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Abstract: A three-dimensional mixed modal discontinuous Galerkin (DG) method based on tetrahedral 

meshes was developed for simulating all flow regimes from subsonic to hypersonic rarefied and 

microscale gas flows within a single framework. The mixed modal DG scheme was used for solving 

conservation laws in conjunction with the second-order Boltzmann-Curtiss-based constitutive model of 

diatomic and polyatomic gases in strong thermal nonequilibrium. A decomposition algorithm based on 

the compression-expansion and velocity shear sub-problems was presented for solving the multi-

dimensional second-order constitutive model. The Langmuir and Maxwell-Smoluchowski velocity-slip 

and temperature-jump boundary conditions were also implemented into the DG framework. To assess 

the ability of the new computational model to capture correct physical phenomena, we applied the new 

model to various gas flows in a wide range of continuum-rarefied and microscale regimes. The 

computational results in the rarefied and microscale flow regimes showed that the second-order 

                                                           
1  Formerly research assistant at School of Mechanical and Aerospace Engineering, Gyeongsang National 

University, Jinju, South Korea. 
2 Corresponding author: Tel: +82-55-772-1645. 

  Email: myong@gnu.ac.kr. 



2 
 

constitutive model yielded solutions that were in better agreement with the direct simulation Monte 

Carlo and experimental data than the first-order constitutive model. 

Keywords: Discontinuous Galerkin; Boltzmann-Curtiss-based constitutive model; Rarefied and 

microscale gas flows; Diatomic and polyatomic gases 

1 Introduction 

       The flow and thermal physics of rarefied and microscale gases has remained a challenging topic in 

the field of physical and computational gas dynamics. Research in the field includes the development 

of theoretical and computational tools [1-7] to predict the flow and thermal physics of re-entry (or 

gliding) vehicles flying through layers of Earth’s atmosphere at hypersonic speed, and for micro-

electro-mechanical systems (MEMS). In these applications, thermal nonequilibrium phenomena 

associated with rarefaction and microscale gas–surface interactions occur [1], and viscous force and 

thermal transfer play important roles. The degree of rarefaction can be characterized by the Knudsen 

number, which is defined as the ratio of the molecular mean fee path to a characteristic physical length. 

The main source of thermal nonequilibrium is the insufficient number of collisions between particles in 

the high Knudsen number condition. Such thermal nonequilibria are linearly amplified at increasing 

Mach number. The theoretical and computational modelling of rarefied and microscale gas flows under 

strong thermal nonequilibrium conditions has therefore been very challenging [8-22]. 

      Computational simulations are often employed to investigate the rarefied and microscale gas flows 

that arise in various applications. The two most prominently used strategies are computational fluid 

dynamics (CFD) methods, mostly based on the Navier-Stokes-Fourier (called NSF hereafter) equations 

[23], and the direct simulation Monte Carlo (DSMC) method [2]. In CFD methods, the NSF equations 

are used as the basic tenet for computational modelling. The basic form of the NSF equations was 

derived in 1822, and these two-century old equations of fluid dynamics are accepted as the de-facto 

mathematical models for every possible flow problem. However, there are caveats associated with this 

otherwise complete model. 
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A vital assumption, the so-called Stokes’ hypothesis, was introduced in the derivation of the NSF 

relations by Stokes [24] in 1845, in which bulk (or volume) viscosity 
b  vanishes (  and   being the 

second coefficient of viscosity and the shear viscosity of the fluid, respectively), 

2 2
0,     equivalently  .

3 3
b          

(1.1) 

In the Stokes’ hypothesis, it is assumed that the dilatational term u  does not play any role in the 

level of the constitutive equation of viscous stress, even though it may play a significant role in the level 

of conservation laws, like shock-dominated compressible gas flows. While the Stokes’ hypothesis is 

certainly legitimate for monatomic gases like argon, there is ever increasing evidence that now indicates 

this is not the case for diatomic and polyatomic gases—like nitrogen (or air), hydrogen, methane, and 

carbon dioxide [25-41]. Examples of such cases include the viscous inner structure of shock waves in 

diatomic and polyatomic gases, and hypersonic entry into the Mars atmosphere, which consists mostly 

of carbon dioxide. 

       Indeed, in contrast to the Stokes’ hypothesis, a recent experimental study on the instability in the 

laminar-to-turbulence transition in hypersonic boundary layers showed that, for a real diatomic gas, the 

growth and decay of the second mode in instability is accompanied by a dilatation process, which leads 

to a significant increase in dilatation dissipation, by as much as 50% [29]. Moreover, direct numerical 

simulation (DNS) studies of compressible turbulence have shown that bulk viscosity significantly 

increases the decay rate of turbulent kinetic energy, and dilatation is reduced by over two orders of 

magnitude within the first two eddy-turnover times [30]. Furthermore, a significant increment in 

enstrophy was observed with increasing bulk viscosity, which is directly related to the rotational mode 

of gas molecules [33].  

In a recent study [34], it was shown that in diatomic and polyatomic gases the bulk viscosity ratio 

plays an essential role in determining the type of topology of the constitutive models. With increasing 

bulk viscosity ratio, the topology changes from an ellipse to a circle, to a parabola, and then finally to a 

hyperbola, just like the orbits of planets and comets in the two-body Kepler problem. The ultimate 
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origin of the rich topology of various conic sections was traced to the bulk viscosity ratio, and its subtle 

interplay with the tight coupling of the viscous stress and the velocity gradient of a kinematic nature in 

strong thermal nonequilibrium. 

       Another vital assumption introduced in the derivation of the NSF relations is near the local-thermal-

equilibrium (LTE), and as a result, their validity may be seriously questioned in flows whose status is 

not near the LTE conditions, like rarefied and microscale gases.  The classical description based on the 

first-order linear NSF constitutive laws is known to suffer from serious limitations when predicting the 

correct flow behaviour of diatomic and polyatomic gases in strong thermal nonequilibrium states. 

Simple modification of transport coefficients in the classical NSF theory, or the introduction of velocity-

slip and temperature-jump boundary conditions alone, cannot solve the current problems in the study 

of diatomic and polyatomic gas flows in strong thermal nonequilibrium. Consequently, high-order 

constitutive equations beyond the first-order level need to be derived from proper master kinetic 

equations for diatomic and polyatomic gases. 

       On the other hand, there is another prominent strategy readily available for investigating rarefied 

and microscale gas flows. The direct simulation Monte Carlo (DSMC) method [2] is considered the 

most powerful strategy for simulating rarefied gas flows. In sharp contrast to the CFD methods, based 

on the conservation laws, the DSMC is not based on any partial differential equations, but is rather a 

pure computational method that directly simulates the motion of gases through probabilistic collision 

models.  

Other approximation or solution methods for studying rarefied and microscale gases have also 

been developed, such as the Boltzmann model equations [42-44], Wang-Chang-Uhlenbeck model [45], 

Fokker-Planck based kinetic model [46], and Rykov model [47]. However, except for Wu et al.’ model 

[44], these kinetic models suffer a common drawback in the study of diatomic and polyatomic gases 

that they do not reduce to the original Boltzmann equation for monatomic gases when a translational–

internal energy exchange is absent. In addition, various other kinetic schemes have been proposed, 

including the discrete velocity method [48], unified gas-kinetic scheme [49], discrete unified gas-kinetic 

scheme [50], and gas-kinetic unified algorithm [51]. Recently, a novel solver based on a combination 
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of kinetic flux solver, discrete velocity method and moment method was developed to simulate flows 

from continuum to rarefied regimes at moderate Knudsen number [52]. 

       Independently of the aforementioned methods, Myong [8-13] developed a distinct approach for 

rarefied and microscale gases, based on the second-order constitutive relation beyond the conventional 

first-order accuracy. The second-order constitutive relations for diatomic and polyatomic gases were 

systematically derived from the Boltzmann-Curtiss kinetic equation [53-55] based on Eu’s modified 

moment method [6,7] and Myong’s closing-last balanced closure [56]. The Boltzmann-Curtiss kinetic 

equation additionally introduces the angular momentum and azimuth angle associated with the 

rotational mode of molecules to the kinetic formulation, and smoothly extends the original Boltzmann 

kinetic equation to diatomic and (linear) polyatomic gases. An important result obtained in these studies 

is that constitutive relations between stresses (and heat flux) and the strain rate (and the temperature 

gradient) are generally nonlinear and coupled in states far from thermal equilibrium. The second-order 

constitutive model has been successfully applied to some challenging problems of non-equilibrium gas 

flows where the first-order Navier-Stokes-Fourier (NSF) with Stokes’ hypothesis (1.1) and Navier-

Fourier (NF) relations were found to be inappropriate [8-21, 32-34, 56-59]. The second-order 

constitutive model has also been validated for the velocity-shear dominated force-driven Poiseuille gas 

flow using deterministic atomic-level microscopic molecular dynamics (MD) [60]. 

      Discontinuous Galerkin (DG) methods are being increasingly studied as a computational tool to 

solve various partial differential equations that arise in diverse scientific and engineering problems. The 

DG method was initially developed by Reed and Hill [61] for solving the neutron transport problem, 

based on a high order finite element discretization. Various researchers [62-66] further contributed to 

develop the DG methods for convection-diffusion systems. The DG methods are built on a hybridization 

of the finite volume and finite element methods, which incorporates the main properties commonly 

associated with these two methods. The DG methods have numerous features, including robustness 

with strong mathematical properties, and are well defined for the structured and unstructured meshes 

associated within complex geometries. They are well suited for non-conforming elements having 

hanging nodes; are very efficient for adopting time-stepping algorithms and hp adaptivity; and highly 
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parallelizable.  Recently, the DG methods have also been used to design deterministic solvers for kinetic 

equations such as multi-scale kinetic flow problems [67,68], plasma physics problems [69,70] and 

Boltzmann based quantum physics problems [71-73].   

       The aim of the present work is to develop a three-dimensional mixed modal discontinuous Galerkin 

method for solving conservation laws in conjunction with the second-order Boltzmann–Curtiss-based 

constitutive model for rarefied and microscale gas flows. The main emphasis is placed on how to solve 

the second-order constitutive model arising from the high degree of thermal nonequilibrium in multi-

dimensional gas flow situations within the Galerkin framework. We focus on developing a three-

dimensional modal DG method based on tetrahedral meshes for the second-order constitutive model of 

diatomic and polyatomic gases in rarefied and microscale flow regimes. 

