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on the second-order Boltzmann-Curtiss constitutive model and the Maxwell slip and 
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results show that the rotational mode of energy transfer for diatomic gases substantially affects 

the lift-to-drag ratio and stability of re-entry vehicles. The total drag and heat transfer rate of 

the second-order constitutive model remained smaller than those of the first-order constitutive 

model in the rarefied regime, which makes the second-order results in better agreement with 

the direct simulation Monte Carlo. 
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1. Introduction 

With the introduction of commercial space operations, rapid advances are occurring in space 

flight, space exploration, and the development of recyclable spacecraft re-entry vehicles. The 

growing interest in hypersonic re-entry flight has motivated several research groups around the 

world to investigate the physics of hypersonic gas flows. Compared to traditional flight 

vehicles, hypersonic flight vehicles have a much larger flight envelope and undergo drastic 

changes in aerothermodynamic forces as they descend through atmospheric layers. 

Accordingly, understanding near- and highly non-equilibrium gas flows around the vehicle is 

crucial to designing high-performance hypersonic re-entry vehicles, and for risk management 

of mission failure. To date, accurately predicting aerothermodynamic loads on hypersonic 

vehicles has been one of the most challenging tasks, due to the poor understanding of high-

temperature non-equilibrium flow physics and limited ground test facilities (Tsai et al. 2009; 

Schwartzentruber and Boyd 2015; Schouler, Prévereaud, and Mieussens 2020). Numerical 

modeling and simulation have subsequently become effective tools for studying the flow 

characteristics in hypersonic regimes (Hash et al. 2007; Li and Zhang 2009; Peng et al. 2016; 

Liang et al. 2018; Chinnappan et al. 2017; Chae et al. 2020; Mankodi et al. 2020; de Góes 

Maciel 2015; Noori and Karimian 2008; Sawley and Wüthrich 1995). 

Hypersonic vehicles encounter different flow regimes as they fly through the atmosphere. 

These flow regimes are characterized based on the degree of rarefaction, commonly referred 

to as the Knudsen number. Previous studies have shown that the classical Navier-Stokes-

Fourier equations without proper velocity slip and temperature jump boundary conditions are 

incapable of handling rarefied flow regimes and may not properly predict aerothermodynamic 

data (Santos 2007; Lofthouse, Scalabrin, and Boyd 2008; Hollis and Borrelli 2012; Guo et al. 

2019; Jiang et al. 2019). To resolve this issue, the gas kinetic models based on the Boltzmann 

kinetic equation are often considered. So far, several numerical methods have been developed 

to solve the Boltzmann kinetic equation. The direct simulation Monte Carlo (DSMC) method 

(Bird 1994), although a very powerful tool, becomes computationally inefficient for low 

Knudsen number flows. On the other hand, the gas kinetic method based on the deterministic 

approach requires additional computational resources to compute near-continuum gas regimes 

because of limitations in predicting the proper time step and cell size. Moreover, in the case of 
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hypersonic flows, the addition of velocity space discretization significantly affects the 

computational requirements. 

Myong (Myong 1999, 2001; 2004a; 2004b, 2011, 2016) developed a distinct approach, the 

so-called second-order nonlinear constitutive relations (NCCR) for rarefied and microscale 

gases, which is a thermodynamically consistent hydrodynamic model for monatomic, diatomic 

and polyatomic gases. An important result in these studies is that the constitutive relations 

between stresses (and heat flux) and the strain rate (and temperature gradient) are generally 

nonlinear and coupled in states far from thermal equilibrium. The NCCR was systematically 

derived from the Boltzmann-Curtiss equation (Eu and Ohr 2001; Curtiss 1981) based on Eu’s 

modified moment method (Eu 1980, 1992) and Myong’s closing-last balanced closure (Myong 

2014). Unlike the original Boltzmann kinetic equation, the Boltzmann-Curtiss kinetic equation 

additionally introduces the angular momentum and azimuth angle associated with the rotational 

mode of molecules to the kinetic formulation. The NCCR has also been studied by other 

researchers (Jiang, Zhao, Yuan, Chen and Myong 2019; Jiang, Zhao, Chen, and Agarwal 2019; 

Jiang, Zhao, Chen, and Agarwal 2019; Yuan, Zhao, Jiang, and Chen 2021) who have used the 

implicit finite volume method (FVM) as a basic numerical scheme. 

The implementation of the second-order NCCR model is not trivial and is numerically 

challenging, particularly for a multi-dimensional problem. Among several numerical methods, 

the discontinuous Galerkin (DG) method was used in this study based on the following 

grounds. It was known that the conventional FVM based on Godunov type schemes suffers a 

noticeable degradation in low Mach number flows (Dellacherie 2010) and mixed (high and low 

Mach number) flows near the frontal part of blunt body or flat plate (Raj et al. 2017). On the 

other hand, the NCCR model is envisioned to solve all three—the high Mach, the high 

Knudsen, and both—of regimes, including the high Knudsen and low Mach number regime, in 

a unified framework, which demands a capability to treat two extreme cases, high and low 

Mach number flows. This is the main factor in the present study to employ the DG method, 

which demonstrated the ability to compute high and low Mach number flows with a single 

framework without resorting to the time-preconditioning techniques that are normally required 

for the FVM.  

