

viscous stress and heat flux in the constitutive equation. However, the use of higher-order 

derivatives requires additional boundary conditions that greatly increase the modeling 

complexity of the method [36]. Moreover, as the degree of thermal non-equilibrium increases, 

the boundary condition modeling related to gas-surface interaction becomes more important, 

but an accurate higher-order boundary condition has not been developed so far. 

Myong’s nonlinear coupled constitutive relations (NCCR) [3,4,37,39–43,44–48], which 

were systematically derived from the Boltzmann kinetic equation based on Eu’s modified 

moment method [25,26,38] and Myong’s closing-last balanced closure [2], are novel 

alternatives to previous methods. Firstly, they are derived to fully comply with the second law 

of thermodynamics by ensuring non-negative entropy production [24,25] under all flow 
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conditions. Secondly, the constitutive equations for the non-conserved quantities in their 

original formulation are a set of algebraic relations that, although nonlinear and coupled in 

nature, are simpler than solving the partial differential equations that appear in many of the 

higher-order methods. The NCCR was initially developed based on the explicit finite volume 

method (FVM) for one- and two-dimensional flow problems [3,4,37]. The NCCR has been 

implemented recently into a three-dimensional mixed modal discontinuous Galerkin (DG) 

framework, where auxiliary variables were introduced to solve the implicit algebraic NCCR of 

non-conserved variables [39–43]. The NCCR has also been studied by other researchers [44–

48] who have used the implicit finite volume method (FVM) as a basic numerical scheme. 

Previous higher-order methods have traditionally focused on investigating monoatomic gas 

flows and have only begun to consider diatomic and polyatomic gas flows rather recently. For 

instance, in 2015 Ruggeri et al. [29] extended the RET framework beyond the monoatomic gas 

and developed a relevant theory for polyatomic gases, both in rarefied and dense conditions. 

On the other hand, Myong and his collaborators have extended the NCCR framework to 

diatomic and polyatomic gases based on the Boltzmann-Curtiss equation [49,50] and have 

developed second-order NCCR models since 2004 [37,39–42].   

Unlike the original Boltzmann kinetic equation, the Boltzmann-Curtiss kinetic equation 

additionally introduces the angular momentum and azimuth angle associated with the rotational 

mode of molecules to the kinetic formulation. In the NCCR framework, the bulk viscosity of 

diatomic and polyatomic gases was viewed as a quantity directly related to the relaxation time 

associated with the rotational degrees of freedom. It was shown by McCourt et al. [51, p. 276] 

that the excess normal stress appearing in the conservation law of momentum is equivalent to 

the difference between the translational and rotational temperatures. Thus, the hydrodynamic 

equation can be formulated in two ways: either introducing the excess normal stress and 

keeping the one temperature (Ttrans-rot) concept or introducing two temperatures (Ttrans & Trot) 

but no excess normal stress. The former was employed in Myong’s study [37,39–42] because 

it is a natural extension of the first-order Navier-Fourier constitutive laws, and the one-

temperature hydrodynamics is more naturally connected to the laws of thermodynamics. 

Recently, Mankodi and Myong [52] developed a new set of governing equations based on 

the two-temperature (Ttrans-rot & Tvib) formulation to simulate the second-order effects of 

diatomic and polyatomic gases with activated vibrational degrees of freedom and vibrational-

transrotational non-equilibrium. The new set of equations included an additional equation of 
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vibrational energy and a constitutive equation of the vibrational heat flux. The constitutive 

equations of the viscous stress tensor, excess normal stress, transrotational heat flux, and 

vibrational heat flux showed interesting coupling effects leading to unique nonlinear problems. 

Moreover, analysis of a strong shock structure highlighted the interplay between the second-

order effects in the constitutive relations and the vibrational-transrotational non-equilibrium. 

Furthermore, the analysis showed that the results of the second-order models were in better 

agreement with the direct simulation Monte Carlo data when compared with the results of the 

first-order models, especially in the profiles and slopes of density, velocity, and vibrational 

temperatures. 

The theoretical knowledge required to understand the second-order effects in complex flow 

situations has a steep learning curve. In addition, the mathematical and computational tasks of 

solving the complicated algebraic NCCR model are challenging. To this end, an NCCR solver 

based on an open-source framework will benefit the scientific community and industry working 

in the study of rarefied and microscale gas dynamics and hypersonics. The present work reports 

a new NCCR solver based on the openFOAM framework, nccrFOAM, developed by extending 

the dbnsTurbFoam solver in a foam-extend fork. The nccrFOAM suite mainly consists of two 

solvers: nccrFOAM for monoatomic, diatomic, and polyatomic gases at low temperature in the 

single-temperature (Ttrans-rot) formulation, and nccrVibFOAM for high-temperature diatomic 

and polyatomic gases with vibrational non-equilibrium, having a provision for a wide range of 

VT relaxation models in the two-temperature (Ttrans-rot & Tvib) formulation. Both solvers can 

simulate gas flows with first and second-order constitutive relations. To the best of the authors’ 

knowledge, the nccrFOAM suite is the first-of-its-kind solver based on second-order 

constitutive models developed in an open-source framework to simulate rarefied and 

microscale gas flows with vibrational non-equilibrium. 

Section 2 explains the derivation of the NCCR models in detail and highlights the novelty 

of the NCCR method. In Section 3, an alternative algorithm for solving the coupled tensorial 

and vector constitutive equations is presented and compared with the previous iterative 

methods. The structure of the nccrFOAM solver, its implementation, and details about 

designing a nccrFOAM simulation case are then described in Section 4. In Section 5, the 

validation of the nccrFOAM solver is shown for 1D simulations demonstrating the robustness 

of the new solver. Further, shock structure simulations for monoatomic, polyatomic gases with 

and without vibrational non-equilibrium are performed and their profiles are compared with 
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those obtained using an in-house FVM solver. Moreover, multi-dimensional NCCR 

simulations are also conducted for three representative flows: 1) a 2D hypersonic flow over a 

cylinder for monoatomic, diatomic, and polyatomic gases with VT relaxation; 2) a 2D steady-

state compressible Poiseuille flow of argon gas through a micro-channel; and 3) a 3D rarefied 

gas flow associated with the impingement of a nozzle jet onto a surface at near-vacuum 

condition. The flow properties obtained with the first- and second-order constitutive relations 

are also briefly discussed. Finally, a summary of the present work along with a remark on future 

research is provided in Section 6. 

2. The second-order NCCR model with vibrational non-equilibrium 

2.1. Derivation of the second-order NCCR model with vibrational non-equilibrium 

Generally, diatomic and polyatomic gas molecules are in their vibrational ground states at 

standard temperature conditions. At lower temperatures, the governing equation for 

understanding the statistics of diatomic and (linear) polyatomic gas flows at relatively low 

temperatures is given by the Boltzmann-Curtiss kinetic equation [49] which has additional 

dependent variables in the form of angular momentum and azimuthal angle. At higher 

temperatures, the vibrational modes are activated, and the molecules can reside in one of the 

higher vibrational quantum levels. The statistics for polyatomic gases at such high temperatures 

can neither be modeled using the Boltzmann kinetic equation nor the Boltzmann-Curtiss kinetic 

equation.  

Recently, a modified Boltzmann-Curtiss kinetic equation was proposed by Mankodi and 

Myong [52] for such diatomic and polyatomic gas flows containing molecules in higher 

vibrational levels:  

* * * *( , ,| , ; )( )

[ , ].

i
i r i j k l i j

j k l

i j

j

f
f f dv d W i j k l f f f f

t

C f f


       





 



v L

 

(1) 

Here if  is the distribution function of the population of molecules at the i th vibrational level. 

The variables ir , iv , iL , and t  represent the position, velocity, angular velocity, and time, 

respectively.   is the solid angle. For simplicity, the subscripts are dropped, since the 

molecules essentially belong to the same species. The terms with an asterisk in the superscripts 

represent the post-collision states. The term 
* *( , ,| , ; )W i j k l   is the probability of the 

interaction among molecules in the i th and j th vibrational levels undergoing inelastic collision 
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to the k th and l th vibrational quantum levels. The summation over the j th, k th, and l th 

vibrational levels ensures that interactions over all possible post-collision combinations of 

vibrational levels are handled. 

Upon introducing the statistical formula of conserved and non-conserved variables, 

differentiating the statistical definitions of total density, total momentum and total energy with 

time, combining them with the modified Boltzmann-Curtiss kinetic equation, and invoking the 

collision invariance of mass, momentum, and energy, the following conservation laws for mass, 

momentum, and energy are obtained: 
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, 

(2) 

where   is the density, u  is the average velocity, p  is the hydrostatic pressure, e  is the total 

energy density, Π  is the viscous shear stress tensor,   is the excess normal stress, Q  is the 

heat flux for trans-rotational energy, and vQ  is vibrational heat flux. , vT T  are trans-rotational 

temperature and the temperature associated with the vibrational energy of gas molecules, 

respectively. The pressure p and temperature T are related through the equation of state 

p RT  .  In contrast, because the vibrational energy ( ve ) is not a collisional invariant, the 

vibrational energy equation has a non-vanishing collisional term as follows, 

v

( )
( )v

v v

e
e

t


  


u Q


  . 

