비평형 공기열역학: 극초음속 및 희박 공기역학 모델링 Non-equilibrium Aerothermodynamics: Modeling Hypersonic and Rarefied Aerodynamics

November 17th Thursday, 2022 (09:45~10:15AM)

명노신 (Rho-Shin Myong)

Professor, Department of Aerospace and Software Engineering Director, Research Center for Aircraft Core Technology (ERC) 경상국립대학교 (Gyeongsang National University) Jinju, South Korea *myong@gnu.ac.kr*

The 2022 Park Chul Aerodynamics Lecture at the Annual KSAS Fall Conference (Jeju)

Aerodynamics? Aerothermodynamics?

Definition of air (aero): the mixture of gases that surrounds the earth

Background & motivation: Re-entry

SpaceX Starlink satellites fall out of sky after storm

Talk 2/24 R. S. Myong, Gyeongsang National University, South Korea

2022 KSAS Fall Conference November 17th (Thu), 2022 - Jeju

Background & motivation: Lifting body and control

R. S. Myong, Gyeongsang National University, South Korea

A brief history: Superaerodynamics

Albert F. Zahm (US)

"Superaerodynamics," Journal of the Franklin Institute, Vol. 217, pp. 153-166, 1934. Eugene Sänger (Austria) Silbervogel ("Silverbird") (1944)

Ludwig Prandtl (Germany) Theodore von Kármán (US, 1946) Hsue-shen Tsien (錢學森, US)

Munk (developer of the thin-airfoil theory) at NACA disliked Zahm's manuscript submitted to J. of the Aeronautical Sciences?

Talk 4/24 R. S. Myong, Gyeongsang National University, South Korea

Recent: RGD32 & hypersonic shock tunnel

http://www.rgd32.org/ (Seoul, July 4-8, 2022)

CAS JF12 (2012; Mach 5-9, Altitude 25-50km, 130 msec)

With Chul Park (2016, 1st HTGD, Beijing)

HGV (Hypersonic Glider Vehicle)

2022 KSAS Fall Conference November 17th (Thu), 2022 - Jeju

Talk 5/24 R. S. Myong, Gyeongsang National University, South Korea

Related journal papers, article, and book

- Myong, R. S., Thermodynamically Consistent Hydrodynamic Computational Models for High-Knudsen-Number Gas Flows, *Physics of Fluids*, Vol. 11, No. 9, pp. 2788-2802, **1999**.
- Myong, R. S., On the High Mach Number Shock Structure Singularity Caused by Overreach of Maxwellian Molecules, Physics of Fluids, Vol. 26, No. 5, 056102, 2014.
- Mankodi, T. K., Myong, R. S., Quasi-classical Trajectory-based Non-equilibrium Chemical Reaction Models for Hypersonic Air Flows, Physics of Fluids, Vol. 31, 106102, 2019.
- Singh, S., Karchani, A., Sharma, K., Myong, R. S., Topology of the Second-Order Constitutive Model Based on the Boltzmann-Curtiss Kinetic Equation for Diatomic and Polyatomic Gases, *Physics of* Fluids, Vol. 32, 026104, 2020. http://acml.gnu.ac.kr
- Mankodi, T. K., Myong, R. S., Boltzmann-based Second-order Constitutive Models of Diatomic and Polyatomic Gases including the Vibrational Mode, Physics of Fluids, Vol. 32, 126109, 2020.
- Singh, S., Karchani, A., Chourushi, T., Myong, R. S., A Three-Dimensional Modal Discontinuous Galerkin Method for the Second-Order Boltzmann-Curtiss-Based Constitutive Model of Rarefied and Microscale Gas Flows. Journal of Computational Physics, Vol. 457, 111052, 2022.

