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Abstract 

Surrogate modeling, or metamodeling, is an efficient way of alleviating the high computational cost and 

complexity for iterative function evaluation in design optimization. Accuracy is significantly important because 

optimization algorithms rely heavily on the function response calculated by surrogate model and the optimum 

solution is directly affected by the quality of surrogate model. In this study, an optimized trend kriging model is 

proposed to improve the accuracy of the existing kriging models. Within the framework of the proposed model, 

regression analysis is carried out to approximate the unknown trend of the true function and to determine the order 

of the universal kriging model, which has a fixed form with a mean structure dependent on the order of model. In 

addition, the selection of an optimal basis function is conducted to separate the useful basis function terms from the 

full set of the basis function. The optimal subset of the basis function is selected with the global optimization 

algorithm; which can accurately represent the trend of true response surface. The mean structure of proposed model 

has been optimized to maximize the accuracy of kriging model depending on the trend of true function. Two- and 

three-dimensional analytic functions and a practical engineering problem are chosen to validate the proposed model. 

The results showed that the OTKG model yield the most accurate responses regardless of the number of initial 

sample points, and can conversed into well-trained model with few additional sample points.  

Keywords: Kriging surrogate model, Trend function, Regression analysis, Coefficient of determination, Genetic 

Algorithms, Design optimization.  
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1. Introduction 

Industry and academia have continuously been attempting to solve engineering design problems with complex 

geometry and a highly unsteady flow because computing performance has been continuously growing. To find the 

optimal solution of engineering system, the objective and constraint functions as a function of the design variables 

have to be iteratively evaluated. However, high-fidelity analysis of the complex configuration, such as an airplane 

including the pylon and the intake or the unsteady simulation of rotary systems (e.g., helicopter rotors, wind turbines, 

and open rotor systems), still requires a computing time of several hours or days to obtain the converged solutions. It 

is nearly impossible for high-fidelity analysis to be directly applied to the design optimization process because of 

high computational costs and resources. The surrogate model, which is often called a metamodeling is an efficient 

way to alleviate this computational burden. It represents a true response surface using a simple mathematical 

function with evaluated function values of sample points. Then, the iterative and expensive function evaluation can 

be substituted for modeled response surface instead of actual simulation. Therefore, the accuracy of the surrogate 

model is significant because the optimization results are significantly affected by the quality of the surrogate model. 

However, constructing high-fidelity surrogate model for complex problems with numerous variables are challenging 

because large number of variables has much influence on the efficiency of the optimization process. P. Hao et al. 

suggested a bi-step surrogate-based optimization framework with adaptive sampling to build high-fidelity surrogate 

modes with less computational cost for complex engineering designs. [1] 

Several surrogate models have been developed, such as polynomial response surfaces, Artificial Neural 

Networks (ANN) [2, 3], Genetic Programming (GP) [4], Support Vector Regression (SVR) [5], the Radial Basis 

Function (RBF) [6], Moving Least Squares (MLS), and the Kriging model [7]. The kriging model is one of the most 

attractive models because it has a good capability of dealing with nonlinear response. Although the true function is 

explicitly unknown, the kriging model can provide statistical error information that is modeled using a Gaussian 

process as well as the predicted function response at an untried point. Therefore, it is widely used in various research 

fields, including spatial analysis, mathematical geology, and engineering.  

The fundamental formulation of the kriging model is consisted of the two parts: the drift function and the 

deviation function. The former represents the global trend of the kriging model, while the latter is a localized 

variation between the true and the drift functions. The accuracy of the kriging model relies greatly on how to 

formulate them. Many studies have been conducted to improve the accuracy of the kriging model. H.S. Chung and 

 



J.J. Alonso used secondary information, such as the values of the gradient, in addition to primary function values at 

sample points for constructing a covariance matrix of the deviation terms [8]. Z.H. Han et al. suggested a new 

Cokriging model that utilized both the function values at sample points obtained by the variable fidelity analysis and 

gradient values computed by the adjoint method to generate the kriging model [9, 10]. Their results show that the 

accuracy of the kriging model can be enhanced by using the gradient information and the function values computed 

by variable fidelity analysis. They have focused on the modification of deviation terms to improve the quality of the 

kriging model. In contrast, V.R. Joseph et al. proposed the blind kriging model that uses the optimally selected basis 

functions to model the trend function. The optimal subset of basis functions can be selected by the Bayesian forward 

selection process [11]. However, the Bayesian forward selection process could easily get stuck in the local optimum 

solution rather than finding the global optimum. This converging problem was overcome in dynamic kriging model 

which was suggested by L. Zhao et al. In dynamic kriging model, the optimization problem of selecting basis 

functions from the candidates of basis functions was solved by using genetic algorithm which is one of the most 

popular global optimization algorithm. The kriging process variance was used as the objective function of the 

optimization problem for finding the optimal subset of basis function. It was found that the quality of the kriging 

model can be enhanced by excluding unnecessary polynomial terms in the full set of basis function [12]. However, 

H. Liang and M. Zhu pointed out that the kriging process variance cannot be set to be the objective function of the 

optimization problem for searching optimal basis functions and genetic algorithm cannot converge to the global 

optimum. It is analytically proved [13]. A revised dynamic kriging model has been proposed to design the trend 

function using cross-validation method, and the cross-validation root mean-square error and cross-validation error 

correlation coefficients were used to be the objective function in the optimization problem of designing the trend 

function [14]. To find the optimal subset of basis function in the optimization problem, the highest-order of trend 

function needs to be determined first. In dynamic and revised dynamic kriging model, it is determined to satisfy a 

constraint associated with the number of samples and the total number of possible candidates of basis functions. 