(3) 

Here the source term on the right-hand side, 
v , is defined as  

 
1

( ) ( )v v v v

v

e T e T   


, 

where v  is a relaxation factor. 

The source term on the right-hand side represents the trans-rotational and vibrational non-

equilibrium and is dependent on the vibrational-trans-rotational relaxation factor ( v ). There 

are several models for estimating V-T relaxation times, such as the constant collision factor 

model, the Millikan-White (MW) model [53], the Millikan-White-Park (MWP) model [5], and 

the SSH model [54]. The constant collision factor model employs a non-dimensional relaxation 

parameter, and the V-T relaxation time is simply a product of the relaxation parameter and the 
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local mean collision time. The constant collision factor model, MW, and the MWP vibrational 

relaxation models are implemented in the new nccrFOAM. 

The constitutive equations for the four undetermined variables—viscous shear stress tensor, 

excess normal stress, heat flux, and vibrational heat flux—are derived similarly: first 

differentiating the statistical definition of the variables with time and then combining them with 

the modified Boltzmann-Curtiss kinetic equation, 
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(4) 

where   , pC  and ,p vC  are the ratio of the rotational specific heat capacity energy to specific 

heat capacity at constant volume, defined as (5 3 ) / 2    , specific heat capacity at constant 

pressure, and vibrational specific heat capacity at constant pressure, respectively.  

In the constitutive equations (4),  , , , , v Q P Q
  represent the open high-order terms of the 

viscous shear stress, the excess normal stress, the heat flux, the stress, and the vibrational heat 

flux, respectively. ( , , , )vΠ Q Q
 on the right-hand side of Eq. (4) represent the dissipation in the 

non-conserved quantities which is attributed to the collisional operator in the kinetic equation. 

At this point, it should be mentioned that the constitutive equations (4) are an exact 

consequence of the modified Boltzmann-Curtiss equation (1) and are thus capable of capturing 

the whole flow physics if they are provided with accurate closure on the open higher-order 

terms  and . 

Among closure theories, we employ the so-called “closing-last balanced closure,” which 

was proposed by Myong in 2014 [2] from a keen observation of the essence of the closure 

problem in a complex system: when closing open terms, the number of places to be closed is 

two (movement and interaction), rather than one (movement only) and thus the order of 

approximations in handling the two terms—kinematic (movement)  and dissipation 

(interaction)  terms—must be the same to satisfy balancing; for instance, the second-

order closure for both terms,  , , , ,

2
v
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In this balanced closure theory, third-order closure for 
( )Π

  in the constitutive equation of 

viscous shear stress may not be essential; in fact, unbalanced higher-order closure in the 

moment method may not provide improved solutions as promised, especially in the case of a 

high Mach number shock structure problem [2]. Note that the present closure is not the same 

as Eu’s closure [25,26], and the significance of the difference—in the case of the constitutive 

equations of heat flux, ( ) ( ) : 0   Q P
u   vs ( ) ( ) 0 Q P  —should not be overlooked. 

The present balanced closure effectively resolves the weakness of Eu’s closure, like 

 ( ) 0m f P
CCC , which was strongly criticized by mathematicians and physicists for its 

inconsistency, i.e., that the term m fCCC  cannot be zero in general, especially in strong 

thermal non-equilibrium. 

Closing the dissipation ( , , , )vΠ Q Q
  terms requires special care as well because it is directly 

related to the energy dissipation accompanying the irreversible processes, the calortropy 

production in the system, and the second law of thermodynamics. We employ the so-called 

“cumulant expansion method,” which was developed by Eu in 1980 [23,26] based on a 

canonical distribution function in the exponential form, after recognizing the logarithmic form 

of the non-equilibrium entropy production. Unlike conventional polynomial expansions, the 

cumulant expansion of the distribution function in the series of the 1st-mean, 2nd-variance, 

3rd-skewness, 4th-excess (or kurtosis), etc., assures the non-negativity of the distribution 

function regardless of the level of approximations. 

Furthermore, the temporal dependence in the constitutive equations (4) can be neglected, 

owing to the very short relaxation times of the non-conserved variables, being on the order of 

10-10 second [3,25], compared to those for conserved variables and the characteristic times of 

the flow process. This so-called adiabatic approximation simplifies the partial differential-type 

constitutive equations into a set of algebraic equations in the Lagrangian frame, which greatly 

reduces the numerical complexities involved in solving the constitutive equations. 

Further simplifications can be made to the constitutive equations (4) [3]. Pure convective 

terms present in the constitutive equations are negligible because they are strictly zero in the 

one-dimensional velocity-shear flow and their contributions are not large compared to the other 

terms. Also, the ( , )v Q Q u  terms in the constitutive equations of heat flux can be omitted 

because they have the same property (heat flux times viscous stress) as the 
,( , )p p v vC T C TΠ  

terms. 
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Once these tenets—Myong’s closing-last balanced closure, and Eu’s cumulant expansion 

based on the canonical distribution function in the exponential form to the explicit calculation 

of the dissipation term—are applied to the constitutive equations (4) and after introducing the 

adiabatic approximation and aforementioned additional simplifications, the following two-

temperature second-order constitutive model for diatomic and polyatomic gases with 

vibrational non-equilibrium can be derived: 
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(5) 

A detailed description of the derivation of the modified Curtiss-Boltzmann equation and 

associated NCCR model for diatomic and polyatomic gases can be found in previous work [52].  

The exact form of the second-order dissipation 2 ( )ndq   and the cumulant expansion   can 

be calculated using the cumulant expansion method and the Chapman-Enskog theory, 

respectively, 
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(6) 

where m  is the molecule mass, d  is the molecular diameter and molecule mass,   is the 

viscosity, 
b  is the bulk viscosity, k  is the thermal conductivity,  and vk  is the vibrational 

thermal conductivity.  

The quadratic form of the cumulant expansion   is equal to a modified Rayleigh-Onsager 

dissipation function [55] and is represented by the sum of the double scalar product between 

tensors and the dot product of the heat flux vector, which gives a direct measure of departure 

from equilibrium. The second-order approximation of the dissipation term, “ 2 ( )ndq  ,” 

describes the mode of energy dissipation accompanying the irreversible processes and is 

directly related to the non-equilibrium entropy production in the system. The subscript “2nd” 
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highlights the second-order closure applied to Eqs. (5) and (6). The derivation of the hyperbolic 

sine function, 2 ( )ndq  , can be found in detail in the references [2,22,23,52]. The concept of 

dissipation functions for irreversible processes was introduced by Onsager in 1931 [55].  

The second-order NCCR (5) is reduced to the following conventional first-order NSF 

constitutive relations, when the first-order approximations, the zero bulk viscosity assumption,

0b  , and the constant ,,p p vC C  assumption are employed, 

(2) (2)

,

,

                       2 [ ]   2 [ ] ,

 or ( )   0,

                    ( )   ,

              ( )   ,

b

b

p

p

p v

p v v v v v v

v

p
p

p
p

pC
p C T k T

k

pC
p C T k T

k

      

          

      

      

u Π Π u

u u

Q Q

Q Q







 

(7) 

meaning that the NSF is simply a subset of the NCCR. It should be mentioned that these first-

order laws were obtained after very crude approximations; all of the kinematic terms except 

for the thermodynamic force term were neglected, the dissipation terms were linearized with 

2 ( ) 1ndq  , and ,,p p vC C  were assumed constant. 