	기획특집 0	희박기체역학 연구 역사, 동향, 주요 문제 (제32회 희박기체역학 국제심포지움 2021년 한국 개최를 맞아) • 명노신 (경상대학교 항공우주 및 소프트웨어공학 전공) •		
(2020)			(2023)	

Ramesh Agarwal, Rho-Shin Myong,

Kun Xu, Wenwen Zhao

ADVANCED COMPUTATIONAL APPROACH

BFYOND

ERIES IN APPLIED AND FRICAL MATHEMATICS

RAREFIED FLOWS

DE GRUYTER

2022 KSAS Fall Conference November 17th (Thu), 2022 - Jeju

R. S. Myong, Gyeongsang National University, South Korea

Talk 6/24

Acknowledgements: Funding, Collaborators, Students

1997-99 US National Research Council Research Associate Program (NASA Goddard Space Flight Center)

1999-03 한국과학재단 특정기초 "희박기체 및 MEMS 유동장 해석에 관한 기초연구"

2012-15 한국연구재단 중견연구 "Non-classical 열유동 물리법칙에 기초한 마이크 로-희박 기체 연구의 새 패러다임"

2015-16 ADD 용역과제 "NCCR-CFD 기법을 이용한 연속체-희박 유동 통합해석 연 구" (인하대 이승수 교수)

2015-18 한국연구재단 우주핵심 "달착륙선의 로켓플룸-월면 상호작용 및 표토입자 분산 연구"

2017-20 한국연구재단 중견연구 "희박·마이크로 다원자 기체와 점탄성 복잡유체에 관한 볼츠만 기반의 메조스케일 모델링 및 시스템 설계기법"

2022-25 US Air Force Research Laboratory (AFOSR Grant)

Byung-Chan Eu (Emeritus Prof., McGill University), Postdocs (Tapan K. Mankodi, IIT Guwahati) and Ph.D. Students (Satyvir Singh, Omid Ojtehadi, etc.)

Park's two temperature model (1988)

From now on, no consideration on air-solid molecular interaction, ablation, and radiation

Average Temperature Model

In this model, the rate coefficient is assumed to be dictated by the (geometric) average temperature

$$T_a = \sqrt{T \times T_v}$$

(10)("Assessment of Two-Temperature Kinetic Model for Dissociating and Weakly-Ionizing Nitrogen," J. of Thermophysics and Heat Transfer, Vol. 2, pp. 8-16, 1988)

("The Limits of Two-Temperature Model," AIAA 2010-911: It describes what the two-temperature model is, and why it was developed. It then explains why the model is the way it is, and what it cannot do. It suggests a three-temperature model recognizing the rotational temperature or a radiation temperature different from heavy particle translational temperature.)

Carbon dioxide

Translational degree of freedom

NETT (Non-equilibrium Total Temperature) Model

- With the recent development of high-fidelity *ab initio* based computational chemistry algorithms, **Potential Energy Surface** information of various gas particles can be acquired using Complete Active Space Self-consistent Field (CASSCF) and Second-order Perturbation Theory (CASPT2) techniques.
- By combining this information with the Molecular Dynamics simulation based on the Quasi-classical Trajectory technique, the cross sections and rate coefficients of a chemical reaction can be calculated. (Luo, H., Kulakhmetov, M., and Alexeenko, A., "Ab Initio State-specific N2 + O Dissociation and Exchange Modeling for Molecular Simulations," *Journal of Chemical Physics*, Vol. 146, 074303, 2017.)
- It is crucial to realize that, although Park's two-temperature model overpredicts dissociation rates at lower vibrational temperatures, it is widely used today because of its clear and simple implementation.
- A physically-motivated model for non-equilibrium reaction rate coefficients suitable for the NSF equations is proposed. (Mankodi, T. K., Myong, R. S., Quasi-classical Trajectory-based Non-equilibrium Chemical Reaction Models for Hypersonic Air Flows, *Physics of Fluids*, Vol. 31, 106102, 2019.)

