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Abstract 

We propose a wing-shaped composite structure that uses an electroless nickel-plated carbon fabric as 

an electro-thermal heating element, thus improving the electrical and thermal properties. The results 

showed that the electro-thermal conversion efficiency increased from 0.064 to 0.054 W/℃ with 

increasing plating thickness and weight percentage of the nickel particles deposited. The experiments 

demonstrated that the surface temperature of the wing-shaped composite could be heated up to 87.9 ℃ 

within 1000 s at an applied power density of 2.11 kW/m2. The measurement results agreed well with 

those of the coupled electro-thermal simulations of heating elements related to a resistance heating 

phenomenon via an electro-thermal conversion, and it validated the heating performance. In addition, 
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the nickel-plated carbon fabric as a heating element for the leading edge of the wing-shaped model was 

examined using a multiphysics de-icing simulation under actual icing conditions from a practical 

perspective. Most of the icing was removed by applying a power density of 2.7 kW/m2 for 600 s to the 

wing-shaped composite structure. An interlaminar shear strength (ILSS) test was performed to verify 

the mechanical performance in terms of structural integrity. This practical approach could efficiently 

offer a desirable solution for the multifunctional de-icing composite field.  

 

Keywords: Multifunctional de-icing composite, Nickel-plated carbon fabric, Multiphysics de-icing 

simulation, Electro-thermal properties, Mechanical properties.  

 

1. Introduction  

Ice accretion and formation on the surface of an aircraft poses a significant safety risk during aircraft 

operation [1, 2]. Ice accretion on major components, such as the wings and propeller of an aircraft or 

the rotor blades of a helicopter, can cause an increase in drag, a decrease in lift, a change in moment 

characteristics, etc., which significantly affect the performance of these components [3–5]. Therefore, 

there is ongoing research on electro-thermal anti-icing/de-icing methods that have high thermal 

efficiencies and low power requirements and also provide structural stability to effectively prevent or 

remove icing on the surfaces of the major components of an aircraft [6–9]. Numerous studies have 

predicted ice formation on the surface of an aircraft [10–13] and measured the heating performance 

[14–19]. These studies have analyzed the icing phenomenon on surfaces and complex heat transfer 

phenomena, such as heat exchange, when air or supercooled droplets collide with a surface. Currently, 

several studies have mainly focused on electro-thermal heating elements that utilize multifunctional 

composite materials [20–23]. Table 1 lists the performances of the electro-thermal heating elements 

reported in literature. Carbon fabrics have been actively investigated as potential multifunctional 

composite materials owing to their high specific strength, specific stiffness, thermal efficiency, and 

heating performance compared to metals [24–26]. However, carbon fabrics have high electrical 

resistances and low electrical conductivities owing to their turbostratic graphite structure, which limits 
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their use as heating elements [27]. Recent studies have shown that the electro-thermal properties induced 

by conductive particles can improve the heating performance of carbon, e.g., in heating films that use 

carbon nanotubes [28–30] or graphene dispersions [31–33], heating elements that use discontinuous 

carbon fabrics [34], and the improvement of the electrical and thermal conductivities of carbon fabrics 

through metal plating [35–37]. However, the existing methods for improving the electro-thermal 

properties of carbon have limitations in that they produce nonuniform electro-thermal characteristics and 

their manufacturing process is complicated. To overcome these limitations, many studies have 

investigated the process of electroless metal plating [38, 39] to achieve favorable electro-thermal 

properties. This process does not use electricity, and it plates metal ions on the surface of a fiber via 

oxidation and reduction in an aqueous solution. Certain electrical and thermal properties can be obtained 

by uniformly coating a fiber surface with metals such as nickel, copper, or silver [40–42]. In particular, 

nickel provides the advantages of excellent corrosion and abrasion resistance due to the formation of a 

passive film [43]. In addition, its high conductivity can improve the electrical properties and heating 

performances of carbon fabrics through electroless plating [44]. In this study, we proposed a wing-

shaped composite structure that employed an electroless nickel-plated carbon fabric, achieving high-

efficiency electro-thermal heating elements with enhanced electrical and thermal properties; the 

proposed structure concept is shown in Fig. 1. In addition, multiphysics de-icing simulations were 

investigated to obtain a better understanding of the de-icing performance in actual atmospheric icing 

conditions. Furthermore, we conducted an interlaminar shear strength (ILSS) test to evaluate the 

mechanical performance related to the interfacial adhesion properties between the nickel-plated fabric 

and polymer matrix, which indicated their feasibility in terms of structural integrity. 