However, this constraint depends strongly on the number of sample points and does not consider the trend of the 

true response. H.I. Kwon and S.I. Choi has developed the R2 indicator based on regression analysis. The coefficient 

of determination, denoted R2 indicates that how well the regression model can approximate the trend of sample 

points. The unknown trend of the true response could be approximately predicted, and the well-matched order of the 

universal kriging (UKG) model can be determined depending on the coefficients of determination. It is called the 



trended kriging (TKG) model because its mean structure is constructed to fit the trend of the true response more 

accurately by considering the trend of the true function. The results showed that the TKG can improve the accuracy 

of the model by adjusting its drift function to the identified trend of the true function [15]. However, the form of the 

drift function in the mean structure is fixed as a p-th order polynomial function. Although the order of the drift 

function is properly determined from the regression analysis, the unnecessary terms in the fixed form of the drift 

function could deteriorate the quality of the kriging model. 

In this study, an optimized trend kriging (OTKG) model is suggested to improve the accuracy of the TKG model 

by excluding the unnecessary terms from full set of basis function in mean structure. Therefore, we adopted the 

global optimization algorithm to separate the useful terms from the fixed form of the basis function of the TKG. In 

order to validate the OTKG model and compare its accuracy with the ordinary kriging (OKG) model and the UKG 

models, two- and three-dimensional analytic functions were applied. The validation results verified that the 

proposed OTKG model can be applied to any trend of response and provide a more accurate response surface than 

existing kriging models. The proposed OTKG model was also applied to a practical engineering problem. The 

numerical example shows that the OTKG model can more accurately represent the true response, despite a lack in 

the number of sample points.  

The outline of this paper is as follows. The methods for the optimized OTKG model, including the basic 

background of the kriging model, trend identification and optimal basis selection process, are introduced in the 

following section. The detailed validation procedure and the results of using two- and three dimensional analytic 

functions are described in section 3. Section 4 explains a practical engineering problem and shows the results of 

model comparison, depending on the dimension of the problem, and the accuracy of the proposed model and the 

existing model are compared. Our conclusions are discussed in Section 5. 

 

2. Background and methods 

2.1 Kriging model 

The kriging model was initially suggested to find locations for a borehole by D.G. Krige [7] and mathematically 

formulated by G. Matheron [16]. It is an interpolation-based surrogate model and perfectly passes through all 

sample points which are extracted by the Design of Experiment (DoE) approach. The function values of selected 

sample points must be evaluated by numerical simulation or experimentation. In the kriging model, the deterministic 



form of the true function is assumed to be the stochastic form of the function. As mentioned above, the kriging 

model is modeled as the sum of the drift function and the deviation function, as shown by Eq. (1). The first term on 

the right-hand side of Eq. (1) is the mean structure of the model that globally presents and emulates a mean trend of 

the true response, while the second term is a deviation between the true and drift functions. 

= +y Fβ Z                 (1) 

The drift function in the kriging model can be formulated using the p-th order polynomial function which is 

called as p-th order universal kriging (UKG) model. Its drift function can be written as shown by Eqs. (2)–(4), where 

y is the vector of the response values at the sample points, 𝐱𝐱 is the vector of the sample points (x = [x1, x2, ⋯, xm]T 

with xi ∈ Rn), n is the number of design variables (the dimension of the design space), and m is the number of 

sample points. In this study, the Latin Hypercube Sampling (LHS) method is used to randomly select the sample 

points in the design space. It is known that the LHS method is well-fitted to the kriging model [17]. F is the m×k 

model matrix that is composed of the p-th order polynomial form of the basis function, where k is the number of 

elements in the full basis function, 𝐟𝐟(𝐱𝐱). 𝛃𝛃 is the vector of the regression coefficients for the polynomial function 

that is determined with the Generalized Least Square (GLS) method [18].  
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In the kriging model, the deviation function, Eq. (5), is stochastically modeled to have zero mean and 𝜎𝜎2 

variance by assuming a normal distributed Gaussian process. In order to consider the relationship among sample 

points, the covariance model must be defined as in Eq. (6), where R is the m×m correlation matrix, and 𝜎𝜎2 is the 

process variance. The correlation matrix has a symmetric and positive definite form and consists of the spatial 

correlation function, 𝑅𝑅, that is used to express the influence exerted by two sample points on each other. In this 

research, the correlation function is expressed with the Gaussian form [19], as shown in Eq. (8), where xi,l is the 𝑙𝑙th 

component of the vector of xi. If the distance between the sample points is further increased, the correlation is 

exponentially decreased.  
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In Eq. (8), 𝜽𝜽 is defined as the correlation parameter, which determines the radius of influence. Therefore, the 

smoothness of the kriging response depends on its value. It should be optimally estimated to build the most suitable 

model. The optimal value of the correlation parameter can be obtained with the Maximum Likelihood Estimation 