NETT (Non-equilibrium Total Temperature): results

Evolution of O and O₂ for simulation starting with vibrationally cold conditions

Boltzmann kinetic equations

 A first-order partial differential equation of the probability density of finding a particle in phase space with an integral collision term

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) f(t, \mathbf{r}, \mathbf{v}) = \frac{1}{Kn} C[f, f_2]$$

Movement Kinematic Collision (or Interaction) Dissipation

1. 100 W

$$C[f, f_2] \sim \int |\mathbf{v} - \mathbf{v}_2| (f^* f_2^* - f f_2) d\mathbf{v}_2$$

= Gain (scattered into) - Loss (scattered out) = $\left(\frac{\delta f}{\kappa_{\star}}\right)^2$ -

$$\left(\frac{\delta f}{\delta t}\right)^+ - \left(\frac{\delta f}{\delta t}\right)^-$$

• Maxwell's equation of transfer for molecular expression $h^{(n)}$

$$\frac{\partial}{\partial t} \left\langle h^{(n)} f \right\rangle + \nabla \cdot \left(\mathbf{u} \left\langle h^{(n)} f \right\rangle + \left\langle \mathbf{c} h^{(n)} f \right\rangle \right) - \left\langle f \frac{d}{dt} h^{(n)} \right\rangle - \left\langle f \mathbf{c} \cdot \nabla h^{(n)} \right\rangle = \left\langle h^{(n)} C[f, f_2] \right\rangle$$

Relationship with conservation laws

Boltzmann transport equation (BTE): 10²³

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) f(t, \mathbf{r}, \mathbf{v}) = C[f, f_2] \qquad \qquad p\mathbf{u} = \langle m\mathbf{v} f(t, \mathbf{r}, \mathbf{v}) \rangle$$
where $\langle \cdots \rangle = \iiint \cdots dv_x dv_y dv_z$

Differentiating the statistical definition $\rho \mathbf{u} \equiv \langle m \mathbf{v} f(t, \mathbf{r}, \mathbf{v}) \rangle$ with time and then combining with BTE $(t, \mathbf{r}, \mathbf{v})$ are independent and $\mathbf{v} = \mathbf{u} + \mathbf{c}$)

$$\frac{\partial}{\partial t} \langle m\mathbf{v}f \rangle = \left\langle m\mathbf{v} \frac{\partial f}{\partial t} \right\rangle = -\left\langle m(\mathbf{v} \cdot \nabla f) \mathbf{v} \right\rangle + \left\langle m\mathbf{v}C[f, f_2] \right\rangle$$
[A]⁽²⁾: Traceless symmetric part of tensor A

Here $-\langle m(\mathbf{v} \cdot \nabla f) \mathbf{v} \rangle = -\nabla \cdot \langle m \mathbf{v} \mathbf{v} f \rangle = -\nabla \cdot \{\rho \mathbf{u} \mathbf{u} + \langle m \mathbf{c} \mathbf{c} f \rangle \}$

After the decomposition of the stress into pressure and viscous shear stress

$$\mathbf{P} \equiv \langle m\mathbf{cc}f \rangle = p\mathbf{I} + \mathbf{\Pi} \text{ where } p \equiv \langle m\mathrm{Tr}(\mathbf{cc})f/3 \rangle, \ \mathbf{\Pi} \equiv \langle m[\mathbf{cc}]^{(2)}f \rangle,$$

and using the collisional invariance of the momentum, $\langle m\mathbf{v}C[f, f_2] \rangle = 0$, we have

 $\frac{\partial(\rho \mathbf{u})}{\partial t} + \nabla \cdot \left(\rho \mathbf{u}\mathbf{u} + p\mathbf{I} + \mathbf{\Pi}\right) = \mathbf{0}$

PHYSICAL REVIEW E

VOLUME 56, NUMBER 3

= / m + f (t + m + r)

SEPTEMBER 1997

Generalized hydrodynamics and shock waves

Mazen Al-Ghoul and Byung Chan Eu* Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6 (Received 6 December 1996; revised manuscript received 3 March 1997)

Conservation laws: 13

Constitutive equations and balanced closure

Conceptual inconsistency of Eu's closure (B. C. Eu 1992)

 $\langle m\mathbf{ccc} f \rangle - \langle m\mathrm{Tr}(\mathbf{ccc}) f \rangle \mathbf{I} / 3 = 0 \implies \text{Vanishing heat flux}$ $\langle m\mathbf{ccc} f \rangle = 0 \implies \text{Cannot be zero in general}$