In the past, Evans et al. (Evans, Morgan, and Hassan 2011) incorporated the DG method to 
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provide a solution of the collisionless Boltzmann-BGK kinetic equations for rarefied gases. 

Myong in 2014 (Myong 2014) successfully applied the multi-dimensional DG scheme to the 

second-order constitutive model to study some challenging problems of nonequilibrium gas 

flows. In this mixed-type DG method, the implicit nature of the second-order constitutive 

model was treated by introducing an auxiliary variable.  

Xiao and Myong (Xiao and Myong 2014) presented an explicit modal two-dimensional DG 

scheme for conservation laws on unstructured triangular meshes in conjunction with an implicit 

NCCR model for monatomic gas past a cylinder and microscale shock vortex interaction (SVI) 

flows. Later, Singh et al. (Singh, Karchani, and Myong 2018) extended the implicit NCCR 

model by including the rotational mode of the diatomic and polyatomic gas molecules derived 

from the Boltzmann-Curtiss kinetic equations for the SVI flows. Singh et al. (Singh, Battiato, 

and Myong 2021; Singh and Battiato 2021a) further studied the flow morphology of a shock 

accelerated cylindrical light bubble in diatomic and polyatomic gases. Omid and Myong 

(Ejtehadi and Myong 2020) investigated the under-expanding jet in a dusty gas environment, 

and jet impingement on dusty surfaces under rarefied conditions. Recently, Singh et al. (Singh, 

Karchani, Chourushi, Myong 2021) presented a three-dimensional mixed modal DG scheme 

for an implicit NCCR model on unstructured tetrahedral meshes for hypersonic rarefied and 

microscale gas flows.  

In contrast to the globally coupled mass matrix of the continuous finite element method, the 

DG formulation can incorporate either modal or nodal discontinuous basis functions which 

generate a local elemental mass matrix of the finite element formulation (Bassi and Rebay 

1997; Cockburn and Shu 1998; Giraldo and Warburton 2008; Iannelli 2011; Alekseenko et al. 

2012; Li and Zhang 2017; You and Kim 2019). The DG method has several features over other 

numerical methods, including robustness with strong mathematical properties, arbitrary 

triangulation with hanging nodes, p- adaptivity by varying the polynomial degree, and is highly 

parallelizable (Bochev et al. 2001; Shu 2016; Su et al. 2019; Franchina et al. 2019; Evans et al. 

2019). Nevertheless, there are some challenges in the DG method. In particular, it involves 

high computational cost, memory requirement, and programming complexity compared to the 

finite volume method (Le et al. 2014). Exploiting the DG method’s potential for simulating 

hypersonic gas flows, many inviscid gas flows have been investigated in this regime. However, 
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only a limited number of studies on heat transfer loads and the stability of hypersonic flows in 

rarefied flow regimes have been computed (Barter and Darmofal 2010; Burgess and Mavriplis 

2012; Brazell and Mavriplis 2013; Ching et al. 2019; Chourushi et al. 2020). In addition, the 

majority of these works have considered the monatomic gases or the rotational mode of 

diatomic and polyatomic gases only at the equilibrium level (through the specific heat ratio), 

neglecting the additional nonequilibrium effects associated with the excess normal stress and 

bulk viscosity terms present in diatomic and polyatomic gases (Singh 2018).   

The purpose of this work is to numerically investigate aerothermodynamic loads on three-

dimensional hypersonic re-entry vehicles using the second-order Boltzmann-Curtiss 

constitutive model with velocity slip and temperature jump conditions in the framework of the 

explicit mixed modal DG method. The present study is significantly different from previous 

studies on the second-order constitutive models in terms of numerical methods and research 

goals. The major difference is that instead of the FVM of previous studies, the DG method that 

can analyze high and low Mach number flows within a single framework was developed and 

extended to a three-dimensional code. Another difference is that while previous studies focused 

on accurately describing the flow field around the re-entry vehicles, the present study went 

further to analyze the aerothermodynamic coefficients such as the lift-to-drag ratio and pitching 

moment required for the stability analysis of the re-entry vehicles. Section 2 presents the 

governing equations and zeroth, first-order, and second-order constitutive relations for 

monatomic, diatomic and polyatomic gases. Section 3 details the explicit modal DG method 

and the implementation of velocity slip and temperature jump boundary conditions. Section 4 

presents the verification and validation of the computational code and investigates the 

hypersonic flow over various re-entry vehicles. Finally, in Section 5, concluding remarks and 

discussion of issues of further development in this topic are given. 