There is another feature in the proposed DG method: In contrast to the conventional finite volume 

formulation, in which only the boundary surface integral is required, the volume integral is additionally 

required in the DG formulation. To solve the multi-dimensional second-order constitutive model in 

conjunction with the multi-dimensional conservation laws, the present study develops a decomposition 

algorithm of compression-expansion and velocity-shear flows that can handle not only the boundary 

surface integral but also the volume integral. 

       For the verification and validation study, we apply the new methods to various gas flows in a wide 

range of continuum-rarefied and microscale regimes. Examples of such problems include the viscous 

inner structure of one-dimensional shock waves for all Mach numbers, two-dimensional subsonic and 

hypersonic flows past a cylinder, two-dimensional internal rarefied and microscale cylindrical Couette 

flow with a moving wall, three-dimensional subsonic and hypersonic flows past a sphere, three-

dimensional hypersonic flows over a flat plate, and a hypersonic flow around a suborbital IXV re-entry 

vehicle. 

       The present paper is organized as follows. In Section 2, we consider the Boltzmann-Curtiss kinetic 

equation of diatomic and polyatomic gases and derive the second-order constitutive equations for non-

conserved variables, as well as the conservation laws for conserved variables. Two fundamental sub-

problems related to the second-order constitutive equations—compression-expansion and velocity-
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shear—and their extension to the volume integral in three-dimensional formulation are also presented. 

In Section 3, a three-dimensional mixed modal discontinuous Galerkin is developed. The positivity 

preserving limiter for tetrahedral elements is developed for the present DG scheme. The Maxwell 

velocity slip and Smoluchowski temperature jump boundary conditions, which are essential in any 

efficient computational simulation of rarefied microscale gas flows, are implemented for the gas-surface 

molecular interaction in the DG framework. In Section 4, we investigate various flows of rarefied and 

microscale gases in a wide range of continuum-rarefied and microscale regimes. We then present 

numerical results of the multi-dimensional flow problems to demonstrate the feasibility of the 

computational models and to validate the accuracy of the numerical scheme. Finally, in Section 5, we 

provide some concluding remarks and discuss issues of further development in line with the present 

study. 

2 Second-order constitutive model of diatomic and polyatomic gases: complexity 

out of simplicity and decomposed computation 

2.1 The Boltzmann-Curtiss kinetic equation of diatomic and polyatomic gases and the exact 

conservation laws 

      When there is no external force field, the Boltzmann-Curtiss kinetic equation for diatomic (and 

linear polyatomic) molecules with a moment of inertia mI  and an angular momentum j can be expressed 

[54] as follows, 

   , , , , .
m

j
f t R f

t I




  
    

  
v v r j  

(2.1) 

Here, , , , ,f jv r  and  R f  represent the distribution function of the population of molecules, the  

velocity, the particle position, the azimuthal angle associated with the orientation of the molecules, the 

magnitude of the angular momentum vector j, and the collision integral, respectively.  When we ignore 

the angular momentum of the molecule related to the rotational mode, the Boltzmann-Curtiss kinetic 

equation recovers the original Boltzmann kinetic equation for a monatomic gas 
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   , , ,f t C f
t

 
   

 
v v r

 

 

where  C f   represents the Boltzmann collision integral of the interaction between two particles. The 

macroscopic quantities, conserved variables  , , Eu   and the non-conserved variables  , , , Q  

can be defined using the following statistical relationships:  

   
,

h k
h f   (2.2) 

where the angular bracket denotes the integration of microscopic variables , ,v j  in the computational 

domain. The 
 k

h  indicates the molecular expressions of the h-th moments of the distribution function 

and  h
  denotes the equivalent macroscopic quantity. The leading elements of the macroscopic set of 

the conserved and non-conserved variables are defined as [53], 

     

   
     

1 2 3

24 5 6

, , ,  

1
, Trace , ,

3

E

p

     

  

  

      

u

P P Q
 

(2.3) 

where u is the velocity vector, E is the total energy density, while , , Q  represent the shear stress 

tensor, the excess normal stress, and the heat flux, respectively. And the corresponding molecular 

expressions to this set read as 

     

   
     

1 2 3 2

24 5 62 2

1
, , ,  

2

1 1 ˆ, / , ,
3 2

rot

rot

h m h m h mC H

h m h mC p n h mC H mh

   

 
      

 

v

CC C

 

(2.4) 

where m is the molecular mass, C = v – u is the peculiar velocity of the molecule, n is the number 

density per unit mass, ĥ  is the enthalpy density per unit mass, and 2 2rot mH j I  is the rotational 

Hamiltonian of the particle.  

       The viscous stresses   and   are related to the stress tensor P through the relation 
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 p   P I 
 

(2.5) 

Here, I is the unit second rank tensor. The symbol  
 2

A   denotes the traceless symmetric part of the 

second-rank tensor A, 

 
   
2 1 1

Trace .
2 3

t  A A A I A
 

(2.6) 

 The pressure p and temperature T are related through the equation of state Bp nk T RT  . Note that 

the excess normal stress   also contributes to the forces and moments exerting on the object, when 

integrating distributions of the pressure, shear stress tensor, and excess normal stress over the surface. 

The conservation laws of mass, momentum, and total energy for diatomic and polyatomic gases can be 

derived directly from the Boltzmann-Curtiss kinetic equation by noting that the molecular expressions 

for conserved variables (2.4) are collision invariants, and thus there is no dissipation term appearing in 

the right-hand side of the balance equation, i.e. 
   1,2,3

0h R f  . After differentiating the statistical 

definition of the conserved variables with time and combining them with the Boltzmann-Curtiss kinetic 

equation, the following conservation laws, all of which are an exact consequence of the Boltzmann-

Curtiss kinetic equation, can be derived [10, 53], 

   

0

0.p
t

E E p

    
     

           
              

u

u uu I I

u I u Q

 

 

 





 

(2.7) 

After the following dimensionless variables and parameters are introduced, 

 

     2

, , , , , , ,

, , , , , ,

r

r r r r r r

p

p

r pr r r r rb r

t k p
t k p

L u L k u p

CT E
T C E

T C u u L k T Lu L

      

     

      


      



Q
Q

 
 

 

 

x u
x u




 

(2.8) 
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where the subscript r stands for the reference state, L denotes the characteristic length, 
pC  denotes the 

heat capacity per mass at constant pressure, k  is the Chapman-Enskog thermal conductivity. The non-

dimensional conservation laws for diatomic and polyatomic gases (with the asterisks omitted for 

notational brevity) can be written as [10], 

   inv vis , , , 0,
t


     



U
F U F U Q  

(2.9) 

where the matrices and other variables are defined as  

 

inv vis

2

2

0
1 1

, , .
Re

1
1

EcPr

b

b

p f
M

E
f

E p
M




 







 
   
    
    

         
            
    
   

u

U u F uu I F I

I u + Q
u





 

(2.10) 

Here the dimensionless parameters such as Mach number (M), Reynolds number (Re), Eckert number 

(Ec) and Prandtl number (Pr) can be defined as 

  2,  Re ,  Ec 1 ,  Pr ,  .r rp r br r r
b

r r rr

cu u L
M M f

kRT

 


 
       

(2.11) 

The specific heat ratio   is assumed to be 5/3 for argon gas, 7/5 for nitrogen gas, and 1.29 for carbon 

dioxide gas. The factor 
rb b rf    is the ratio of the bulk viscosity to the shear viscosity. Its value 

may be experimentally determined using a sound wave absorption measurement. The value of the 

Prandtl number (Pr) may be calculated through Eucken’s relation 

4
Pr

9 5
.






  

(2.12) 



11 
 

It is worth mentioning that the Eucken relationship (2.12) is obtained as a first-order approximation, 

and, recently, studies have been conducted to improve the accuracy by adding higher-order corrections 

[74] or tuning with experimental data [75]. 

2.2 Zeroth-order Boltzmann-Curtiss-based (Euler) constitutive model 

       The zeroth-order Boltzmann-Curtiss-based (Euler) constitutive model is a direct consequence of 

assuming flow in an equilibrium state, that is, the Maxwellian distribution function [6]. Therefore, the 

zeroth-order Boltzmann-Curtiss-based constitutive model of the shear stress, the excess normal stress, 

and the heat flux vector is reduced to the following relations 

0, 0, 0.   Q  (2.13) 

Applying these constitutive relationships into the exact conservation laws (2.7) will result in the well-

known Euler system of equations.  

2.3. First-order Boltzmann-Curtiss-based (Navier-Fourier) constitutive model 

       After differentiating the statistical definition of the non-conserved variables 
 4,5,6

h    with time and 

combining them with the Boltzmann-Curtiss kinetic equation, the following first-order Boltzmann-

Curtiss-based Navier-Stokes (NF) constitutive model of the shear stress tensor, the excess normal stress, 

and the heat flux vector can be obtained, 

 
(2)

2 , , .b k T           u u Q  (2.14) 

During this process, the first-order balanced closure was applied [56].  

       Once the Stokes’ hypothesis (1.1) is further applied, that means 0b  , the first-order NF 

constitutive equations (2.14) are reduced to the well-known linear NSF constitutive equations. It should 

be noted that these first-order linear relations were obtained after very crude approximations; all 

kinematic terms except for the thermodynamic force term were neglected in the moment equations and 

the collision-related dissipation terms  (4,5,6)h R f  were linearized.  
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At this stage, it should be mentioned that the bulk viscosity b  can also be viewed as a quantity 

directly related to the relaxation time associated with the rotational degrees of freedom. It can be shown 

that the excess normal stress   is equivalent to the difference between the translational and rotational 

temperatures [76]. Thus, the hydrodynamic equation can be formulated in two ways: either introducing 

the excess normal stress and keeping one temperature concept or introducing two temperatures but no 

excess normal stress. The former was taken in the present study because it is a natural extension of the 

first-order Navier-Fourier constitutive model (2.14) and the one-temperature hydrodynamics is more 

natural to connect with the laws of thermodynamics. 

In these expressions, the following Chapman-Enskog linear transport coefficients [76,77] can be 

employed 

, , ,s s

b bT f k T    
 

(2.15) 

where s stands for the index of the inverse power laws of gas molecules, given as 

 
1 2

.
2 1

s


 


 

(2.16) 

Here, the parameter  is the exponent of the inverse power laws for the gas-particle interaction 

potentials. The value of s was assumed to be 0.81 for argon gas, 0.78 for nitrogen, and 0.93 for carbon 

dioxide gas [77]. The values of the factor bf  appearing in the bulk viscosity (2.15) were considered to 

be 0.0, 0.8, and 1000, respectively, for argon, nitrogen, and carbon dioxide gases, based on experiments 

[78]. 