New balanced closure with closure-last approach (PoF 2014)

2nd-order for kinematic LH = 2nd-order for collsion RH

$$\rho \frac{D}{Dt} \begin{bmatrix} \mathbf{\Pi} \left(\equiv \left\langle m [\mathbf{cc}]^{(2)} f \right\rangle \right) / \rho \\ \mathbf{Q} \left(\equiv \left\langle mc^2 \mathbf{c} / 2f \right\rangle \right) / \rho \end{bmatrix} + \begin{bmatrix} \left\langle m\mathbf{cccf} \right\rangle - \left\langle m\mathbf{Tr}(\mathbf{ccc}) f \right\rangle \mathbf{I} / 3 \\ \left\langle mc^2 \mathbf{ccf} / 2 \right\rangle - C_p T(p\mathbf{I} + \mathbf{\Pi}) \end{bmatrix} + \begin{bmatrix} 0 \\ \left\langle m\mathbf{cccf} \right\rangle : \nabla \mathbf{u} \end{bmatrix} \\ \begin{bmatrix} 2[\mathbf{\Pi} \cdot \nabla \mathbf{u}]^{(2)} \\ \frac{D\mathbf{u}}{Dt} \cdot \mathbf{\Pi} + \mathbf{Q} \cdot \nabla \mathbf{u} + \mathbf{\Pi} \cdot C_p \nabla T \end{bmatrix} + \begin{bmatrix} 2p [\nabla \mathbf{u}]^{(2)} \\ pC_p \nabla T \end{bmatrix} = \begin{bmatrix} \left\langle m [\mathbf{cc}]^{(2)} C[f, f_2] \right\rangle \\ \left\langle (mc^2 / 2 - mC_p T) \mathbf{c} C[f, f_2] \right\rangle \end{bmatrix}$$

2nd-order closure

Closure of dissipation terms via 2nd-law

Key ideas; exponential canonical form, consideration of entropy production σ , and non-polynomial expansion called as cumulant expansion (B. C. Eu in 80-90s)

By writing the distribution function f in the exponential form

$$f = \exp\left[-\beta\left(\frac{1}{2}mc^{2} + \sum_{n=1}^{\infty} X^{(n)}h^{(n)} - N\right)\right], \ \beta \equiv \frac{1}{k_{B}T},$$

Nonequilibrium entropy $\Psi: \Psi(\mathbf{r},t) = -k_B \langle [\ln f(\mathbf{v},\mathbf{r},t) - 1] f(\mathbf{v},\mathbf{r},t) \rangle,$

Nonequilibrium entropy production: $\sigma_c \equiv -k_B \langle \ln f \ C[f, f_2] \rangle \ge 0$ (satisfying 2nd-law) (2007)

 $\sigma_c = \kappa_1 q(\kappa_1^{(\pm)}, \kappa_2^{(\pm)}, \cdots)$ via cumulant expansion

$$\sigma_{c} = -k_{B} \left\langle \ln f \ C[f, f_{2}] \right\rangle = \frac{1}{T} \sum_{n=1}^{\infty} X^{(n)} \left\langle h^{(n)} C[f, f_{2}] \right\rangle = \frac{1}{T} \sum_{l=1}^{\infty} X^{(n)} \Lambda^{(n)},$$

a thermodynamically-consistent constitutive equation, still exact to BKE, can be derived;

$$\rho \frac{D(\mathbf{\Pi} / \rho)}{Dt} + \nabla \cdot \mathbf{\Psi}^{(\Pi)} + 2 \left[\mathbf{\Pi} \cdot \nabla \mathbf{u} \right]^{(2)} + 2 p \left[\nabla \mathbf{u} \right]^{(2)} = \frac{1}{\beta g} \sum_{l=1}^{\infty} \mathbf{R}_{l2}^{(2l)} X_2^{(l)} q(\mathbf{\kappa}_1^{(\pm)}, \mathbf{\kappa}_2^{(\pm)}, \cdots)$$

