Nonlinear Coupled Constitutive Relations (NCCRs) Derived from the Boltzmann Kinetic Equation Based on Balanced Closure and Mesoscopic Methods

July 25th, 2023 (2:00~2:45PM)

Rho Shin Myong

Professor, Department of Aerospace and Software Engineering Director, Research Center for Aircraft Core Technology (ERC) Gyeongsang National University Jinju, South Korea http://acml.gnu.ac.kr myong@gnu.ac.kr

The 19th International Conference for Mesoscopic Methods in Engineering and Science 24-28 July 2023, Chengdu, China

Acknowledgements

Dr. Satyvir Singh (Graduate Student; now Postdoctoral Researcher in RWTH Aachen Univ.)

Hybrid DG code and computational simulation of rarefied & microscale gas flows

Dr. Omid Ejtehadi (Graduate Student; now Postdoctoral Research Fellow in University of Edinburgh)

Two-phase CFD codes and computational simulation of lunar landing and micro-jet two-phase gas flows; FVM-based *nccrFOAM suite*

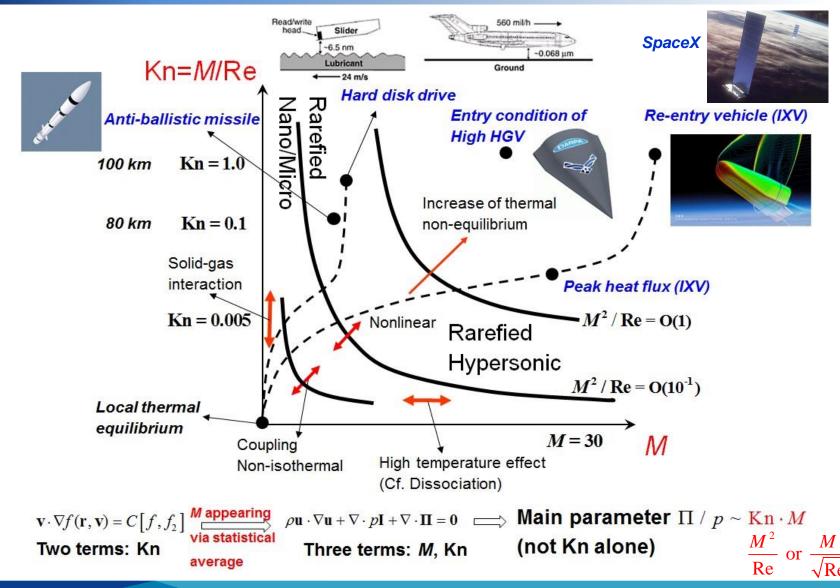
Dr. Tushar Chourushi (Graduate Student; now Assistant Professor in Amity University Mumbai)

CFD codes for viscoelastic flows with a new Boltzmann-type spring law

Dr. Tapan K. Mankodi (Postdoc; now Assistant Professor in IIT Guwahati)

Modified Boltzmann-Curtiss kinetic equation including the vibrational mode; FVM-based *nccrFOAM suite*

Classification of gas flows in non-equilibrium



Talk 2/33

Previous and ongoing studies on NCCR

- PoF 1999, JCP 2001, JCP 2004: Eu's generalized hydrodynamics
- PoF 2014, PoF 2016: Balanced closure & validation via MD
- JCP 2014: 2D hybrid DG code for NCCR
- PoF 2018: Polyatomic gases (shock-vortex interaction)
- PoF 2020: Topology of NCCR
- PoF 2020: Extension to the vibrational mode of energy
- JCP 2020: Extension to dusty and granular flows
- JCP 2022: 3D hybrid DG code for NCCR
- CPC 2023 (in Revision): FVM-based nccrFOAM suite
- Preprint: 2nd-order Boltzmann-type kinetic spring model

Conceptual revision New closure theory Physical insight More validation **Discontinuous Galerkin** Topology **Two-phase flow** Vibrational mode **Viscoelastic flow** Combining with DSMC

Other independent NCCR works: Multi-species extension by Ahn & Kim (SNU, Korea, JCP09) Implicit-FVM NCCR by Jiang, Zhao, Yuan, Chen (Zhejiang Univ., China, 2017-Present)

Boltzmann kinetic equations

 A first-order partial differential equation of the probability density of finding a particle in phase space with an integral collision term

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) f(t, \mathbf{r}, \mathbf{v}) = \frac{1}{Kn} C[f, f_2]$$

Movement Kinematic

Collision (or Interaction) Dissipation

$$C[f, f_2] \sim \int |\mathbf{v} - \mathbf{v}_2| (f^* f_2^* - f f_2) d\mathbf{v}_2$$

= Gain (scattered into) - Loss (scattered out) = $\left(\frac{\delta f}{\delta t}\right)^{+} - \left(\frac{\delta f}{\delta t}\right)^{-}$

• Maxwell's equation of transfer for molecular expression $h^{(n)}$

$$\frac{\partial}{\partial t} \left\langle h^{(n)} f \right\rangle + \nabla \cdot \left(\mathbf{u} \left\langle h^{(n)} f \right\rangle + \left\langle \mathbf{c} h^{(n)} f \right\rangle \right) - \left\langle f \frac{d}{dt} h^{(n)} \right\rangle - \left\langle f \mathbf{c} \cdot \nabla h^{(n)} \right\rangle = \left\langle h^{(n)} C[f, f_2] \right\rangle$$

Moment method and closure theories

$$\phi^{(1)} = \rho, \ \phi^{(2)} = \rho \mathbf{u}, \ \phi^{(3)} = \rho E,$$

$$\phi^{(h)} = \left\langle h^{(k)} f \right\rangle \qquad \phi^{(4)} = \mathbf{\Pi} = [\mathbf{P}]^{(2)}, \ \phi^{(5)} = \Delta = \frac{1}{3} \operatorname{Trace} \mathbf{P} - p, \ \phi^{(6)} = \mathbf{Q},$$

$$\rho \mathbf{u} = \left\langle m \mathbf{v} f(t, \mathbf{r}, \mathbf{v}) \right\rangle \qquad h^{(1)} = m, \ h^{(2)} = m \mathbf{v}, \ h^{(3)} = \frac{1}{2} m C^2 + H_{rot},$$

where

$$\left\langle \cdots \right\rangle = \iiint \cdots dv_x dv_y dv_z \qquad h^{(4)} = [m \mathbf{C} \mathbf{C}]^{(2)}, \ h^{(5)} = \frac{1}{3} m C^2 - p / n, \ h^{(6)} = \left(\frac{1}{2} m C^2 + H_{rot} - m \hat{h}\right) \mathbf{C},$$

Breakdown of moment method: 1) when the statistical average is meaningless due to too few particles; 2) when thermodynamics is not definable.

