### Second-order Extension of Hooke's Law in Elasticity Based on a New Boltzmann-type Collision Model

April 14th, 2023 (09:00~09:40AM)

### **Rho Shin Myong**

Professor, Department of Aerospace and Software Engineering Director, Research Center for Aircraft Core Technology (ERC) Gyeongsang National University Jinju, South Korea http://acml.gnu.ac.kr myong@gnu.ac.kr

### **Acknowledgements**

### **Organizers and staff of MMKT2023**

Invitation on 19 Dec 2019 (30 June~3 July 2020) and delay of three years

# Dr. Satyvir Singh (Graduate Student; now Postdoctoral Researcher in RWTH Aachen Univ.)

Development of hybrid DG code and computational simulation of rarefied & microscale gas flows

### Dr. Tushar Chourushi (Graduate Student; now Assistant Professor in Amity University Mumbai)

Development of viscoelastic code and computational simulation of viscoelastic flows

# Hooke's law in elasticity (1676)



In the physics and mechanics of elastic solids, Hooke's law is an empirical law that states that the force needed to extend or compress a spring is proportional linearly to the distance.

The law is named after 17thcentury British physicist Robert Hooke who first stated the law in 1676.

Hooke's law is only a first-order approximation to the real response of springs and other elastic bodies to applied forces.

Talk 2/23 R. S. Myong, Gyeongsang National University, South Korea

### Elastic dumbbell models: kinetic theory of polymers

### Hyper-elastic materials such as rubber (amorphous solid)



#### Talk 3/23 R. S. Myong, Gyeongsang National University, South Korea

# Classification of gas flows in non-equilibrium



International Workshop on Moment Methods in Kinetic Theory IV 11-14th April, 2023 - Karlsruhe Institute of Technology

R. S. Myong, Gyeongsang National University, South Korea

# **Boltzmann kinetic equations**

 A first-order partial differential equation of the probability density of finding a particle in phase space with an integral collision term

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) f(t, \mathbf{r}, \mathbf{v}) = \frac{1}{Kn} C[f, f_2]$$

Movement Kinematic Collision (or Interaction) Dissipation

$$C[f, f_2] \sim \int |\mathbf{v} - \mathbf{v}_2| (f^* f_2^* - f f_2) d\mathbf{v}_2$$

= Gain (scattered into) - Loss (scattered out) =  $\left(\frac{\partial f}{\partial t}\right)$  -

$$\left(\frac{\delta f}{\delta t}\right)^+ - \left(\frac{\delta f}{\delta t}\right)^+$$

• Maxwell's equation of transfer for molecular expression  $h^{(n)}$ 

$$\frac{\partial}{\partial t} \left\langle h^{(n)} f \right\rangle + \nabla \cdot \left( \mathbf{u} \left\langle h^{(n)} f \right\rangle + \left\langle \mathbf{c} h^{(n)} f \right\rangle \right) - \left\langle f \frac{d}{dt} h^{(n)} \right\rangle - \left\langle f \mathbf{c} \cdot \nabla h^{(n)} \right\rangle = \left\langle h^{(n)} C[f, f_2] \right\rangle$$

# **Relationship with conservation laws (moments)**

#### Boltzmann transport equation (BTE): 10<sup>23</sup>

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) f(t, \mathbf{r}, \mathbf{v}) = C[f, f_2] \qquad \qquad p\mathbf{u} = \langle m\mathbf{v} f(t, \mathbf{r}, \mathbf{v}) \rangle$$
where  $\langle \cdots \rangle = \iiint \cdots dv_x dv_y dv_z$ 