Cumulant expansion method

$$\left\langle x^{l} \right\rangle = \int x^{l} f(x) dx, \quad \left\langle e^{\lambda x} \right\rangle = \int e^{\lambda x} f(x) dx$$
Then we have
$$\left\langle e^{\lambda x} \right\rangle = \sum_{l=0}^{\infty} \frac{\lambda^{l}}{l!} \left\langle x^{l} \right\rangle = \exp\left[\sum_{l=1}^{\infty} \frac{\lambda^{l}}{l!} \kappa_{l}\right] \text{ where }$$

$$\kappa_{l} = \left[\frac{d^{l}}{d\lambda^{l}} \ln\left\langle e^{\lambda x} \right\rangle\right]_{\lambda=0}; \quad \kappa_{1} = \left\langle x \right\rangle, \quad \kappa_{2} = \left\langle x^{2} \right\rangle - \left\langle x \right\rangle^{2}, \cdots \text{ (mean, variance)}$$

$$\left\langle e^{x} \right\rangle_{\text{polynomical}} = 1 + \left\langle x \right\rangle + \frac{1}{2!} \left\langle x^{2} \right\rangle + \frac{1}{3!} \left\langle x^{3} \right\rangle + \cdots,$$

$$\left\langle e^{x} \right\rangle_{\text{cumulant}} = \exp^{\left[\left\langle x \right\rangle + \frac{1}{2!} \left(\left\langle x^{2} \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \left[\exp^{\left(\left\langle x \right\rangle - \left\langle x \right\rangle^{2}\right) + \cdots \right]} \right] / 2 \approx \sinh(x)$$

R. S. Myong, Gyeongsang National University, South Korea

Topology of 2nd-order NCCR (shock structure) (PoF 2020a)

November 17th (Thu), 2022 - Jeju

R. S. Myong, Gyeongsang National University, South Korea

Topology of 2nd-order NCCR (velocity shear) (PoF 2020a)

Analogy among the second-order constitutive model, orbits of planets and comets, and Dirac cones.

	Second-order constitutive model in diatomic and polyatomic gases	Motion of the planets and comets in the two-body Kepler problem
Carbon dioxide	$\left(1 - \frac{9}{2}f_b^2\right)x^2 + x + \frac{2}{3}y^2 = 0$ ections $f_b = \frac{\text{bulk viscosity}}{\text{shear viscosity}}$	$(1 - e^2)x^2 + 2epx + y^2 - p = 0$ $p = \frac{L^2}{Gm_1^2 m_2^2 / (m_1 + m_2)}$ L: angular momentum G: gravitational constant m _{1,2} : mass $E_{\min} = -\frac{G^2 m_1^3 m_2^3 / (m_1 + m_2)}{2L}$
Definition of <i>x</i> a	and y $x = \frac{\prod_{xx}}{p}, y = \frac{\prod_{xy}}{p}$	$x = r\cos\theta, y = r\sin\theta$
Eccentricity	$e = \sqrt{\frac{27}{4}f_b^2 - \frac{1}{2}},$ for $f_b \ge \sqrt{6}/9$	$e = \sqrt{1 - \frac{E}{E_{\min}}},$ for $E \ge E_{\min}(<0)$
Topological pro	$f_b = \sqrt{6}/9; e = 0 \text{ (circle)},$ $\sqrt{6}/9 < f_b < \sqrt{2}/3; 0 < e < 1$ (ellipse), $f_b = \sqrt{2}/3; e = 1 \text{ (parabola)},$ $f_b > \sqrt{2}/3; e > 1 \text{ (hyperbola)}$	$E = E_{min}; e = 0$ (circle), $E_{min} < E < 0; 0 < e < 1$ (ellipse), E = 0; e = 1 (parabola), E > 0; e > 1 (hyperbola)
Direct analogy	$\begin{split} f_b &\Leftrightarrow \frac{2\sqrt{3}}{9}\sqrt{\frac{1}{2}+e} = \frac{\sqrt{6}}{9}\sqrt{3-\frac{2E}{E_{\min}}}\\ f_b &= 0.2722 \Leftrightarrow e_{\text{Earth}} = 0.0167,\\ f_b &= 0.2834 \Leftrightarrow e_{\text{Mercury}} = 0.2056,\\ f_b &= 0.4611 \Leftrightarrow e_{\text{Halley}} = 0.967 \end{split}$	