(MLE), which is widely utilized to statistically estimate model parameters. The likelihood function for MSE can be 

defined with Eq. (9), since the kriging model is assumed to have a Gaussian distribution at any point in the design 

space. However, the estimation of the optimal correlation parameter using the MLE function may lead to complex 

and tedious calculations. Therefore, the MLE function is rearranged as in Eq. (10), and optimization algorithms are 

applied to solve the unconstrained optimization problem and find the optimal correlation parameter [20]. In this 

research, the Pattern Search Algorithm is employed to accurately solve the optimization problem in Eq. (10). 
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If we obtain the correlation parameter by solving the above minimization problem, the other parameters for the 

kriging model can be simply evaluated with Eqs. (11) and (12). After estimating these model parameters, the final 

form of the kriging model can be formulated with Eq. (13) at an untried point. Although the true response is 

unknown, the kriging model can also provide the mean squared error (MSE), which is statistically modeled using 

probability theory using Eq. (14). 
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2.2 Trend identification 

In the UKG model, if the order of the model is determined, then the form of the mean structure will be fixed as 

the p-th order polynomial function consisting full set of the basis function. The proper mean structure that matches 

well with the trend of the true function would lead to a better quality model response. However, the wrong mean 

structure could not properly fit the global trend of the true function, resulting in decreased accuracy of the kriging 

model, as reported in D. Zimmerman et al. [21] and J.D. Martin and T. W. Simpson [22]. Therefore, the order of the 

polynomial function must be carefully determined. It would be quite helpful if we can approximately predict the 

trend of the true function before constructing the kriging model. The order of the UKG can be simply determined 

from a constraint, as shown in Eq. (15). The total number of possible candidate basis functions cannot be larger than 

the number of samples that was proposed by L. Zhao et al. [12] and H. Liang et al. [14]. However, this constraint 

depends strongly on the number of sample points and does not consider the trend of the true response. In order to 

identify the trend of the true response and determine the order of the UKG model, the R2 trend indicator, based on 

the coefficient of determination, was suggested by H.I. Kwon and S.I. Choi [15]. They have verified that the trend of 

the true function can be identified from the coefficient of determination, and the order of the UKG model can be 

determined based on its value. The UKG model, using a drift function corresponding to the trend of the true function, 

more accurately represents the true response compared to the OKG and other order UKG models. This model is 

called the trended kriging (TKG) model. In this study, the R2 trend indicator, which was based on the coefficient of 

determination, is used to identify the trend of the true data before constructing the OTKG model.  
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Regression analysis is a statistical process used to assess the fitness of regression models. The coefficient of 

determination, denoted R2, can be evaluated through regression analysis, as shown by Eqs. (16) and (17). It is a 

statistical value that indicates how well the regression model presents or emulates the set of dependent variables; it 

ranges from 0 to 1. In Eq. (17), s is the number of sample points for regression analysis, yi is the set of the true 

responses at the sample points, 𝑦𝑦� is the mean value of the true responses, and 𝑦𝑦𝚤𝚤�  is the set of the predicted response 



values from a linear regression model. To accurately assess the coefficient of regression, a large number of sample 

points for regression analysis is required. This may cause serious concerns for computing time. Therefore, the 

function values for the regression analysis are computed by using the preliminary response surfaces: the OKG model 

for linear trend identification and the 1st order derivative of the OKG model for nonlinear trend identification. The 

schematic procedures for trend identification are shown in Fig. 1. Through the procedure for trend identification, we 

can statistically predict the trend of the true response and determine the order of the UKG model. This UKG model 

will be used as a baseline model for the proposed OTKG model. A source for a detailed description of the R2 trend 

indicator is listed in the references [15].  
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Fig. 1 Schematic procedure for the trend identification using the regression analysis. 

 
2.3 Optimal basis function selection 

In the previous section, we explained how to predict the trend of the true response through regression analysis 

when determining the order of the UKG model, which is utilized as the baseline for the OTKG model. The total 

number of terms in the full basis function is n+pCp, where n is the number of design variables and p is the order of the 

UKG model. For example, when n is 3 and p is 2, the number of the polynomial terms in the full basis function is 10, 

and 𝐟𝐟 = [1, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥12, 𝑥𝑥1𝑥𝑥2, 𝑥𝑥1𝑥𝑥3, 𝑥𝑥22, 𝑥𝑥2𝑥𝑥3, 𝑥𝑥32] is the full set of basis function, which is employed to build the 

mean structure of trend function. However, this mean structure could deteriorate the quality of the model due to 



unnecessary terms in the full set of the basis function. In this section, we will describe how to select the optimal 

subset of the basis function from the full basis function. The optimal subset of the basis function included only terms 

that could lead to the improvement of accuracy by excluding unnecessary terms. 