2.2. NCCR model in the compact dimensionless form 

The second-order constitutive relation in the dimensional form can be transformed into a 

compact non-dimensional form. The following dimensionless variables and the definitions of 

non-dimensional parameters (such as the Mach number (M), Reynolds number (Re), Eckart 

number (Ec), Prandtl number (Pr), Knudsen number (Kn), and non-dimensional rarefaction 

parameter ( N )) are employed [52]: 
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Here the starred quantities represent the non-dimensional quantities; terms with subscript r are 

reference quantities chosen appropriate to the flow problem. The factor /
rb b rf    is the ratio 

of the bulk viscosity to the shear viscosity. In addition to the above-mentioned non-dimensional 

entities, an additional set of non-dimensional quantities and parameters are defined for the 

vibrational degrees of freedom: 

 

,* * * * *

, 2 2

, , ,
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, , ,, ,

, , , , ,   ,
/ / ( / )
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p v rv r
v v v v
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Ck T e
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cu
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(8) 

After those non-dimensional quantities and parameters are substituted into the conservation 

laws (2) and (3), the second-order NCCR model (5), and the modified Rayleigh-Onsager 

dissipation function (6), and dropping the asterisk superscript for simplicity, the following 

conservation laws and NCCR model in a compact form can be obtained: 
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(9) 

and 
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2
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(11) 

In this expression, the coefficient c was first derived by Myong [3] with a simple gas 

assumption: 

1/2
1/4

2

( ) 2
( ) [4 2 / ( 1)]
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r r

mk T
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
, 

 

where   is the exponent of the inverse power laws. The following hat quantities have also been 

applied:  

(2)
(2)

0 0

0 v,0

ˆ ˆˆ ˆ,   ,   ,   ,
/ (2 ) / (2 )

( 2 [ ] ) ( )ˆ ˆˆ ˆ[ ] ,   ( ),

( )( )ˆ ˆˆ ˆ,   .
/ (2 ) / (2 )

v
v

v v

b
b

v v
v

v v

N N N N

p p p pT T

N N
f

p p

N N k Tk T
T T

p pT T

     

   
      

  
     

QQ
Π Π Q Q

u u
Π u u

Q Q

   

 

 

 

 
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(12) 

On the other hand, it is possible to choose dimensionless variables such that the 

dimensionless form of inviscid fluxes in the conservation laws is the same as the original 

dimensional form of inviscid fluxes. This form is very convenient because it does not require 

any modifications to the various flux functions designed to calculate the inviscid fluxes. When 

all terms in the conservation laws are normalized using the following variables and parameters, 
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together with parameters defined for the vibrational degrees of freedom, 
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(13) 

the dimensionless form of inviscid fluxes in the conservation laws remains the same as the 

original dimensional form.  
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u Π I u Q + Q

u Q

, 

(14) 

Note that the acoustic speed ( ra ), instead of the velocity ( ru ), is used in defining the reference 

value. On the other hand, the corresponding algebraic constitutive relations (10)-(12) remain 

unchanged. 

2.3. Velocity slip and temperature jump conditions for multi-dimensional simulation 

The velocity slip and temperature jump boundary conditions on the solid surface are 

necessary to accurately describe rarefied and microscale gas flows [56–58]. In 1879, Maxwell 

introduced a velocity slip boundary condition known as the Maxwell velocity slip condition 

[59]. In this boundary condition, the slip in tangential velocity near a solid surface slipu  is 

related to the tangential shear stress tanΠ  and the tangential heat flux tanQ . This slip condition 

can be expressed in the following form [58,59], 
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(15) 

where wallu  is the velocity vector of a solid surface, and mean  denotes the mean free path. We 

assume the solid surface is located at the origin of the normal coordinate. The tangential 

momentum accommodation coefficient is denoted by  0 1v v   which determines the 

proportion of the molecules reflected from the surface purely diffusely ( 1v  ) or purely 

specular ( 0v  ). The tangential shear stress and the tangential heat flux are defined in general 

coordinates at the surface, 

 tan

tan

,

,

  

 

Π n Π S

Q Q S
 

(16) 

where the S, defined as = - S I n n  using the dyadic product ( ), refers to the surface vector in 

which normal components are removed. If the constitutive relations of viscous stress and heat 

flux are taken as linear with first-order accuracy, the slip condition (15) is simplified in 

cartesian coordinates into 
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(17) 

By analogy with the Maxwell velocity slip condition, the Smoluchowski jump boundary 

condition [60,58] can be written as 
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(18) 

Here 
slip

T  is the gas temperature at the surface, wall
T  is the temperature of the solid surface, 

and  0 1T T    denotes the thermal accommodation coefficient. If the constitutive 

relation of heat flux is taken as linear with first-order accuracy, the jump condition (18) is 

simplified in cartesian coordinates into 
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(19) 
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3. Methodologies for solving NCCR 

The strategy to numerically solve the conservation laws in conjunction with NCCR has two 

main issues. The first issue is the choice of the computational methodology to handle the 

conservation laws with various options such as the finite volume method (FVM), finite element 

method (FEM), spectral methods, and continuous and discontinuous Galerkin (DG) methods. 

For example, our group developed in-house codes based on FVM and a mixed modal DG 

method [39–43].  

The second issue is how to solve NCCR, (10)-(12), to determine the non-conserved 

quantities—viscous stress, excess normal stress, heat flux, and vibrational heat flux—for given 

thermodynamic forces (gradients of velocity, trans-rotational and vibrational temperatures). 

The first-order NSF calculations are straightforward since these quantities are proportional to 

gradients of velocity and temperatures. In contrast, since the second-order NCCR is nonlinear 

and highly coupled, an appropriate numerical strategy must be developed. Moreover, the 

NCCR of viscous shear stress is in the form of a second-rank tensorial equation, which is 

particularly complex to solve in 2D and 3D flow simulations. The viscous shear stress tensor 

is traceless and hence contains only 5 independent elements ( 11̂ , 12̂ , 13̂ , 22̂ , 23̂ , 

11 22
ˆ ˆ  ). Thus, along with the excess normal stress ̂  and 6 components of the two heat 

flux vectors ( 1Q̂ , 2Q̂ , 3Q̂ ) and ( ,1
ˆ

vQ , ,2
ˆ

vQ , ,3
ˆ

vQ ), a total of 12 unknowns have to be calculated 

from the given 17 known variables ( , , , , vp T T T  u ). 

3.1. Method I: Iterative method based on decomposition at the cell interface 

One way to drastically reduce the complexity of solving 12 equations is to apply NCCR to 

the interface (or edge) of a computational cell, rather than a node. The 3D flow problem can 

then be split into three sub-problems in the  , ,x y z  directions in any computational framework. 

Further, the viscous stress and heat flux components ( 11̂ , 12̂ , 13̂ , ̂ , 1Q̂ , ,1
ˆ

vQ ) on a surface 

in a three-dimensional control volume induced by thermodynamic driving forces (gradients of 

velocity and temperatures) can be approximated as the sum of three decomposed solvers; first 

on (
1 1/u x  , 0 , 0 , 1/T x  , 

1/vT x  ) describing the compression-expansion flow, second on  

( 0 , 
2 1/u x  , 0 , 0 , 0 ), and third on  ( 0 , 0 , 

3 1/u x  , 0 , 0 )  describing the velocity-shear 

flow, that is, 
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(20) 

Note that the decomposition of these viscous fluxes has the same spirit as the treatment of 

inviscid fluxes: F(
1u ,

1 1u u p  ,
1 2u u ,

1 3u u ,
1( )e p u  , 1ve u )=F1( 1u ,

1 1u u p  , 0 , 0 ,

1( )e p u  , 1ve u )+F2( 0 , 0 ,
1 2u u , 0 , 0 , 0 ) +F2( 0 , 0 , 0 ,

1 3u u , 0 , 0 ). 

The iterative procedure can be developed individually for the decomposed solvers. For a 

sub-domain determined by the sign of the first-order NSF constitutive laws based on gradients 

of velocity and temperatures, it is possible to find iterative functions that always converge over 

the whole sub-domain. Similarly, it is possible to solve the decomposed solvers along the y- 

and z-direction, and the component-wise values are summed up to obtain the final results. In 

the case of the steady-state problem, it was observed that the convergence can be improved by 

first solving the entire problem using the first-order NSF constitutive laws and then employing 

the NCCR model with the NSF quantities as the initial condition. A detailed description of 

method I in multi-dimensional flow problems is given in previous works [4,42]. 

3.2. Method II: Undecomposed relaxation method 

In the present work, an alternative iterative scheme is presented. The broader objective of 

this work is to implement the NCCR theory in the foam-extend based dbnsTurbFoam solver. 

The foam-extend is a variant of the OpenFOAM (Open-source Field Operation and 

Manipulation) C++ toolbox for CFD. A prime advantage of this toolkit is the efficiency of 

tensor algebra programming. This aspect of the OpenFOAM toolbox inspires method II. 

However, this strategy can be implemented in conventional FVM and DG in-house codes as 

well. Method I begins with calculating the inviscid fluxes, initializing viscous stresses and heat 

fluxes as the first-order approximations, calculating the second-order viscous stresses and heat 

fluxes using iterative schemes, and finally merging the second-order viscous fluxes to calculate 

the conserved quantities at the next time-step using a standard time-integrator.  

The procedure of the new alternative scheme does not involve solving the second-order 

NCCR iteratively until convergence in each time step. The tensor equations are not 

decomposed into a set of component-wise equations in this method. Instead, the tensorial and 

vectorial equations for calculating the viscous stresses and heat fluxes, respectively, are solved 

directly. The nonlinear coupled algebraic equations are generally difficult to solve using 
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analytical methods or using single-step numerical procedures. However, an iterative scheme 

with appropriate under-relaxation can solve the equation without much difficulty.  

To illustrate the essence of method II, consider an isothermal monoatomic gas simulation. 