2.4 Second-order Boltzmann-Curtiss-based constitutive model 

       Similarly, we can derive the high-order constitutive model by first differentiating the statistical 

definition of the non-conserved variables  4,5,6
h with time and then combining them with the 

Boltzmann-Curtiss kinetic equation, 
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   
 

  
     

       

         

2 2 4

5

Q P 6

2 2 ,

2
2 : ,

3

: .p

D
p h R f

Dt

D
p h R f

Dt

D D
p C T h R f

Dt Dt




  









 
         

 

 
            

 

 
               

 

u u

I u u

Q u
u Q u I I


 

 

   

 

(2.17) 

Here,  5 3 2     and  , ,Q,P 
  represent the open high-order terms of the shear stress, the excess 

normal stress, the heat flow, and the stress, respectively. At this point, it should be mentioned that the 

constitutive equations for the non-conserved variables (2.17) are an exact consequence of the 

Boltzmann-Curtiss kinetic equation (2.1) and are thus capable of capturing the whole flow physics, if 

they are provided with the accurate closure on the higher-order terms  , ,Q,P 
  and  (4,5,6)h R f . 

       However, it turns out that the derivation of the second-order constitutive model is extremely 

difficult, mainly due to two fundamental issues: the so-called closure problem and accurate treatment 

of the dissipation terms  (4,5,6)h R f , both of which have remained unsolved for several decades.  

       Myong in 2014 proposed a new closure theory [56], known as “closing-last balanced closure,” from 

a keen observation of the essence of the closure problem in a complex system. When closing open terms 

in the moment equations derived from the kinetic equation, the number of places to be closed was found 

to be two (movement and interaction), rather than one (movement only), having been misled by the 

Maxwellian molecule assumption in the previous theory [4]. For example, there are two terms requiring 

closure in the constitutive equation of viscous stress in (2.17): 
 

  and 
   4

h R f . Therefore, the 

order of approximations in handling the two terms—kinematic (movement) and dissipation (interaction) 

terms—must be the same to satisfy balancing; for instance, the second-order for both terms. This 

achieves a balance between the kinematic and collision term approximation, namely, the second-order 

closure for the kinematic terms, 

       Π Q P
: 0,


     u      
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while maintaining the same second-order closure for 
   4,5,6

h R f .  

In this balanced closure theory, third-order closure for 
   4

h R f  in the constitutive equation of 

viscous stress may not be essential; in fact, unbalanced higher-order closure in the moment method may 

not provide improved solutions as promised, especially in the case of a high Mach number shock 

structure problem [56]. It should be mentioned that the present balanced closure effectively resolves the 

weakness of Eu’s closure [6], like    P
0m f CCC , which was strongly criticised by 

mathematicians and physicists for its inconsistency, i.e., that the term m fCCC  cannot be zero in 

general, especially in strong thermal nonequilibrium. 

On the other hand, to accurately calculate the dissipation terms while making the underlying theory 

compatible with the second law of thermodynamics, Eu in 1980 proposed a canonical distribution 

function in the exponential form, after recognizing the logarithmic form of the non-equilibrium entropy 

production [53]. Unlike Grad’s Hermite polynomial expansion [4], the cumulant expansion of the 

distribution function in the series of the 1st-mean, 2nd-variance, 3rd-skewness, 4th-excess (or kurtosis), 

etc., assured the non-negativity of the distribution function regardless of the level of approximations 

[6,7,39,56].  

When the balanced closure and cumulant expansion are applied to Eq. (2.17), it is reduced to 

 
 

  
 

 

 

2 2

2nd

2nd

2nd

2 2 ( ),

2 2
2 : ( ),

3 3

( ).

b

p

p

D p
p q

Dt

D p
p q

Dt

pCD D
p C T q

Dt Dt k

 
        

 

 
            

 

 
            

 

Π
Π u u Π

Π I u u

Q u
Π Q u Π I I Q

 
 

    
 

 


 

(2.18) 

Here the exact form of the first-order cumulant expansion   appearing on the right-hand side of the 

collision integrals can be calculated using the Chapman-Enskog theory [77]. The first-order reduced 

collision integral is expressed as a modified Rayleigh-Onsager dissipation function 
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1/2
1/4 1/4 2

2nd

( ) : /

22

sinh
( ) ,   B

b

mk T T

p kd
q

 
  

 
  

 

Π Π Q Q
 

  


. 

Note that the transport coefficients in Eq. (2.18) are now second-order in the form of  

2nd( , , ) / ( )b k q   . 

       Furthermore, the temporal dependence in the equations can be neglected, owing to the very short 

relaxation times of the non-conserved variables, being on the order of 10-10 second [6,8], compared to 

those for conserved variables and the characteristic times of the flow process. This so-called adiabatic 

approximation simplifies the partial differential equation into a set of algebraic equations, which greatly 

reduces the numerical complexities involved in solving the constitutive equations. 

       Once these tenets—the aforementioned closing-last balanced closure, and Eu’s cumulant expansion 

based on the canonical distribution function in the exponential form to the explicit calculation of the 

dissipation term—are applied to the constitutive equations (2.17) and after introducing the adiabatic 

approximation to (2.18), the following second-order constitutive model for diatomic and polyatomic 

gases [10] can be derived, 

 

 

 

(2)

 0 2nd

0 2nd

0 0 2nd

ˆ ˆˆ ˆ ˆˆ 1 ( ),

3 ˆ ˆ ˆ ˆˆ ˆ: ( ),
2

ˆ ˆ ˆˆ ˆˆ 1 ( ),

b

b

b

f q cR

f q cR

f q cR

      

      

    

u

I u

Q Q Q

  





 

(2.19) 

where  

2
1/2

2nd
ˆ ˆˆ

ˆsinh( ) ˆ ˆ ˆ,  : 2 .
ˆ

ˆ( ) b

NcR
R f

pcR
q cR    

  Q Q   

 

During the derivation, we also assumed that the effect of the term Q u  in the equation for the heat 

flux is negligible. All terms in equations (2.19) are normalized by introducing proper variables and 

parameters, 
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2

ˆˆˆ ˆ, , , 2 ,
/ (2 )

/ 2 1
Kn ,  .

Re Pr

r r
δ

r

N N N N

p p p pT

u L M
N M

p Ec

   


  




        

   

Q
Q u u 

 

(2.20) 

Here the caret (^) over a symbol represents a quantity with the dimension of the ratio of the stress to the 

pressure. The values of 0 0, ,  and 
0Q  are determined by the linear Newtonian law of shear and bulk 

viscosity, and the linear Fourier law of heat conduction, respectively, given in (2.14). The constant c, 

which is given by    
1/2

2 2
5 12 4 ,c A

       has a value between 1.0138 (Maxwellian) and 1.2232 

( 3 ); for instance, 1.018 for the nitrogen gas molecule [8,10]. The tabulated values of  2A   are 

available in the literature [77]. 

The relationships in the second-order Boltzmann-Curtiss-based constitutive model (2.19) are 

highly non-linear due to the second-order term of kinematic nature 
(2)

ˆ ˆ  u   and the hyperbolic sine 

term of dissipative nature 
2nd

ˆ( )q cR . Besides, these algebraic equations are tightly-coupled through the 

second-order kinematic term 
(2)

ˆ ˆ  u  and the cumulant R̂  in 
2nd

ˆ( )q cR , which represents the 

contribution from all non-conserved variables in the dissipation. Hence, these equations are named the 

nonlinear coupled constitutive relations (NCCR). 

      Note also that, once 2ndq  is taken first-order closure, that is, 
1st 1q  , and all coupled terms in the 

left-hand side of (2.18) are neglected, the corresponding constitutive models exactly recover the NF 

models (2.14). The physical properties of monatomic, diatomic, and polyatomic gases are illustrated in 

Table I. 
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TABLE I. Physical properties of monatomic, diatomic, and polyatomic gases. 

Gases Specific 

heat ratio    

(  )  

Bulk 

visocisty 

ratio ( bf )  

Prandtl 

number (Pr) 

Viscosity 

index (s) 

Gas 

constant (R) 

Viscosity 

coefficient  

(
ref )  

Argon 1.667 0.0 0.667 0.81 208.24 2.117×10-5 

Nitrogen 1.4 0.8 0.7368 0.74 296.91 1.656×10-5 

Carbon 

dioxide 

1.2985 1000 0.777 0.93 188.87 1.38×10-5 

 

2.5 Decomposed computation of the multi-dimensional second-order constitutive model 

       In general, the second-order Boltzmann-Curtiss-based constitutive relations (2.19) consist of 10 

implicit algebraic equations of the non-conserved variables ( , , , , , ,xx xy xz yy yz zz     

, , ,x y zQ Q Q ) for known 14 parameters of conserved variables ( ,  ,  ,  ,  p T u v w   ).  Because of their 

highly nonlinear and coupled nature, it appears to be a daunting task to develop a proper numerical 

method for solving the nonlinear system of equations in multi-dimensional flow problems. Nevertheless, 

the second-order constitutive relations (2.19) can be rather efficiently solved based on the concept of 

decomposition and the method of iterations initially proposed by Myong [9]. 

2.5.1. Two fundamental sub-problems in the second-order constitutive model: compression-expansion 

and velocity-shear 

2.5.1.1. Compression-expansion: the first solver 

       In the compression-expansion problem, for example, the one-dimensional shock structure problem, 

where the flow evolves only in one direction (x), the second-order Boltzmann-Curtiss-based constitutive 

relations (2.19) are reduced to the equations of ˆˆˆ , ,xx xQ  ,  
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 

  
 

0

0

 2   

2  0

2  

ˆ ˆˆ ˆ ˆ( ) 1 ,

ˆ ˆ ˆ ˆˆ   ( ) 1 3 ,

ˆ ˆˆ ˆ ˆ ( ) 1 ,

xx nd b xx xx

nd b xx

x nd b xx x

q cR f

q cR f

Q q cR f Q

     

     

   

 

(2.21) 

where 

22 2 2ˆ .
3 ˆˆ ˆ 2
2

xx xbR f Q     
(2.22) 

In this x-directional flow, the driving forces are defined by the gradient of x-velocity, 
0

ˆ
xx  due to 

( / )xu u x   , and the gradient of temperature, 
0

ˆ
xQ  due to ( / )

x
T T x   . From the first-order Navier 

law (2.14), we also obtain 

00  

3ˆ ˆ .
4

xx    
 

When the first two components of the equations in (2.21) are divided by each other, the nonlinear 

coupling factor 
2nd

ˆ( )q cR and the driving force 
0

ˆ
xx  are cancelled out, leaving only a common kinematic 

viscous stress constraint between the xx-component of the shear stress and the excess normal stress, 

     2 2

  

1ˆ ˆ ˆ ˆ9 4 4 81 72 16 32 24 16 .
8

xx b xx xx

b

b b bf f f f
f

             
   

(2.23) 

Figure 1 shows the topology of the zeroth-order, first-order, and second-order solutions of the 

Boltzmann-Curtiss-based constitutive model for three values of b
f  in compression-expansion flow. A 

cross section of the topology of the viscous normal stress is defined by 
0

ˆ 0xQ   or zero thermal force. 