An optimization algorithm is needed to sort the optimal terms from the full basis function. For this research, we 

adopted the genetic algorithm (GA), which is one of the most popular Evolutionary Algorithms (EAs), inspired by 

the natural evolution processes of humans (including inheritance, mutation, selection, and crossover). The detailed 

advantages of using the GA method are described by L. Zhao et al. [12]. The GA is a particularly attractive method 

and widely used to solve many design optimization problems because it does not require the gradient information. It 

randomly searches the overall design space to find the optimal solution based only on the fitness values of 

candidates without the gradient information. Therefore, it is less likely to get stuck at the local minima. The binary-

coded Non-Dominated Sorting Genetic Algorithm (NSGA-II), developed by K. Deb et al. [23, 24], is applied to 

search for the optimal subset of the basis function. In order to conduct the genetic operation, the population must be 

defined for every generation. A binary-coded NSGA-II generates a single string of n+pCp-bit encoding that is a 

binary number: 0 or 1. Each binary number in the string is directly allocated to each respective polynomial term in 

the full basis function of the p-th order UKG model. Whether the assigned polynomial term should be used is 

determined by the binary number, where 1 indicates that the polynomial term is selected as a candidate, and 0 

indicates that the polynomial term is not selected. As a result, the population for finding the optimal basis function is 

defined by combining the polynomial basis function with the single string of binary numbers. The objective function 

must also be defined to compare the fitness value of the population and decide which population will survive from 

the current generation to the next generation. If the true function is explicitly known, the true root mean squared 

error (RMSE) value, which is the discrepancy between the true and model functions, can easily be calculated at any 

position in the design domain. However, the true RMSE value is not available in practical engineering design 

problems, since the true function is not explicitly given. As we mentioned in a previous section, although the true 

function is not known, the kriging model can provide the values for the model MSE, which is statistically derived 

from probability theory. In this study, evenly distributed grid points, denoted e, are employed to calculate the model 

MSEs, and their sum is used in the objective function of the genetic operation. The low sum of model MSEs implies 

that kriging model can properly represent the true response and accurately provide the predicted function values. 

Thus, finding the optimal subset of the basis function from the full basis function is equivalent to minimizing the 



sum of the kriging model MSEs, as formulated in Eq. (18). The binary-coded NSGA-II program is adopted to solve 

the following unconstrained optimization problem. 
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The NSGA-II and the kriging model are interactively coupled and iteratively share key information with each 

other, including the current and next candidates and their fitness values. The selection process is iteratively 

conducted until a convergence condition is satisfied. In this study, the NSGA-II will be complete if the maximum 

number of iterations reaches the number of generations. The overall process for the OTKG model will be described 

in next section. 

 

2.4 Framework for optimized trend kriging model  

The proposed framework for constructing the OTKG model is illustrated in Fig. 2. The gray shaded parts are the 

most important parts of the proposed framework; they illustrate trend identification using the coefficient of 

determination and the selection of the optimal basis function using the optimization algorithm. The initial sample 

points are randomly extracted by the LHS method, and function evaluation is carried out by a numerical simulation, 

such as CFD. Regression analysis is conducted to identify the trend of the true function and to assess the coefficient 

of determination by using preliminary kriging models. The preliminary kriging models for linear and nonlinear trend 

identification are the OKG and the 1st order derivative of the OKG model, respectively. The former is constructed 

using the set of the initial sample that is evaluated by CFD, while the latter is analytically derived from the OKG 

model. Based on the values of the coefficients of determination, we can approximately predict whether the true 

response has a linear or nonlinear trend and determine the order of the UKG model that is used as a baseline for the 

OTKG model. After the order of the UKG model is determined, the optimization algorithm is adopted to find the 

optimal subset of the basis function that will maximize the kriging model accuracy and minimize its MSE. In this 

framework, the NSGA-II code and the UKG model are tightly coupled. They interactively and iteratively share the 

data with each other until the termination criterion is satisfied. If the form of the basis function is changed during the 

optimization process, the optimization problem in Eq. (10) must be repeatedly solved to newly estimate the 

correlation parameter. It is a time consuming task. However, updating the correlation parameter to adjust the 



changed form of the basis function has little impact on the optimization results, as reported in L. Zhao [12]. 

Therefore, the correlation parameter is assumed to remain constant during the optimization process. The constant 

correlation parameter is set to the optimal value obtained from the baseline model, the p-th order UKG model.  

 

Fig. 2 Proposed framework for constructing optimized trend kriging model. 

 
3. Validation 

3.1 Analytic functions 

In the previous section, the framework for constructing the OTKG model and the detailed method were 

described. The proposed model needs to be validated to demonstrate how it can improve accuracy compared to 

existing OKG, UKG, and TKG models. To compare the accuracy of kriging models, we deliberately select the well-

known polynomial form of two analytic functions. Test function 1 is the two-dimensional Six-Hump Camelback 

function, which is a 6th order polynomial function and has six local minima, two of which are the global minima. 