 

2. Materials and methods 

2.1. Nickel-plated carbon fabric 

A pristine carbon fabric, purchased from Minhu Composite Co. Ltd., was coated with nickel via 

electroless plating to enhance its electrical and thermal properties [45]. Electroless plating was performed 
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on the mass production (width = 1.5 m, length = 100 m) from Ajin Electron Co. Ltd. Fig. 2(a) shows the 

electroless plating process and the scanning electron microscopy (SEM; MIRA3 LMU, TESCAN, 

Czechia) images of the nickel-plated carbon fabrics. A uniform nickel layer was deposited on the surface 

of the pristine carbon fabric. Fig. 2(b) shows the results of the energy dispersive spectroscopy (EDS; 

JSM-7610F, JEOL, Japan) of the nickel-plated carbon fabric of sample #3, indicating the elemental 

nickel composition in terms of weight percentage and atomic ratio. No nickel was detected in the pristine 

carbon fabric; however, the nickel content increased to 86.43 wt. % after electroless plating. Table 2 

shows the composition of the pristine and nickel-plated carbon fabrics of samples #1–#3. Fig. 2(c) shows 

the results of the X-ray photoelectron spectroscopy (XPS; Nexsa, Thermo Fisher Scientific, USA) of the 

pristine and nickel-plated carbon fabrics. The nickel-plated carbon fabrics (samples #1, #2, and #3) 

showed a nickel peak at 856.1 eV, whereas no nickel peak was observed in the pristine carbon fabric. 

We used X-ray diffraction (XRD; Ultima IV, Rigaku, Japan) to perform a phase analysis on the nickel-

plated carbon fabrics, and the results are shown in Fig. 2(d). We did not observe any nickel peaks in the 

pristine carbon fabric. However, nickel peaks were observed in the nickel-plated carbon fabrics at 2θ = 

43.5°, 50.6°, and 74.3°. Table 3 shows the electrical and thermal properties of the nickel-plated carbon 

fabrics for different thickness of the plated nickel. The electrical and thermal properties were measured 

using the four-point probe method (FPP; MST 5500B, MSTECH, Republic of Korea) and laser flash 

analysis (LFA; LFA 467 HyperFlash, NETZSCH, Germany), respectively. These properties were 

predominantly determined by the thickness and composition of nickel, which were controlled by the 

speed of the roller in the plating bath and the plating time [46]. The thickness of the plated-nickel was 

measured via X-ray fluorescence (XRF; XRF-2000R, Micro Pioneer, Republic of Korea). From these 

results, it was evident that the electrical and thermal properties were enhanced with increasing the nickel 

plating thickness. The electrical and thermal conductivities of the pristine carbon fabric were 5.506 × 103 

S/m and 0.623 W/m∙K, respectively, and those of sample #3, having the highest nickel plating thickness, 

were 19.16 × 103 S/m and 0.833 W/m∙K, respectively.  

2.2. Heating mechanism 

We used nickel-plated carbon fabrics with low resistances and high electro-thermal conductivities as 
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heating elements to achieve a high heating capacity. The heating mechanism was based on resistance 

heating via electro-thermal conversion. When an electric current passes through a conductive solid or 

liquid, electrons move and collide with nuclei. At this point, heat is generated by the conversion of kinetic 

energy into thermal energy. Electro-thermal heating is advantageous because the amount of heat 

generated can be controlled by adjusting the applied voltage and current, and heat is generated regardless 

of the external conditions. The amount of heat generated by electro-thermal heating is expressed using 

Joule's law [47] 

V IR ,                                                                   (1)  

2H I Rt .                                                            (2) 

In the above equations, V  represents the applied voltage (V), I  represents the applied current (A), R  

represents the resistance (Ω), H  represents the amount of heat (W), and t  represents time (s).  