*Differentiating* the statistical definition  $\rho \mathbf{u} \equiv \langle m \mathbf{v} f(t, \mathbf{r}, \mathbf{v}) \rangle$  with time and then combining with BKE  $(t, \mathbf{r}, \mathbf{v})$  are independent and  $\mathbf{v} = \mathbf{u} + \mathbf{c}$ )

$$\frac{\partial}{\partial t} \langle m\mathbf{v}f \rangle = \left\langle m\mathbf{v} \frac{\partial f}{\partial t} \right\rangle = -\left\langle m(\mathbf{v} \cdot \nabla f) \mathbf{v} \right\rangle + \left\langle m\mathbf{v}C[f, f_2] \right\rangle$$

$$\begin{bmatrix} \mathbf{A} \end{bmatrix}^{(2)} : \text{ Traceless symmetric} \\ \text{ part of tensor } \mathbf{A} \\ \text{Here } -\left\langle m(\mathbf{v} \cdot \nabla f) \mathbf{v} \right\rangle = -\nabla \cdot \left\langle m\mathbf{v}\mathbf{v}f \right\rangle = -\nabla \cdot \left\{ \rho \mathbf{u}\mathbf{u} + \left\langle m\mathbf{c}\mathbf{c}f \right\rangle \right\}$$

After the decomposition of the stress into pressure and viscous shear stress

$$\mathbf{P} \equiv \langle m\mathbf{c}\mathbf{c}f \rangle = p\mathbf{I} + \mathbf{\Pi} \text{ where } p \equiv \langle m\mathrm{Tr}(\mathbf{c}\mathbf{c})f/3 \rangle, \ \mathbf{\Pi} \equiv \langle m[\mathbf{c}\mathbf{c}]^{(2)}f \rangle,$$

and using the collisional invariance of the momentum,  $\langle m\mathbf{v}C[f, f_2] \rangle = 0$ , we have

$$\frac{\partial(\rho \mathbf{u})}{\partial t} + \nabla \cdot \left(\rho \mathbf{u}\mathbf{u} + p\mathbf{I} + \mathbf{\Pi}\right) = \mathbf{0}$$

Conservation laws: 13

### **Closing-last balanced closure on open terms**

$$\mathbf{\Pi} \equiv \left\langle m [\mathbf{c}\mathbf{c}]^{(2)} f \right\rangle, \mathbf{Q} \equiv \left\langle m c^2 \mathbf{c} / 2f \right\rangle$$

Closure theory: how, where (open terms), when (last)

New balanced closure with closure-last approach (PoF 2014)

2nd-order for kinematic LH = 2nd-order for collsion RH

$$\frac{D}{Dt} (\mathbf{\Pi} / \rho) + \nabla \cdot \Psi^{(\Pi)} + 2 [\mathbf{\Pi} \cdot \nabla \mathbf{u}]^{(2)} + 2 p [\nabla \mathbf{u}]^{(2)} = \left\langle m [\mathbf{cc}]^{(2)} C [f, f_2] \right\rangle$$

$$\overset{2^{\text{nd-order closure}}}{= -\frac{p}{\mu_{NS}}} \frac{1}{\mathbf{\Pi}} q_{2nd}(\kappa_1) \text{ where } \Psi^{(\Pi)} = \left\langle m \mathbf{ccc} f \right\rangle - \left\langle m \mathrm{Tr}(\mathbf{ccc}) f \right\rangle \mathbf{I} / 3$$

$$\frac{D}{Dt} \left( \Psi^{(\Pi)} / \rho \right) + \nabla \cdot \Xi + \dots = \left\langle h^{(\Psi^{(\Pi)})} C[f, f_2] \right\rangle$$