The topology of the first-order constitutive model is linear to the driving (stress and thermal) forces. 

The viscous stress is a function of the stress force but is independent of the thermal force. In contrast, 
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the topology of the second-order Boltzmann-Curtiss-based constitutive model becomes highly 

nonlinear for all cases as gases are away from thermal equilibrium. Moreover, the topology becomes 

strongly coupled to the stress and thermal components, and the viscous stress varies nonlinearly with 

respect to the thermal force, although it is more influenced by the stress force. Further, the topology 

becomes non-symmetric, resulting in a drastic difference in compression (positive stress force) and 

expansion (negative stress force) in gases far from thermal non-equilibrium. Even though the details of 

the second-order model are different for types of gases (monatomic, diatomic, polyatomic), the general 

patterns remain unchanged. 

 

Fig. 1. Topology of zeroth-order, first-order, and second-order solutions of the Boltzmann-Curtiss-

based constitutive model for two values of 
bf  in compression-expansion flow. A cross section of 

the topology is defined by zero thermal force. The horizontal axis represents the driving stress force 

0 
ˆ

xx , while the vertical axis represents the normal stress ˆ
xx . 
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2.5.1.2. Velocity-shear flow: the second and third solvers 

      In the velocity-shear flow problem, in which the flow only evolves in one-direction and the 

temperature gradients are absent, the second-order Boltzmann-Curtiss-based constitutive relations (2.19) 

are reduced to the equations of ˆˆ ˆ, ,xx xy   , 

 

0

0

0

 2   

 2   

2   

2ˆˆ ˆ ˆ( ) ,
3

ˆ ˆˆ ˆ ˆ( ) 1 ,

ˆ ˆ ˆ ˆ   ( ) 3 .

xx nd xy xy

xy nd b xx xy

nd xy xy

q cR

q cR f

q cR

    

     

   

 

(2.24) 

Here the flow is assumed to be driven by the gradient of y-velocity in the x-direction, ( / )xv v x   , 

that is, 
0

ˆ
xy . After some manipulation, the following equations on variables ˆ

xx  and ̂  can be derived, 

0

2 2

 2  

 

2 9ˆˆ ˆ ˆ( ) 1 1 ,
3 2

9ˆ ˆ                 .
2

xx nd b xx xy

xx

q cR f
  

        
  

   

 

(2.25) 

Furthermore, when the first two components of the equations in (2.24) are divided by each other, the 

nonlinear coupling factor 
2

ˆ( )ndq cR and the driving force 
0

ˆ
xy  are cancelled out, leaving only a 

common kinematic viscous stress constraint: 

 
0

1/2

2 2

     

2 9 3 9ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 0,  or sign 1 1 .
3 2 2 2

xy b xx xx xy xy b xx xxf f
     

                  
     

 
(2.26) 

Combining all these relations, the dissipation function reduces to 

 2 9ˆ ˆ ˆ3 1 1 3 1 .
2

xx b xxR f 
  

      
  

  

(2.27) 
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The third solver of ˆˆ ˆ, ,xx xz    for the driving force ( / )xw w x    can be developed in a similar 

fashion. 

Figure 2 illustrates the topology of the second-order solution of the Boltzmann-Curtiss-based 

constitutive model in the velocity-shear flow problem (2.26) in a phase space ( , , )xx xy p  . It is an 

ellipse cone for 0bf  , while it is a hyperboloid for 1bf  . For a monatomic gas ( 0bf  ), a similar 

type of ellipse cone was identified in the context of a phase-transition-like behaviour in velocity slips 

in a cylindrical Couette flow [80]. As the pressure decreases, the ellipse cone keeps its topology, 

whereas the hyperboloid approaches a different topology of straight lines. 

 
FIG. 2. Topology of the second-order Boltzmann-Curtiss-based constitutive model in the velocity 

shear flow problem in a phase space ( , ,xx xy p  ) for 0bf   and 1bf  . (Reproduced with 

permission from Singh et al., “Topology of the second-order constitutive model based on the 

Boltzmann–Curtiss kinetic equation for diatomic and polyatomic gases,” Phys. Fluids 32, 026104 

(2020). Copyright 2020 AIP). 
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       Figure 3 shows the zeroth-, first-, and second-order velocity-shear flow solutions of the Boltzmann-

Curtiss-based constitutive model for a driving stress force in monatomic, diatomic, and polyatomic 

gases. The viscous shear stress ˆ
xy  computed using the second-order constitutive model recovers the 

first-order model near the origin, but it becomes highly nonlinear as the stress force (shear velocity 

gradient) increases. The second-order constitutive model displays shear-thinning characteristics, 

yielding a smaller shear stress compared to the first-order constitutive model. Furthermore, it produces 

non-zero normal stress values for a velocity gradient in shear flow, which is in stark contrast with the 

first-order constitutive model. Interestingly, the general solutions of the second-order constitutive 

model also show asymptotic behaviour with the increasing degree of velocity shear, satisfying the free-

molecular limit ˆˆ 1xx   or 0
xx

p     in the conservation laws (2.7). 

 

Fig. 3. Zeroth-, first-, and second-order velocity-shear flow solutions of the Boltzmann-Curtiss 

based constitutive model for a driving stress force in monatomic, diatomic, and polyatomic gases. 
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The horizontal axis represents the driving stress force 
0 

ˆ
xy , while the vertical axis represents the 

shear and normal stresses ˆ ˆ,xy xx  . 

2.5.2. Decomposition of the multi-dimensional second-order constitutive model in the surface integral 

       The three-dimensional flow problem can be split into three sub-problems in the , ,x y z directions. 

The stress and heat flux components ( , , , , )xx xy xz xQ     on a surface in a three-dimensional 

control volume induced by thermodynamic driving forces such as velocity gradients  , ,x x xu v w and 

temperature gradients  xT  can be approximated as the sum of three decomposed solvers; first on 

 ,0,0,x xu T  describing the compression-expansion flow, second on  0, ,0,0xv , and third on 

 0,0, ,0xw  describing the velocity-shear flow. Hence, the non-conservative variables in the case of x-

direction can be decomposed as follows, 

       1 2 3, , , ,0,0, 0, ,0,0 0,0, ,0 .x x z x x x x xf u v w T f u T f v f w  
 

(2.28) 

Similarly, it is possible to calculate the stress and heat flux in two other primary directions. For the 

y- and z-directions, the non-conservative variables can be decomposed as follows, respectively,  

       1 2 3, , , 0, ,0, ,0,0,0 0,0, ,0 ,y y y y y y y yg u v w T g v T g u g w    (2.29) 

       1 2 3, , , 0,0, , ,0,0,0 0, ,0,0 .z z z z z z z zh u v w T h w T h u h v    (2.30) 

Since x, y, and z are the primary directions in Eqs. (2.28), (2.29)-(2.30), respectively, the corresponding 

solver components 1 2 3 1 2 3 1 2 3, , , , , , , ,f f f g g g h h h  can be computed as summarized in Table 2.  
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Table 2 Components of the three-dimensional decomposed solver and their corresponding computed 

non-conserved variables 

Components of 

decomposed 

solver 

Corresponding non-conserved variables 

 1 ,0,0,x xf u T  1 1 1 1 1 1 1 1

1 1

,  0,  0,  / 2,  0,  / 2,

,  

xx x xy x xz x yy x xx x yz x zz x xx x

x x xQ Q

                   

 
 

 2 0, ,0,0xf v  2 2 2 2 2 2 2 2

2 2

,  ,  0,  2 ,  ,  0,

0,  

xx x xy x xz x yy x xx x zz x xx x yz x

x xQ

                  

 
 

 3 0,0, ,0xf w  3 3 3 3 3 3 3 3

3 3

,  0,  ,  ,  2 ,  0,

0,  

xx x xy x xz x yy x xx x zz x xx x yz x

x xQ

                  

 
 

 1 0, ,0,y yg v T  
1 1 1 1 1 1 1 1

1 1

/ 2,  0,  ,  0,  0,  / 2,

,  

xx y yy y xy y yy y xz y yz y zz y yy y

y y yQ Q

                   

 
 

 2 ,0,0,0yg u  
2 2 2 2 2 2 2 2

2 2

2 ,  ,  0,  ,  0,  ,

0,  

xx y yy y xy y xz y yy y yz y zz y yy y

y yQ

                  

 
 

 3 0,0, ,0yg w  
3 3 3 3 3 3 3 3

3 3

,  0,  0,  ,  2 ,  ,

0,  

xx y yy y xy y xz y yy y zz y yy y yz y

y yQ

                  

 
 

 1 0,0, ,z zh w T  1 1 1 1 1 1 1 1

1 1

/ 2,  0,  0,  / 2,  0,  ,

,  

xx z zz z xy z xz z yy z zz z yz z zz z

z z zQ Q

                   

 
 

 2 ,0,0,0zh u  2 2 2 2 2 2 2 2

2 2

2 ,  0,  ,  ,  0,  ,

0,  

xx z zz z xy z xz z yy z zz z yz z zz z
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Finally, all non-conserved variables can be determined by adding up all these contributions from the 

decomposed solvers as  
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(2.31) 

Note that (2.31) satisfies the traceless property of the viscous stress tensor, i.e., 0.xx yy zz     

The concept of decomposition of second-order constitutive relations for multi-dimensional flows in the 

surface integral is depicted in Fig. 4. 