Test function 2 is the three-dimensional Rosenbrock function, which has several local minima and one global 

minimum inside a long, narrow, parabolic-shaped valley. They are widely used to test the performance of the 

optimization algorithm in design optimization problems. Detailed descriptions, including the dimension, domain, 

and the results of regression analysis, of test functions 1 and 2 are listed in Tables 1 and 2, and the mathematical 



form of the functions are given by Eqs. (19) and (20). In Tables 1 and 2, the coefficients of determination for linear 

or nonlinear trend identification are the mean values for 40 consecutive trials with different sets of the sample points 

(because they depend significantly on the sample positions). The regression analysis results show that both test 

function 1 and 2 are highly nonlinear in both the x1 and x2 directions. Therefore, the 2nd order UKG model is selected 

as the baseline model for both test function 1 and 2, and the optimal subset of the basis function will be sorted from 

the full set of the 2nd order basis function. 
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The quality of surrogate model can be assessed by three different metrics including root mean squared error 

(RMSE), average error, and maximum error [25].  In order to assess the accuracy of kriging models, three metrics 

are evaluated and compared. It turned out that their trend are almost similar. In current research, the model and true 

RMSEs are chosen as comparison metrics for comparison in analytic and practical problems, respectively. The 

former can be simply estimated with the kriging model, as in Eq. (14), while the latter is generally not available 

because the true function is unknown in many practical engineering problems. In this section, since the explicit 

forms of the analytic function are already known, the true RMSE value computed at the given testing grid points is 

used to compare the accuracy of the kriging models. In Eq. (21), the RMSE is the value of the true root mean 

squared error, xi is the testing point, y(xi) is the value of the true response, and 𝑦𝑦�(xi) is the value of the predicted 

response from the kriging model. 
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The quality of the kriging model is directly affected by the number of samples and the specific sample profile. In 

order to eliminate the effect of random sampling on the accuracy of the kriging model, the model comparison was 

conducted over 40 trials with different sample profiles. The model comparison was also carried out with various 

numbers of initial samples to confirm the robustness of the proposed framework. For test functions 1 and 2, the 

mean true RMSE values for 40 trials, depending on the number of initial samples, are listed in Tables 3 and 4.  



Table 1  Detailed description of test function 1 

Parameter Values 
Dimension of function 2 
Domain of function 𝑥𝑥1 ∈ [-3, 3], 𝑥𝑥2 ∈ [-2, 2] 
Coefficient of determination for linear 0.0208 
Coefficient of determination for nonlinear (0.7126, 0.7806) 

Table 2  Detailed description of test function 2 

Parameter Values 
Dimension of function 3 
Domain of function 𝑥𝑥𝑖𝑖 ∈ [-5, 10], i = 1,⋯,3 
Coefficient of determination for linear 0.3926 
Coefficient of determination for nonlinear (0.8588, 0.8346, 0.2944) 

 

3.2 Results and discussion  

As previously mentioned, the model comparison was carried out over 40 trials with different sample profiles to 

eliminate the effect of random sampling, given the number of initial samples. The number of initial sample points 

has been changed from 15 to 35 for test function 1 and 20 to 40 for test function 2. The model comparison using the 

analytic function has been performed based on the mean true RMSE value from each surrogate model because the 

exact function values can be easily obtained at any point 

As indicated in Tables 3-4 and Fig. 3-4, the model comparison results for both test function 1 and 2 showed that 

the proposed OTKG model resulted in the most accurate response compared to the OKG and other UKG models, 

regardless of the number of samples. It is worth noting that, the smaller the number of sample points, the better the 

proposed OTKG model fit the true response for all model comparison results. In other words, the OTKG model 

converged into a well-matured model with few additional sample points. The OKG and UKG models require more 

sample points to secure the level of accuracy of the OTKG model. Thus, when the number of sample points is small, 

the OTKG model is much more useful than other models. The results from one trial for test function 1 are illustrated 

in Fig. 5 and Fig. 6. For test function 1, the true (red shaded) and model (gray shaded) response surfaces can be seen 

in Fig. 5; the values were calculated from the true function and the kriging models, respectively. The true error 

contours in Fig. 6 show the disparity between the models. The black dots on the response surfaces, or contours, are 

the set of initial sample points. As can be observed from Fig. 5 and 6, the OTKG model has a well-matched response 



surface, and the true error was significantly decreased by excluding the unnecessary terms from the full set of the 

basis function. However, for test function 2, we cannot plot the response surfaces and directly compare the true error 

because it is a three-dimensional function. Therefore, we cut the plane along the x3 direction to plot the true error 

contours. The results from one trial for test function 2 are illustrated in Fig. 7. Again, we found that the OTKG 

model yields significantly more accurate results compared with the OKG and UKG models. 

Table 3  Mean true RMSEs over 40 trials of test function 1 

m OKG UKG1 UKG2 OTKG 
15 22.9239 23.7326 17.9126 14.9871 
20 21.1179 22.4075 16.6084 14.4523 
25 18.1388 18.7021 14.5924 13.0610 
30 13.8784 14.1842 12.0220 11.1248 
35 11.2699 11.5928 9.5175 8.8300 

Table 4  Mean true RMSEs over 40 trials of test function 2 

m OKG UKG1 UKG2 OTKG 
20 27.7882 23.5901 15.4513 12.0981 
25 23.3393 19.7873 14.3585 11.7156 
30 18.6651 15.9767 12.9087 10.8123 
35 12.7481 12.7775 10.9925 9.5217 
40 9.8197 11.1388 8.6812 7.7929 

 

Fig. 3 Comparison of mean true RMSEs for test function 1. 