### **Other collision operator**

Collision operator 
$$C(f_{i}, f_{j})$$
Boltzmann 
$$\int d\mathbf{u}_{j} \int_{0}^{\pi} d\phi \int_{0}^{\infty} db \ bg_{ij}(f_{i}^{*}f_{j}^{*} - f_{i}f_{j})$$
Vlasov-Landau 
$$2\pi e_{i}^{2} e_{j}^{2} \ln \Lambda \int d\mathbf{u}' \partial_{ij} \cdot \mathbf{U}'(\mathbf{g}) \cdot \partial_{ij} f_{i}(\mathbf{u}') f_{j}(\mathbf{u}')$$
Balescu-Lenard 
$$\sum_{\mathbf{k}} \frac{\pi \omega_{i}^{2} \omega_{j}^{2}}{n_{i}^{2} m_{i}} (\mathbf{k}/k^{2}) \cdot \partial_{u} \int d\mathbf{u}'(\mathbf{k}/k^{2}) \cdot (m_{j} \ \partial_{u} - m_{i} \partial_{u'}) f_{i}(\mathbf{u}) f_{j}(\mathbf{u}') \frac{\delta(\mathbf{k} \cdot \mathbf{u} - \mathbf{k} \cdot \mathbf{u}')}{|\epsilon(\mathbf{k}, \mathbf{k} \cdot \mathbf{u})|^{2}}$$
Fokker-Planck 
$$-2\pi e_{i}^{2} e_{j}^{2} m_{i}^{-1} \ln \Lambda \ \partial_{u\alpha} \int d\mathbf{u}' [f_{i}(\mathbf{u}) \partial_{u'\beta} f_{j}(\mathbf{u}')/m_{j} - f_{j}(\mathbf{u}') \partial_{u\beta} f_{i}(\mathbf{u})] U_{\alpha\beta}(\mathbf{u} - \mathbf{u}')$$

$$U'_{\alpha\beta}(\mathbf{x}) = \mathbf{x}^{-3} (\mathbf{x}^{2} \delta_{\alpha\beta} - \mathbf{x}_{\alpha} \mathbf{x}_{\beta}); \quad \partial_{ij} = m_{i}^{-1} \partial_{u} - m_{j}^{-1} \partial_{u'}; \quad \mathbf{g} = \mathbf{u} - \mathbf{u}';$$

$$\omega_{i}^{2} = 4\pi n_{i} e_{i}^{2}/m_{i}; \quad \ln \Lambda = \text{Coulomb logarithm};$$

$$\epsilon(\mathbf{k}, \omega) = 1 + \sum_{i} (\omega_{i}^{2}/k^{2}) \int d\mathbf{u}(\omega - \mathbf{k} \cdot \mathbf{u}) \mathbf{k} \cdot \partial_{u} f_{i}(\mathbf{u}).$$
If there are no external forces, and conditions are uniform throughout the gas, this equation takes the form (equation (16)):

Boltzmann

$$\frac{\partial f(x,t)}{\partial t} = \int_{0}^{\infty} \int_{0}^{x+x'} \left[ \frac{f(\xi,t)}{\sqrt{\xi}} \frac{f(x+x'-\xi,t)}{\sqrt{(x+x'-\xi)}} - \frac{f(x,t)f(x't)}{\sqrt{x}} \right]_{\sqrt{x'}} \frac{f(x,t)f(x't)}{\sqrt{x'}}$$

where the variables x and x' denote the energies of two molecules before a collision, and  $\xi$  and  $(x+x'-\xi)$  denote their energies after the collision;  $\psi(x, x', \xi)$  is a function which depends on the nature of the forces between the molecules.

(1872)

#### Talk 8/23

R. S. Myong, Gyeongsang National University, South Korea

## **Closure of dissipation terms via 2nd-law**

Key ideas; exponential canonical form, consideration of entropy production  $\sigma$ , and non-polynomial expansion called as cumulant expansion (B. C. Eu in 80-90s)

By writing the distribution function f in the exponential form

$$f = \exp\left[-\beta\left(\frac{1}{2}mc^2 + \sum_{n=1}^{\infty} X^{(n)}h^{(n)} - N\right)\right], \ \beta \equiv \frac{1}{k_B T}$$

Nonequilibrium entropy  $\Psi$ :  $\Psi(\mathbf{r},t) = -k_B \langle \left[ \ln f(\mathbf{v},\mathbf{r},t) - 1 \right] f(\mathbf{v},\mathbf{r},t) \rangle$ ,