Closure-first approach: Grad's 13 moment method (1949) based on polynomial expansion

Levermore method (1996) based on **Gaussian** (exponential) expansion

Regularized-13 moment method (2003)

Closure-last balanced approach: Myong's balanced closure (On the High Mach Number Shock Structure Singularity Caused by Overreach of Maxwellian Molecules, PoF 2014)

Relationship with conservation laws (moments)

Boltzmann transport equation (BTE): 10²³

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) f(t, \mathbf{r}, \mathbf{v}) = C[f, f_2] \qquad \qquad p\mathbf{u} = \langle m\mathbf{v} f(t, \mathbf{r}, \mathbf{v}) \rangle$$
where $\langle \cdots \rangle = \iiint \cdots dv_x dv_y dv_z$

Differentiating the statistical definition $\rho \mathbf{u} \equiv \langle m \mathbf{v} f(t, \mathbf{r}, \mathbf{v}) \rangle$ with time and then combining with BKE $(t, \mathbf{r}, \mathbf{v})$ are independent and $\mathbf{v} = \mathbf{u} + \mathbf{c}$)

$$\frac{\partial}{\partial t} \langle m\mathbf{v}f \rangle = \left\langle m\mathbf{v} \frac{\partial f}{\partial t} \right\rangle = -\left\langle m(\mathbf{v} \cdot \nabla f) \mathbf{v} \right\rangle + \left\langle m\mathbf{v}C[f, f_2] \right\rangle$$

$$\begin{bmatrix} \mathbf{A} \end{bmatrix}^{(2)} : \text{ Traceless symmetric} \\ \text{ part of tensor } \mathbf{A} \\ \text{Here } -\left\langle m(\mathbf{v} \cdot \nabla f) \mathbf{v} \right\rangle = -\nabla \cdot \left\langle m\mathbf{v}\mathbf{v}f \right\rangle = -\nabla \cdot \left\{ \rho \mathbf{u}\mathbf{u} + \left\langle m\mathbf{c}\mathbf{c}f \right\rangle \right\}$$

After the decomposition of the stress into pressure and viscous shear stress

$$\mathbf{P} \equiv \langle m\mathbf{c}\mathbf{c}f \rangle = p\mathbf{I} + \mathbf{\Pi} \text{ where } p \equiv \langle m\mathrm{Tr}(\mathbf{c}\mathbf{c})f/3 \rangle, \ \mathbf{\Pi} \equiv \langle m[\mathbf{c}\mathbf{c}]^{(2)}f \rangle,$$

and using the collisional invariance of the momentum, $\langle m\mathbf{v}C[f, f_2] \rangle = 0$, we have

$$\frac{\partial(\rho \mathbf{u})}{\partial t} + \nabla \cdot \left(\rho \mathbf{u}\mathbf{u} + p\mathbf{I} + \mathbf{\Pi}\right) = \mathbf{0}$$

Conservation laws: 13

Closing-last balanced closure on open terms

$$\mathbf{\Pi} \equiv \left\langle m \left[\mathbf{cc} \right]^{(2)} f \right\rangle$$

Closure theory: how, where (open terms), when (last)

New balanced closure with closure-last approach (PoF 2014)

2nd-order for kinematic LH = 2nd-order for collsion RH

$$\frac{D}{Dt} \left(\mathbf{\Pi} / \rho \right) + \left[\nabla \cdot \Psi^{(\Pi)} \right] + 2 \left[\mathbf{\Pi} \cdot \nabla \mathbf{u} \right]^{(2)} + 2 p \left[\nabla \mathbf{u} \right]^{(2)} = \left\{ m \left[\mathbf{cc} \right]^{(2)} C \left[f, f_2 \right] \right\} \left(\equiv \mathbf{\Lambda}^{(\Pi)} \right) \right\}$$

$$\stackrel{2^{\text{nd-order closure}}{=} - \frac{p}{\mu_{NS}} \mathbf{\Pi} q_{2nd}(\kappa_1) \text{ where } \Psi^{(\Pi)} = \left\langle m \mathbf{ccc} f \right\rangle - \left\langle m \mathrm{Tr}(\mathbf{ccc}) f \right\rangle \mathbf{I} / 3$$

$$\frac{D}{Dt} \left(\Psi^{(\Pi)} / \rho \right) + \nabla \cdot \Xi + \dots = \left\langle h^{(\Psi^{(\Pi)})} C[f, f_2] \right\rangle$$

Other collision operator

Collision operator
$$C(f_{i}, f_{j})$$
Boltzmann
$$\int d\mathbf{u}_{j} \int_{0}^{\pi} d\phi \int_{0}^{\infty} db \ bg_{ij}(f_{i}^{*}f_{j}^{*} - f_{i}f_{j})$$
Vlasov-Landau
$$2\pi e_{i}^{2} e_{j}^{2} \ln \Lambda \int d\mathbf{u}' \partial_{ij} \cdot \mathbf{U}'(\mathbf{g}) \cdot \partial_{ij} f_{i}(\mathbf{u}') f_{j}(\mathbf{u}')$$
Balescu-Lenard
$$\sum_{\mathbf{k}} \frac{\pi \omega_{i}^{2} \omega_{j}^{2}}{n_{i}^{2} m_{i}} (\mathbf{k}/k^{2}) \cdot \partial_{u} \int d\mathbf{u}'(\mathbf{k}/k^{2}) \cdot (m_{j} \ \partial_{u} - m_{i} \partial_{u'}) f_{i}(\mathbf{u}) f_{j}(\mathbf{u}') \frac{\delta(\mathbf{k} \cdot \mathbf{u} - \mathbf{k} \cdot \mathbf{u}')}{|\epsilon(k, \mathbf{k} \cdot \mathbf{u})|^{2}}$$
Fokker-Planck
$$-2\pi e_{i}^{2} e_{j}^{2} m_{i}^{-1} \ln \Lambda \ \partial_{u\alpha} \int d\mathbf{u}' [f_{i}(\mathbf{u}) \partial_{u'\beta} f_{j}(\mathbf{u}')/m_{j} - f_{j}(\mathbf{u}') \partial_{u\beta} f_{i}(\mathbf{u})] U_{\alpha\beta}(\mathbf{u} - \mathbf{u}')$$

$$U'_{\alpha\beta}(\mathbf{x}) = \mathbf{x}^{-3} (\mathbf{x}^{2} \delta_{\alpha\beta} - \mathbf{x}_{\alpha} \mathbf{x}_{\beta}); \ \partial_{ij} = m_{i}^{-1} \partial_{u} - m_{j}^{-1} \partial_{u'}; \ \mathbf{g} = \mathbf{u} - \mathbf{u}';$$

$$\omega_{i}^{2} = 4\pi n_{i} e_{i}^{2}/m_{i}; \ \ln \Lambda = \text{Coulomb logarithm;}$$

$$\epsilon(\mathbf{k}, \omega) = 1 + \sum_{i} (\omega_{i}^{2}/k^{2}) \int d\mathbf{u}(\omega - \mathbf{k} \cdot \mathbf{u}) \mathbf{k} \cdot \partial_{u} f_{i}(\mathbf{u}).$$
If there are no external forces, and conditions are uniform throughout the gas, this equation takes the form (equation (16)):

Boltzmann

$$\frac{\partial f(x,t)}{\partial t} = \int_{0}^{\infty} \int_{0}^{x+x'} \left[\frac{f(\xi,t)}{\sqrt{\xi}} \frac{f(x+x'-\xi,t)}{\sqrt{(x+x'-\xi)}} - \frac{f(x,t)f(x't)}{\sqrt{x}} \right]_{\sqrt{x'}}$$

$$\sqrt{(xx')} \psi(x,x',\xi) \, dx' \, d\xi$$

where the variables x and x' denote the energies of two molecules before a collision, and ξ and $(x+x'-\xi)$ denote their energies after the collision; $\psi(x, x', \xi)$ is a function which depends on the nature of the forces between the molecules.