 

Fig. 4. Concept of decomposition of second-order constitutive relations for multi-dimensional flow 

in the primary surface integral: compression-expansion (x-component), velocity-shear flow (y-

component), and velocity-shear flow (z-component). 
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2.5.3. Decomposition of the multi-dimensional second-order constitutive model in the volume integral 

       In contrast to the finite volume formulation where only the surface integral is required, the DG 

formulation requires the volume integral. To decompose the second-order constitutive relations for 

multi-dimensional flows in the volume integral, the viscous flux in (2.10) is divided into three terms, 

vis vis vis vis

x y z  F F F F  (2.32) 

where vis vis, ,x yF F and vis

zF  are defined in dimensional form as, 

   

 

vis vis

vis

00

, ,

0

.

xyxx x

yy yxyx y

yzxz

xx x xy xz x xy yy y yz y

xz

yzz

zz z

xz yz zz z z

u v w Q u v w Q

u v w Q

  
        
     
  

   
                 

 
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(2.33) 

 In the x-direction, the viscous flux
vis

xF  can be decomposed into primary (P) and secondary (S) parts, 

   
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   

F  

(2.34) 

The primary and secondary parts of the viscous flux can be further decomposed into seven sub-parts, 
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The seven sub-parts recover the following form in the limit of the first-order NF constitutive relation 

near LTE, respectively, 
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(2.36) 

The seven sub-parts (2.36) can be written in the following non-conservative form of solvers, 



28 
 

   

   

2 2
1

22
1 1

4
,0,0, ,  0, ,0,0 ,  0,0, ,0 ,

3

2 2
,0,0,0 ,  ,0,0,0 ,  0, ,0,0 ,  0,0, ,0 .

3 3

x x x xP xv P xw
P x

y z y z S xwS xv
S xv S xw

u kT v w

v w u u

  

   

 
    
 

   
    

   

 

(2.37) 

Note that the driving forces ,z yv w  are not present in (2.36) and (2.37) since they do not contribute to the 

x-component of viscous flux
vis

xF .  The concept of decomposition of second-order constitutive relations 

for multi-dimensional flows in the volume integral is depicted in Fig. 5. 

 

Fig. 5. Concept of decomposition of second-order constitutive relations for multi-dimensional flow 

in the secondary volume integral. 

For the secondary part 1S xv  in the seven sub-parts (2.37), the solver of 
1 1

ˆˆ( , )
S xxx S x   for the driving 

force (2 / 3,0,0,0)yv , which physically represents the compression-expansion flow without the heat 

flux, can be summarized as  

1 1
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1ˆ ˆ ,
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1ˆ ˆ ,
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S x S x

S x

xx yy

xx yv

   

  

 

(2.38) 

where 
1

ˆ
S xyy  and 1

ˆ
S x  are determined by 
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(2.39) 

For the secondary part 2S xv , the solver of 
2 2 2

ˆˆ ˆ( , , )
S x S xxx xy S x    for the driving force (0, ,0,0)yu , 

which physically represents the velocity-shear flow, can be summarized as  
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(2.40) 

where 
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(2.41) 

After employing the second-order constitutive model, the viscous flux
vis

xF  in Eq. (2.34) can be 

determined by summing up the primary and secondary parts. The viscous flux in the y- and z-directions 

can be determined in similar fashion. 

2.5.4. Algorithms based on an iterative method 

       The iteration procedure can be developed individually for the decomposed solvers as follows [8-

10]. In the first solver on  ,0,0,x xu T  described in subsection 2.5.1.1, which represents the 

compression-expansion flow, the stresses and heat flux  , ,xx xQ  for positive 
0

ˆ
xx  and 

0

ˆ
xQ  can be 

determined by the following iterations, 
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where 
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(2.43) 

For negative 
0

ˆ
xx  and 

0

ˆ
xQ , the stresses and heat flux are determined by the following iterations, 
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(2.44) 

In both cases, the following relation from (2.23) is used, 
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   

In these expressions, 
1 11

ˆˆˆ , ,xx xQ   are given by the equations, 

1 0 1 0

1 1 1
0 0 0

1 0

0 0 0

( ) ( ) ( )ˆ ˆ ˆsinh sinh sinhˆ ˆˆ ˆˆ ˆ , , .
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cR cR cR
Q Q

cR cR cR

  

        
(2.45) 

In the meantime, the solver 1S xv  of compression-expansion flow without the heat flux, which was 

described in (2.36) and (2.37), can be developed by simply ignoring the heat flux in the present first 

solver. 
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In the second solver on  0, ,0,0xv  described in subsection 2.5.1.2, which represents the velocity-

shear flow, the stresses ˆ
xx  and ˆ

xy  can be calculated for a given 
0

ˆ
xy through the kinematic viscous 

stress constraint (2.26) and the following equations; when 0 2 9bf  , 
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(2.46) 

On the other hand, when 2 9bf  , the ˆ
xx  can be calculated using the following iterations,  
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(2.47) 

Note that the term nY  is well defined for any bf  value greater than the critical value 2 9 0.2222.  The third. 

The third solver on  0,0, ,0xw  can be developed in similar fashion. 

 

3 Three-dimensional mixed modal discontinuous Galerkin method 

3.1 Spatial discretization in the DG framework 

       The spatial discretization of the conservation laws (2.9) in conjunction with the second-order  

constitutive models (2.19) cannot be achieved with the standard DG method due to the highly nonlinear 

and implicit form of the constitutive relations in the viscous and heat flux terms. Therefore, we employ 

a mixed modal discontinuous Galerkin (DG) formulation developed by Myong and co-authors [15-

17,32-34,57,58, 81-84]. In this mixed formulation, a new additional auxiliary variable   is introduced 

to handle the second-order derivatives appearing in the implicit constitutive relations of viscous stress 

and heat flux. In this method, the auxiliary variable can be defined as the derivative of either primitive 
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or conservative variables. To apply the mixed DG formulation, Eq. (2.9) can be expressed as a coupled 

system for U and   as     
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(3.1) 

       In order to discretize the coupled system of equations (3.1), the domain   can be approximated by 

h  such that h   as 0h . Accordingly, the approximated domain h  is tessellated into a 

collection of non-overlapping elements e  such that  h e  . In this study, the domain is 

decomposed into unstructured tetrahedral elements.  For the domain h , we introduce the piecewise 

polynomial space of the functions :h hv    such that 

    2V : , ,
e

k
h h h h e e hv L v P


        (3.2) 

where  2 hL  denotes the space function of the squared Lebesque integrable over the domain h  and 

 k
eP  denotes the space of polynomial functions of degree at most k in element e . To formulate the 

DG method, the exact solutions of U and   are approximated by the DG polynomial approximation of 

 Vh h hU  and  Vh h h  , respectively, 
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(3.3) 

where ˆ ˆU , i i
h h  are the local degrees of freedom of U and  ,  ib x  is the basis function for the finite 

element space, and kN  is the number of required basis functions for the k-exact DG approximation, 

which is given by the following relation 
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  

 

In the present work, hierarchical basis functions based on orthogonal Jacobi polynomials are employed 

for the tetrahedral elements [84]. They are constructed as a tensor product of the so-called principal 

functions as 

   
2 2
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1 1
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(3.4) 

where the principal functions are defined as, 
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(3.5) 

Here  ,a b

nP m  represents the Legendre polynomials. A standard tetrahedral element st
e  is defined 

using a local Cartesian coordinate system    , , 0,1     as shown in Fig. 6. A standard element can 

be mapped from the computational space  , ,    to an arbitrary tetrahedral element in the physical 

space  , ,x y z  under the linear transformation : st
e eT    defined by 

  , , | 0 1;0 1 ;0 1 ,                    (3.6) 

such as 
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(3.7) 

The Jacobian of this mapping is given by 
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(3.8) 

where V  is the volume of the real tetrahedral element in xyz-system. 

 

Fig. 6. Transformation from physical element to computational element in interval [0,1]. 

The DG discretization of the coupled system (3.1) is obtained by replacing the exact solutions with the 

corresponding approximation defined in Eq. (3.3) and multiplying by a test function  V ,h h hb  and 

then integrating by parts over the element e . This results in the following weak formulation of the 

mixed system for hU   and h  as, 
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(3.9) 
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In this expression, n is the outward unit normal vector, V and   represent the volume and boundary 

of the element e , respectively. Since the numerical solutions hU  and h  are discontinuous between 

element interfaces, the interface fluxes are not uniquely defined. The flux functions , ,inv
h  U n F n and 

vis F n   appearing in Eq. (3.9) are represented by numerical flux functions, namely single-valued 

functions defined at the cell interfaces. These fluxes typically depend on the discontinuous numerical 

solutions from both sides of the interface. The local reconstruction and normal at the edge interface of 

the field at two adjacent tetrahedral elements are illustrated in Fig 7.  

 

Fig. 7. Local reconstruction and normal at the edge interface of the field at two adjacent tetrahedral 

elements. 

In this work, a dimensionless form of the local Lax-Friedrichs (LLF) flux is employed for inviscid terms. 

This monotone flux is commonly used in the DG method due to its computational cost efficiency. The 

LLF flux is also the most dissipative flux, which may improve the stability of the DG numerical 

approximation [15,16]. Its form can be written as, 

       
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(3.10) 
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Here, sa T M  is the speed of sound at an elemental interface, and the superscripts (+) and (–) 

denote the left and right states of the element interface. On the other hand, the BR1 flux [64] is used as 

the numerical fluxes to calculate the auxiliary and viscous fluxes at the elemental interfaces, 

 

     

1
, ,

2

1
, , , , , .

2
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        
 
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(3.11) 

Then, the weak formulation of the mixed form (3.9) becomes 
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(3.12) 

       All the integrals appearing in the elemental equations are calculated using the numerical quadrature 

rule with a few integration points consistent with the accuracy required. The volume and boundary 

integrals appearing in (3.12) are computed using the symmetric quadrature rule [85-87], 

     

     

1

1

ˆ, , , , , , ,

ˆ, , , , , , .

q

e st

q

e st

N

V V V
V j j j j

j

N

S S S
S j j j j

j

f x y z dV f dV w f

g x y z d g d w g

 

 

  

  

 

 

 J V

 J S

     

       

 

(3.13) 

In this expression, ,V SJ J  denote the Jacobian of the transformation for a tetrahedral and a triangle, 

respectively. V  is the volume of the tetrahedral in physical space, S  is the surface area of the triangle 

in physical space. , ,V V V
j j j    are the quadrature points on the reference tetrahedral, , ,S S S

j j j    are the 

quadrature points on the reference triangle, jw  is the weight associated with the quadrature points. qN  

is the number of quadrature points for the reference element.  

3.2 Temporal discretization 
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       By assembling all the elemental contributions, the DG spatial discretization (3.12) leads to a system 

of semi-discrete ordinary differential equations in time for each element, 

 1 .h
h

d

dt


U

M R U  
(3.14) 

Here, M is the elemental orthogonal mass matrix, and  hR U  is the residual vector of the system. In 

the present work, an explicit scheme is employed with high-order strong stability preserving (SSP) 

Runge-Kutta method, which preserves the monotonicity of the spatial discretization in any norm or 

semi-norm, coupled with first-order forward Euler time stepping [88]. The following third-order 

accurate SSP Runge-Kutta method proposed by Shu and Osher [89] is employed, 
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(3.15) 

The local time step t  for each element is determined by the following relation 

  max max
inv vis

,
2 12 1

CFL h
t

kk
d

h
 

 




 
(3.16) 

where CFL is the Courant-Friedrichs-Lewy number, h is the radius of the circumscribed sphere in the 

tetrahedral element e , and d is the dimension of the element. The 
max
inv  and 

max
vis  are the maximum 

wave speed of inviscid and viscous fluxes, respectively. 