Nonequilibrium entropy production:  $\sigma_c = -k_B \langle \ln f \ C[f, f_2] \rangle \ge 0$  (satisfying 2nd-law)

 $\sigma_c = \kappa_1 q(\kappa_1^{(\pm)}, \kappa_2^{(\pm)}, \cdots)$  via cumulant expansion

$$\sigma_{c} \equiv -k_{B} \left\langle \ln f \ C[f, f_{2}] \right\rangle = \frac{1}{T} \sum_{n=1}^{\infty} X^{(n)} \left\langle h^{(n)} C[f, f_{2}] \right\rangle = \frac{1}{T} \sum_{l=1}^{\infty} X^{(n)} \Lambda^{(n)},$$

a thermodynamically-consistent constitutive equation, still exact to BKE, can be derived;

$$\rho \frac{D(\mathbf{\Pi} / \rho)}{Dt} + \nabla \cdot \mathbf{\Psi}^{(\Pi)} + 2 \left[ \mathbf{\Pi} \cdot \nabla \mathbf{u} \right]^{(2)} + 2 p \left[ \nabla \mathbf{u} \right]^{(2)} = \frac{1}{\beta g} \sum_{l=1}^{\infty} \mathbf{R}_{12}^{(2l)} X_2^{(l)} q(\mathbf{\kappa}_1^{(\pm)}, \mathbf{\kappa}_2^{(\pm)}, \cdots)$$

Note: When f is truncated to a finite number of terms, the set is truncated in such a way that the divergence problem would not arise.

#### Talk 9/23 R. S. Myong, Gyeongsang National University, South Korea

### **Cumulant expansion method**

$$\left\langle x^{l} \right\rangle = \int x^{l} f(x) dx, \quad \left\langle e^{\lambda x} \right\rangle = \int e^{\lambda x} f(x) dx$$
Then we have
$$\left\langle e^{\lambda x} \right\rangle = \sum_{l=0}^{\infty} \frac{\lambda^{l}}{l!} \left\langle x^{l} \right\rangle = \exp\left[\sum_{l=1}^{\infty} \frac{\lambda^{l}}{l!} \kappa_{l}\right] \text{ where }$$

$$\kappa_{l} = \left[\frac{d^{l}}{d\lambda^{l}} \ln\left\langle e^{\lambda x} \right\rangle\right]_{\lambda=0}; \quad \kappa_{1} = \left\langle x \right\rangle, \quad \kappa_{2} = \left\langle x^{2} \right\rangle - \left\langle x \right\rangle^{2}, \cdots \text{ (mean, variance)}$$

$$\left\langle e^{x} \right\rangle_{\text{polynomical}} = 1 + \left\langle x \right\rangle + \frac{1}{2!} \left\langle x^{2} \right\rangle + \frac{1}{3!} \left\langle x^{3} \right\rangle + \cdots,$$

$$\left\langle e^{x} \right\rangle_{\text{cumulant}} = \exp^{\left[\left\langle x \right\rangle + \frac{1}{2!} \left(\left\langle x^{2} \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle$$

#### Talk 10/23 R. S. Myong, Gyeongsang National University, South Korea

2<sup>nd</sup>-order NCCR model

Sinh{1<sup>st</sup>-order theory}

Navier-Fourier laws inclusive \_\_\_\_\_ like onion!

Talk 11/23 R. S. Myong, Gyeongsang National University, South Korea

### Topology of 2<sup>nd</sup>-order NCCR (shock structure) (PoF 2020)



Talk 12/23 R. S. Myong, Gyeongsang National University, South Korea

### Topology of 2<sup>nd</sup>-order NCCR (velocity shear) (PoF 2016)



Talk 13/23 R. S. Myong, Gyeongsang National University, South Korea

### 3D mixed modal DG method for the 2<sup>nd</sup>-order model

$$\partial_{t} \mathbf{U} + \nabla \mathbf{F}_{inv} (\mathbf{U}) + \nabla \mathbf{F}_{vis} (\mathbf{U}, \nabla \mathbf{U}) = 0$$
  