2. Mathematical model 

2.1. Physical conservation laws for diatomic and polyatomic gases 

When there is no external force field, the Boltzmann-Curtiss kinetic equation for diatomic 

and linear polyatomic molecules with a moment of inertia mI  and angular momentum j  can 

be expressed as follows (Curtiss 1981),   
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   , , , ,
m

j
f t R f

t I




  
    

  
v v r j ,   (1) 

where , , , ,f jv r  and  R f represent the distribution function of the population of molecules, 

the particle velocity, the particle position, the azimuthal angle associated with the orientation 

of the molecules, the magnitude of the angular momentum vector j, and the collision integral, 

respectively. Once we ignore the angular momentum of the molecule related to the rotational 

mode from the equation (1), the original Boltzmann kinetic equation for a monatomic gas is 

recovered,  

   , ,f t C f
t

 
   

 
v v r ,   (2) 

where  C f   represents the Boltzmann collision integral of the interaction between two 

particles. The macroscopic quantities, conserved variables  , , E  u , and the non-conserved 

variables such as the shear stress tensor  , the excess normal stress  , and the heat flux Q  

can be defined using the following statistical relationships (Eu and Ohr 2001): 

   h k
h f  , (3) 

where the angular bracket denotes the integration over the microscopic variables , ,v j  in the 

computational domain. The 
 k

h  indicates the molecular expression of the h-th moments of the 

distribution function and 
 h

  denotes the equivalent macroscopic quantity. The leading 

elements of the sets of the conserved and non-conserved variables in statistical forms are 

defined as follows (Eu and Ohr 2001), 

     

   
     
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p
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  

  
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u

P P Q
   (4) 

where u is the velocity vector and E is the total energy density. The corresponding molecular 

expressions to this set read as,  
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     
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  (5) 

where 𝑚 is the molecular mass of gas, C = v – u is the peculiar velocity of the molecule, 𝑛 is 

the number density per unit mass, ĥ  is the enthalpy density per unit mass, and 
2 2rot mH j I  is 

the rotational Hamiltonian of the particle.  

The viscous stress Π  and excess normal stress    are related to the total stress tensor P 

through the relation,   

   
(2)1

Tr( )
3

p    P A I A I  ,   (6) 

where I is the unit second rank tensor. The symbol  
 2

A  denotes the traceless symmetric part 

of the second-rank tensor A. And the pressure p and temperature T terms are related through 

the equation of state as Bp nk T RT  . 

The conservation laws of mass, momentum, and total energy for diatomic and polyatomic 

gases can be derived directly from the Boltzmann-Curtiss kinetic equation by noting that the 

molecular expressions for conserved variables are collision invariants, that is, 
   1,2,3

0h R f  . 

Subsequently differentiating the statistical definition of the conserved variables with time and 

combining them with the Boltzmann-Curtiss kinetic equation, the following conservation laws, 

all of which are an exact consequence of the Boltzmann-Curtiss kinetic equation, can be 

derived (Myong 2004b, Singh, Karchani, and Myong 2018), 
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E E p

    
     
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             

u

u uu I Π + I

u Π + I u Q

 

 

 

. (7) 

After the following dimensionless variables and parameters are introduced,  
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 (8) 

the non-dimensional conservation laws for diatomic and polyatomic gases can be written as 

(Myong 2004b, Raj et al. 2017),  

   
*

* * * * * * * * *

*
, , , 0inv vis

t


     



U
F U F U Q . (9) 

In Eq. (8), the subscript r denotes the reference state, L denotes the characteristic length, pC  

denotes the heat capacity per mass at constant pressure, and , ,b k   represent the Chapman–

Enskog shear viscosity, bulk viscosity, and thermal conductivity, respectively. In Eq. (9), the 

conservative vector  *U , inviscid flux vector  *

invF , and viscous flux vector  *

visF  are 

defined as, 
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. (10) 

Here the dimensionless parameters such as the Mach number (M), Reynolds number (Re), 

Eckert number (Ec), and Prandtl number (Pr) can be defined as, 

  21
,  Re ,  Ec ,  Pr ,  ,  

/ 1

r rp r br r r
p b

r r r rr

CMu u L R
M C f

T T kRT

  

  


     

 
. (11) 

The factor 
rb b rf    is the ratio of the bulk viscosity to the shear viscosity. Its value is 

experimentally determined using a sound wave adsorption measurement (Cramer 2012). The 

specific heat ratio   is assumed to be 1.667 for argon gas and 1.4 for nitrogen gas. And the 



9 

 

value of the Prandtl number is calculated through Eucken’s relation, 

4
Pr

9 5







. (12) 

 

2.2. Constitutive models 

2.2.1. First-order (Navier-Fourier) constitutive model 

The first-order constitutive model (also known as Navier-Fourier) can be derived by 

differentiating the statistical definition of the non-conserved variables with time and combining 

them with the Boltzmann–Curtiss kinetic equation. Using these formulations, the shear stress 

tensor, the excess normal stress, and heat flux vector can be obtained, 

 
(2)

0 0 02 , ,b k T          u u Q . (13) 

Here the subscript 0 refers to the first-order Navier–Fourier constitutive model. During this 

process, the first-order balanced closure was applied (Myong 2014). And the following 

Chapman-Enskog linear transport coefficients are employed,  

1 1
,  ,  ,  where 

2 1

s s

b bT f k T s  


    


. (14) 

In this expression, the terms   and s denote the index of the inverse power laws of the gas 

molecules and the exponent of the inverse power laws for the gas-particle interaction potentials, 

respectively. The value of s is assumed to be 0.81 for argon and 0.78 for nitrogen (Chapman 

and Cowling 1990). Once the Stokes’ hypothesis is applied, that is, 0b  , the first-order 

Navier-Fourier model (13) is reduced to the well-known Navier-Stokes-Fourier (NSF) 

constitutive equations.  