3.3 Maxwell velocity slip and Smoluchowski temperature jump boundary conditions 

       The velocity slip and temperature jump boundary conditions on the solid surface are necessary to  

accurately describe rarefied and microscale gas flows [1,5,84,90-92]. In 1879, Maxwell introduced a 

velocity slip boundary condition known as the Maxwell velocity slip condition [91]. In this boundary 

condition, the slip in tangential velocity near the solid surface slipu  is related to the tangential shear 
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stress tan  and the tangential heat flux tanQ . This slip condition can be expressed in the following form 

[13,84], 

 mean
slip wall tan tan

Pr 12 3
,

4

v

v p

 

  

 
    

 
u u Q  

(3.17) 

where wallu  is the velocity vector of a solid surface, and mean  denotes the mean free path. We assume 

the solid surface is located at the origin of the normal coordinate. The tangential momentum 

accommodation coefficient is denoted by  0 1v v   which determines the proportion of the 

molecules reflected from the surface purely diffusely ( 1v  ) or purely specular ( 0v  ). The 

tangential shear stress and the tangential heat flux are defined in general coordinates at the surface, 

 tan
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,

,

  

 

n S

Q Q S

 
 

(3.18) 

where the S, defined as = - S I n n  using the dyadic product ( ), refers to the surface vector in which 

normal components are removed. If the constitutive relations of viscous stress and heat flux are taken 

as linear with the first-order accuracy, the slip condition (3.17) is simplified in cartesian coordinates 

into 

 
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(3.19) 

By analogy with the Maxwell velocity slip condition, the Smoluchowski jump boundary condition [92] 

can be written as 

 
mean

slip wall normal

2 2
Q .
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(3.20) 

Here slipT  is the gas temperature at the surface, wallT  is the temperature of the solid surface, and 

 0 1T T    denotes the thermal accommodation coefficient. If the constitutive relation of heat 
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flux is taken as linear with the first-order accuracy, the jump condition (3.20) is simplified in cartesian 

coordinates into 

 slip wall mean

2 2
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1 Pr
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T T
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 
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 
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(3.21) 

3.4 Langmuir velocity slip and temperature jump boundary conditions 

       Among the various slip and jump models, the so-called Langmuir slip model based on the physical 

adsorption isotherm may also be employed [9-11]. This boundary condition in mathematically Dirichlet 

form not only describes the slip and jump effects in the simplest way but also facilitates a hydrodynamic 

treatment of the entire density regime with a single formalism. This method takes the interfacial gas-

surface molecule interaction into account. A fraction  0 1    of the molecules reaching thermal 

equilibrium with the solid wall can be expressed in dimensional form as [11] 
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(3.20) 

where p is the surface pressure and the parameter slip  depends on the wall temperature wallT  as well 

as interfacial interaction parameters. By considering the gas-surface molecular interaction process as a 

chemical reaction, the parameter slip  can be expressed as 
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ref
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wall wall ref
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(3.21) 

where c is a gas constant of the exponent of the inverse power law of the particle interaction potential 

[10], 
refp  and 

refT  are reference pressure and temperature, Kn is the global Knudsen number, and eD  is 

the heat of adsorption, for example, 5,255 J/moleD   for the N2-Al molecular interaction model.  
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The velocity slip and temperature jump boundary conditions in the Langmuir model are then determined 

simply based on the fraction ,  

 

 

gaswall

gaswall

1 ,

1 .T T T

 

 
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u u u
 

(3.22) 

Here, 
gas gas,Tu  are the gas velocity vector and temperature, respectively, at the reference position—a 

mean free path away from the solid surface. Interestingly, with the definition 1/ (1 4 Kn)v   , a direct 

equivalence exists between the Maxwell and Langmuir models [11], 
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(3.23) 

3.5 Implementation of the positivity-preserving limiter 

       Numerical solutions in the DG scheme may lead to negative density and pressure during the time 

marching, even though the density and pressure should remain strictly positive physically [93,94]. 

Therefore, a positivity-preserving limiter is needed to enforce the positive density and pressure for every 

element and at every time. Zhang and Shu [95,96] proposed positivity-preserving limiters for the 

compressible Euler equations on two-dimensional rectangular and unstructured triangular meshes. The 

solution coefficients are limited in such a way that the positivity of density and pressure is performed 

locally at each element while the DG scheme remains conservative and its accuracy is maintained for 

smooth solutions. Here we developed a positivity-preserving limiter for conservation laws on three-

dimensional unstructured tetrahedral meshes for the modal mixed DG formulation. The procedure for 

implementing the new limiter is summarized as follows. 

To limit the density field at every tetrahedral element, we first define a small value 

13min(10 , , )p   based on the mean value of the computed density and pressure in the target cell. 

We then check the positivity of density by computing the minimum value of density, 
min , after looping 

over the quadrature points in the local elements. Next, the limited coefficient 
1  is evaluated from 
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(3.24) 

The high-order components of the density variable are then modified as  

         0
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(3.25) 

On the other hand, preserving the pressure at each local element requires the scaling of all high order 

moments of the solution of all conservative variables with the second limited coefficient 
2 . To 

compute 
2 , it is necessary to solve the quadratic equation, 

 1 + , 0 1,p t t t     W U  (3.26) 

where W  is the mean solution and U  is the limited density solution in conservative variables. The 

limited coefficient 
2  can be determined by selecting the minimum value of t among all the quadrature 

points. The high order components of the conservative variables are then modified as 
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(3.27) 

4 Results and discussion: flow and thermal analysis of rarefied and microscale 

monatomic and diatomic gases in thermal non-equilibrium 

4.1. Verification of the present DG scheme 

4.1.1. Accuracy test 

       To verify the order of accuracy of the DG scheme, we consider a smooth density wave propagation 

problem with an analytical solution. The initial condition for the density propagation is given by, 



42 
 

 

   

 

 

,0 1.0

,0 1.0 0.2sin 0,6 ,

,0 1.0

u x

x x x

p x

 

 


   


 

 

(4.1) 

with the periodic boundary condition on both sides of the domain. The analytical solution of this 

problem is given by, 

 

    

 

, 1.0

, 1.0 0.2sin .

, 1.0

u x t

x t x t

p x t

 

 


   


 

 

(4.2) 

The accuracy of the DG scheme is examined based on the density distribution for different orders ( kP , 

k being the polynomial order) up to piecewise cubic ( 3P ) fourth-order, as shown in Fig. 8. A large 

deviation from the analytical solution is observed in case of the first-order piecewise constant (P0) 

polynomial. The numerical errors and the order of accuracy are also evaluated based on the density 

solution. The results are very close to the computational results of Qiu et al. [97]. Overall, the results 

confirm that the present DG scheme achieves the desired order of accuracy (k + 1) in this unsteady 

problem. The piecewise linear ( 1P ) second-order accuracy was applied throughout all following 

computations. 

 
Fig. 8. Accuracy test: comparison of solution profiles and Euclidean norm of density in the smooth 

density wave propagation problem. 

4.1.2. Three-dimensional supersonic flow over a forward-facing step 
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       To further verify the present DG scheme of the zeroth-order constitutive model, we compute a 

three-dimensional supersonic inviscid flow over a forward-facing step. This problem, originally studied 

by Woodward and Colella [98], is a benchmark problem for testing high-resolution shock-capturing 

schemes. The computational domain defined by      0,3 0,1 0,0.05   was constructed using 

unstructured tetrahedral elements with mesh size 0.01h  . The forward-facing step is located at 

0.6x   with height 0.2 inside the tunnel. Initially, a right-moving uniform supersonic flow with M = 

3 is imposed in the whole computational domain. Flow variables with 1, 3, 0, 1u v w p       are 

imposed as the initial conditions. Reflective boundary conditions are applied on the upper and along 

the walls of the tunnel. Inflow and outflow boundary conditions are imposed at the entrance and the 

exit, respectively. The symmetry boundary condition is applied for the z-direction. A geometric 

singularity at the corner of the step is resolved with the same second-order accuracy. Figure 9 shows 

the Mach contours obtained with the zeroth-order constitutive model at t =2.85 sec.  The results indicate 

that the present DG scheme of the zeroth-order constitutive model captures important flow features very 

well, especially the physical instability and roll up of the contact line.  

 

Fig. 9. Three-dimensional supersonic flow over forward-facing step: computed Mach contours 

obtained with the zeroth-order constitutive model at M =3, Kn = 86.22 10  and t = 2.85 sec. 

4.2. One-dimensional stationary viscous inner structure of hypersonic shock waves 

       To validate the present DG scheme in the first- and second-order constitutive models, we consider 

a one-dimensional viscous inner structure of hypersonic shock waves [8-10,15,20,34,39,99-107]. A 

shock structure with strong gradients is regarded as one of the fundamental problems in the kinetic 
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theory and thermodynamics of gases, and has been studied by many theoreticians and experimentalists 

over several decades. For example, it has a big impact on the overall flow patterns around hypersonic 

aerospace vehicles at high altitude. Although the shock structure problem does not involve any solid 

wall boundary, the calculation of the shock inner structure presents severe theoretical and computational 

challenges, because of its inherent nonlinearity in the formation of the shock wave through self-

steepening, and subtle interplay with the viscous dissipation. For instance, the high order hydrodynamic 

approach beyond the first-order NSF theory based on the original Grad’s moment method failed to yield 

shock solutions beyond a relatively small value of Mach number, around 1.65 [100]. 

The stationary shock wave structure problem is defined as a very thin (on the order of the mean 

free path, equivalently, a Knudsen number close to 1.0) stationary gas flow region between the 

supersonic upstream and subsonic downstream. When the freestream Mach number is 10, the degree of 

thermal nonequilibrium defined as 2 / Kn M    reaches as high as 6.74, leading to a very high 

nonequilibrium flow in which the viscous effect is dominant over the hydrostatic pressure. The 

upstream and downstream states are determined by the so-called Rankine-Hugoniot condition derived 

from the conservation laws with the zeroth-order constitutive model. To compare the inner structure of 

shock waves, the shock density thickness is considered one of the key measures to best characterize the 

essence of profiles of the shock inner structure, and to assess the accuracy of the computational models. 