Discretization in mixed form  
$$\begin{cases} \mathbf{S} - \nabla \mathbf{U} = \mathbf{0} \\ \partial_{t} \mathbf{U} + \nabla \mathbf{F}_{inv} (\mathbf{U}) + \nabla \mathbf{F}_{vis} (\mathbf{U}, \mathbf{S}) = 0 \end{cases}$$
  
JCP 2022  
NSF model  $(\mathbf{\Pi}, \mathbf{Q}) = \mathbf{f}_{linear} (\mathbf{S}(\mathbf{U}))$   
NCCR model  $(\mathbf{\Pi}, \mathbf{Q})_{NCCR} = \mathbf{f}_{non-linear} (\mathbf{S}(\mathbf{U}), p, T) \end{cases}$   
NCCR: Nonlinear Coupled  
Constitutive Relation  
$$\mathbf{U}_{h}(\mathbf{x}, t) = \sum_{i=0}^{k} U_{j}^{i}(t) \varphi^{i}(\mathbf{x}), \quad \mathbf{S}_{h}(\mathbf{x}, t) = \sum_{i=0}^{k} S_{j}^{i}(t) \varphi^{i}(\mathbf{x})$$
  
$$\begin{cases} \frac{\partial}{\partial t} \int_{I} \mathbf{U} \varphi dV - \int_{I} \nabla \varphi \mathbf{F}_{inv} dV + \int_{\partial I} \varphi \mathbf{F}_{inv} \cdot \mathbf{n} d\Gamma - \int_{I} \nabla \varphi \mathbf{F}_{vis} dV + \int_{\partial I} \varphi \mathbf{F}_{vis} \cdot \mathbf{n} d\Gamma = 0, \\ \int_{I} \mathbf{S} \varphi dV + \int_{I} T^{s} \nabla \varphi \mathbf{U} dV - \int_{\partial I} T^{s} \varphi \mathbf{U} \cdot \mathbf{n} d\Gamma = 0, \end{cases}$$

Dubiner basis function, Lax-Friedrichs inviscid flux, central flux for viscous terms

### 2-D hypersonic rarefied flow past a cylinder



Argon gas Mach 5.48 Knudsen 0.02

Argon gas Mach 5.48 Knudsen 0.2

Talk 15/23 R. S. Myong, Gyeongsang National University, South Korea

## New nonlinear intramolecular interaction model



$$\frac{\partial}{\partial t} \int_{R} \boldsymbol{U} d\boldsymbol{V} = \text{In} - \text{Out} = \oint_{S} \boldsymbol{F} \cdot (-\boldsymbol{n}) dS$$

Conservation in control volume

New nonlinear intramolecular interaction model for the "spring" in the dumbbell

When linearized, it reduces to  $(f^{eq} - f) / \lambda$  (BGK model, 1954)

Preprint (2023): A Boltzmann-type kinetic intramolecular model and its application to viscoelastic fluids

# **Boltzmann-type intramolecular interaction model**

A molecular-level equation of the marginal probability density function of finding a dumbbell in the configuration vector space **r** connecting two beads for a given time,  $f(\mathbf{r}, t)(\varsigma$  friction coefficient, **s** spring force,  $\lambda \equiv \varsigma / 4S_0$  relaxation)

$$\frac{\partial f}{\partial t} + \nabla \cdot \left( (\nabla \mathbf{u})^T \mathbf{r} - \frac{2k_B T}{\varsigma} \nabla \right) f = \nabla \cdot \left( \frac{2\mathbf{s}}{\varsigma} f \right)$$
 Fokker-Planck  
 $\mathbf{s} = S_0 \mathbf{r}$ : Linear Hookean  

$$\frac{\partial f}{\partial t} + \nabla \cdot \left( (\nabla \mathbf{u})^T \mathbf{r} - \frac{2k_B T}{\varsigma} \nabla \right) f = \frac{1}{2\lambda} \left( f^* - f \right)$$
 New Boltzmann-type

Note that the interaction occurs through the "spring" in the dumbbell. For the dumbbell models the forces on the two beads are equal and opposite, leading to a connector force.