In this case, the second-order NCCR of viscous stresses is nonlinear and coupled, but not 

related to heat flux. The viscous stress tensor appears at three different places in the implicit 

NCCR. To solve the NCCR in its native tensorial form, the viscous stress term multiplied by 

the nonlinear term 2
ˆ( )ndq cR  is chosen as the primary unknown, and the value of viscous stress 

in the remaining two places is taken from the previous iteration. The tensor equation can then 

be directly solved using the following iterative procedure: 

(2)
1 0

2

ˆ ˆ ˆ( [ ] )ˆ ˆ (1 )
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n
n n

n n
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Π Π
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(21) 

where   is the under-relaxation parameter. The quantities with zero as a subscript represent 

the first-order NSF approximation. Convergence for this second-rank tensorial equation is 

assured for values of the under-relaxation parameter less than 0.1. Such a low value of the 

under-relaxation parameter indicates the highly nonlinear nature of the equation, which is 

highlighted by the presence of the hyperbolic sine term.  

In this study, instead of solving the NCCR iteratively till convergence in each evolution 

step, the computation is performed only once per computational cell. In this manner, the 

conserved and non-conserved variables converge simultaneously. In other words, the present 

code avoids a situation of a nested loop where the outer loop is for the evolution of the 

conserved variables along the time direction, and the inner loop is for the iterative method for 

calculating the second-order non-conserved variables. However, since the degree of 

nonlinearity increases with the coupled nature of the second-order non-conserved variables, 

the suggested value of the permissible under-relaxation reduces to 0.01. The final under-

relaxed set in the case of monoatomic gases is 
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(22) 
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In the case of diatomic and polyatomic gases with vibrational non-equilibrium, the equations 

(10)-(12) in the two-temperature framework provide a total of four systems as follows, 
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Method II can make use of OpenFOAM which has a pre-defined library of tensor algebra 

operations. The choice of under-relaxation parameter turns out to be critical to the stability of 

the simulation. It was observed that in the case of very rare situations such as gases with very 

high bulk viscosity ( 1
b

f ), the under-relaxation was an order of magnitude smaller than the 

one recommended earlier, which slows down convergence. Method I does not employ any such 

under-relaxation parameter and has been proven to lead to convergence in almost all scenarios. 

4. Development of nccrFOAM code 

4.1. Introduction to dbnsFoam and dbnsTurbFoam 

The rhoCentralFoam solver [61] is the most widely used density-based solver for 

compressible flow that comes pre-installed with the official OpenFOAM distribution. This 

solver employs the Kurganov and Tadmor (KT) [62], and Kurganov, Noelle, and Tadmor(KNP) 

[63] flux schemes for handling the nonlinear terms in the Euler/NSF equations. KT and KNP 

flux schemes avoid expensive Jacobian evaluations as they use a central difference-based 

formulation instead of solving the Riemann problem for flux calculation. However, it has been 

observed that the shock structures computed using the central difference schemes are prone to 

dissipative effects. Recently, improved density-based solvers named dbnsFOAM and 

dbnsTurbFOAM solvers have been developed and included in the foam-extend framework, 

which is another fork of OpenFOAM. The two density-based solvers employ the dbns or 

density-based Navier-Stokes library. 

Several options are available for time-integrators in the foam-extend framework and can be 

employed to track the evolution of the conserved variables over time. The central problem 
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when solving the nonlinear system of conservation laws, such as the Euler equation or the 

Navier-Stokes-Fourier equation is the calculation of the flux terms at the cell interfaces. 

nccrFOAM employs approximate Riemann solvers [64] to calculate the numerical 

approximation of the flux at the interfaces. The dbns library contains several state-of-the-art 

approximate Riemann solvers such as the HLLC (Harten-Lax-vanLeer+Contact) family of 

solvers [65,66], Roe approximate Riemann solver [67], Rusanov flux [68] schemes, and AUSM 

(Advection Upstream Splitting Method) family of flux vector splitting schemes [68, 69]. The 

dbnsFOAM and dbnsTurbFOAM solvers also have higher-order reconstruction schemes and a 

wide range of options for slope limiters. 

4.2. nccrFOAM suite file structure 

The new nccrFOAM suite is derived from the dbnsTurbFOAM solver that employs the dbns 

library in a foam-extend fork of the OpenFOAM framework. Overall, the development of the 

nccrFOAM suite is divided into two parts:  

 nccrFOAM: adding the second-order NCCR for monoatomic, diatomic, and polyatomic 

gases at a lower temperature in the absence of vibrational non-equilibrium, 

 nccrVibFOAM: adding the two-temperature formulation to the NSF solver for handling 

non-equilibrium flows, and further adding the NCCR for diatomic and polyatomic gases at 

higher temperatures with vibrational non-equilibrium. 

The first part of the suite requires initializing new variables for the non-conserved quantities 

(viscous stress tensor and heat flux vector for monoatomic gases, and viscous stress tensor, 

excess normal stress scalar, and heat flux vector for diatomic and polyatomic gases at lower 

temperatures) and adding the appropriate equations for the non-conserved quantities to the 

momentum and energy equations in the algorithm. This will be discussed in the next sub-

section in detail. 

The second part of the suite requires the manipulation of the foam-extend source code at a 

deeper level, which demands a clear understanding of the dbns library. The dbns consists of a 

basicNumericFlux class which is a base class for run-time selectable numerical flux methods. 

In the creatFields.H file of a dbns-derived solver, an object for numerical flux is initialized 

using the New() function belonging to the basicNumericFlux which takes pressure, velocity, 

and temperature as input. The main class for flux calculation in the dbns library is the 

numericFlux class, which is included in the dbnsFOAM and dbnsTurbFOAM solvers in the 

header section. The member functions of the numericFlux class consist of the following: 



22 

 

• computeFlux(): calls the limiter functions and calculates the higher-order reconstruction 

values for pressure, velocity, and temperatures for a Riemann problem 

• rhoFlux(): takes the reconstructed Riemann problem initial conditions and returns the flux 

for the continuity equation by solving the input flux schemes 

• rhoUFlux(): returns the flux for the momentum equation  

• rhoEFlux(): returns the flux for the energy equation 

 

The dbnsFOAM and dbnsTurbFOAM solvers call these functions when solving the three 

conservation laws. The inclusion of vibrational non-equilibrium in the flow requires adding the 

vibrational energy equation. A new variable, vibrational energy (_ev), also needs to be 

appended to the conserved variable vector U, which takes the following updated form: U = [  ,

u , e , ve ]T. The corresponding flux function is F = [ u , p uu I , ( )e p u  , ve u ]T 

where the last entry is the flux term for the vibrational energy equation. The dbns library does 

not contain a function for calculating flux for the vibrational energy equation and does not take 

the vibrational temperature as an additional input. The vibrational temperature needs to be 

added to the modified New() function belonging to the basicNumericFlux class to provide the 

necessary variables for calculating the vibrational heat flux. The non-equilibrium modeling 

requires writing a new dbns library based on the existing dbns library and contains updated 

flux functions. Sub-section 4.4 details the new dbnsv library that is added to the existing 

framework to implement the NSF and the NCCR theory for diatomic and polyatomic gas flows 

with vibrational non-equilibrium. 
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Fig. 1. The file structure of the new nccrFOAM and nccrVibFOAM solver (Key: rectangle 

→ folders, rounder rectangle → files, darkened icons for newly written files/folders). 

 

The overall file structure of the new solvers in the existing foam-extend framework is 

shown in Fig. 1. The nccrFOAM folder consists of the make files along with the source code 

in nccrFoam.C. Similarly, the nccrVibFOAM folder containing nccrVibFoam.C handles the 

two-temperature implementation with vibrational non-equilibrium. Depending on the choice 

of gas system (monoatomic, diatomic, polyatomic, vibrational equilibrium and non-
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equilibrium) and the order of the constitutive relations for the non-conserved variables, a 

suitable system of equations is solved that is stored in the Eqns folder and called using a 

conditional statement from the main source codes (nccrFOAM.C or nccrVibFOAM.C) of the 

solver. In the case of nccrFOAM, the Eqns folder contains the following codes: 

 NSF.H: solves the Navier-Stokes-Fourier and Navier-Fourier ( 0bf  ) system of equations 

to simulate monoatomic, diatomic, and polyatomic gas flows at low temperatures. The code 

solves the three conservation laws, and the non-conserved variables (viscous shear stress 

tensor, excess normal stress, and heat flux vector) are calculated using the first-order 

constitutive laws. This file contains the same code as the dbnsTurbFoam main loop. 

 NCCR.H: solves the nonlinear-coupled constitutive relations (NCCR) to simulate 

monoatomic, diatomic, and polyatomic gas flows at lower temperatures. The code solves 

the three conservation laws in conjunction with the second-order NCCR. 

Similarly, in the case of nccrVibFOAM, the Eqns folder contains the following codes: 

 NSFv.H: solves the Navier-Stokes-Fourier and Navier-Fourier ( 0bf  ) system of equations 

to simulate diatomic and polyatomic gas flows at high temperatures with vibrational non-

equilibrium. The code solves the three conservation laws and an additional equation for 

vibrational energy. The non-conserved variables (viscous shear stress tensor, excess normal 

stress, heat flux vector, and vibrational heat flux vector) are calculated using the first-order 

constitutive laws. The source term in the vibrational energy equation can be modeled using 

the constant collision factor model, MW, or MWP VT relaxation models. 