2.3. Numerical methods 

The heating performances of the nickel-plated carbon fabrics and wing-shaped composite structure were 

verified by performing computational analysis using Abaqus/CAE 6.14-2 (Dassault Systèmes SE, 

France). We used a coupled electro-thermal analysis that simultaneously considered the thermal and 

electrical behaviors of the heating elements [20, 48, 49]. Introducing Ohm's law, the governing 

conservation of electric charge equation is given in Eq. (3), where   is the potential, 
E
σ  is the electrical 

conductivity, cr  is the internal volumetric current source per unit volume, and J  is the current density 

entering the control volume across S . 

c
V S V

dV J dS r dV
 

 
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x x
                                 (3) 

The thermal energy conservation equation for heat flow is given by Eq. (4), where   is density of the 

material, U  is the internal energy, k  is the thermal conductivity matrix, q  is the heat flux per unit area 

of the body, and r  is the heat generated within the body [50]. 
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Actual icing conditions involve phenomena that are difficult to consider in heating tests conducted on 

the ground, such as the heat exchange that occurs when air or supercooled droplets collide with an 

aircraft. We used FENSAP-ICE for a multiphysics de-icing simulation to verify the de-icing 

performance of the wing-shaped composite structure under actual icing conditions. The multiphysics 

de-icing analysis included simulations of external air flow and droplet impingement and also an 

unsteady conjugate heat transfer (CHT) simulation of electro-thermal de-icing as shown in Fig. 3.  For 

the CHT analysis, the simulations of ice accretion, heat transfer analysis between a water film and 

multilayer heat conduction, and ice layer re-meshing were conducted iteratively. The Reynolds-

averaged Navier–Stokes equations were used to evaluate the flow field around the wing-shaped 

composite structure with heating elements. The Spalart–Allmaras turbulence model was employed. We 

used an Eulerian droplet impingement model to calculate the supercooled droplet field in the atmosphere 

and considered the multiphase model proposed by Bourgault et al. [51–53]. Air and droplets were mixed 

in this model. The attachment of the droplets to the surface and ice accretion could be described using a 

continuity equation for the film thickness and energy equation for the temperature given in Eqs. (5) and 

(6), respectively [54–56]. 
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Here, w  is the water density, and 
wC  and 

iceC  are the specific heats at constant pressure for water 

and ice, respectively. 
fU  and 

fh  are the velocity and thickness of the water film, respectively. 
fT  is the 

equilibrium temperature, dU  is the velocity of droplet,   is the solid emissivity,   is the Boltzmann 

constant, 
evapL , sublL , and 

fusionL  are the latent heats of evaporation, sublimation, and fusion, 

respectively,   is the rate of collection efficiency, 
evapm  and icem  are the mass fluxes during evaporation 
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and icing, respectively, hC  is the convective heat transfer coefficient, T
 and 

,dT 
 are the liquid water 

contents ( LWC ), and U  represents the user-defined phase and droplet variables. The first term on the 

right side of Eq. (6) denotes the heat transfer that occurred when supercooled droplets collided with a 

surface, the second term denotes the heat transfer that occurred when droplets evaporated, the third term 

denotes the heat transfer due to ice accretion, and the remaining terms denote radiation and convection 

heat transfer [57, 58]. 

 

3. Electro-thermal heating performance  

3.1. Measurement of the electro-thermal heating performance 

The heating performance related to the temperature distribution on the surface on the 40 × 40 mm2 nickel-

plated carbon fabrics as heating elements, with copper foil attached as electrodes to both ends of the 

fabrics using a highly conductive silver paste (ELCOAT A-200; CANS, Republic of Korea), was 

measured using an infrared camera (IR camera; FLIR E53, Teledyne FLIR LLC, USA), as shown in Fig. 