Figure 10 summarizes the overall comparison of the inverse shock density thickness of the first- and 

second-order constitutive models and experimental results [104-107] for argon and nitrogen gases. The 

verification of a modal DG scheme of the first-order NSF constitutive model was already conducted in 

a previous study [15] using a full analytical NSF solution in closed elementary functional form for the 

case of Pr=3/4 and a Maxwellian molecule [103]. In the present study, we focus on validating the 

second-order constitutive models of a diatomic gas. It was shown in Fig. 10 that values of the inverse 

shock density thickness for the second-order model are in excellent agreement with the experimental 

data. Moreover, the second-order constitutive model captured very well the inverse shock density 

thickness for all Mach numbers, up to 10. Note that the first-order constitutive model yields an inverse 

shock density thickness much larger than the experimental data.  
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(a) 

 
(b) 

Fig. 10. One-dimensional shock viscous inner structure problem: inverse density thickness for (a) 

argon, and (b) nitrogen gas (Reproduced with permission from Singh et al., “Topology of the second-

order constitutive model based on the Boltzmann–Curtiss kinetic equation for diatomic and 

polyatomic gases,” Phys. Fluids 32, 026104 (2020). Copyright 2020 AIP). 

 

Figure 11 compares profiles of the shock inner structure —the normalized density and non-conservative 

variables, stress and heat flux—in nitrogen gas for two Mach numbers, 2.0 and 6.1, with the 

experimental data. It shows that the difference between the first-order results and experimental data 

becomes noticeable for high Mach number flows, while the second-order results are much closer to the 

experimental data. On the other hand, Fig. 12 illustrates the difference between monatomic and diatomic 
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gases in the viscous inner structure of shock waves at M = 6.1. The effect of the diatomic gas is more 

visible in the viscous stress and heat flux profiles. 

 
(a) 

 
(b) 

Fig. 11. One-dimensional shock viscous inner structure problem: comparison of normalized density 

and non-conservative variables solutions with the zeroth-, first- and second-order constitutive models 

and experiment result [104] for nitrogen gas at (a) M = 2.0, and (b) M = 6.1. 
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Fig. 12. One-dimensional shock viscous inner structure problem: effects of monatomic and diatomic 

gases on normalized conservative and non-conservative variables solutions obtained with the second-

order constitutive model at M = 6.1. 

4.3. Two-dimensional subsonic and hypersonic gas flows past a cylinder 

       In the next benchmark problem, we consider a two-dimensional subsonic flow past a cylinder at M 

= 0.1 and Re =40, which was studied experimentally in [108]. Here, the Reynolds number is defined 

based on the diameter of the cylinder. The outer boundary of the computational domain is set to be 

approximately 15 times the cylinder diameter away from the cylinder surface. For all two-dimensional 

stationary wall cases considered in the present study, the Maxwell-Smoluchowski boundary conditions 

are applied with momentum and thermal accommodation coefficients, 0.8, 0.75v T   . At Re= 40, 

flow is laminar and two large stable wakes appear behind the cylinder. Figure 13 compares the 

streamlines computed by the second-order model and those obtained by experiment. Stationary 

separation bubbles can be clearly identified in both plots, and the size of the separation region is 

predicted accurately compared with experimental data. 

       Further, we consider a two-dimensional hypersonic rarefied flow past a cylinder at M =5.48 for 

argon gas, from the continuum regime (Kn=0.0002) to the slip regime (Kn=0.02) and then to the 

transition regime (Kn = 0.2, 0.5). Because of its geometrical simplicity, it is the most-studied benchmark 

problem in rarefied and microscale gas flows.  Figure 14 summarizes the overall comparison of the 

Mach contours of the zeroth-, first-, and second-order constitutive models and the DSMC at four 

different Knudsen numbers, 0.002, 0.02, 0.2, and 0.5. The Mach contours illustrate that the flow fields 
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vary significantly as the Knudsen number increases from 0.0002 to 0.5. When the Knudsen number is 

very low, i.e., Kn = 0.0002, the discrepancies between the zeroth-, first- and second-order constitutive 

models and the DSMC results are negligible, as shown in Fig. 14(a). When the Knudsen number 

increases to Kn=0.02 in the slip regime, a noticeable difference appears near the bow shock waves, 

especially between the first- and second-order constitutive models, as shown in Fig. 14(b). Finally, 

when the Knudsen number increases to Kn=0.2, 0.5 in the transition regime, significant differences are 

present all over the flow fields in this high thermal nonequilibrium case ( 2 / Kn M   =0.68, 1.69), 

as shown in Figs. 14(c), (d). A most notable difference is found in the structure of the stand-off shock 

wave in the frontal parts: a thicker and broader shock structure in the second-order model as compared 

with the first-order model. Overall, the second-order model shows better agreement on average with the 

DSMC method than the first-order model, even though there are some deviations along the stagnation 

line. 

 
Fig. 13. Two-dimensional subsonic flow past a cylinder: comparison of streamlines of the flow field 

solution obtained with the second-order constitutive model and experimental result [108] at M =0.1 

and Re = 40. 
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(a) Kn=0.0002 

 

 
(b) Kn=0.02 
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(c) Kn=0.2 

 

 
(d) Kn=0.5 

 

Fig. 14. Two-dimensional hypersonic flow past a cylinder: comparison of Mach contours obtained 

with the zeroth-, first- and second-order constitutive models and DSMC result for argon gas at M = 

5.48 with Kn = 0.0002, 0.02, 0.2, and 0.5. 
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We also investigate a two-dimensional hypersonic flow past a cylinder at M =12, Kn =0.0118 for 

nitrogen gas. The freestream density and temperature are assumed to be 5 37.48 10 kg/m

     and 

217.45 KT  . An isothermal boundary condition with temperature 1000 KwT   was imposed on 

the cylinder wall. In this high Mach number flow with high wall temperature, the downstream of the 

bow shock waves may undergo some degree of vibrational excitations due to the high temperature. 

However, for direct comparison with the previous DSMC study [109] in which energy transfer to 

vibrational modes is neglected, the second-order constitutive model without the vibrational mode is 

used in the present work. We hope to extend the present DG method to the recently developed 

Boltzmann-Curtiss-based second-order constitutive model including the vibrational mode [39] in the 

future.  

 
(a) 

 
(b) 

Fig. 15. Two-dimensional hypersonic flow past a cylinder: comparison of (a) Mach, and (b) 

temperature contours obtained with the zeroth-, first- and second-order constitutive models for 

nitrogen gas at M = 12 and Kn = 0.0118. 

 

Figure 15 compares the Mach and temperature contours calculated by the zeroth-, first- and second-

order constitutive models. It can be noted that the shock stand-off distance increases with the increasing 
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order of constitutive model. Figure 16 compares the normalized heat flux coefficient at the cylinder 

wall obtained using the first- and second-order constitutive models, and the DSMC [109]. The second-

order constitutive model predicts the surface heat flux in the frontal parts of cylinder in better agreement 

with the DSMC than the first-order constitutive model.  

 
Fig. 16. Two-dimensional hypersonic flow past a cylinder: comparison of normalized heat flux 

coefficients obtained with the first- and second-order constitutive models, and DSMC result [109] 

for nitrogen gas at M = 12 and Kn = 0.0118. 

 

4.4. Two-dimensional microscale internal cylindrical Couette flow with a moving wall 

        We also consider a moving wall problem to investigate the physical Knudsen layer in subsonic 

microscale flow: a two-dimensional internal cylindrical Couette flow with moving wall [110-115].  The 

flow and wall boundary conditions for this benchmark case are set according to the DSMC study by 

Tibbs et al. [110]—Knudsen number (0.5), initial temperature of argon gas and cylinder walls (273 K), 

and the ratio of outer and inner cylinder radius (5/3). The inner cylinder is assumed to be rotating with 

a constant Mach number of 0.3, while the outer cylinder is held stationary. The flow domain is 

discretized by uniform grids with 120 grid cells along the radial direction, which is considered fine 

enough to reduce numerical error [113]. For this moving wall problem, the Maxwell-Smoluchowski 
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boundary conditions are applied with the momentum and thermal accommodation coefficients

1.0, 0.98v T   . 

 

  

  

  

Fig. 17. Two-dimensional microscale internal cylindrical Couette flow with moving wall: 

temperature and velocity contours obtained with (a) first-order model without slip/jump, (b) first-

order model with slip/jump, (c) second-order model with slip/jump, and (d) comparison of 

normalized tangential velocity obtained using the first- and second- order constitutive models with 

DSMC results [110] measured along the radial direction at M = 0.3, Kn =0.5 and 

1.0, 0.98v T   . 

 

      Figures 17(a)-(c) illustrate temperature and velocity contours computed by the first-order 

constitutive model without and with the slip and jump conditions, and the second-order constitutive 
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model with the slip and jump conditions. Figure 17(d) compares the tangential velocity distribution in 

the radial direction obtained by the first-and second-order constitutive models and the DSMC. The 

results show that both the first- and second-order constitutive models with slip and jump conditions 

predict the velocity profile in close agreement with the DSMC. On the other hand,  the velocity profile 

predicted with the first-order constitutive model without slip and jump conditions significantly deviates 

from the DSMC data, showing the critical role of the slip and jump conditions in the microscale flow.  

4.5. Three-dimensional subsonic and hypersonic gas flows past a sphere 

       As another benchmark problem, we study a subsonic flow past a sphere [116,117] at a freestream 

Mach number (0.3) and for two different Reynolds numbers (37.7, 133). The adiabatic thermal 

condition is imposed on the wall. The Maxwell-Smoluchowski boundary conditions are applied with 

the momentum and thermal accommodation coefficient 0.9, 0.85v T    for all three-dimensional 

cases considered in the present study. The computational domain was discretized with 98,000 

tetrahedral elements with 25,344 grid points.  

Figure 18 compares the streamlines computed by the second-order model and those obtained by 

experiment [116]. As is the case with a two-dimensional subsonic flow past a cylinder, stationary 

separation bubbles are clearly identified in both plots. Moreover, the size of the separation region is 

predicted accurately compared with experimental data for both Reynolds numbers. 