 NCCRv.H: solves the nonlinear-coupled constitutive relations (NCCR) to simulate 

diatomic and polyatomic gas flows at high temperatures with vibrational non-equilibrium. 

The code solves the three conservation laws and the fourth vibrational energy equation. 

The code implements a procedure for solving the second-order NCCR of non-conserved 

variables (viscous shear stress tensor, excess normal stress, heat flux vector, and vibrational 

heat flux vector). The source term in the vibrational energy equation is handled in the same 

manner as in the NSFv.H file. 

In both solvers, the createFields.H contains the details of the variables that are required for 

the solver. New variables required for solving the equations are added to the existing list of 

variables. Instead of adding the dbns libraries to the main nccrFoam.C code, the dbnsv has to 

be added to the header section of the nccrVibFOAM solver. The NSF.H and NCCR.H codes 

employ/update flux functions from the dbns library, while the NSFv.H and NCCRv.H codes 
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employ flux functions from the new dbnsv library, which includes flux functions for the 

vibrational energy equation. 

4.3. Second-order NCCR for monoatomic and low-temperature diatomic and polyatomic gas 

flows 

The first part of the code development is to implement the second-order NCCR for 

monoatomic and low-temperature diatomic and polyatomic gas flows, which make the 

nccrFOAM solver. A new IOdictionary class reference derived from the dictionary named 

atomProperties and IObject are initialized in the createFields.H file as 

 

IOdictionary atomProperties 

( 

IOobject 

( 

"atomProperties", 

runTime.constant(), 

mesh, 

IOobject::MUST_READ, 

IOobject::NO_WRITE 

) 

); 

 

This class reference takes the file of the same name residing in the constant folder of the 

simulation folder. Users have to store the values of the Prandtl number (Pr), a reference value 

of the viscosity coefficient (muref) at the specified temperature (Tref), index (omega) of 

the power law for calculating viscosity as a function of temperature and specific heat capacity 

at constant pressure (Cp). Further, information on the atomic/molecular mass of the gas (mass), 

atomic/molecular diameter (diaatom), the ratio of bulk viscosity to shear viscosity (fb), and 

reference values for velocity (uRef), pressure (pRef), temperature (TRef) and length (lRef) 

are to be specified in the atomProperties file when designing the OpenFOAM simulation case. 

Moreover, the users have to add the values for the logical variables for the choice of the order 

of constitutive relations (nccr =0 for the first-order constitutive laws and = 1 for the second-

order NCCR). The corresponding variables for these parameters with appropriate dimensions 

are initialized in the createFields.H file, which will search for cases in the atomProperties file 

in the simulation folder at the time of running the case. In the nccrFOAM, new volume field 

variables (Pi) (a tensorial variable), (Delta) (a scalar variable when 0bf  ), and (Q) (a 

vectorial variable) are initialized in the createFields.H file. 
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The NSF.h code is simply the dbnsTurbFOAM source code with the addition of the power-

law for the viscosity coefficient, and for expressing the viscous stress components of the 

conservation laws in terms of the newly defined volume variables. In the case of the second-

order NCCR, the non-conserved variables (viscous shear stress, excess normal stress when fb 

> 0, and heat flux) are initialized with the first-order approximations in the nccrFOAM.C before 

the main time integrator loop starts. The values of the non-conserved variables will improve 

with the evolution of the system and eventually converge to accurate second-order 

approximations. The code for the time integrator loop for the second-order NCCR is written in 

a separate C + + file (NCCR.H) in the Eqns folder. Solving the second-order NCCR for viscous 

stress and heat flux for monoatomic gas flows consists of the following steps: 

1. Non-dimensionalizing the non-conserved variables: The second-order NCCR can be 

written in a compact non-dimensional form. The non-dimensional NCCR calculates 

second-order approximations of the non-dimensional non-conserved variables (PiND and 

QND) as a function of non-dimensional first-order thermodynamic forces (PiNSND and 

QNSND). Further, the new non-dimensional parameters cPi and cQ are defined in the 

createFields.H file. 

 

 

// Initialize Pi and Q from NSF 

volScalarField muEff("muEff", muref*(pow(T/Tref,omega))); 

volScalarField kappaEff("kappaEff", muEff*Cp/Pr); 

// NSF Stress and Heat Flux 

volTensorField tauMC("tauMC", muEff*dev2(Foam::T(fvc::grad(U)))); 

volTensorField PiNS("PiNS", -(tauMC+ muEff*fvc::grad(U))); 

volScalarField DeltaNS("DeltaNS", -(fb*muEff*fvc::div(U))); 

volVectorField QNS("QNS", -(fvc::grad(kappaEff*T) - T*fvc :: 

grad(kappaEff))); 

 

// Non-dimensional Stress, Excess stress and Heat Flux 

volTensorField PiND("PiND", cPi*Pi/p); 

volTensorField PiNSND("PiNSND", cPi*PiNS/p); 

 

volScalarField DeltaND("DeltaND", cPi*Delta/p); 

volScalarField DeltaNSND("DeltaNSND", cPi*DeltaNS/p); 

volTensorField gradUND("gradUND", -muEff*fvc::grad(U)/p); 

 

volVectorField QND("QND", cQ*Q/p/pow(T,0.5)); 

volVectorField QNSND("QNSND", cQ*QNS/p/pow(T,0.5)); 
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2. Solving the NCCR: The non-dimensional Rayleigh-Onsager dissipation function is 

calculated, and the second-order NCCR of viscous stress and heat flux are solved using the 

solve function before the momentum equation. Since these relations are standard algebraic 

relations, the implementation is straightforward. The snippet of the code is provided here:

  

 

volScalarField RayOns("RayOns", pow(((PiND&&PiND) + (QND&QND)),0.5)); 

if(fb.value()>0){ 

volScalarField RayOns("RayOns", pow(((PiND && PiND) + 

0.8*DeltaND*DeltaND/fb + (QND & QND)),0.5)); 

} 

// Solve stress equation 

volTensorField p1("p1", PiNSND); 

volTensorField p2("p2", PiNSND & (PiND + fb*DeltaND*I2)); 

volScalarField p3("p3", sinh(c*RayOns+SMALL)/(c*RayOns+SMALL)); 

PiND =((99.0*PiND)+ (p1+p2)/p3)/100.0; 

 

// Solve excess stress equation if fb > 0 

if(fb.value()>0){ 

volScalarField d1("d1", DeltaNSND); 

volScalarField d2("d2", 1.5*fb*((PiND + fb*DeltaND*I2) 

&&(gradUND))); 

volScalarField d3("d3", sinh(c*RayOns+SMALL)/(c*RayOns+SMALL));  

DeltaND =((99.0*DeltaND)+ (d1+d2)/d3)/100.0; 

} 

 

// Solve heat flux equation 

volVectorField q1("q1", QNSND*(1.0+fb*DeltaND)); 

volVectorField q2("q2", QNSND & PiND); 

volScalarField q3("q3", sinh(c*RayOns+SMALL)/(c*RayOns+SMALL)); 

QND =((99.0*QND)+ (q1+q2)/q3)/100.0; 

 

 

3. Recovering the dimensional non-conserved variables: After solving the non-dimensional 

equations, the non-dimensional non-conserved variables are transformed back to the 

dimensional form. 

 

// Dimensional Stress and Heat Flux 

Pi = p*PiND/cPi; 

Delta = p*DeltaND/cPi; 

Q = p*pow(T,0.5)*QND/cQ; 

 

To simulate diatomic and polyatomic gas flows at low temperatures with bulk viscosity, 

additional variables for excess normal stress are defined in the createFields.H file, and an 

additional equation of the excess normal stress is added to the NCCR.H file. Also, the viscous 
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stress tensor equation and the heat flux vector equation require minor modifications to 

incorporate the effect of bulk viscosity. The original dbnsTurbFoam density-based 

compressible solver is suitable for Stokesian fluids. Hence, a new NSF.H code is added to the 

nccrFOAM solver, which has an extra capability for simulating flows with non-zero bulk 

viscosity. The non-conserved variables are calculated using the first-order constitutive laws. 

The literature on the second-order NCCR generally employs a power law for calculating the 

viscosity coefficient [2,3]. The power-law model was implemented in the present solver to 

validate the results of the new solver using those provided in the previous study. 

4.4. Second-order NCCR for high-temperature diatomic and polyatomic gas flows with 

vibrational heat flux 

The second solver in the suite, nccrVibFOAM, solves diatomic and polyatomic gas flows at 

high temperatures with vibrational non-equilibrium. The atomProperties has additional 

parameters for VT relaxation models. The atomProperties contains the new parameters: the Zv 

constant VT relaxation parameter, A and B parameters for the MW relaxation model, and 

constant sigma for Park’s correction to the MW model, which will be referred to as the MWP 

relaxation model. If the Zv is set to zero, the MW/MWP models will be called to model the V-

T relaxation times; otherwise, the constant relaxation model will be employed. When 

implementing the nccrVibFOAM solver, the existing dbns library in the foam-extend 

framework is extended to a new library dbnsv. The file structure of the dbnsv library is shown 

in Fig. 2.  
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Fig. 2. The file structure of the new dbnsv library for two-temperature formulation (Key: 

rectangle → folders, rounder rectangle → files, darkened icons for newly written 

files/folders). 