2.2.2. Second-order Boltzmann-Curtiss constitutive model 

Similarly, the second-order constitutive model can be derived by first differentiating the 

statistical definition of the non-conserved variables  4,5,6
h  with time and then combining it 

with the Boltzmann-Curtiss kinetic equation (Myong 2001; Eu 1992). However, the derivation 

of the second-order constitutive model (also known as NCCR) is not straightforward and has 
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been a topic of interest in the past (Eu 1980; Grad 1949; Myong 1999) mainly because of two 

fundamental issues (Myong 1999): the so-called closure problem and accurate treatment of the 

dissipation terms.  

Myong in 2014 proposed a new closure theory (Myong 2014), known as the “closing-last 

balanced closure,” from a keen observation of the essence of the closure problem in a complex 

system. In this balanced closure theory, the number of places to be closed in moment equations 

must be two, that is, kinematic (movement) and dissipation (interaction). Moreover, to 

accurately calculate the dissipation terms while making the underlying theory compatible with 

the second law of thermodynamics, Eu in 1980 proposed a cumulant expansion based on the 

canonical distribution function in the exponential form for the explicit calculation of the 

dissipation term (Eu 1992, 1980). 

Moreover, the temporal dependence in the equations can be neglected, given the very short 

relaxation times (10-10 seconds) of the non-conserved variables compared to those for the 

conserved variables and the characteristic times of the flow process (Eu 1992; Myong 1999). 

These so-called adiabatic approximations simplify the partial differential equation into a set of 

algebraic equations, which significantly reduces the numerical complexities involved in 

solving the constitutive equations. Once these tenets—the aforementioned closing-last 

balanced closure and Eu’s cumulant—are applied and adiabatic approximations are introduced, 

the following second-order constitutive model for diatomic and polyatomic gases (Myong 

2004b) can be derived, 

 

 

 

(2)

2nd 0

2nd 0

2nd 0 0

ˆ ˆˆ ˆ ˆˆ( ) 1 ,

3ˆ ˆ ˆ ˆˆ ˆ( ) : ,
2

ˆ ˆ ˆˆ ˆˆ( ) 1 ,

b

b

b

q cR f

q cR f

q cR f

      

     

    

u

I u

Q Q Q

  





 (15) 

where, 

2nd

ˆsinh( )ˆ( )
ˆ

cR
q cR

cR
 . (16) 

All terms in equations (15) are normalized using the following variables and parameters, 
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2
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p
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δ
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p

N u L M
N M

p p p T T


       

 
        



Q Q
Q

u
u u

  




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 




 

 (17) 

Here the caret (^) over a symbol represents a quantity with the dimension of the ratio of the 

stress Π  to the pressure p and the ratio of the heat flux Q  to a quantity 1/2( / 2 Pr)pp C T . The 

values of 0Π  , 0  , and 0Q   are determined by the linear Newtonian law of shear and bulk 

viscosity, and the linear Fourier law of heat conduction, respectively. The constant c, which is 

given by    
1/2

2 2
5 12 4c A

      , has a value between 1.0138 (Maxwellian) and 1.2232 

( 3  ); for instance, 1.018 for the nitrogen gas molecule (Myong 2004b). The tabulated 

values of  2A   are taken from the literature (Chapman and Cowling 1990).  

Some simplifications have been made when deriving the second-order constitutive relation 

of heat flux, the third equation in Eq. (15) (Myong 1999). Pure convective terms present in the 

constitutive equations were neglected because they are strictly zero in the one-dimensional 

velocity-shear flow and their contributions are not large compared to the other terms. Also, the 

Q·∇u term was omitted because it has the same property (heat flux times viscous stress) as the 

Π·∇T term. 

The Rayleigh-Onsager dissipation function R̂  can be defined as, 

2
1 2

ˆ ˆˆˆ ˆ ˆ: 2 bR f    
 Q Q   . (18) 

The dissipation function “ R̂ ” is represented by the sum of the double scalar product between 

tensors and the dot product of the heat flux vector, which gives a direct measure of departure 

from equilibrium. The first-order cumulant approximation for the nonlinear factor “ 2nd
ˆ( )q cR ” 

(16) describes the mode of energy dissipation accompanying the irreversible processes and is 

directly related to the nonequilibrium entropy production in the system (Myong 2004b, Eu 

1992).  
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The derivation of the hyperbolic sine function in Eq. (16) can be found in detail in references 

(Eu 1980; Eu 1981; Myong 2014). The concept of dissipation functions for irreversible 

processes was introduced by Lars Onsager in 1931 (Onsager 1931). The derivation of the 

constant c can be found in detail in reference (Myong 1999). Note that, when 2nd
ˆ( )q cR  is 

assumed to be first-order, that is, 1st 1q  , all the coupled terms in the left-hand side of 

equations (15) are neglected, and the corresponding first-order constitutive model exactly 

recovers the Navier-Fourier model (13).  