 Figure 19 compares the distribution of the skin friction coefficient at the surface of the sphere for 

the first- and second-order constitutive models, and Wang’s numerical study [117]. The coefficient is 

computed at the cross section (y=0) of the sphere. As expected from the small deviation from thermal 

equilibrium (
2

/ ReM =0.001) in the present flow, the difference between the first-order and second-

order models is shown to be negligible. 
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(a) Re = 37.7 

 

(b) Re = 133 

Fig. 18. Three-dimensional subsonic flow past a sphere: comparison of streamlines of the flow field 

obtained with the second-order constitutive model and experimental result [116] at M=0.3 with (a) 

Re =37.7 and (b) Re =133. 
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Fig. 19. Three-dimensional subsonic flow past a sphere: comparison of computed skin friction 

coefficient obtained with the first- and second-order constitutive models, and Wang’s numerical data 

[117] at M =0.3 and Re = 118. 

 

 
(a) 

 
(b) 

Fig. 20. Three-dimensional supersonic flow past a sphere: (a) Mach, and (b) temperature contours 

obtained with the zeroth-, first- and second-order constitutive models for nitrogen gas at M =4.0 and 

Kn =0.01. 

We also study a hypersonic flow past a sphere with M =4.0 and Kn=0.01. The working gas is 

assumed to be nitrogen gas with 0.8bf  . Figure 20 compares the Mach and temperature contours 

calculated by the zeroth-, first-, and second-order constitutive models. In contrast with the subsonic 

case, there is substantial difference in the thermal solutions of the first-order and the second-order 

models since the degree of thermal nonequilibrium ( 2 / Kn M   =0.027) in the present case is not 

negligible. 

4.6. Three-dimensional hypersonic gas flow past a flat plate 

       As the second three-dimensional benchmark problem, we consider a hypersonic flow past a flat 

plate with zero pressure gradient at the freestream conditions, M =4.37 and Kn = 0.0013. Here, the 
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Knudsen number is defined based on the length of the plate. This problem is intended to assess the 

accuracy of the present DG scheme for a moderate Reynolds number flow ( / 2 / KnM  =5,439). The 

temperature and pressure of freestream argon gas are assumed to be 300 K and 
74.14 10  Pa , 

respectively. The surface temperature of the flat plate is considered to be 500 K. The computational 

domain contains 428,053 tetrahedral elements and 80,058 grid points. 

 

 
 
Fig. 21. Three-dimensional supersonic flow past a flat plate: (a) Mach, and (b) temperature contours 

obtained with the first- and second-order constitutive models for argon gas at M=4.37 and 

Kn=0.0013. 

 

Figure 21 presents the Mach and temperature contours computed by the first-order and second-order 

constitutive models in a three-dimensional laminar flow over the flat plate. It is observed that the 

second-order constitutive model predicts a thinner wall boundary layer and higher temperature 

distribution near the wall than the first-order constitutive model. Figure 22 compares the velocity slip 

at the flat plate surface predicted by the first-order constitutive model without and with the slip and 
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jump conditions, the second-order constitutive model with the slip and jump conditions, and the DSMC 

[2]. The solution of the second-order constitutive model is found to be in better agreement with the 

DSMC solution than the solution of the first-order constitutive model. 

 

Fig. 22. Three-dimensional supersonic flow past a flat plate: comparison of computed gas velocity 

at flat plate surface obtained with first- and second-order constitutive models, and DSMC result [2] 

for argon gas at M=4.37 and Kn=0.0013. 

 

4.7. Three-dimensional hypersonic flow past a suborbital re-entry vehicle 

Finally, to assess the performance of the present second-order constitutive model for handling a 

complex three-dimensional configuration problem, we investigate a hypersonic gas flow past a 

suborbital re-entry vehicle, the intermediate experimental vehicle (IXV) of the European Space Agency 

(ESA). The freestream condition of nitrogen gas with 0.8bf   is set as M =5.0, Kn = 0.02, 

300T K  . The angle of attack of the vehicle is assumed to be 15 degrees. A constant temperature 

condition with 500wT K  is imposed on the wall surface. The computational domain is defined by 

the total of 676,187 tetrahedral elements and 72,522 triangle elements on the wall surface.  
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Figure 23 compares the contours of Mach, temperature, velocity magnitude and streamlines, and 

degree of non-equilibrium calculated using the first- and second-order constitutive models. There are 

two distinctive regions of compression and expansion in the frontal and rear parts of the re-entry vehicle, 

respectively. In the present case with a non-negligible degree of thermal nonequilibrium in the 

freestream ( 2 / Kn M   =0.067), there is a substantial difference between the first- and second-order 

constitutive models in the flow fields. The nonequilibrium effects begin to show up near the stand-off 

shock wave region on the frontal part of the vehicle, where strong compression occurs. The second-

order constitutive model predicts a thicker bow shock structure in the frontal part of the vehicle than 

the first-order constitutive model, resulting in a weaker compression inside the shock wave. In addition, 

the nonequilibrium effects show up in the wake region in the rear part of the vehicle where rapid 

expansion occurs.  

Figure 23(c) shows the contours of velocity magnitude and a few representative streamlines, which 

provide more detailed information about what the gas particles experience—for example, acceleration 

or deceleration—and how differently the first-order and second-order constitutive models describe them. 

Based on the Rayleigh-Onsager dissipation function [79], the degree of thermal non-equilibrium R̂  

defined in Eq. (2.20) plays a vital role in the theory of irreversible thermodynamics and is directly 

related to entropy production in non-equilibrium processes. In Figure 23(d), the contours of R̂  are 

shown to identify what regions are expected to deviate significantly from the near-local-equilibrium 

assumption. The degree of thermal nonequilibrium is high in the bow shock region where the flow 

experiences sudden changes. Moreover, the flow experiences very strong expansion at the rear part of 

re-entry vehicle, producing the most visible non-equilibrium, as high as ˆ 20R  . In general, the first-

order constitutive model over-estimates the degree of-non-equilibrium, which can be considered the 

ultimate reason for its poor performance for high Knudsen and Mach number flows. Besides these 

findings, the present results demonstrate that numerical simulation of the second-order constitutive 

model is possible for hypersonic rarefied flows over three-dimensional re-entry vehicles with 

complicated configurations. 
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Fig. 23. Three-dimensional hypersonic flow past a suborbital re-entry vehicle: contours of (a) Mach, 

(b) temperature, (c) velocity magnitude and streamlines, and (d) degree of non-equilibrium obtained 

with the first- and second-order constitutive models for nitrogen gas at M=5.0, Kn=0.02 and angle of 

attack 15 degrees.  
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4.8. Computing time of the three-dimensional modal DG solver 

       Numerical computations of the flow problems studied so far indicated that the computing time of 

the three-dimensional DG code of the second-order constitutive model is comparable to that of the first-

order NSF code. The only excess load, which is caused by the addition of few iterations (less than 10 

in most cases) when the viscous stresses and heat fluxes are calculated from the implicit algebraic 

constitutive equations for given thermodynamic forces, occupies a small fraction of computing time in 

the code (less than 40%). Computational simulations on hypersonic gas flows (M=4, Kn=0.01) past a 

sphere with 64,868 cells were conducted on Intel Xeon workstation using a single processor. The total 

run times in this three-dimensional problem for the two methods (the first-order NSF and the second-

order constitutive models) were found to be 12.5 and 17 hours, respectively, resulting in a 35% increase 

compared with the run time of NSF code. 

5 Concluding remarks 

We developed a three-dimensional mixed modal discontinuous Galerkin (DG) method based on 

tetrahedral meshes for simulating all flow regimes, from subsonic to hypersonic rarefied and microscale 

gas flows, within a single framework. In the mixed modal DG scheme, auxiliary variables were 

introduced to solve the implicit nonlinear coupled constitutive relations of non-conserved variables 

which describe diatomic and polyatomic gases in strong thermal nonequilibrium.  

       The second-order constitutive model was derived from the Boltzmann–Curtiss kinetic equation for 

diatomic and polyatomic molecules with a moment of inertia and an angular momentum. During the 

derivation, two tenets—the closing-last balanced closure and the cumulant expansion based on the 

canonical distribution function in the exponential form—were applied to the moment equations of the 

Boltzmann–Curtiss kinetic equation. To solve the multi-dimensional second-order constitutive model, 

we developed a decomposition algorithm based on the compression-expansion and velocity shear sub-

problems. The decomposition method developed initially for handling surface integrals in the two-

dimensional FVM framework was extended for handling both surface and volume integrals in the three-
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dimensional DG framework. An iterative computational algorithm was also presented for numerical 

solutions of the multi-dimensional second-order constitutive relations.   

       In the DG scheme, we used the hierarchical basis functions based on orthogonal Jacobi polynomials 

for tetrahedral elements. The symmetric quadrature rule was adopted for evaluating surface and volume 

integration. The LLF and the BR1 scheme were used for handling the inviscid and viscous flux functions, 

respectively. For temporal discretization, we employed an explicit third-order accurate SSP-RK scheme 

that preserves the monotonicity of the spatial discretization in norm or semi-norm coupled with the 

first-order forward Euler time stepping. To enforce positive density and pressure during the time 

marching, we developed a positivity-preserving limiter for conservation laws on three-dimensional 

unstructured tetrahedral meshes. The Maxwell-Smoluchowski and Langmuir velocity slip and 

temperature jump boundary conditions were implemented into the multi-dimensional DG framework.  

       Using the present DG scheme, we investigated various gas flows in one-, two-, and three-

dimensional space. To verify the order of accuracy of the numerical scheme, we first solved a smooth 

density wave propagation problem. We then solved a three-dimensional supersonic forward-step facing 

step problem to test the inviscid solver in the present DG scheme. To assess the ability of the new 

computational models to capture physical phenomena, we investigated several gas flows in a wide range 

of continuum-rarefied and microscale regimes: the inner structure of one-dimensional shock waves, 

subsonic and hypersonic flows past a cylinder and a sphere, a cylindrical Couette flow with a moving 

wall, hypersonic flows over a flat plate, and a hypersonic flow around a suborbital IXV re-entry vehicle.    

       The second-order constitutive model includes the conventional first-order constitutive model as a 

subset and therefore its solution recovers the solution of the first-order constitutive model in the 

continuum regime. However, as the degree of thermal nonequilibrium increases, the discrepancy in the 

numerical solutions grows and the first-order constitutive model is no longer considered valid: for 

instance, for the viscous inner structure of shock waves. Overall, the computational results in rarefied 

and microscale flow regimes showed that the second-order constitutive model yields solutions that are 

in better agreement with the DSMC and experimental data. 
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This study focused on the second-order constitutive models of translational and rotational non-

equilibrium within the hydrodynamic framework. To cover all rarefied and microscale flow regimes at 

high temperature, from ground to the boundary of earth’s atmosphere, it will be essential to include 

vibrational and chemical non-equilibrium effects. We hope to report the results of our study of these 

problems in the future. 
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