4(a) [59–61]. Fig. 4(b) shows the thermal images captured on the surface of the pristine carbon fabric 

and samples #1, #2, and #3 as heating elements by applying a constant voltage of 1.5 V for 5 min. The 

maximum temperatures of the surface of the pristine carbon fabric and samples #1, #2, and #3 were 

103.6 ℃, 114.7 ℃, 138.6 ℃, and 148.2 ℃, respectively, as shown in Fig. 4(c). From the measurements, 

it was found that the nickel-plated carbon fabric functioned well as sample #3 especially was heated up 

to 100 ℃ at a heating rate of 8.25 ℃ /sec. The equilibrium temperature in accordance with the thermal 

dissipation process as heat loss resulting from the surrounding conditions may be determined by Joule's 

law [47].  In particular, the surface temperature of sample #3 was 43.1% higher than that of the pristine 

carbon fabric. It appears to be evident that the amount of applied current increased due to the enhanced 

electrical conductivity, which corresponded to the amount of plating thickness and weight percentage of 

the nickel particles. The electro-thermal conversion efficiency was measured to provide a more 

comprehensive understanding of the nickel-plated carbon fabric used in this study. It was obtained using 

the following equation, and the values are shown in Table 4 [62, 63]. 
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Here, r ch   is the electro-thermal conversion efficiency, a smaller value of which denotes a better 

conversion efficiency. cI  is the steady state current, 0V  is the applied voltage, and 0T  and mT  are the 

initial and maximum surface temperatures, respectively. Sample #3 with a maximum temperature of 

148.2 ℃ exhibited the highest electro-thermal conversion efficiency of 0.054 W/℃.  Thus, sample #3 

was selected to demonstrate the wing-shaped composite structure in this study.  

3.2. Coupled electro-thermal analysis of the heating element 

A coupled electro-thermal analysis was conducted to verify the high heating capacity of the electro-

thermal heating element proposed in this study. The measured values of the steady-state current, applied 

voltage, and initial surface temperature, as listed in Table 4, were used for the simulation, and the 

computational grid consisted of 400 cells of 2 × 2 mm2 each. A voltage of 1.5 V and the current measured 

during the heating test were applied to the heating element as simulation conditions. In addition, room 

temperature was considered as the surface film condition with the sink and initial surface temperatures 

of 28 ℃. We compared the surface temperature obtained from the heating test and coupled electro-

thermal simulation for 300 s. Fig. 5(a) shows the variation in the surface temperature with respect to 

time. Fig. 5(b) presents the simulation and test results for sample #3 for the steady state temperature 

distribution along the transverse direction. The overall distribution of the surface and maximum 

temperatures agreed well with the measurements, although the magnitudes of the top and bottom regions 

were slightly overestimated. The simulation results showed that the surface temperature at the outermost 

point was 143.4 ℃, the maximum surface temperature at the center was 148.4 ℃, and the overall surface 

temperature was 147–148 ℃. The measurements showed that the surface temperature at the outermost 

point was 120 ℃ and the maximum surface temperature at the center was 148.2 ℃. The temperature at 

a transverse position of 12–30 mm was 144–146 ℃ and that at transverse positions of 0–12 mm and 30–

40 mm was 120–138 ℃. Thus, the surface temperature decreased as the distance from the center of the 

specimen increased. The difference between the surface temperatures at the center and outermost points 
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was approximately 29 ℃. This difference was due to heat loss caused by the contact between the fabric 

structure and air [64–66].  

 

4. Leading edge of the wing-shaped composite  

4.1. Fabrication and measurement 

As mentioned in Section 2.1, a nickel-plated carbon fabric prepared using electroless nickel plating was 

presented to obtain improved electrical and thermal properties, providing the heating elements with high 

electro-thermal conversion efficiencies. The stacking sequence of the proposed wing-shaped composite 

used in this study is shown in Fig. 6(a). The proposed structure with heating elements was designed by 

controlling the stacking sequence profiles. One layer of the nickel-plated carbon fabric (t = 0.15 mm) 

as a heating element was embedded between the two plies (t = 0.3 mm) of glass/epoxy to satisfy the 

level of electrical insulation with adhesion resistance. The carbon/epoxy layers in accordance with 

thickness thermal transfer as load-bearing capacity was layered on both sides of the heating element 

with two plies (t = 0.3 mm) and six plies (t = 1.65 mm), respectively, considering their effective thermal 

transfer in the perpendicular direction. The six plies (t = 0.9 mm) of glass/epoxy with respect to the heat 