(1872)

Closure of dissipation terms via 2nd-law

Key ideas; exponential canonical form, consideration of entropy production σ, and non-polynomial expansion called as cumulant expansion (B. C. Eu in 80-90s)

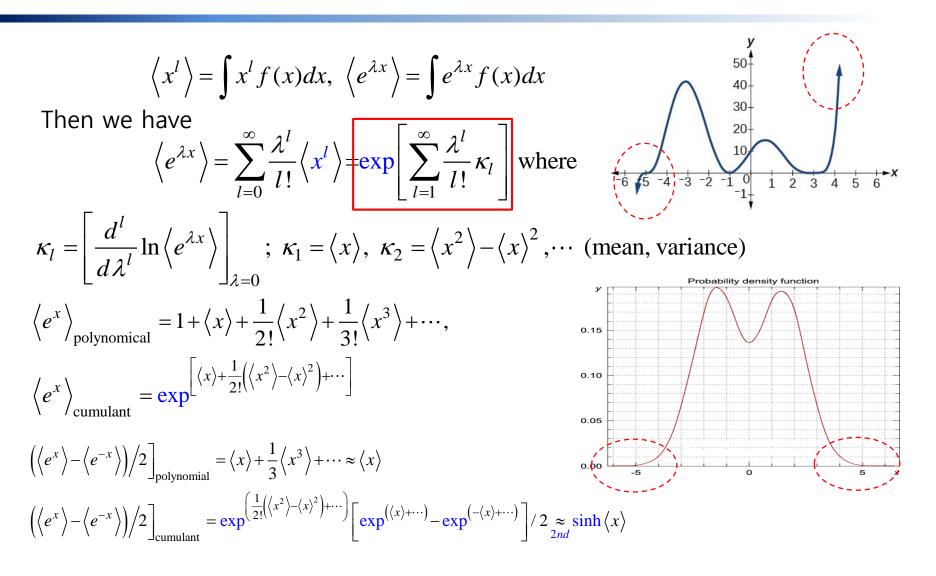
By writing the distribution function f in the exponential form

$$f = \exp\left[-\beta\left(\frac{1}{2}mc^{2} + \sum_{n=1}^{\infty} X^{(n)}h^{(n)} - N\right)\right], \ \beta \equiv \frac{1}{k_{B}T},$$

Nonequilibrium entropy $\Psi: \Psi(\mathbf{r},t) = -k_B \langle [\ln f(\mathbf{v},\mathbf{r},t)-1] f(\mathbf{v},\mathbf{r},t) \rangle$, Nonequilibrium entropy production: $\sigma_c \equiv -k_B \langle \ln f \ C[f,f_2] \rangle$ When *f* is truncated, it is truncated in such as way that the divergence problem related to the heat flux contribution containing the 3rd order term for the integrand would not arise (Al-Ghoul, M., and Eu, B. C., Nonequilibrium Partition Function in the Presence of Heat Flow, J. Chem. Phys., Vol. 115, No. 18, 2001).

$$\begin{split} \sigma_{c} &= \frac{1}{4} k_{B} \int d\mathbf{v} \int d\mathbf{v}_{2} \int_{0}^{2\pi} d\phi \int_{0}^{\infty} db \ bg_{12} \ln(f^{c*} f_{2}^{c*} / f^{c} f_{2}^{c}) (f^{c*} f_{2}^{c*} - f^{c} f_{2}^{c}) \ge 0 \text{ (satisfying 2nd-law)} \\ \sigma_{c} &= -k_{B} \left\langle \ln f \ C[f, f_{2}] \right\rangle = \frac{1}{T} \left\langle \left(\frac{1}{2} mc^{2} + \sum_{n=1}^{\infty} X^{(n)} : h^{(n)} - N \right) C[f^{(0)} \exp(-x), f_{2}^{(0)} \exp(-x_{2}) \right\rangle \\ &= \frac{1}{4} k_{B} \int d\mathbf{v} \int d\mathbf{v}_{2} \int_{0}^{2\pi} d\phi \int_{0}^{\infty} db \ bg_{12} f^{(0)} f_{2}^{(0)} (x_{12} - y_{12}) [\exp(-y_{12}) - \exp(-x_{12})] \\ &= \frac{1}{4T} \int d\Gamma_{12} f^{(0)} f_{2}^{(0)} (x_{12} - y_{12}) [\exp(-y_{12}) - \exp(-x_{12})], \quad \left(x \equiv \beta \left(\sum_{n=1}^{\infty} X^{(n)} h^{(n)} - N \right), \\ y \ \text{the post-collision value of } x \right) \\ \sigma_{c} &= \kappa_{1}^{2} q(\kappa_{1}^{(\pm)}, \kappa_{2}^{(\pm)}, \cdots) \text{ via cumulant expansion } \left(\kappa_{1} \equiv \frac{1}{2} \left\{ \left\langle \left(x_{12} - y_{12} \right)^{2} \right\rangle_{c} \right\}^{1/2} \right\} \\ \text{where } q(\kappa_{1}^{(\pm)}, \kappa_{2}^{(\pm)}, \cdots) \equiv \frac{1}{2\kappa_{1}} \left\{ \exp \left[\sum_{l=1}^{\infty} \frac{(-1)^{l}}{l!} \kappa_{l}^{(+)} \right] - \exp \left[\sum_{l=1}^{\infty} \frac{(-1)^{l}}{l!} \kappa_{l}^{(-)} \right] \right\} \end{split}$$

Cumulant expansion method



Closure of dissipation terms-continued

$$\sigma_{c} \equiv -k_{B} \left\langle \ln f \ C[f, f_{2}] \right\rangle = \frac{1}{T} \sum_{n=1}^{\infty} X^{(n)} \left\langle h^{(n)} C[f, f_{2}] \right\rangle = \frac{1}{T} \sum_{l=1}^{\infty} X^{(n)} \Lambda^{(n)} = \kappa_{1}^{2} q(\kappa_{1}^{(\pm)}, \kappa_{2}^{(\pm)}, \cdots) ,$$

Calculating the first reduced collision integral κ_1 in terms of $X^{(n)}$,

 $\kappa_1^2 = \sum_{n,l=1}^{\infty} X^{(n)} R_{12}^{(nl)} X_2^{(l)}$, where $R_{12}^{(nl)}$ are coefficients made up of collision bracket integrals,

$$\Lambda^{(n)} = \frac{1}{\beta g} \sum_{l=1}^{\infty} R_{12}^{(nl)} X_2^{(l)} q(\kappa_1^{(\pm)}, \kappa_2^{(\pm)}, \cdots)$$

After generalizing the equilibrium Gibbs ensemble theory to nonequilibrium processes,

one can obtain the leading order terms for $X^{(n)}$, $X^{(1)} = -\frac{\Pi}{2p}$, $X^{(2)} = -\frac{Q}{pC_pT}$.