Talk 18/24 R. S. Myong, Gyeongsang National University, South Korea

Role of the vibrational mode: Modified Boltzmann-Curtiss

$$\begin{aligned} \frac{\partial f_i}{\partial t} + \mathbf{v} \cdot \nabla f_i + \mathbf{L} \cdot \nabla_r f_i &= \sum_j \sum_k \sum_l \int dv_j \int d\Omega W(i, j, |k^*, l^*; \Omega)(f_k^* f_l^* - f_i f_j) \\ &= \sum_j C[f_i, f_j]. \qquad a(i) + a(j) \rightarrow a(k) + a(l) \end{aligned}$$

$$\begin{aligned} \frac{\nabla revious \, \hat{\mathrm{frst-order NSF}} & \mathrm{New \, second-order \, NCCR} \\ \hline p & \frac{\partial p}{\partial t} + \nabla \cdot (\rho \mathbf{u} + p\mathbf{I}) + \nabla \cdot \mathbf{II} = 0 & \frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} + p\mathbf{I}) + \nabla \cdot (\mathbf{II} + \Delta \mathbf{I}) = 0 \\ \hline p & \frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + p\mathbf{I}) + \nabla \cdot \mathbf{II} = 0 & \frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + p\mathbf{I}) + \nabla \cdot (\mathbf{II} + \Delta \mathbf{I}) = 0 \\ \hline p & \frac{\partial (\rho \mathbf{e})}{\partial t} + \nabla \cdot ((\rho \mathbf{e} + p) \mathbf{u}) & \frac{\partial (\rho \mathbf{e})}{\partial t} + \nabla \cdot ((\mu \mathbf{e} + p) \mathbf{u}) \\ + \nabla \cdot (\mathbf{II} \cdot \mathbf{u}) + \nabla \cdot \mathbf{Q} + \nabla \cdot \mathbf{Q}_v = 0 & + \nabla \cdot ((\mathbf{II} + \Delta \mathbf{I}) \cdot \mathbf{u}) + \nabla \cdot \mathbf{Q} + \nabla \cdot \mathbf{Q}_v = 0 \\ \hline p & \frac{\partial (\rho \mathbf{e}_v)}{\partial t} + \nabla \cdot (\rho \mathbf{e}_v \mathbf{u}) + \nabla \cdot \mathbf{Q}_v & \frac{\partial (\rho \mathbf{e}_v)}{\partial t} + \nabla \cdot (\rho \mathbf{e}_v \mathbf{u}) + \nabla \cdot \mathbf{Q}_v \\ = \frac{p (\mathbf{e}_v(T_v) - \rho \mathbf{e}_v(T)}{T_v} & = \frac{p (\mathbf{e}_v(T_v) - \rho \mathbf{e}_v(T)}{T_v} \\ \hline \mathbf{II} & \mathbf{II} = -2\mu [\nabla \mathbf{II}]^{(2)} & 2[\mathbf{II} \cdot \nabla \mathbf{II}]^{(2)} + 2(p + \Delta) [\nabla \mathbf{II}]^{(2)} = -\frac{p}{\mu} \mathbf{I} q_{2nd}(\kappa) \\ \hline \mathbf{Q} & \mathbf{Q} = -k \nabla T & \mathbf{II} \cdot \nabla (C_p T) + (p + \Delta) \nabla (C_p T) = -\frac{p^2 C_v}{k_v} \mathbf{Q} q_{2nd}(\kappa) \\ \hline \mathbf{Q} & \mathbf{Q} = -k_v \nabla T_v & \mathbf{II} \cdot \nabla (C_p v, T_v) + (p + \Delta) \nabla (C_p v, T_v) = -\frac{p^2 C_v}{k_v} \mathbf{Q} q_{2nd}(\kappa) \\ \hline \mathbf{R}^2 &= \hat{\mathbf{II}} : \hat{\mathbf{II}} + (\mathbf{5} - 3\gamma) f_b \dot{\Delta}^2 + \\ \mathbf{Q} \cdot \dot{\mathbf{Q}} + \dot{\mathbf{Q}} \cdot \dot{\mathbf{Q}} , \\ \hline \end{array}$$