sink of the top and bottom layers were layered to provide a precise protection against ignition while 

maintaining uniform heat. Fig. 6(b) summarizes the fabrication process flow of the leading edge of the 

wing-shaped composite with the nickel-plated carbon fabrics developed in this study as the electro-

thermal heating elements. After completing the lay-up for the wing-shaped model, the layered sample 

was vacuum-bagged and cured in an autoclave curing cycle (120 min at 130 ℃ under a pressure of 7 

atm). The total thickness of the fabricated wing-shaped composite structure was 4.75 mm. The heating 

behavior with regards to five heating elements inserted at different positions on the wing-shaped 

composite was characterized using a test setup as shown in Fig. 7.  The wing-shaped composite was 

connected to a DC electrical power supply (DC power supply; TS3030A, TOYOTECH, Republic of 

Korea), and the temperature distribution related to the quantitative assessment of the image on the surface 

of the wing-shaped composite was monitored using an infrared camera. Five heating elements were 
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positioned as shown in Fig. 8(a). Figs. 8(b–f) show the temperature profiles and infrared images of the 

wing-shaped composite for five heating element positions within 1000 s with a voltage of 12 V. It can 

be noted that the heating elements #1, #2, #3, #4, and #5 were gradually heated up to 87.3 ℃, 86.6 ℃, 

87.9 ℃, 88.1 ℃, and 86.9 ℃, respectively, under a power voltage of approximately 2.06–2.14 kW/m2, 

demonstrating a good and uniform electro-thermal performance. The five heating element positions with 

respect to current, power density, and maximum temperature are presented in Table 5. Based on these 

experimental results, it was verified that the nickel-plated carbon fabric with a high electro-thermal 

conversion efficiency functioned well as the heating element without the use of nanocarbon fillers [67, 

68], nanoparticles [69, 70], or hybrid fillers consisting of graphite, expanded graphite, and Cu [71] to 

achieve favorable electro-thermal properties. Many studies had focused on the effect on the electro-

thermal properties with respect to highly conductive materials. However, these approaches faced certain 

limitations in terms of practical application, namely composite material with dispersed nanoparticles 

could lead to inhomogeneous mechanical and electrical properties owing to the high viscosity of the 

polymer matrix and the fabrication processes were also complicated. Hence, the present study attempts 

to overcome these limitations by demonstrating that the nickel-plated carbon fabric has high electro-

thermal conversion efficiency and heating performance and can be used in the wing-shaped composite 

without the use of nanoparticles, indicating its feasibility and applicability from a practical perspective. 

4.2. Mechanical performance 

To examine the interlaminar shear behavior of the nickel-plated carbon fabric layer on the composite, 

the pristine and nickel-plated carbon/epoxy composites (sample #3) were analyzed according to ASTM 

D-2344 standards, as shown in Fig. 9(a). All interlaminar shear test specimens were prepared with the 

same stacking sequence and configuration as discussed in Section 4.1, including a glass fabric as an 

electrical insulating layer. The ILSS was obtained using the following equation. 

0.75sbs mP
P

b h
 


  

  
                                                    (8) 

Here, sbsP  is the ILSS (MPa), 
mP  is the maximum load (N), and b  and h  are the width (mm) and 

thickness (mm) of the specimen, respectively. The length, average width, and thickness of the fabricated 
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test specimens were 18 mm, 6 mm, and 3 mm, respectively. The test results for the pristine and nickel-

plated carbon/epoxy composites showed that the ILSSs were 28.7 MPa and 28.4 MPa, respectively, as 

shown in Fig. 9(b).  Furthermore, a typical failure mode was acceptable for all the samples with respect 

to the test standard not only corresponding to the similar strength affected by interfacial adhesion 

properties between the nickel particles deposited on the carbon fabric and matrix but also offered 

structural integrity approaches in terms of their durability and feasibility. 