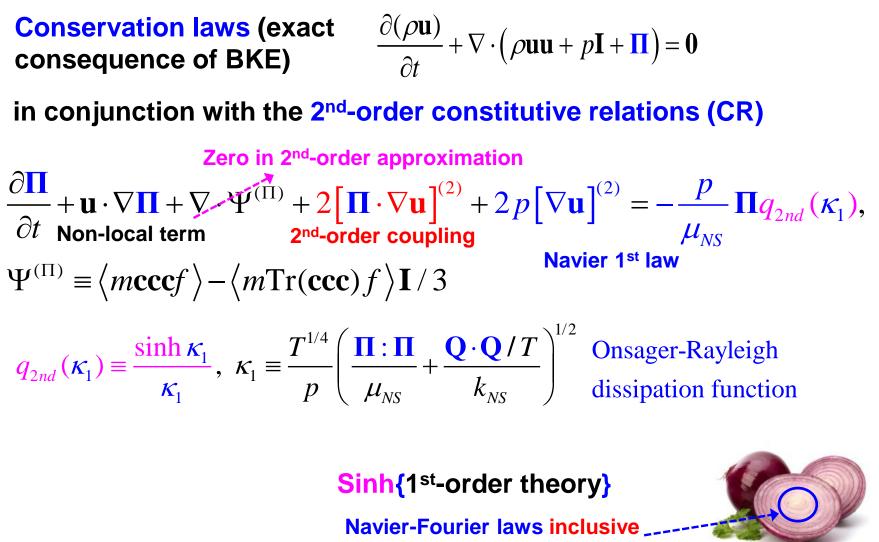
Finally, a thermodynamically-consistent constitutive equation, still exact to BKE, can be derived;

$$\rho \frac{D(\mathbf{\Pi} / \rho)}{Dt} + \nabla \cdot \mathbf{\Psi}^{(\Pi)} + 2[\mathbf{\Pi} \cdot \nabla \mathbf{u}]^{(2)} + 2p[\nabla \mathbf{u}]^{(2)} = \frac{1}{\beta g} \sum_{l=1}^{\infty} \mathbf{R}_{12}^{(2l)} X_2^{(l)} q(\kappa_1^{(\pm)}, \kappa_2^{(\pm)}, \cdots)$$

$$\rho \frac{D(\mathbf{Q} / \rho)}{Dt} + \nabla \cdot \mathbf{\Psi}^{(Q)} + \mathbf{\Psi}^{(P)} \cdot \nabla \mathbf{u} + \frac{D\mathbf{u}}{Dt} \cdot \mathbf{\Pi} + \mathbf{Q} \cdot \nabla \mathbf{u} + \mathbf{\Pi} \cdot C_p \nabla T + pC_p \nabla T$$

$$= \frac{1}{\beta g} \sum_{l=1}^{\infty} \mathbf{R}_{12}^{(3l)} X_2^{(l)} q(\kappa_1^{(\pm)}, \kappa_2^{(\pm)}, \cdots)$$

2nd-order NCCR model

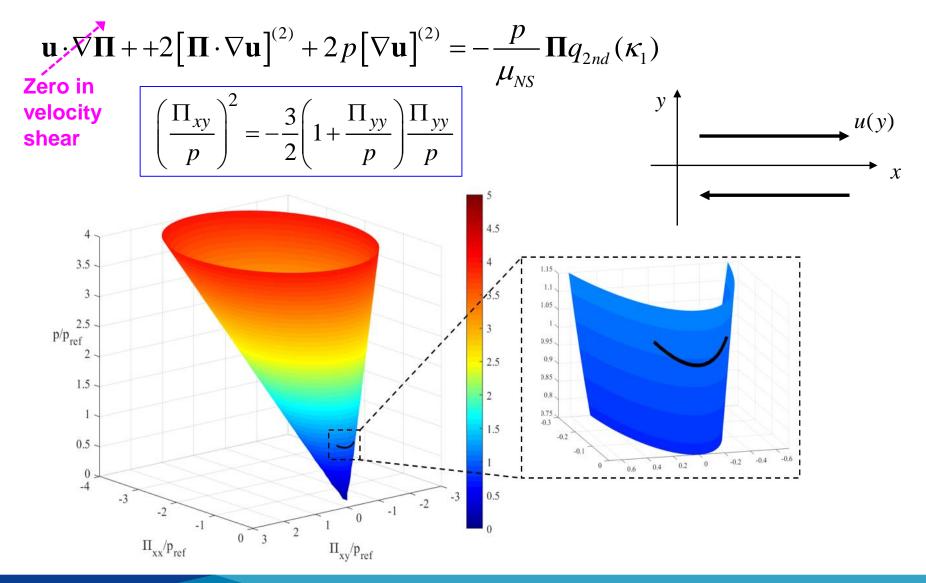


like onion!

Talk 12/33

The 19th International Conference for Mesoscopic Methods in Engineering and Science 24-28 July 2023 - Chengdu, China R. S. Myong, Gyeongsang National University, South Korea

Topology of 2nd-order NCCR (velocity shear)

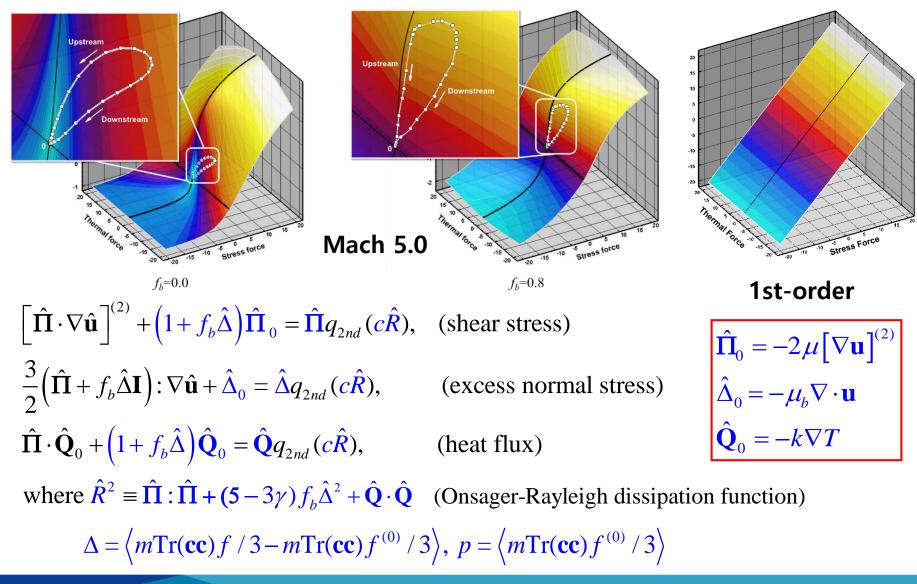


Topology of 2nd-order NCCR (velocity shear)

Analogy among the second-order constitutive model, orbits of planets and comets, and Dirac cones.

	Second-order constitutive model in diatomic and polyatomic gases	Motion of the planets and comets in the two-body Keple problem
n dioxide Form of conic sections	$\left(1 - \frac{9}{2}f_b^2\right)x^2 + x + \frac{2}{3}y^2 = 0$ $f_b = \frac{\text{bulk viscosity}}{\text{shear viscosity}}$	$(1 - e^2)x^2 + 2epx + y^2 - p = 0$ $p = \frac{L^2}{Gm_1^2m_2^2/(m_1 + m_2)}$ L: angular momentum
		G: gravitational constant $m_{1,2}$: mass $E_{\min} = -\frac{G^2 m_1^3 m_2^3 / (m_1 + m_2)}{2L}$
Definition of x and y	$x = \frac{\Pi_{xx}}{p}, y = \frac{\Pi_{xy}}{p}$	$x = r\cos\theta, y = r\sin\theta$
Eccentricity	$e = \sqrt{\frac{27}{4}f_b^2 - \frac{1}{2}},$ for $f_b \ge \sqrt{6}/9$	$e = \sqrt{1 - \frac{E}{E_{\min}}},$ for $E \ge E_{\min}(<0)$
Topological properties	$\begin{split} f_b &= \sqrt{6}/9; e = 0 \text{ (circle)}, \\ \sqrt{6}/9 &< f_b < \sqrt{2}/3; 0 < e < 1 \\ \text{ (ellipse)}, \\ f_b &= \sqrt{2}/3; e = 1 \text{ (parabola)}, \\ f_b &> \sqrt{2}/3; e > 1 \text{ (hyperbola)} \end{split}$	$E = E_{min}; e = 0$ (circle), $E_{min} < E < 0; 0 < e < 1$ (ellipse), E = 0; e = 1 (parabola), E > 0; e > 1 (hyperbola)
Direct analogy	$\begin{split} f_b &\Leftrightarrow \frac{2\sqrt{3}}{9}\sqrt{\frac{1}{2}+e} = \frac{\sqrt{6}}{9}\sqrt{3-\frac{2E}{E_{\min}}}\\ f_b &= 0.2722 \Leftrightarrow e_{\text{Earth}} = 0.0167,\\ f_b &= 0.2834 \Leftrightarrow e_{\text{Mercury}} = 0.2056,\\ f_b &= 0.4611 \Leftrightarrow e_{\text{Halley}} = 0.967 \end{split}$	