 

Fig. 4 Comparison of mean true RMSEs for test function 2. 

 

 

Fig. 5 Comparison of true and model responses of test function 1. 

 
Fig. 6 Comparison of true error contours of test function 1. 



 

 

Fig. 7 Comparison of true error contours along 𝒙𝒙𝟑𝟑 direction for test function 2: 

 x3/D = (a) 1.0, (b) 0.75, (c) 0.50, (d) 0.25, and (e) 0.0 

 

4. Application 

In the previous section, two analytic functions with different dimensions were used to validate the accuracy of 

the OTKG model compared to the OKG and UKG models. Each trend of the analytic functions was successfully 

predicted by the regression analysis, and the optimal subset of the basis function for the mean structure of the OTKG 

model was selected by the iterative optimization process. The selected basis functions were used to form an 

optimized mean structure for the OTKG model, significantly improving on the accuracy of the kriging model. The 

validation results verified that the proposed OTKG model provided a more accurate response surface than the 

existing OKG and UKG models. In this section, we will deal with a practical engineering problem to confirm the 

feasibility of the proposed framework and the OTKG model.  

 



4.1 Problem definition  

The practical engineering problem used for validation of the proposed model is a shape optimization of the two-

dimensional RAE2822 airfoil, which is a transonic airfoil extensively used as a baseline model for design 

optimization. Studies have been conducted on various freestream flow conditions by P. H. Cook et al. [26]. In this 

study, the flow conditions included a Mach number of 0.725 and an angle of attack of 2.92 degrees. For these flow 

conditions, the transonic flow around the RAE2822 airfoil produces a strong shock on its upper surface that leads to 

dramatically increased drag. It is called wave drag, which also causes a considerable amount of total energy loss and 

results in decreased lift force. This wave drag can be reduced by changing the shape of the airfoil. Shape functions, 

such as PARSEC [27], NURBS [28], and the Hicks–Henne bump function [29], are needed to define or modify the 

geometric shape of the airfoil. In this study, Hicks–Henne bump functions have been used to modify the upper shape 

of the RAE2822 airfoil where the strong normal shock occurs. The detailed mathematical expression can be found in 

Eq. (22) where wi is a weight factors that determine the changed shape. In the Fig. 8, the blue solid line indicates the 

upper and lower surfaces of RAE2822 airfoil and black dashed lines indicate the shapes of Hicks-Henne bump 

functions with respect to the chord location. Only three Hicks–Henne bump functions (f2(x), f3(x), and f4(x)) are 

applied to change the shape of the upper airfoil surface. Therefore, the design variables for the shape optimization of 

the RAE2822 airfoil are the three weight factors of the Hicks–Henne bump functions (w2, w3, and w4). Depending on 

the weight factor values, only the upper surface of the airfoil will be perturbed. The lower and upper bound of the 

design variables are -0.01 and 0.01, respectively. Meanwhile, the weight factors for other Hick–Henne bump 

functions (w1 and w5) remain unchanged at zero during the design optimization process, so that they cannot affect 

the modification of the airfoil shape. 
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A detailed description of the practical application is included in Table 5. The number of initial sample points has 

been changed from 40 to 70 and randomly extracted by the LHS method. Regression analysis for 40 consecutive 

trials with different sets of the additional sample points is carried out to identify the trend of the true response. The 

results of the trend identification from the regression analysis show that the true response function has a strong 



nonlinear trend along the w2, w3, and w4 directions. Therefore, the 2nd order UKG model must be selected as the 

baseline model for constructing the OTKG model.  

Table 5 Detailed description of practical application with three design variables 

Parameter Values 
Number of design variable 3 
Bound of design variable wi ∈ [-0.01, 0.01], i = 2, 3, 4 
Coefficient of determination for linear 0.3566 
Coefficient of determination for nonlinear (0.9575, 0.8438, 0.7756) 

 

 

Fig. 8 Hicks–Henne bump functions and shape of RAE2822 airfoil. 

 
4.2 Numerical function evaluation  

Function evaluation for the set of sample points must be conducted to construct the kriging model. In this 

research, the KFLOW CFD solver was employed to investigate the flow characteristics around the RAE2822 airfoil 

and obtain the aerodynamic coefficients corresponding to modified shape of the airfoil. It has been developed and its 

accuracy and ability validated by previous studies [30, 31, 32]. This solver can provide reasonable flow solutions for 

both Euler and Reynolds Averaged Navier–Stokes (RANS) equations, and these governing equations are discretized 

using the cell-centered based Finite Volume method (FVM). For function evaluation of the candidate, we adopted 

the RANS equation to consider the viscous flow effect. The Roe’s Flux-Difference Splitting (FDS) scheme [33] with 

a 3rd order Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL) [34] is used for the high order 

interpolation, and Harten’s entropy correction function for avoiding non-physical phenomenon is used to resolve the 



convective flux terms in the governing equation. In addition, the MUSCL scheme requires a limiter function. A 

limiter function can suppress the non-physical oscillation of solution in the flow region, containing strong 

discontinuities such as shock, by artificially reducing the interpolation slopes of the flow variables. Therefore, we 

adopted the minmod limiter function to prevent a spurious solution near the shock region. Menter’s 𝑘𝑘-𝜔𝜔 Shear 

Stress Transport (SST) turbulence model [35] is used to evaluate turbulence viscosity. Time integration is conducted 

with the Diagonalized-Alternating Direction Implicit (D-ADI) method [36] to obtain a converged steady solution.  