At this stage, it should be mentioned that the bulk viscosity b  can be viewed as a quantity 

directly related to the relaxation time associated with the rotational degrees of freedom. In 

addition, it can be shown that the excess normal stress   appearing in the conservation laws 

(10) and second-order Boltzmann-Curtiss constitutive model (15) is equivalent to the 

difference between the translational and rotational temperatures (McCourt, Beenakker, Köhler, 

and Kuščer 1990; p. 276). Therefore, the rotational mode of diatomic gas molecules was 

already embedded in the NCCR model through the excess normal stress Δ. Furthermore, the 

hydrodynamic equation can be formulated in two ways: either introducing the excess normal 

stress   and keeping one temperature concept or introducing two temperatures but no excess 

normal stress. The former was taken in the present study because it is a natural extension of the 

first-order Navier-Fourier constitutive model (13) and the one-temperature hydrodynamics is 

more natural to connect with the laws of thermodynamics. 

Figure 1 shows the general features of the first- and second-order constitutive models for 

monatomic and diatomic gases in the compression-expansion flow. The second-order 

constitutive model shows the non-linear asymmetric relation of the normal stress for the case 

of rapid compression and expansion of gas. Although slight differences are observed in the 

profile of second-order constitutive models for monatomic and diatomic gases, the general 

pattern remains the same (Singh, Karchani, Sharma, and Myong 2020).  
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Fig. 1. First-order and second-order solutions of the Boltzmann–Curtiss-based constitutive 

model for monatomic ( 0.0bf  ) and diatomic ( 0.8bf  ) gases in a compression - expansion 

flow. 

3. Mixed discontinuous Galerkin   

3.1. Mixed-type modal discontinuous Galerkin scheme 

In the present work, an in-house mixed modal discontinuous Galerkin (DG) formulation 

developed by Myong and co-authors (Raj et al. 2017; Le et al. 2014; Singh and Myong 2017; 

Singh and Battiato 2021; Chourushi et al. 2020; Chourushi et al. 2022) is employed. The 

mixed-type method plays a critical role in the present DG method because the standard DG 

method cannot handle the spatial discretization of the conservation laws (9) in conjunction with 

the highly non-linear and implicit form of the second-order constitutive relations (15). In this 

mixed DG formulation, an additional auxiliary variable “  ” is introduced to handle the 

second-order derivatives appearing in the implicit constitutive relations of viscous stress and 

heat flux. This auxiliary variable   can be defined as the derivative of either primitive or 

conservative variables. To apply the mixed DG formulation, the conservation laws (9) (with 
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the asterisks omitted for notational brevity) can be expressed as a coupled system for U and   

as,  

   

0,

, 0.inv vis
t

 


   



U

U
F U F U

 (19) 

These coupled systems of equations are then solved over the computational domain by 

decomposing them into unstructured triangular or tetrahedral elements. Thereafter, the exact 

solutions for U and   are approximated using the DG polynomial approximations of hU  and 

h , respectively, 

 

 

0

0

, U ( ) ( ),

, ( ) ( ),     ,

k

k

N
i

hh i

i

N
i

hh i e

i

t t b

t t b







   





U x x

x x x

 (20) 

where ˆ ˆU , i i

h h  are the local degrees of freedom of U and  ,  ib x  is the basis function for 

the finite element space, and kN  is the number of required basis functions for the k- exact DG 

approximation. Furthermore, the mixed system of equations (19) is multiplied with the test 

function, which is considered the same as the basis function hb , and then integrated by parts 

over an element e , resulting in the following weak formulation of the mixed system, 

0,

0,

e e e

e e e e e

h h h h h h

h h h inv h inv h vis h vis

b dV b dV b d

b dV b dV b d b dV b d
t

  

    

       


            



  

    

U U n

U F F n F F n

 (21) 

where n is the outward normal vector, V, and   are the volume and surface integral of the 

element, respectively. 

3.1.1. Decomposition of the multi-dimensional second-order constitutive model 

The multi-dimensional second-order constitutive model in the surface integral was treated 

based on the concept of decomposition (Myong 1999, 2004b). The three-dimensional flow 

problem can be split into three sub-problems in the x, y, z directions. The stress and heat flux 
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components ( , , , , )xx xy xz xQ      on a surface in a three-dimensional control volume 

induced by thermodynamic driving forces such as velocity gradients  , ,x x xu v w  and 

temperature gradients  xT  can be approximated as the sum of three decomposed solvers; first 

on  ,0,0,x xu T  describing the compression-expansion flow, second on  0, ,0,0xv , and third 

on  0,0, ,0xw  describing the velocity-shear flow. 