Topology of 2nd-order NCCR (shock structure)



Vibrational mode: Modified Boltzmann-Curtiss

$$\begin{split} \frac{\partial f_i}{\partial t} + \mathbf{v} \cdot \nabla f_i + \mathbf{L} \cdot \nabla_r f_i &= \sum_j \sum_k \sum_l \int dv_j \int d\Omega W(i, j, |k^*, l^*; \Omega) (f_k^* f_l^* - f_i f_j) \\ &= \sum_j C[f_i, f_j]. \qquad \qquad a(i) + a(j) \to a(k) + a(l) \end{split}$$

	Previous first-order NSF	New second-order NCCR	
ρ	$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$	$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$	
ρ	$\frac{\partial(\rho \mathbf{u})}{\partial t} + \nabla \cdot \left(\rho \mathbf{u} \mathbf{u} + p \mathbf{I}\right) + \nabla \cdot \mathbf{\Pi} = 0$	$\frac{\partial(\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u}\mathbf{u} + p\mathbf{I}) + \nabla \cdot (\mathbf{\Pi} + \Delta \mathbf{I}) = 0$	
ρe	$\begin{aligned} &\frac{\partial(\rho e)}{\partial t} + \nabla \cdot \left((\rho e + p) \mathbf{u} \right) \\ &+ \nabla \cdot \left(\mathbf{\Pi} \cdot \mathbf{u} \right) + \nabla \cdot \mathbf{Q} + \nabla \cdot \mathbf{Q}_{\mathrm{v}} = 0 \end{aligned}$	$\frac{\partial(\rho e)}{\partial t} + \nabla \cdot ((\rho e + p)\mathbf{u}) + \nabla \cdot ((\mathbf{\Pi} + \Delta \mathbf{I}) \cdot \mathbf{u}) + \nabla \cdot \mathbf{Q} + \nabla \cdot \mathbf{Q}_{v} = 0$	
ρεν	$\frac{\partial(\rho e_{\nu})}{\partial t} + \nabla \cdot (\rho e_{\nu} \mathbf{u}) + \nabla \cdot \mathbf{Q}_{\nu}$ $= \frac{\rho e_{\nu}(T_{\nu}) - \rho e_{\nu}(T)}{\tau_{\nu}}$	$\frac{\partial(\rho e_{\nu})}{\partial t} + \nabla \cdot (\rho e_{\nu} \mathbf{u}) + \nabla \cdot \mathbf{Q}_{\nu}$ $= \frac{\rho e_{\nu}(T_{\nu}) - \rho e_{\nu}(T)}{\tau_{\nu}}$	
п	$\mathbf{\Pi} = -2\mu[\nabla \mathbf{u}]^{(2)}$	$2[\mathbf{\Pi} \cdot \nabla \mathbf{u}]^{(2)} + 2(p + \Delta)[\nabla \mathbf{u}]^{(2)} = -\frac{p}{\mu}\mathbf{\Pi}q_{2\mathrm{nd}}(\kappa)$	
Δ	$\Delta = 0$	$2\gamma'(\mathbf{\Pi} + \Delta \mathbf{I}): \nabla \mathbf{u} + \frac{2}{3}\gamma' p \nabla \cdot \mathbf{u} = -\frac{2}{3}\gamma' \frac{p}{\mu_b} \Delta q_{2\mathrm{nd}}(\kappa)$	
Q	$\mathbf{Q} = -k \nabla T$	$\mathbf{\Pi} \cdot \nabla (C_p T) + (p + \Delta) \nabla (C_p T) = -\frac{pC_p}{k} \mathbf{Q} q_{2\mathrm{nd}}(\kappa)$	
Qv	$\mathbf{Q}_{\mathbf{v}} = -k_{\mathbf{v}} \nabla T_{\mathbf{v}}$	$\mathbf{\Pi} \cdot \nabla (C_{p,\nu}T_{\nu}) + (p + \Delta) \nabla (C_{p,\nu}T_{\nu}) = -\frac{pC_{p,\nu}}{k_{\nu}} \mathbf{Q}q_{2\mathrm{nd}}(\kappa)$	$\hat{R}^2 \equiv \hat{\Pi} : \hat{\Pi} + (5 - 3\gamma) f_b \hat{\Delta}^2 +$
$q(\kappa)$	$q_{1\mathrm{st}}(\kappa)=1$	$q_{2\mathrm{nd}}(\kappa) = \frac{\sinh \kappa}{\kappa}$	$\hat{\mathbf{Q}} \cdot \hat{\mathbf{Q}} + \hat{\mathbf{Q}}_{v} \cdot \hat{\mathbf{Q}}_{v}$

Talk 16/33

3D mixed modal DG method for the 2nd-order model

$$\partial_{t} \mathbf{U} + \nabla \mathbf{F}_{inv} (\mathbf{U}) + \nabla \mathbf{F}_{vis} (\mathbf{U}, \nabla \mathbf{U}) = 0$$

Discretization in mixed form
$$\begin{cases} \mathbf{S} - \nabla \mathbf{U} = 0 \\ \partial_{t} \mathbf{U} + \nabla \mathbf{F}_{inv} (\mathbf{U}) + \nabla \mathbf{F}_{vis} (\mathbf{U}, \mathbf{S}) = 0 \\ \partial_{t} \mathbf{U} + \nabla \mathbf{F}_{inv} (\mathbf{U}) + \nabla \mathbf{F}_{vis} (\mathbf{U}, \mathbf{S}) = 0 \end{cases}$$

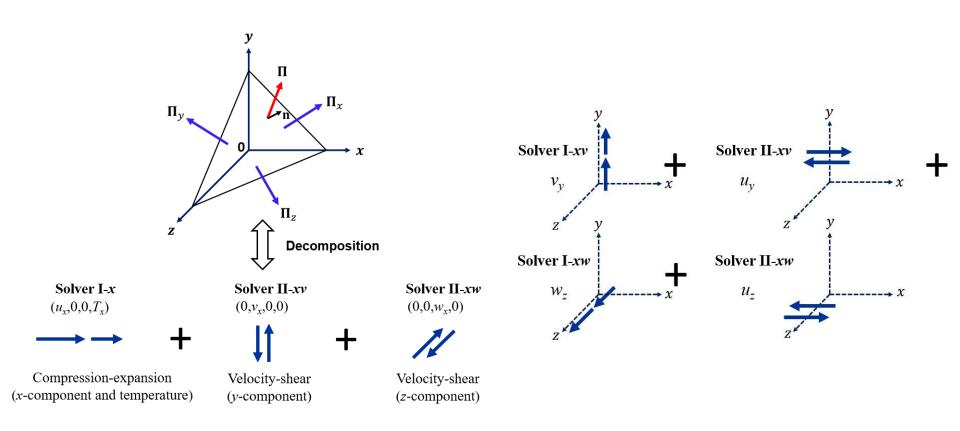
JCP 2022
NSF model (**II**, **Q**) = **f**_{linear}(**S**(**U**))
NCCR model (**II**, **Q**)_{NCCR} = **f**_{non-linear}(**S**(**U**), *p*, *T*)
$$\mathbf{U}_{h}(\mathbf{x}, t) = \sum_{i=0}^{k} U_{j}^{i}(t) \varphi^{i}(\mathbf{x}), \quad \mathbf{S}_{h}(\mathbf{x}, t) = \sum_{i=0}^{k} S_{j}^{i}(t) \varphi^{i}(\mathbf{x})$$