4.3. Coupled electro-thermal simulation results 

A coupled electro-thermal analysis of the wing-shaped composite structure was conducted, and the 

simulation results were compared with those of the heating test to verify the heating performance of the 

structure. Heating element #3 of the wing-shaped composite structure was considered and 12 V were 

applied for 1000 s to obtain a steady state temperature distribution on the heating element surface. The 

computational grid consisted of 280,765 cells of 3 × 3 mm2 each. A voltage of 12 V and a current of 7.4 

A were applied to heating element #3 as the simulation conditions.  For the finite element method (FEM) 

simulation, the surface contact conditions were imposed on each layer of the wing-shaped composite to 

consider heat transfer between the overlapping layers. In addition, the surface film conditions with a sink 

temperature of 15 ℃ were applied to the outermost surfaces to consider the heat transfer between the 

ambient air and the heating element. The temperature distribution on the surface of the wing-shaped 

composite structure is presented in Fig. 10(a), and the predicted result of the temperature distribution 

was in good agreement with the measured data as shown in Fig. 8(d). Fig. 10(b) shows a detailed 

comparison between the surface temperatures obtained from the FEM simulation and heating test results. 

It can be observed that the simulation results of the temperature variation along the transverse direction 

agreed well with the measurements. The maximum temperature was observed at a transverse position of 

150 mm corresponding to the center of heating element #3 of the wing-shaped composite. The predicted 

and measured maximum temperatures were 88.4 ℃ and 87.9 ℃, respectively. The discrepancy between 

the maximum temperatures obtained during the FEM simulation and heating test was only 0.5 ℃. Results 

showed that the wing-shaped composite with the nickel-plated carbon fabric proposed in this study was 

capable of applying an electro-thermal heating element for applications in de-icing systems.  
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4.4.Multiphysics de-icing simulation results 

Analysis of ice accretion on the wing-shaped composite with a nickel-plated carbon fabric were 

conducted under an actual icing environment using Ansys FENSAP-ICE 2019 R1 (Ansys Inc., USA) to 

predict the shape of the ice. Fig. 11 shows the computational domain and boundary conditions for ice 

accretion and multiphysics de-icing simulations. To model the heating elements placed on the leading 

edge of wing-shaped composite, both the external wall, exposed to the external flow, and solid wall were 

considered. The computational grid consisted of 158,006 and 75,624 cells for the external and solid walls, 

respectively. The pressure far-field boundary condition was applied to the boundaries of the external 

flow field, and the solid wall boundary condition was imposed on the surfaces of external and solid walls. 

The simulation conditions for the ice accretion analysis were determined from Appendix C in the 

Federal Aviation Regulation Part 25 of the Federal Aviation Administration [72]. Two cases were 

selected among the various flow conditions for ice accretion: Case 1 was the condition that generated the 

largest amount of ice, and Case 2 was the condition wherein ice accretion had the most influence on the 

variation in the lift and drag coefficients [73–75]. The details of the flow conditions for the icing 

simulation are listed in Table 6. Fig. 12 shows the collection efficiencies for Cases 1 and 2. After droplet 

impingement on the wing, collection efficiency was symmetrically distributed in Case 1, whereas it was 

distributed more widely on the lower surface of the leading edge in Case 2 owing to an angle of attack 

of 4°. When exposed to icing conditions for 600 s without activating the de-icing system, ice accretion 

occurred as shown in Fig. 13. Icing accrued symmetrically in Case 1, whereas it accrued in a horn-ice 

shape that spread widely on the lower surface of the leading edge in Case 2 owing to the angle of attack 

of 4°. We also performed a multiphysics de-icing simulation at a constant power density for the heating 

element (2.7 kW/m2) during exposure to atmospheric icing conditions for 600 s. The surface temperature 

of the leading edge increased to 8 ℃ and 10 ℃ in Cases 1 and 2, respectively. Although there existed a 

difference of 10 ℃ between the atmospheric temperatures in Cases 1 (-16 ℃) and Cases 2 (-6 ℃), only 

a 2 ℃ difference existed between the increase in the surface temperature caused by the heating element 

in both cases. This is because aerodynamic heating and droplet impingement position varies depending 

on the angle of attack [14, 76]. In Case 1, the angle of attack was 0° and the thermal energy was primarily 
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generated by impingement between the air and droplets on the leading edge. In contrast, the angle of 

attack was 4° in Case 2 and the thermal energy was primarily generated by impingement between the air 

and droplets on the lower surface of the leading edge. Ice accretions on the surface of the wing with and 

without the de-icing system proposed in this study are compared in Figs. 14(a) and 14(b). Notably, the 

de-icing system successfully removed most of the icing, although ice accretion associated with liquid 

runback along the lower surface was observed. Runback ice was generated behind heating element #3, 

where the surface temperature was below 0 °C. Runback ice can be removed entirely by relocating or 

increasing the number of heating elements in the wing-shaped composite structure or by optimizing the 

heating sequence.  