In contrast to the finite volume formulation where only the surface integral is required, the 

DG formulation requires a volume integral.  To decompose the multi-dimensional second-order 

constitutive relations in the volume integral, the viscous flux in Eq. (10) is divided into three 

terms (x, y, z components) (Singh, Karchani, Chourushi, and Myong 2021). In the x-direction, 

the x-component of the viscous flux can be decomposed into primary (P) and secondary (S) 

parts. The primary and secondary parts of the viscous flux can be further decomposed into 

seven sub-parts. 

3.1.2. Basis functions 

In this work, basis functions based on the orthogonal Jacobi polynomials are considered for 

the triangular and tetrahedral elements, respectively. The Jacobi polynomials for the 

transformation of a physical domain into a computational domain between the interval  1,  1  

can be written as (Singh 2018),  

 
          ,

1
1 1 1 1  for  , 1

2 !

n n
n n

n n n

d
P

n d

          


  
       , 

(22) 

where   refers to the coordinate of computational space, ,   denotes the coordinates of the 

element, and n  refers to the order of the polynomial. These polynomials further reduce to the 

following generalized form (also known as the Legendre polynomial) by setting 0    in 

Eq. (22) (Singh 2018; Li 2006), 

   
 

 0,0 2
1

1
2 !

n
n

n

n n n n

d
L P

n d
  




   . 

(23) 

The total number of basis functions for the k-th order accurate polynomial for two and three- 
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dimensions are reconstructed as under (Singh 2018), 

  

   

1 2
,                  if  D 2,

2

1 2 3
,       if  D 3,

6

k

k k

N
k k k

 



 

   


 

(24) 

where D is the dimension. Using these relationships the total number of basis functions with 

an accuracy up to the 5th order are summarized in Table 1.  

Table 1 Total number of basis functions for the computational element with an accuracy up to 

5th order (Singh 2018). 

Polynomial order Two-dimensional Three-dimensional 

0 1 1 

1 3 4 

2 6 10 

3 10 20 

4 15 35 
5 21 56 

 

In the 2D problem, Dubiner basis functions (Dubiner 1991) were used for the triangular 

elements, where a collapsed coordinate transformation was used to transfer triangles in the 

physical domain to the standard square elements. Another transformation was introduced to 

transfer the triangle in the physical space to the computational space where the new local 

coordinates have independent bounds  1 1,  0        , and accuracy up to the 2nd 

order, and are summarized as (Ejtehadi and Myong 2020): 

 
 

 

 

2 2

2

2

1,

2 1,

3 1 2,

, 6 6 6 4 1,

5 2 1 2,

5 10 6 8 3 2.

ib

 


      

 

   




 

 


      


 


   

 

(25) 
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Then the derivatives of the basis function are computed as, 

,

.

k k k

k k k

b b b

x x x

b b b

y y y

 

 

 

 

   
 

    

   
 

    

 

(26) 

On the other hand, in the 3D problem, scaled Legendre basis functions with an accuracy up to 

the 2nd order, the same as those in the references (Singh 2018; Singh and Myong 2019), were 

used for the tetrahedral elements as follows, 

 

 

2 2

2 2

1,

1 2 ,

1 3 ,

1 4 ,

( 1 2 )( 1 5 ),
, , 10

( 1 2 )( 1 6 ),

( 1 3 )( 1 6 ),

2 6 ( 1 ) ( 1 ) ,

10 8 ( 1 ) ( 1 ) ,

1 5 2 3 .

ib

  

 



    
  

   

  

     

   

 




   

   


 
       

       

     


       
      


  

 

(27) 

Then the derivatives of the basis function are calculated as, 

,

,

.

k k k k

k k k k

k k k k

b b b b

x x x x

b b b b

y y y y

b b b b

z z z z
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  

      

     
  

      

     
  

      

 

(28) 

Furthermore, the number of Gaussian quadrature points increases with the order of accuracy of 

the DG approximations. In the present case k=1 (DG polynomial “p1”) is being used 

(Chourushi et al. 2020; Singh 2018).  
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3.1.3. Numerical fluxes 

In the DG weak formulation, both the boundary and surface integrals are approximated using 

the numerical quadrature rule (as illustrated in Table 2) with a few integration points consistent 

with the required accuracy (Singh 2018). This work considers local Lax-Friedrichs (LLF) and 

BR1 fluxes for the formulation of inviscid and viscid fluxes, respectively. Although the 

monotone LLF flux is the most dissipative, it is commonly used due to its computational 

efficiency and improved numerical stability. On the other hand, the BR1 flux is used to 

calculate the auxiliary and viscous fluxes at the elemental interfaces. These flux formulations 

for both inviscid and viscid fluxes can be written as, 

       

 

     

 

1
, ,

2

1
, ,

2

1
, , , , , ,

2

max , ,

inv inv h h inv h inv h h h

h aux h h h h

vis vis h h h h vis h h vis h h

h s h sa a





     

   

       

   

      
 

     

        
 

  

F n H U U F U F U U U

U n H U U U + U

F n H U U F U F U

U U

 (29) 

where sa T M  is the speed of sound at an elemental interface, and the superscripts (+) 

and (−) denote the left and right states of the element interface. Then, the substitution of Eq. 