NCCR: Nonlinear Coupled
Constitutive Relation
$$\mathbf{U}_{h}(\mathbf{x}, t) = \sum_{i=0}^{k} U_{j}^{i}(t) \varphi^{i}(\mathbf{x}), \quad \mathbf{S}_{h}(\mathbf{x}, t) = \sum_{i=0}^{k} S_{j}^{i}(t) \varphi^{i}(\mathbf{x})$$

$$\left\{ \frac{\partial}{\partial t} \int_{I} \mathbf{U} \varphi dV - \int_{I} \nabla \varphi \mathbf{F}_{inv} dV + \int_{\partial I} \varphi \mathbf{F}_{inv} \cdot \mathbf{n} d\Gamma - \int_{I} \nabla \varphi \mathbf{F}_{vis} dV + \int_{\partial I} \varphi \mathbf{F}_{vis} \cdot \mathbf{n} d\Gamma = 0, \\ \int_{I} \mathbf{S} \varphi dV + \int_{I} T^{s} \nabla \varphi \mathbf{U} dV - \int_{\partial I} T^{s} \varphi \mathbf{U} \cdot \mathbf{n} d\Gamma = 0, \end{cases} \right\}$$

Dubiner basis function, Lax-Friedrichs inviscid flux, central flux for viscous terms

Decomposition of NCCR for multi-dimensional flow

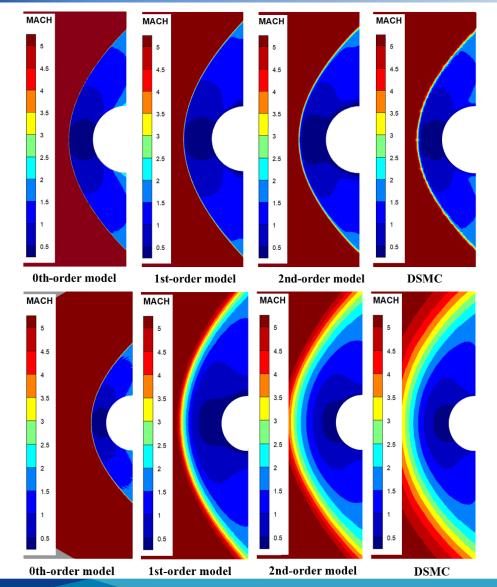


Primary surface integral

Secondary volume integral

Talk 18/33

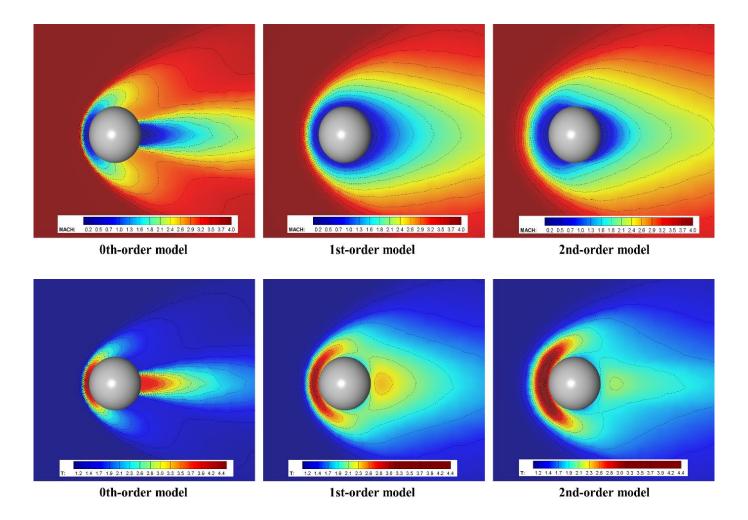
2-D hypersonic rarefied flow past a cylinder



Argon gas Mach 5.48 Knudsen 0.02

Argon gas Mach 5.48 Knudsen 0.2

3-D hypersonic rarefied flow past a sphere

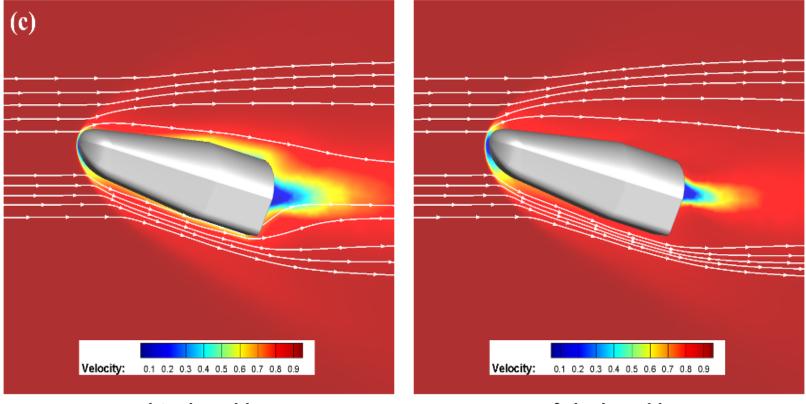


Nitrogen gas Mach 4.0 Knudsen 0.01

Talk 20/33

3-D hypersonic rarefied flows around a vehicle

A suborbital re-entry vehicle



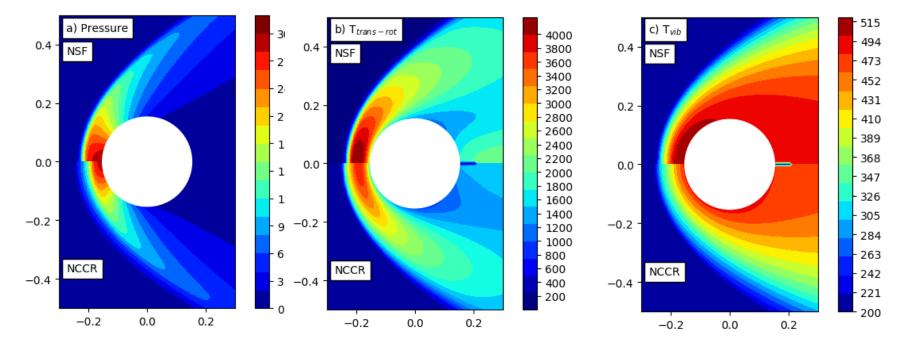
1st-order model

2nd-order model

Velocity contours of nitrogen gas flows; Mach 5.0, Knudsen 0.02

nccrVibFOAM solver for rarefied & microscale flows

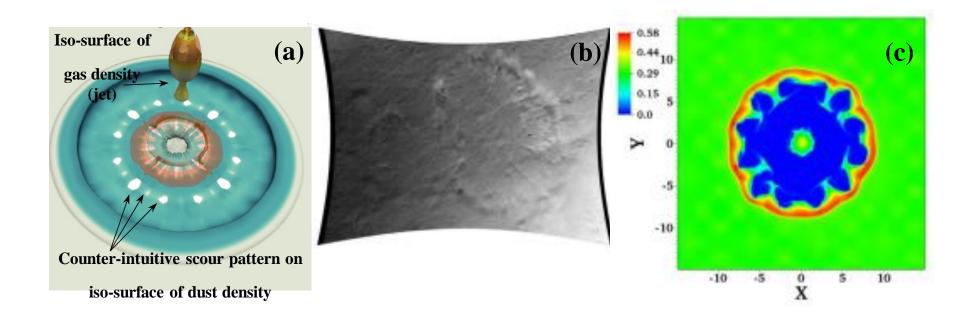
Developed as an extension to the *dbnsTurbFoam* solver by implementing additional algebraic constitutive relations for the stress tensor and heat flux vector (CPC 2023 in Revision)