 

5. Conclusions 

In this paper, the leading edge of a wing-shaped multifunctional composite structure with a nickel-

plated carbon fabric as a heating element, providing excellent electrical and thermal properties, was 

presented to achieve high electro-thermal conversion efficiency and heating performance. The heating 

element level test related to the heating performance increased as the plating thickness and weight 

percentage of the nickel particles deposited was increased, generating a value 43.1% higher than that of 

the pristine carbon fabric. The results obtained from the electro-thermal heating test of the wing-shaped 

composite with heating elements were in good qualitative agreement with the corresponding simulation 

results, demonstrating a surface temperature of 87.9 ℃ with a power density of 2.11 kW/m2. To simulate 

the flight conditions in an actual atmospheric icing environment, we performed a multiphysics de-icing 

simulation under the conditions wherein a large amount of icing was generated, which strongly 

influenced the variation in the lift and drag performances. We examined the ice accretion shapes on the 

leading edge. Most of the icing was removed at a relatively low power density of 2.7 kW/m2. The ILSS 

results of the nickel-plated carbon/epoxy composite were comparable with those of a pristine 

carbon/epoxy composite. From these results, it can be concluded that both the insulating layer and 

heating element did not significantly affect the interfacial adhesion properties. This suggests that the 

composite structure with a nickel-plated carbon fabric as the heating element can efficiently provide a 
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practical approach that can be used in applications such as wind blades, the rotor blades of rotorcrafts, 

and air intakes as well as aircraft wing composites. 
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Figure Captions 

Figure 1 Proposed electro-thermal de-icing method for a wing-shaped composite and its 

practical approach in this study. 

Figure 2 (a) Electroless plating process and SEM images of the nickel-plated carbon fabric; (b) 

EDS result of the nickel-plated carbon fabric of sample #3; (c) XPS curves; (d) XRD 

patterns. 

Figure 3 Flowchart of the multiphysics de-icing simulation. 

Figure 4 (a) Electric heating test setup; (b) images of the temperature distribution, obtained 

using an infrared camera, of the pristine carbon fabric and samples #1, #2, and #3; (c) 

temperature profiles at an applied voltage of 1.5 V. 

Figure 5 Comparison between the results of the electric heating test and coupled electro-

thermal simulation for the heating element: (a) temperature versus time on the heating 

profile for the simulation and experiment; (b) surface temperature distribution for 

sample #3. 

Figure 6 (a) Configuration and stacking sequence of the wing-shaped composite structure used 

in this study; (b) fabrication process flow of the proposed wing-shaped composite. 

Figure 7 Heating test setup for the leading edge of the wing-shaped composite. 

Figure 8 Temperature profiles and infrared images of the wing-shaped composite: (a) heating 

element positions on the wing-shaped composite; (b–f) heating elements #1–#5, 

respectively.  

Figure 9 (a) ILSS test performed using an INSTRON 5582 according to ASTM D2344 standard 

https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.009
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specifications; (b) ILSS of the pristine and nickel-plated carbon fabric/epoxy 

composites.  

Figure 10 Coupled electro-thermal simulation results for the wing-shaped composite: (a) 

surface temperature contours; (b) comparison between the surface temperatures 

obtained from the heating test and simulation results. 

Figure 11 Computational domain and boundary conditions for the multiphysics de-icing 

simulation. 

Figure 12 Comparison between the collection efficiencies on the wing during each flight 

condition listed in Table 6. 

Figure 13 Comparison between the shapes of the ice on the wing during each flight condition 

listed in Table 6. 