(29) in Eq. (21) generates the weak formulation of the mixed form,  

0,

0.

e e e

e e e e e

h h h h h aux

h h h inv h inv h vis h vis

b dV b dV b d

b dV b dV b d b dV b d
t

  

    

      


          



  

    

U H

U F H F H

 (30) 

Assembling all the elemental contributions yields a system of semi-discrete ordinary 

differential equations in time for each element,   

 1h
h

t






U
M R U , (31) 

where M and  hR U  refer to the elemental orthogonal mass matrix and the residual vector of 

the system of equations, respectively. These explicit systems of equations (31) are then solved 

using the three-stage, third-order accurate, strong stability preserving Runge-Kutta method 
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(TVD-RK) proposed by Shu and Osher (Cockburn and Shu 1998), 
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(32) 

Here the term t  refers to the local time step for each element and is determined using the 

following relation, 

  max max

inv vis

2 12 1

CFL h
t

kk
d

h
 

 




, 
(33) 

where CFL, h, and d  are the Courant-Friedrichs-Lewy number, the radius of the circumscribed 

sphere in the tetrahedral element e , and the dimension of the element, respectively (Singh 

2018; Singh and Battiato 2020, 2021b).  

Table 2 Symmetric quadrature points and weights for three-dimensional elements up to 3rd 

order (Singh 2018). 

Polynomial 

order 

Number of 

points 

Coordinates Weights ( )  

       

Three- dimensional tetrahedron elements in [0, 1]3 space 

1 1 0.25000 0.25000 0.25000 1.00000 

2 4 

0.5854101 0.1381967 0.1381967 0.25000 

0.1381967 0.5854101 0.1381967 0.25000 

0.1381967 0.1381967 0.5854101 0.25000 

0.1381967 0.1381967 0.1381967 0.25000 

3 5 

0.25000 0.25000 0.25000 -0.80000 

0.50000 0.16667 0.16667 0.45000 

0.16667 0.16667 0.16667 0.45000 

0.16667 0.16667 0.50000 0.45000 

0.16667 0.50000 0.16667 0.45000 
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3.1.4. Higher-order limiters 

3.1.4.1. Positivity preserving limiter 

High-order numerical schemes are subjected to spurious numerical oscillations in the 

solutions due to steep gradients arising from the compression of density leading to negative 

values for density and pressure variables over time. In this work, we incorporated a positivity-

preserving limiter to ensure that the pressure and density fields were positive for each element 

(Karchani and Myong 2016). To limit the density field at every element, a small value 

 13min 10 , , p   based on the mean of the density and pressure fields for the target cell is 

computed. Then the positivity for the density field is ensured by computing the minimum value 

of density over different quadrature points of the local elements as,   

1

min

min ,1
 


 

 
  

 
, 

(34) 

where 1  is the limited coefficient. The high-order density components of the density variables 

are then modified,  

         0

0 1

1

ˆ ˆ, U U
kN

i

h h h i

i

t t b t b


  U x x x . 
(35) 

Once the positivity is satisfied for the density field, the pressure field is preserved at each 

local element using the following formulation,  

 1 + , 0 1p t t t     W U , (36) 

where W  and U  are the mean solution and limited density solution in conservative variables, 

respectively. Thereafter, the second limited coefficient 
2   is calculated by selecting the 

minimum value of t among all the quadrature points, and the high order components of the 

conservative variables are modified as, 

         0

0 2

1

ˆ ˆ, U U
kN

i

h h h i

i

t t b t b


  U x x x . 
(37) 
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3.1.4.2. Barth Jespersen limiter 

In addition to the positivity preserving limiter, a slope limiter to constrain the polynomial 

basis function within admissible limits is considered. The Barth Jespersen algorithm (slope 

limiter) is based on an unstructured grid for piecewise-linear data. In this algorithm, given the 

cell average h cU U  and the gradient   ,
c

U   the maximum slope for a constrained 

reconstruction form is determined as follows,  

      , 0 1,h c e c e ec
        U x U U x x x , (38) 

where e  refers to the correction factor given by,  

max

min

min 1, , if 0,

min 1, if 0,

min 1, , if 0.
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e c
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 


  


    
  

U U
U U

U U

U U

U U
U U

U U

 

(39) 

Hence, the final solution values at several control points i ex  or in one of its neighbors 

a  having a common boundary with e  satisfy the following relation 

 min max ,e i e i  U U x U . (40) 

Following the linearity, the solution hU  attains its extrema at the vertices ix of the cell e . 

3.2. Problem setup 

A sketch of the computational domain and grid for the 2D Apollo vehicle is provided in Fig. 