Mach 10 nitrogen gas (Kn=0.05)

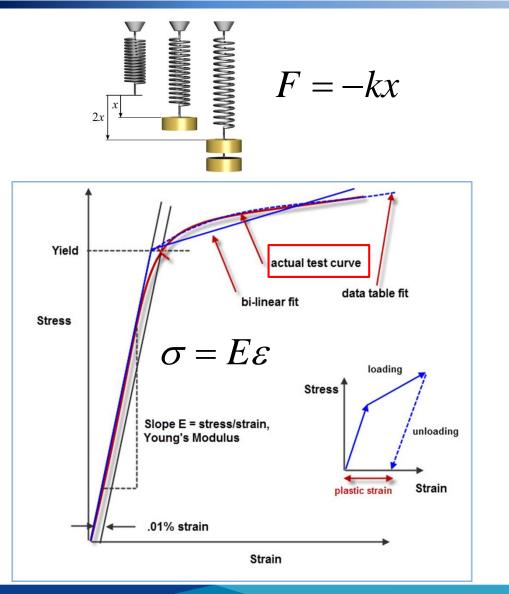
Talk 22/33

nccrVibFOAM solver for rarefied & microscale flows



Counter-intuitive non-axisymmetric scour formation during planetary landing: (a) *nccrFOAM*; (b) NASA Mars Science Laboratory (MSL) landing image; (c) Simulation conducted in Jet Propulsion Laboratory (JPL) (PoF 2023)

Hooke's law in elasticity (1676)



In the physics and mechanics of elastic solids, Hooke's law is an empirical law that states that the force needed to extend or compress a spring is proportional linearly to the distance.

The law is named after 17thcentury British physicist **Robert Hooke** who first stated the law in 1676.

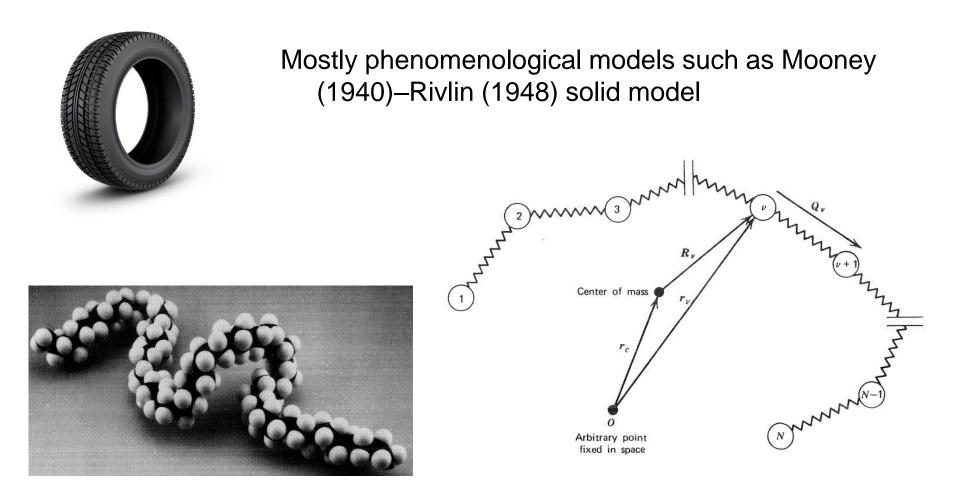
Hooke's law is only a first-order approximation to the real response of springs and other elastic bodies to applied forces.

Talk 24/33

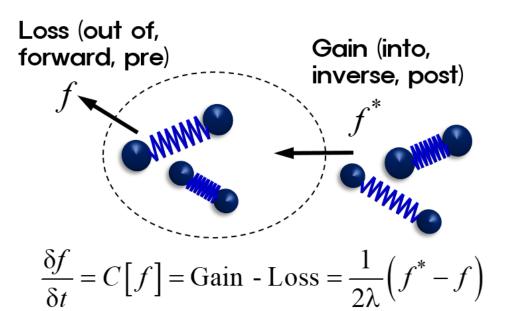
The 19th International Conference for Mesoscopic Methods in Engineering and Science 24-28 July 2023 - Chengdu, China R. S. Myong, Gyeongsang National University, South Korea

Elastic dumbbell models: kinetic theory of polymers

Hyper-elastic materials such as rubber (amorphous solid)



New nonlinear intramolecular interaction model



$$\frac{\partial}{\partial t} \int_{R} \boldsymbol{U} d\boldsymbol{V} = \text{In} - \text{Out} = \oint_{S} \boldsymbol{F} \cdot (-\boldsymbol{n}) dS$$

New nonlinear intramolecular interaction model for the "spring" in the dumbbell

When linearized, it reduces to $(f^{eq} - f) / \lambda$ (BGK model, 1954)

Conservation in control volume

Preprint (2023): Kinetic spring model based on Boltzmann's gain-loss-concept and application of non-Hookean models to viscoelastic fluids

Boltzmann-type intramolecular interaction model

A molecular-level equation of the marginal probability density function of finding a dumbbell in the configuration vector space **r** connecting two beads for a given time, $f(\mathbf{r}, t)(\varsigma$ friction coefficient, **s** spring force, $\lambda \equiv \varsigma / 4S_0$ relaxation)

$$\frac{\partial f}{\partial t} + \nabla \cdot \left((\nabla \mathbf{u})^T \mathbf{r} - \frac{2k_B T}{\varsigma} \nabla \right) f = \nabla \cdot \left(\frac{2\mathbf{s}}{\varsigma} f \right)$$
 Fokker-Planck

$$\mathbf{s} = S_0 \mathbf{r} : \text{ Linear Hookean}$$

$$\frac{\partial f}{\partial t} + \nabla \cdot \left((\nabla \mathbf{u})^T \mathbf{r} - \frac{2k_B T}{\varsigma} \nabla \right) f = \frac{1}{2\lambda} \left(f^* - f \right)$$
 New Boltzmann-type

Note that the interaction occurs through the "spring" in the dumbbell. For the dumbbell models the forces on the two beads are equal and opposite, leading to a connector force.