The computational grid for the numerical simulation of the RAE2822 airfoil problem is a single-block and two-

dimensional C-type topology with dimensions of 257 × 65. To accurately capture the boundary layer flow near the 

wall, the normal distance of the first grid near the airfoil surface is 0.0001c, where c is a chord length of the airfoil. 

The y+ value based on the size of the first grid is nearly close to unit. The no-slip and far-field boundary conditions 

are imposed on the boundaries of the wall and the far-field, respectively, to consider the viscous effect and prevent 

reflected disturbances back into the flow field. The computational grid system around the airfoil must be deformed 

in accordance with the changed shape of the airfoil. The grid deformation module is integrated into the CFD flow 

solver to handle the surface variation and automatically generate the new computational grid. The modified shape of 

the airfoil is determined by the summation of the original shape of the airfoil and the perturbed shape defined from 

the three Hicks–Henne bump functions, and the grid in the domain is smoothly deformed to adjust to the modified 

geometry with the trans-finite interpolation (TFI) method. Interpolating the neighboring grid points for dynamic 

mesh deformation in structured grids is a useful technique; it can preserve the grid quality of the initial grid [37]. 

Fig. 9 shows the surface pressure coefficient comparison between the predicted results from the numerical 

simulation and the experimental data. As can be observed in Table 6, the comparison results verify that the 

numerical simulation using the CFD solver can capture the flow phenomena around the RAE2822 airfoil, including 

the strong shock on the upper surface and provide significantly accurate function values at the sample points. 

Table 6  Results of solver validation 

 Cl 
Cl error 

(present) Cd 
Cd error 
(counts) 

Experiments  
(P.H. Cook et al.) 0.80300  0.01680  

CFD 
(present) 0.82358 2.56 0.01717 3.72 

 



 

Fig. 9 Surface pressure coefficient comparison between experimental data and numerical results. 

 

4.3 Results and discussion  

The OKG, UKG, and proposed OTKG model were applied to the shape optimization problem for the RAE2822 

to approximate the true response surface defined by three weight factors of the Hicks–Henne bump functions. Like 

the model comparison using the analytic function, the sums of the true RMSEs were compared. The exact function 

values at grid points were directly computed from CFD analysis. This model comparison was carried out over 40 

trials with different sample profiles, given the number of the initial sample points. The number of initial sample 

points has also been changed from 40 to 60.  

As listed in Table 7 and Fig. 10, as with the previous model comparison using the analytic functions, these 

results showed that the OTKG model resulted in the most accurate response compared to the OKG and other UKG 

models, regardless of the number of samples. It is notable that the OTKG model became the well-matured model 

despite the lack of sample points compared to the other models; other models required more sample points to 

achieve the level of accuracy of the OTKG model. The number of initial sample points can be insufficient to build 

an accurate kriging model. If the models are not mature enough to yield accurate prediction at untried points because 

of a lack of sample points, they must be refined by adding additional sample points. In general, if the additional 

sample points are added in the design space, the accuracy of the kriging models will gradually improve, and the 

error will be reduced. However, a lot of computing time might be required to conduct function evaluation for one 

sample point in a practical design problem. Even though the proposed OTKG model will require some time to find a 

set of optimal basis functions, it can efficiently yield a more accurate response surface compared to existing kriging 



models. Fig. 11 illustrates shows the results from one trial for the practical problem with three design variables. It 

indicates the true error contours along the w3 direction, depending on the kriging models. The true error contours 

show that the error of the OTKG model is the smallest at all positions.  

Table 7 Mean true RMSEs over 40 trials of practical problem with three design variables 

m OKG UKG1 UKG2 OTKG 
40 0.1225 0.1079 0.1028 0.0848 
50 0.1215 0.1067 0.0897 0.0787 
60 0.1114 0.0955 0.0817 0.0722 

 
Fig. 10 Comparison of true RMSEs for practical problem. 

 
 



 

Fig. 11 Comparison of true error contours along w3 direction for practical problem: 

w3/D = (a) 1.0, (b) 0.75, (c) 0.50, (d) 0.25, and (e) 0.0 

 

The model comparison was also conducted for a five-dimensional design problem. In order to calculate the effect 

of shape modification on the leading edge of airfoil, the weight factors of the Hicks–Henne bump functions f1(x) and 

f5(x) were included in the design variables. The total number of design variables was five, and the number of initial 

sample points was 70. The points were randomly extracted from the design domain using the LHS method. 

Regression analysis showed that the design variables w2, w3, and w4 have a strong nonlinear trend. Meanwhile, the 

coefficients of determination for nonlinear design variables w1 and w5 were close to 0. Therefore, the 2nd order UKG 

model was chosen as the baseline model. The mean structure of the baseline model consists of a total of 21 basis 

functions. We found the set of optimal basis functions that could minimize error and increase the accuracy of the 

model in order to construct the OTKG model using the proposed framework. Unlike the model comparison of 

analytic functions and practical problem with three design variables, the sums of the model RMSEs which is 

objective function in the process of optimal basis function selection, were compared. As a result, its accuracy has 

been increased compared to other models by excluding unnecessary terms from the fixed form of the mean structure, 

as shown in Table 8. 