 

As mentioned in the introduction of this section, the vibrational temperature has to be 

appended to the list of variables in the basicNumericFlux class and its functions by modifying 

newBasicNumericFlux.C in the basicNumericFlux folder of the dbnsv library. The vibrational 

energy is calculated using the vibrational temperature (Tv), characteristic vibrational 

temperature (thetav), and gas constant (Rgas). These scalar variables are also added to the 
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list of variables in the modified New() function. In addition, rhoEvFlux in the template of 

the flux class in the numericFlux.C in the numericFlux folder is defined in the following 

manner: 

 

rhoEvFlux_ 

( 

IOobject 

( 

        "rhoEvFlux", 

this->mesh().time().timeName(), 

this->mesh(), 

IOobject::NO_READ, 

IOobject::NO_WRITE 

), 

rhoFlux_*linearInterpolate(Rgas_*thetav_/(exp(thetav_/Tv_) - 1.0)) 

) 

 

The updated computeFlux() reconstructs the vibrational temperature and calls the selected 

flux scheme for the four equations, including the vibrational energy. The flux schemes are 

located in the dbnsFlux folder, and they have to be updated to calculate the additional flux term 

for the vibrational energy equation. The reconstructed values of pressure, velocity, trans-

rotational temperature, and vibrational temperature are input to these flux functions, and they 

return the flux function values for the four equations. The files related to the reconstruction and 

limiters are left unchanged. Additional make and include files are modified to reflect the 

changes made in the new library. NSFv.H and NCCRv.H files in the nccrVibFOAM solver 

contain the source code for solving the two-temperature conservation laws with first-order and 

second-order constitutive relations, respectively.  

The overall approach for solving the constitutive relations in nccrVibFOAM is similar to 

that in nccrFOAM, by adding the calculation of the vibrational relaxation time and the source 

term in the vibrational energy equation. The solver in the current form models vibrational 

relaxation time by either employing the constant VT relaxation model or the MWP model. The 

parameters required for the two models are defined in the createFields.H file. The snippet of 

code to implement the constant VT relaxation factor model along with the Landau-Teller 

source term in the vibrational energy equation is as follows, 
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if(Zv.value()>0) { 

// constant VT Model if Zv is initialized in the atomProperties file 

tauZV = Zv*1.25331413732*muEff/(rho*pow(Rgas*T,0.5))/ 

(pow(8.0*Rgas*T/3.14159265359,0.5)); 

} 

else { 

// MW and MWP models 

tauZV = constZv*exp(A/pow(T,1.0/3.0)+B)/p + 

1.0/(pow(8.0*Rgas*T/3.14159265359, 0.5)*sigma*rho/mass); 

} 

// Solve Vibrational Energy Equation 

Solve 

( 

1.0/beta[i]*fvm::ddt(rhoEv) 

+ fvc::div(dbnsvFlux.rhoEvFlux()) 

+ fvc::div(Qv) 

- (rho*(Rgas*thetav)/(exp(thetav/T)-1.0) - 

rho*(Rgas*thetav)/(exp(thetav/Tv)-1.0))/tauZV 

); 

 

where Zv is the VT model parameter, dbnsv.rhoEvFlux() is the new flux function defined in 

the dbnsv library, and Qv is the vibrational heat flux. Qv is a new volume vector appropriately 

initialized and defined in the createFields.H file and is calculated by either the first-order 

approximation or the second-order NCCR. 

5. Verification and validation of nccrFoam  

Proper verification and validation of the nccrFOAM are essential, to assess the accuracy and 

the robustness of the new solver. nccrFOAM solvers are validated using the following two 

procedures. The first set of simulations reproduces solutions of the second-order NCCR in a 

simple 1D subset problem. The results calculated by the nccrFOAM solvers are compared with 

those in previous publications [3,4,52]. The present nccrFOAM codes are temporarily modified 

for this test. The time-dependent conservation laws are not solved and only the second-order 

NCCR is solved by using method II. 

Once the veracity of the nccrFOAM code is demonstrated, the next set of simulations solves 

flow problems using the new nccrFOAM solvers, where the second-order non-equilibrium 

effects are prominent and have practical consequences. In the present validation study, we 

considered several flow problems: 1) a shock structure problem with no vibrational non-

equilibrium at Mach 10; 2) a shock structure problem with vibrational non-equilibrium at Mach 

15; 3) a hypersonic rarefied gas flow past a cylinder with/without vibrational non-equilibrium; 
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4) a Poiseuille flow of compressible argon gas through a micro-channel; and 5) a 3D nozzle jet 

gas impinging onto a surface at near-vacuum. The results were compared with available data 

such as previous FVM and DSMC results. 

5.1 1D simulations and topographical aspects of NCCR 

Th one-dimensional NCCR of viscous normal stress arising in the compression-expansion 

flow problem for a monoatomic gas such as argon, without heat flux, is the simplest yet still 

powerful validation case. This one-dimensional equation, first derived by Myong in 1999 [3], 

provides the non-dimensional second-order viscous normal stress as a function of the non-

dimensional first-order viscous normal stress defined by NS constitutive laws, highlighting the 

second-order nonlinear effects of NCCR on the viscous normal stress. The viscous normal 

stress equation is solved for different cases of initial values. In the nccrFOAM framework, this 

can be calculated by simulating several single-cell domains with /u x   as an input. However, 

in the present case, a single one-dimensional domain is solved to obtain the NCCR stress ( ˆ
xx ). 

The x-component of the velocity vector in the cells is initialized in such a manner that the non-

dimensional NS normal stress along the 1D domain is equal to that showcased on the x-axis in 

Fig. 3a. The flow is assumed to be frozen and the conservation laws in the nccrFOAM solver 

are not solved.  

Fig. 3a shows a comparison of the second-order non-dimensional normal stress calculated 

by the nccrFOAM solver and those obtained using the method of iteration reported in the 

previous literature [3]. The x-axis in Fig. 3a represents non-dimensional NS normal stress, 

which serves as an input. The results of the nccrFOAM solver match perfectly with the previous 

results. Fig. 3a also highlights the difference in the values of normal stress calculated using 

first- and second-order constitutive relations. In continuum regimes ( ˆ 1
NS

 ), the difference 

between the first-order NS and second-order NCCR results is negligible, justifying the use of 

NS constitutive relations for most practical flow conditions. However, in highly rarefied 

regimes, the difference increases in a complex way, especially in the region of gas compression, 

which corresponds to a positive x-axis. 
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Fig. 3. Comparison of the cross-section of the topology: a) viscous normal stress ( ˆ
xx ) for 

monoatomic gas flows (
b

f = 0.0) as a function of the first-order normal stress-only case; and 

b) viscous normal and shear stress ( ˆ
xx and ˆ

xy ) for monoatomic gas flows (
b

f = 0.0), as a 

function of first-order shear-only stress employing nccrFOAM with previous numerically 

calculated results. 

 

As explained in Subsection 3.1, the second-order NCCR can be solved at the cell interface 

by decomposing it into two sub-flows: the compression-expansion and the velocity-shear flows, 

according to the numerical technique developed by Myong [4]. In the previous verification 

study, we considered a 1D expansion-compression flow. Here we solve the 1D velocity-shear 

flows using the nccrFOAM solver. The input file for the velocity vector is initialized in such a 

manner that the normalized shear stress tensor in the xy  and yx  directions in the one-

dimensional domain matches the values on the x-axis in Fig. 3c in reference [4]. Again, 

isothermal conditions are assumed, resulting in a non-heat flux case. For diatomic and 

polyatomic gases, an additional equation has to be included for the excess normal stress ( ). 

Fig. 3b shows a comparison of the normal and shear stresses calculated using the new 

nccrFOAM solver and those obtained using the method of iteration outlined in the previous 

literature [3] for argon gas. The results of the nccrFOAM solver perfectly match the previous 

results. It is interesting to note that even in velocity-shear-only flow, non-zero normal stress is 

present in the NCCR due to the coupled nature of the components of the viscous stress tensor, 

which is not possible in the case of NS constitutive laws. We also checked the second-order 

NCCR of diatomic and polyatomic gases with non-zero bulk viscosity ( 0
b

f  ). The 

nccrFOAM solver reproduced a common kinematic viscous stress constraint in the results, 

whose topology is governed by a conic section and changes from an ellipse to a circle, to a 

parabola, and then finally to a hyperbola with increasing 
b

f , as shown in Fig. 4 [70]. 
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Fig. 4. Topology of the second-order Boltzmann-Curtiss-based constitutive models in the 

velocity shear flow problem in phase space ( , ,xx xy p  ) for 0
b

f   and 1
b

f  . 