Talk 19/24 R. S. Myong, Gyeongsang National University, South Korea

3D mixed modal DG method for the 2nd-order model

$$\partial_{t} \mathbf{U} + \nabla \mathbf{F}_{inv}(\mathbf{U}) + \nabla \mathbf{F}_{vis}(\mathbf{U}, \nabla \mathbf{U}) = 0$$

Discretization in mixed form
$$\begin{cases} \mathbf{S} - \nabla \mathbf{U} = 0 \\ \partial_{t} \mathbf{U} + \nabla \mathbf{F}_{inv}(\mathbf{U}) + \nabla \mathbf{F}_{vis}(\mathbf{U}, \mathbf{S}) = 0 \\ \partial_{t} \mathbf{U} + \nabla \mathbf{F}_{inv}(\mathbf{U}) + \nabla \mathbf{F}_{vis}(\mathbf{U}, \mathbf{S}) = 0 \end{cases}$$

JCP 2022
NSF model (**II**, **Q**) = **f**_{linear}(**S**(**U**))
NCCR model (**II**, **Q**)_{NCCR} = **f**_{non-linear}(**S**(**U**), *p*, *T*)
$$\mathbf{U}_{h}(\mathbf{x}, t) = \sum_{i=0}^{k} U_{j}^{i}(t) \varphi^{i}(\mathbf{x}), \quad \mathbf{S}_{h}(\mathbf{x}, t) = \sum_{i=0}^{k} S_{j}^{i}(t) \varphi^{i}(\mathbf{x})$$

NCCR: Nonlinear Coupled
Constitutive Relation
$$\mathbf{U}_{h}(\mathbf{x}, t) = \sum_{i=0}^{k} U_{j}^{i}(t) \varphi^{i}(\mathbf{x}), \quad \mathbf{S}_{h}(\mathbf{x}, t) = \sum_{i=0}^{k} S_{j}^{i}(t) \varphi^{i}(\mathbf{x})$$

$$\int_{i} \frac{\partial}{\partial t} \int_{I} \mathbf{U} \varphi dV - \int_{I} \nabla \varphi \mathbf{F}_{inv} dV + \int_{\partial I} \varphi \mathbf{F}_{inv} \cdot \mathbf{n} d\Gamma - \int_{I} \nabla \varphi \mathbf{F}_{vis} dV + \int_{\partial I} \varphi \mathbf{F}_{vis} \cdot \mathbf{n} d\Gamma = 0,$$

$$\int_{I} \mathbf{S} \varphi dV + \int_{I} T^{s} \nabla \varphi \mathbf{U} dV - \int_{\partial I} T^{s} \varphi \mathbf{U} \cdot \mathbf{n} d\Gamma = 0,$$

Dubiner basis function, Lax-Friedrichs inviscid flux, central flux for viscous terms

2-D hypersonic rarefied flow past a cylinder

Argon gas

Mach 5.48 Knudsen 0.02

Talk 21/24 R. S. Myong, Gyeongsang National University, South Korea

A body with side-jet: DACS (Divert Attitude Control System)

Number of density contour (nitrogen gas, velocity=2km/s, Knudsen=0.1)

Full 3-D hypersonic rarefied flows around a vehicle

A suborbital re-entry vehicle

1st-order model

2nd-order model

Velocity contours of nitrogen gas flows; Mach 5.0, Knudsen 0.02

Concluding remarks and thanks

Non-classical flow physics including mixture, chemical reaction and radiation modeling Extension to multi-phase flow problems Aerothermodynamic data for design and control More accessible (via OpenFOAM of NCCR-FVM) and efficient computational algorithms Combination with machine learning and quantum computing

Pushing the Limits of Traditional Aerodynamics and Going Beyond the Navier-Stokes-Fourier!