Table 8 Mean model RMSEs over 40 trials of practical problem with five design 
variables 

m OKG UKG1 UKG2 OTKG 

70 0.1555 0.1525 0.1123 0.0935 

 

5. Conclusion 

In this research, the OTKG model was suggested to improve the accuracy of an existing TKG model. To 

construct the OTKG model, a framework including two key processes was introduced. One key process is trend 

identification, which is based on regression analysis, to approximately predict the true response. Regression analysis 

was carried out to assess the coefficients of determination and identify whether the true response has a linear or 

nonlinear trend. If the coefficients of determination for linear or nonlinear trends are greater than 0.5, the true 

response might have the corresponding trend. Thus, we can approximately predict the trend of the true response 

though the regression analysis and determine the most suitable order of the kriging model, (considering the trend of 

the true response). The second key process is the selection of the optimal basis functions using a global optimization 

algorithm. The fixed form of the mean structure in the UKG model globally represents the trend of the true response. 

However, it could lead to decreased accuracy of the model, since the fixed form of the mean structure might include 

unnecessary basis function terms. In the OTKG model, the optimal subset of the basis function, rather than the full 

set of basis function, is used to form the mean structures that could represent the true response more accurately. In 

this research, the optimization problem for selecting optimal basis functions from all of the candidates of basis 

function was solved using a binary-coded genetic algorithm. The minimization of an integrated mean square error 

was set as the objective function.  

The proposed OTKG model was validated against two- and three-dimensional analytic functions and applied to 

solve a shape optimization problem for the RAE2822 airfoil. Model comparison using analytic functions verified 

that the proposed framework for constructing the OTKG can accurately predict the global trend of the true response 

and can successfully find the optimized subset of the basis function. The numerical results showed that the mean 

structure of OTKG model has been optimized to maximize the accuracy of kriging model depending on trend of true 

response, and it can significantly improve the accuracy of model by excluding unnecessary terms from full set of 

basis function. As a result, the proposed model provided the most accurate response surface with the lowest error 



compared to existing kriging models. It is observed that the optimized trend kriging model can properly represent 

the true response despite the lack of initial sample points and can converge into a well-trained response surface with 

few additional sample points. It is worth noting that the proposed model could be more efficient and less 

computationally expensive way to construct accurate response surface for complex design problem, which require a 

high computational cost for iterative function evaluation, such as high-fidelity or unsteady CFD simulations. 

However, the proposed OTKG model has some limitations. First, the coefficients of determination are merely 

statistical values evaluated from regression analysis. If they are slightly larger than 0.5, then the trend of the true 

function cannot be exactly identified. Second, the results of trend identification and the selection of the optimal basis 

function are significantly affected by the number of initial sample points, sample profiles, and the quality of the 

preliminary kriging models. In this research, the model comparisons for validation and application were carried out 

over 40 trials with different sets of the sample points to confirm the sampling dependency. The results showed that 

the OTKG model robustly represented the most accurate response surface compared to other models regardless of 

the number of sample points. Third, for the OTKG model, a supplementary calculation is required to perform 

regression analysis and find the optimal subset of the basis function. To prevent heavy computation for constructing 

OTKG model, the preliminary response surfaces are used to compute the function values for the regression analysis 

and the correlation parameter has remained constant during the selection process of optimal subset of basis function.  

Appendix 

The optimal subsets of the basis function selected by the proposed framework are listed in Table 9. They have been 

employed to construct the mean structure of the OTKG model. The total number of full basis functions can easily be 

computed by the formulation of n+pCp, where n is the number of design variables (the dimension of the design space) and 

P is the order of the baseline UKG model. During the process of optimal basis selection, only the polynomial terms that 

can accurately approximate the trend of the true response and minimize the error are chosen. For test function 1, only the 

nonlinear polynomial terms are selected to represent the true response along both the x1 and x2 directions, while the linear 

polynomial terms and correlated terms are totally excluded. The regression analysis results also show that the true 

response has a strong nonlinear trend along the x1 and x2 directions, and the coefficient of determination for the linear 

trend was very close to 0. These results from the regression analysis indicated that the basis functions have survived. 

Therefore, the proposed framework could improve on the quality of the kriging model by predicting the unknown trend 



of the true response and accurately selecting the optimal subset of the basis function.  

Table 9 Optimally selected subset of basis function 

Case Total number of 
full basis function 

Optimally selected 
subset of basis function 

Test function 1 6 2 2
1 2[1 ]opt x x=f  

Test function 2 10 1
2

2 3
2

1 2 2[1 ]opt x x x x x x=f  
RAE2822 with 3 design variables 10 2 2 2

3 1 1 3 32 2[1 ]opt x x x x x x x=f  

RAE2822 with 5 design variables 21 2 2 2
4 5 2 2 33 4 3 4 4[1 ]opt x x x x x x x x x x=f  
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