(Reproduced with permission from Singh et al., “Topology of the second-order constitutive 

model based on the Boltzmann–Curtiss kinetic equation for diatomic and polyatomic gases,” 

Phys. Fluids 32, 026104 (2020). Copyright 2020 AIP).” 

 

In addition, the nccrFOAM solver was verified on a two-dimensional domain. For instance, 

for monoatomic gases, ˆ
xx and ˆ

xQ are chosen as the relevant variables. The velocity and 

temperature components are initialized in the domain in such a manner that these values result 

in corresponding NSF values of viscous stress and heat flux. The second-order NCCR in 

nccrFOAM is solved iteratively to obtain the second-order viscous stress and heat flux. Again, 

the topological surfaces generated by the new solver perfectly matched those in the previous 

literature [70]. This verification study establishes the robustness and accuracy of the new 

nccrFOAM solver. 

5.2 1D Shock structure simulation 

Resolving the internal structure of a strong shock is considered to be one of the fundamental 

problems in the field of kinetic theory. Although limited, the availability of experimental data 

[71,72] in the form of inverse shock density thickness for monoatomic and diatomic gases is 

one of the reasons why shock structure simulations are widely used for validation studies. 

Several computational studies [20,69,71] based on first-order and higher-order methods in the 

Eulerian framework and even in the Lagrangian framework [72–74] have reported various 
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features of the internal shock structures for a wide variety of gases. Shock structure profiles 

based on nonlinear coupled constitutive relations have also been reported and discussed at 

length in several reports [3,39,52].  

In the present work, shock structure simulations were performed for Maxwellian gases with 

a wide range of conditions using the new nccrFOAM and nccrVibFOAM solvers, and the shock 

profiles were compared with those obtained using the validated in-house FVM codes [52]. 

Stationary shock structure simulations were conducted for the following three cases: 

 Mach 10 monoatomic argon gas flow using the nccrFOAM solver (single temperature 

NSF and NCCR with 
b

f  = 0). 

  Mach 10 nitrogen gas flow without vibrational non-equilibrium using the nccrFOAM 

solver (single temperature NSF and NCCR with 
b

f  = 0.8). 

 Mach 15 nitrogen gas flow with vibrational non-equilibrium using the nccrVibFOAM 

solver (two-temperature NSF and NCCR with 
b

f  = 0.8) with constant relaxation V-T 

model 𝜏𝑣 = 𝑍𝑉−𝑇 ∙ 𝜏𝑐  where 𝑍𝑉−𝑇  is constant relaxation collision number (=50) and 

𝜏𝑐 is the mean collision time. 

The detailed explanation provided here refers to those required to design the Mach 10 shock 

structure simulation of argon gas using the nccrFOAM solver. The other two simulations can 

be similarly designed by extending the first simulation. The 0 time folder contains the initial 

and boundary conditions required for the simulation. To define the shock structure profile for 

monoatomic, diatomic, and polyatomic gases without vibrational non-equilibrium, the number 

of independent input variables is three: pressure, temperature, and x-directional velocity. In 

contrast, the simulation for diatomic and polyatomic gases with vibrational non-equilibrium 

will require an additional input variable: vibrational temperature besides trans-rotational 

temperature. In the case of shock structure simulation, writing the input files in the 0 folder can 

be automated after constructing a mesh using a pre-defined setFields function.  

The constant folder contains files describing the computational grid (in polyMesh sub-

folder). In the present work, a 1000-celled one-dimensional grid for the shock structure 

simulation, spanning over a domain with a total length equal to sixty times the mean free path 

defined using the upstream condition, was chosen for the Mach 10 argon gas flow simulation. 

The grid was generated using the in-built blockMesh utility. The constant folder also contains 

the details of the simulated gas and its properties (basic thermal properties in 
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transportProperties and turbulence properties). In the present work, the laminar flow was 

assumed, and the turbulence models and the associated property file were redundant since the 

new nccrFOAM currently does not include turbulence modeling.  

Additionally, a new file named atomProperties contains the details of the power-law 

viscosity model, flow properties, and reference values required for non-dimensionalizing the 

second-order NCCR, and various flags for the model (nccr = 0 for NSF equations and = 1 

for NCCR). Upstream conditions were chosen as the reference values for the second-order 

NCCR simulations.  

The system folder contains files that control the procedure of the simulation itself. The files 

are similar to those written for dbnsTurbFoam with a few minor editions. To simulate the Mach 

10 argon gas, various schemes in the fvSchemes file have to be defined for the additional non-

conserved variables (div(Pi), div((Pi&U)), div(Q)).  

  

 

Fig. 5. Comparison of normalized properties (density, temperature, and x-directional velocity) as 

a function of normalized length: a) Mach 10 shock structure of argon gas; b) Mach 10 shock 

structure of nitrogen gas; and c) Mach 15 shock structure of nitrogen gas with vibrational non-

equilibrium calculated using the new nccrFOAM solver and previous FVM codes. 
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The shock structure simulations for the three cases can be performed using either the first-

order NSF or the second-order NCCR solvers. A first-order nccrFOAM simulation of 

monoatomic gas flows is equivalent to a dbnsTurbFOAM simulation. When first-order 

constitutive relations are used to simulate diatomic and polyatomic gas flows at low 

temperatures, the effect of bulk viscosity is effectively reflected in the governing equations, 

resulting in a system equivalent to the Navier-Fourier (NF) equation. It is noteworthy that the 

new nccrFOAM solver has the additional capability of handling the NF simulations, which is 

not possible with the existing dbnsTurbFoam solver. In addition, the new nccrVibFOAM solver 

solves diatomic and polyatomic gas flows with vibrational non-equilibrium at a higher 

temperature in a two-temperature framework, which is also unavailable in the current 

dbnsFoam or dbnsTurbFoam solvers. Shock structure simulations using the first-order 

constitutive relations were performed in the nccrFOAM solver and compared with the results 

obtained using the in-house FVM codes. 

Fig. 5 compares normalized shock structure profiles obtained using the nccrFOAM solver 

and the previous FVM code as a function of normalized length for the Mach 10 shock structure 

of argon gas, Mach 10 shock structure of nitrogen gas, and Mach 15 shock structure of nitrogen 

gas with vibrational non-equilibrium. The nccrFOAM results are again in excellent agreement 

with those calculated with the FVM code. The profiles of not only conserved but also non-

conserved variables were found to match very well in all three simulations. 

5.3 Multi-dimensional NCCR simulations 

Flow past a cylinder is a benchmark problem to validate new multi-dimensional solvers. In 

the present study, a hypersonic flow with Mach number 5.48 was simulated for Knudsen 

number 0.05 based on the diameter of a cylinder. The properties of the argon gas were as 

follows: gas constant R =208.24 J/kg/K, specific heat at constant pressure 
pC =520.0 J/K, 

reference coefficient of viscosity 
ref =2.117×10−5 Pa s at a reference temperature 

refT

=273.15 K, index of viscosity power-law model   =0.75, and Prandtl number Pr =2/3. The 

free-stream velocity of the gas along the x-direction ( U ), ambient pressure ( p ), and 

temperature (T ) were 526.3 m/s, 5 Pa, and 26.6 K, respectively. As argon is monoatomic gas, 

the bulk viscosity was set to zero, and the excess normal stress vanishes. The wall temperature 

( wT ) of the stationary cylinder was maintained at 293.15 K. The Maxwell velocity slip 
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condition and Smoluchowski temperature jump condition with full surface accommodation (

= 1) were assumed to be the wall boundary condition of the cylinder. To improve the 

convergence of the second-order NCCR solver, the new solver nccrFoam was used to simulate 

the first-order constitutive relations first. After convergence, the final results were used as input 

to the second-order NCCR solver. 

Fig. 6 compares normalized density and temperature along the normalized stagnation line 

obtained by the first and second-order constitutive relations in the new nccrFOAM solver with 

those predicted by DG-NSF and DG-NCCR codes of Le et al. [39] and results obtained using 

the in-house DSMC code [75]. The present first-order NSF results match well with the 

corresponding DG-NSF results. The present second-order NCCR results also match well with 

the DG-NCCR results and DSMC. Interestingly, the present second-order NCCR results seem 

to be in better agreement with the DSMC compared to the DG-NCCR results. The deviation 

between the present nccrFOAM solver and DG-NCCR solver may be attributed to the different 

boundary treatment—Maxwell- Smoluchowski vs Langmuir—and the much finer grid 

resolution of the present work than that of Le et al. [39]. 