Figure 14 Comparison between the multiphysics de-icing simulation results with and without 

the heating element for the flight conditions listed in Table 6: (a) Case 1; (b) Case 2. 
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Fig. 1. 
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Fig. 2. 
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Fig. 3.  
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 
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Fig. 7. 
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Fig. 8. 
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Fig. 9. 
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Fig. 10. 
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Fig. 11. 
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Fig. 12. 
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Fig. 13. 
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Fig. 14. 

 

Table Captions 

Table 1 Comparison between the electro-thermal heating elements reported in literature. 

Table 2 Compositions of the pristine and nickel-plated carbon fabrics (samples #1, #2, and #3) 

obtained via energy‐dispersive x‐ray spectroscopy (EDS). 

Table 3 Thermal and electrical properties of the pristine carbon fabric and samples #1, #2, and 

#3. 

Table 4 The hr+c values of the heating elements at an applied voltage of 1.5 V. 

Table 5 Surface temperatures of the wing-shaped composite at an applied voltage of 12 V. 

Table 6 Flight conditions for the multiphysics icing simulation. 
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Table 1 

Study Heating elements ΔTmax (℃) 
Power density 

(kW/m2) 
hr+c (W/℃) 

This study 
Nickel-plated carbon 

fabric 
128 4.04 0.054 

Cao et al. [37] 
Nickel-plated carbon 

fabric 
36 0.60 0.026 

Choi et al. [44] 
Nickel-plated carbon 

fabric 
110 31.70 0.091 

Falzon et al. [24] Carbon-based textile 35 1.20 1.540 

Yao et al. [25] Carbon-based textile 132 6.50 0.123 

Yao et al. [28] CNT dispersed film 40 1.14 0.120 

Yoon et al. [29] CNT dispersed film 115 6.40 0.034 

Kim et al. [30] CNT dispersed film 135 8.40 0.156 

Tian et al. [31] 
Carbon fabric + graphene 

coating 
119 6.00 0.011 

Sui et al. [32] Graphene dispersed film 185 20.00 0.030 

Vertuccio et al. [33] Graphene dispersed film 110 4.12 0.094 
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Table 2  

Sample 
Weight percentage (wt. %) / Atomic percentage (at. %) 

Ni Cu C 

Pristine carbon fabric 0.00/0.00 0.00/0.00 100/100 

Sample #1 58.22/39.82 29.31/18.52 12.46/41.66 

Sample #2 68.82/50.40 21.37/14.46 9.81/35.14 

Sample #3 86.43/97.04 8.80/1.87 4.77/1.10 
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Table 3  

Material 

Nickel plating 

thickness 

(μm) 

Electrical 

resistance 

(Ω) 

Electrical 

conductivity 

(S/m) 

Thermal 

conductivity 

(W/m∙K) 

Specific heat 

capacity 

(J/K∙kg) 

Pristine carbon 

fabric 
0.000 0.159 5.506 × 103 0.623 1.006 

Sample #1 0.901 0.146 6.997 × 103 0.749 0.912 

Sample #2 0.971 0.083 10.51 × 103 0.777 0.869 

Sample #3 0.987 0.046 19.16 × 103 0.833 0.835 
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Table 4  

Material V0 (V) IC (A) T0 (℃) Tm (℃) hr+c (W/℃) 

Pristine carbon fabric 1.5 3.21 28 103.6 0.064 

 Sample #1 1.5 3.58 28 114.7 0.062 

Sample #2 1.5 4.05 28 138.6 0.055 

Sample #3 1.5 4.31 28 148.2 0.054 
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Table 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heating element 

position 
Voltage (V) Current (A) 

Power density 

(kW/m2) 

Maximum 

temperature, Tm (℃) 

1 12 7.3 2.09 87.3 

2 12 7.2 2.06 86.6 

3 12 7.4 2.11 87.9 

4 12 7.5 2.14 88.1 

5 12 7.2 2.06 86.9 
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Table 6  

Cases 
Temperature 

(℃) 

Velocity 

(m/s) 

LWC 

(g/m3) 

MVD 

(μm) 

AoA 

(°) 

Case 1 -16 96.159 0.45 21.25 0 

Case 2 -6 96.159 0.35 26.25 4 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