### **Corresponding second-order constitutive model**

Nonequilibrium entropy  $\Psi$ :  $\Psi(\mathbf{r},t) = -k_B \langle \left[ \ln f(\mathbf{v},\mathbf{r},t) - 1 \right] f(\mathbf{v},\mathbf{r},t) \rangle$ ,

Nonequilibrium entropy production:

$$\sigma_{c} \equiv -k_{B} \left\langle \ln f \ C[f] \right\rangle = \frac{1}{4\lambda} k_{B} \left\langle \ln \left( f^{*}/f \right) \left( f^{*}-f \right) \right\rangle \geq 0 \text{ (satisfying 2nd-law)}$$
  
since  $\ln \left( x/y \right) (x-y) \geq 0$ .  
$$\sigma_{c} = \frac{1}{4\lambda} k_{B} \left\langle f^{(0)} \left( x-y \right) [\exp(-y) - \exp(-x)] \right\rangle = \kappa_{1} q(\kappa_{1}^{(\pm)}, \kappa_{2}^{(\pm)}, \cdots) \text{ via cumulant expansion}$$
  
$$\sigma_{c} \equiv -k_{B} \left\langle \ln f \ C[f] \right\rangle = \frac{1}{T} \sum_{n=1}^{\infty} X^{(n)} \left\langle h^{(n)} C[f] \right\rangle = \frac{1}{T} \sum_{l=1}^{\infty} X^{(n)} \Lambda^{(n)},$$

a thermodynamically-consistent constitutive equation can be derived;

$$\frac{D\mathbf{\tau}}{Dt} - \left[ (\nabla \mathbf{u})^T \mathbf{\tau} + \mathbf{\tau} \nabla \mathbf{u} \right] - \frac{\mu}{\lambda} (\nabla \mathbf{u}^T + \nabla \mathbf{u}) = -\frac{1}{\lambda} \mathbf{\tau} q_{2nd}(\kappa_1),$$
$$q_{2nd}(\kappa_1) = \frac{\sinh \kappa_1}{\kappa_1}, \ \kappa_1 = \alpha \frac{\sqrt{\mathbf{\tau} : \mathbf{\tau}}}{\mu/\lambda} \ (\mathbf{\tau} \equiv nS_0 \langle \mathbf{rr} f \rangle - nk_B T \mathbf{I})$$

### 2nd-order extension of Hooke's Law in elasticity



Talk 19/23IntR. S. Myong, Gyeongsang National University, South Korea

### **Application to viscoelastic fluids**



International Workshop on Moment Methods in Kinetic Theory IV 11-14th April, 2023 - Karlsruhe Institute of Technology

R. S. Myong, Gyeongsang National University, South Korea

### **Computational simulation of viscoelastic fluids**



Implementation of the new model to viscoelastic OpenFOAM (cylinder flow)

Talk 21/23 R. S. Myong, Gyeongsang National University, South Korea

### Viscoelastic fluids: Barus effect in die swell





Talk 22/23 R. S. Myong, Gyeongsang National University, South Korea

## **Concluding remarks**

Proposal of a new Boltzmann-type kinetic spring model

$$\frac{1}{2\lambda} \left( f^* - f \right) \qquad \text{Cf. } \frac{1}{\lambda} \left( f^{(0)} - f \right)$$

BGK (1954) Yamamoto (1956), Lodge

(1964), Modified network model

Second-order extension of Hooke's law in elasticity

 $\hat{\tau} = \frac{\sinh^{-1}(\alpha \hat{\tau}_0)}{\alpha}$ 

Application to viscoelastic fluids

Similarities between rarefied gases and viscoelastic fluids