 

  

Fig. 6. Comparison of shock structure profiles along normalized stagnation line obtained 

with the first-order NSF and second-order NCCR solvers (present and DG), and DSMC for 

Mach 5.48 argon gas flow (Kn=0.05): a) normalized density; and b) normalized temperature. 
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The simulation of nitrogen gas flows with vibrational non-equilibrium in a two-temperature 

framework was also carried out using the nccrVibFOAM solver. The chosen Mach number and 

Knudsen number were 10 and 0.05, respectively. The ambient temperature, pressure, and x-

direction velocity were set to 200 K, 0.2345 Pa, and 2883 m/s, respectively. The surface 

  

 

Fig. 7. Comparison of contours obtained with the first-order NSF and second-order NCCR 

using the nccrVibFOAM solver for Mach 10 nitrogen gas flow (Kn=0.05):  a) pressure (Pa); 

b) trans-rotational temperature (K); and c) vibrational temperature (K). 
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temperature of the cylinder was set to 500 K. The Millikan-White vibrational relaxation model 

with Park’s correction was employed to handle the vibrational non-equilibrium. The values of 

the constants A , B ,   were set to 220 1/3K , -13.27, and 5.81×10-21 m2, respectively. 

Two simulations were performed with the first-order NSF and second-order NCCR solvers. 

For the NCCR simulation, the bulk viscosity ratio was set to 
b

f =0.8. Similar to the argon case, 

converged NSF solutions were taken as inputs to the NCCR simulation to improve the 

convergence. The Maxwell velocity slip condition and Smoluchowski temperature jump 

condition with full surface accommodation ( = 1) were assumed at the cylinder wall. 

Fig. 7 compares contours of pressure, trans-rotational and vibrational temperatures obtained 

by the first-order NSF and second-order NCCR. The overall shock structure and distribution 

of flow properties in the flow field show significant differences. The shock thickness of the 

second-order NCCR is greater than that of the first-order NSF. The peak trans-rotational 

temperature of the second-order NCCR is significantly lower than that of the first-order NSF. 

The higher trans-rotational temperature of the first-order NSF in turn drives faster vibrational 

relaxation, leading to much higher vibrational temperatures compared to the second-order 

NCCR. This is consistent with our previous observation in the 1D shock structure analysis [52].  

We present here for the first time the results of the second-order NCCR with vibrational 

non-equilibrium in a two-temperature framework for 2D hypersonic rarefied flow simulation. 

A parametric study of hypersonic rarefied nitrogen flows with vibrational non-equilibrium past 

various 2D bodies at varying Knudsen and Mach numbers, an analysis of the flow properties 

predicted by the NSF and NCCR, and a comparison with appropriate DSMC simulations are 

currently in progress and will be reported in the future. 

The nccrFOAM solver can also be employed to investigate microscale gas flow applications. 

A two-dimensional steady-state Poiseuille flow of compressible argon gas through a micro-

channel was considered. The laminar flow was induced by the pressure difference (the inlet 

and outlet pressures, 
inP  =1.2 atm and 

outP  = 0.5 atm, respectively) imposed on the channel 

with the length L = 8 m  and height H = 1 m . The walls of the channel were maintained at a 

constant temperature wT  equal to the upstream flow temperature 
inT =300 K. The Maxwell 

velocity slip and Smoluchowski temperature jump conditions with full momentum and thermal 

accommodation were imposed on the wall of the micro-channel. The flow velocity generated 

by the pressure difference varied in both the x and y directions, making this flow a multi-
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dimensional problem. The results obtained using the first NSF and second-order NCCR of the 

nccrFOAM solver were compared with a suitably designed DSMC result [76–78]. 

 

 
(a) x-velocity 

 

 
(b) Pressure 

 

 
(c) Temperature 

 

Fig. 8. Comparison of contours of primitive variables obtained using the first-order NSF 

(top) and second-order NCCR (bottom): a) x-velocity (m/s); b) pressure (Pa), and c) 

temperature (K). 

 

Fig. 8 shows the contours of the NSF and NCCR results for the primitive variables. Fig. 9 

compares the distribution of the x-directional velocity along with the channel height at three 

different sections of the channel, 0.2L, 0.5L, and 0.8L, respectively, as obtained with NSF, 

NCCR, and DSMC. The second-order NCCR results are in very good agreement with the 

DSMC data, especially at the center of the channel, even in the downstream section of the 

microchannel where rarefaction effects are dominant. However, the agreement decreases near 

solid walls where the flow is mainly affected by the velocity slip and temperature jump 

boundary conditions. Therefore, the disparity observed can be attributed to the dominance of 

the slip and jump models in that region. This mismatch at the wall has been reported in the 

previous work by Myong [79]. It was found that the NCCR model predicts higher slip 

compared to those predicted by the DSMC method. The results reported in the present work 

conform to this observation. 
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In addition to the micro-Poiseuille gas flows, the new solver can be employed to investigate 

other micro-channel applications [80] such as micro-Couette, cylindrical Couette, and cavity 

flow. 

 

   

Fig. 9. Comparison of the x-directional velocity along the height at different locations in the 

microchannel obtained with NSF, NCCR, and DSMC: 0.2L (left); 0.5L (center); and 0.8L 

(right). 

 

Finally, a challenging three-dimensional flow was investigated to evaluate the performance 

of the nccrFOAM solver. The problem undertaken was a 3D nozzle jet gas flow impinging onto 

a surface at near-vacuum, which represents the descent phase of a lunar landing [81]. A 

schematic of the domain and boundary conditions is shown in Fig. 10. The nozzle configuration 

is identical to that of the Apollo descent module. To save computational cost, a quarter of the 

domain was simulated. The computational grid consists of 136,000 hexagonal elements.  

Fig. 11 shows the line plots along x- and z-coordinate and density isosurfaces colored by 

the Rayleigh-Onsager number (that is, a Rayleigh-Onsager dissipation function in a non-

dimensional form, (10) or (14)) for two different cases. In both cases, the ambient pressure is 

set to near-vacuum condition (Pamb = 0.1 Pa). Figs. 11 (a)-(d) represent the case where the inlet 

pressure Pin is set to 100 Pa (a pressure ratio of 1000), while Figs. 11 (e)-(h) correspond to an 

inlet pressure of 10 Pa (a pressure ratio of 100). Similarly, Fig. 12 shows the variation of 

pressure, shear stress, and heat flux along the z-coordinate for the two cases (Figs 12. (a)-(c) at 

Pin = 100 Pa and pressure ratio of 1000, Figs. 12 (d)-(f) at Pin = 10 Pa and pressure ratio of 

100). The NSF and NCCR solvers were used to solve both scenarios. The NSF solution under-

predicted the location of the reflected shock (consequently, the stand-off shock position). The 
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gap between the two models was even greater when the inlet pressure was reduced (an increase 

in rarefaction effects). 

 

 

Fig. 10. Schematic drawing of the domain (and quarter domain) and boundary conditions. 
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Fig. 11. Density isosurfaces colored by Rayleigh-Onsager number: a) and b) at Pin=100 Pa and 

pressure ratio=1000; e) and f) at Pin=10 Pa and pressure ratio=100, and, line plots for Rayleigh-

Onsager number along the c) z- and d) x-coordinate at Pin=100 Pa and pressure ratio=1000; and 

along the g) z- and h) x-coordinate at Pin=10 Pa and pressure ratio=100, respectively. 

 

 

Fig. 12. Line plots along the z-coordinate for a) pressure, b) shear stress, and c) heat flux at 

Pin=100 Pa and pressure ratio=1000; d) pressure, e) shear stress, and f) heat flux at Pin=10 Pa 

and pressure ratio=100, respectively. 
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6. Conclusions and remarks 

The nccrFOAM suite was developed to simulate rarefied and microscale gas flows using 

second-order constitutive relations for a wide range of applications. In particular, the new 

solver is capable of simulating rarefied gas flows with vibrational non-equilibrium using a two-

temperature framework and state-of-the-art second-order constitutive relations developed from 

a modified Boltzmann-Curtiss kinetic equation for high non-equilibrium situations. Overall, 

nccrFOAM is a broad framework that can be utilized for a wide range of applications from 

shock structure simulations to hypersonic flows to microscale gas applications. The case files 

of several flow simulations including a shock structure problem with vibrational non-

equilibrium, a hypersonic rarefied gas flow past a cylinder with/without vibrational non-

equilibrium, and a 3D nozzle jet gas impinging onto a surface at near-vacuum are provided 

along with the code as a set of tutorials. 

The present framework can easily be extended to investigate other important gas flows in 

high non-equilibrium such as the multi-phase flows and nozzle gas flows of thrusters working 

in space. A study on the development of second-order NCCR for hypersonic gas flows with 

the inclusion of chemical reactions is also currently in progress. The interplay between the 

various physical mechanisms—second-order trans-rotational, vibrational, and chemical non-

equilibrium effects—will reveal a comprehensive description of complicated 

aerothermodynamic flows, such as the shock-dominated regions encountered in re-entry flows. 

Flow chemistry with the new set of equations will be added later to the current nccrFOAM 

framework.  

The second-order NCCR theory is a complex subject that often presents barriers to entry in 

the field of rarefied and microscale gas flows with vibrational and chemical non-equilibrium. 

nccrFOAM is intended to provide a solution to assist these efforts. We hope that it is useful to 

the rarefied and microscale gas dynamics and hypersonics communities at large. 
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