Corresponding second-order constitutive model

Nonequilibrium entropy Ψ : $\Psi(\mathbf{r},t) = -k_B \langle \left[\ln f(\mathbf{v},\mathbf{r},t) - 1 \right] f(\mathbf{v},\mathbf{r},t) \rangle$,

Nonequilibrium entropy production:

$$\sigma_{c} \equiv -k_{B} \left\langle \ln f \ C[f] \right\rangle = \frac{1}{4\lambda} k_{B} \left\langle \ln \left(f^{*}/f \right) \left(f^{*} - f \right) \right\rangle \geq 0 \text{ (satisfying 2nd-law)}$$

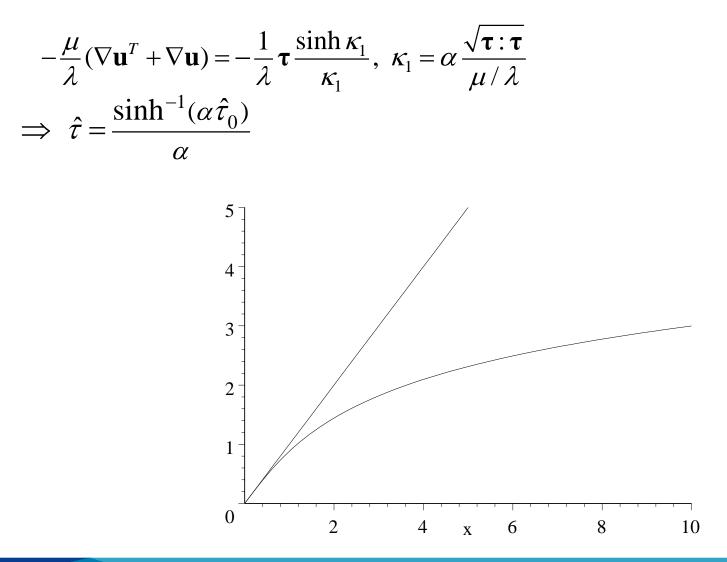
since $\ln \left(x/y \right) (x-y) \geq 0$.
$$\sigma_{c} = \frac{1}{4\lambda} k_{B} \left\langle f^{(0)} \left(x-y \right) [\exp(-y) - \exp(-x)] \right\rangle = \kappa_{1} q(\kappa_{1}^{(\pm)}, \kappa_{2}^{(\pm)}, \cdots) \text{ via cumulant expansion}$$

$$\sigma_{c} \equiv -k_{B} \left\langle \ln f \ C[f] \right\rangle = \frac{1}{T} \sum_{n=1}^{\infty} X^{(n)} \left\langle h^{(n)} C[f] \right\rangle = \frac{1}{T} \sum_{l=1}^{\infty} X^{(n)} \Lambda^{(n)},$$

a thermodynamically-consistent constitutive equation can be derived;

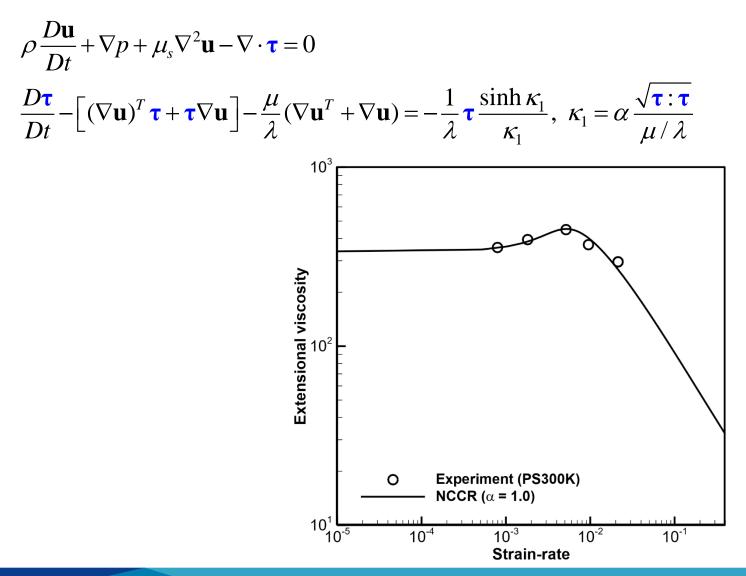
$$\frac{D\mathbf{\tau}}{Dt} - \left[(\nabla \mathbf{u})^T \mathbf{\tau} + \mathbf{\tau} \nabla \mathbf{u} \right] - \frac{\mu}{\lambda} (\nabla \mathbf{u}^T + \nabla \mathbf{u}) = -\frac{1}{\lambda} \mathbf{\tau} q_{2nd}(\kappa_1),$$
$$q_{2nd}(\kappa_1) = \frac{\sinh \kappa_1}{\kappa_1}, \ \kappa_1 = \alpha \frac{\sqrt{\mathbf{\tau} : \mathbf{\tau}}}{\mu/\lambda} \ (\mathbf{\tau} \equiv nS_0 \langle \mathbf{rr} f \rangle - nk_B T \mathbf{I})$$

2nd-order extension of Hooke's Law in elasticity



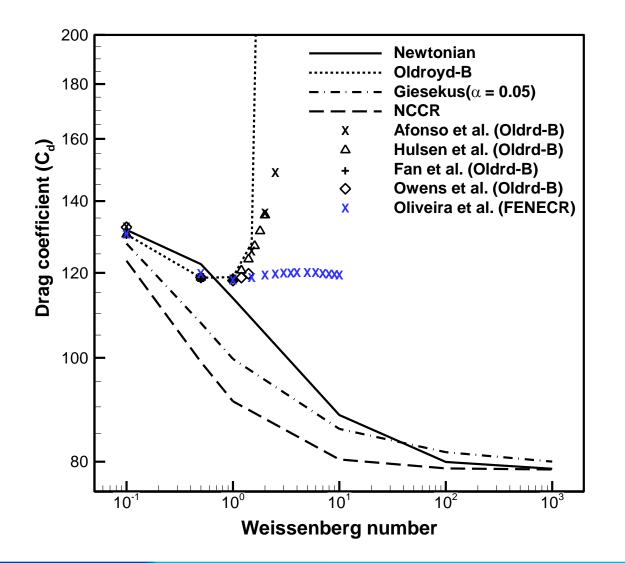
Talk 29/33

Application to viscoelastic fluids



Talk 30/33

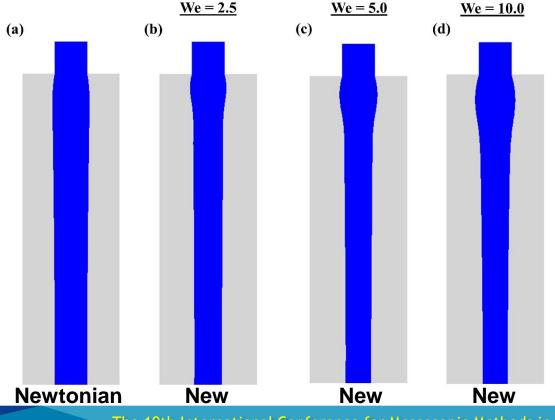
Computational simulation of viscoelastic fluids



Implementation of the new model to viscoelastic **OpenFOAM** (cylinder flow)

Talk 31/33

Viscoelastic fluids: Barus effect in die swell



Future topics

- Non-classical flow physics including mixture, chemical ٠ reaction, and radiation modeling
- Aerothermodynamic data for design and control •
- More accessible (via OpenFOAM of NCCR-FVM) and efficient ٠ computational algorithms
- Combination with machine learning and quantum computing ٠
- Investigation of viscoelastic flows based on a new • Boltzmann-type kinetic spring model

 $\frac{1}{2\lambda} (f^* - f) \qquad \text{Cf. } \frac{1}{\lambda} (f^{(0)} - f) \qquad \text{BGK (1954)} \\ \text{Yamamoto (1956), Lodge}$

(1964), Modified network model