2. The far-field boundary condition was applied at a distance far enough from the vehicle. At 

the walls, slip and jump conditions were imposed. The temperature of the gas and walls were 

assumed to be 273 K. The hypersonic Mach number was considered to be 6. Both vibrational 

degrees of freedom for nitrogen gas and the chemical reactions of species were ignored. The 

Knudsen number was defined to measure the degree of rarefaction of gas (Tsien 1946; Myong 

2014), 
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Kn
Re 2

M

L

 
  ,   (41) 

where L  is the characteristic length, which is taken as twice the maximum body radius 2R  of 

the re-entry vehicle, M is the Mach number and Re is the Reynolds number. The mean-free-

path   is expressed as, 

22

Bk T

d p



 ,   (42) 

where Bk  is Boltzmann’s constant and d  is the diameter of the gas molecule. The grid 

characteristics of a total of 23,923 unstructured triangular elements were used, with finer 

refinement in regions where flows were expected to evolve more severely. Similar grid 

characteristics were considered for the 2D OREX vehicle.  

 
Fig. 2. Computational domain and grids characteristics for two- dimensional hypersonic flow 

over the Apollo vehicle. 

The axisymmetric design of the 3D Apollo vehicle is sketched in Fig. 3, where the spherical 

blunt radius bR , nose radius nR , and shoulder radius sR , are 1.9558 m, 4.6939 m, and 0.1956 

m, respectively. The back shell has an inclination angle 
033b  , relative to the vehicle’s axis 

of symmetry and the overall length of the vehicle is 3.4306 m. The quantities of interest for 

aerodynamic coefficients such as lift LC , drag DC  , and pitching moment ,0MC  are outlined in 

Fig. 3 (b). The offset center of gravity ( cg ) was neglected as the focus of this work was to 

investigate the effects of flow parameters on the aerothermodynamic data of the re-entry 

vehicle.  
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Fig. 3. Sketch of the 3D Apollo vehicle: (a) outer mold line, and (b) definition of aerodynamic 

forces and moments. 

Figure 4 shows the plot of aerodynamic data for nitrogen gas flow over a blunt reentry 

configuration with varied Mach and Knudsen numbers obtained by Schlegat (Schlegat 2016) 

using the experimental method. Influences from disturbances generated downstream were 

avoided by using a long wind tunnel. The pressure ratios were maintained between 10-5 to 10-

8 for the reservoir and test section, and static pressure of less than 10-3 mbar was retained for 

the wind tunnel to minimize pressure disturbances. The reservoir temperatures were kept 

between 400 K to 1400 K, where the vibrational mode for nitrogen gas is partially excited. The 

Knudsen number was varied by varying the Mach number at a constant Reynolds number. 

Aerodynamic data such as lift, drag, and pitching moments were obtained at different Mach 

and Knudsen numbers.    
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Fig. 4. Rarefaction effect on aerodynamic data obtained for nitrogen gas flow over a blunt re-

entry vehicle at a flow angle of attack of 100, 10M   (M_min) and 25M   (M_max). (Taken 

from Schlegat’s Ph.D. thesis (Schlegat 2016)). 

 

3.3. Boundary conditions (slip and jump conditions) and their implementation 

In the non-continuum regimes, gases close to solid surfaces are subjected to velocity slip and 

temperature jump conditions (Zhang, Meng, and Wei 2012). Among the various slip and jump 

models, the Langmuir slip and jump, Maxwell velocity slip, and Smoluchowski temperature 

jump conditions were considered in this study. 

3.3.1. Langmuir slip and jump conditions 

The gas-surface molecular interactions under Langmuir slip and jump conditions are 

calculated using the physical adsorption isotherm (Myong 2004a, 2016). In this method, the 

amount of gas molecules (adsorbate) on the absorbent is proportional to the pressure at a 

constant temperature. Then the gas-surface interaction process is expressed with the fraction 

 (0 1)    of surface covered at equilibrium in dimensional form (Myong 2004a): 
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where the equilibrium constant slip  is given by 

slip 2

1
exp
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ref e

w B w ref

T D

c T k T p

 


 
  

 
, (44) 

where c, refp , refT , Kn, and 
eD  are the gas constant of the exponent of the inverse power law 

of the particle interaction, the reference pressure, reference temperature, Knudsen number, and 

heat of adsorption, respectively. The velocity slip and temperature jump boundary conditions 

are then determined with the information about the fraction,   , and are written in a 

dimensional form as, 

 

 

gaswall

gaswall ,

1 ,

1T T T

 

 

  

  

u u u
 (45) 

where wallu  is the velocity vector of the solid surface, wallT  is the temperature of the solid 

surface, and gas gas,Tu  are the gas velocity vector and temperature at the reference location, 

respectively.  

3.3.2. Maxwell slip condition 

The gas-surface molecular interactions in the Maxwell slip condition are evaluated based on 

the diffuse reflection of gas molecules from the solid surface; and consequently, the gas 

molecules are either considered approaching or receding streams (Kennard 1938). Moreover, 

an additional free parameter  0 1u u    is introduced to retain the conservation of 

momentum for the solid surface. Using this information, the Maxwell slip condition for the 

tangential velocity near a solid surface is related to the tangential shear stress  tan  and the 

tangential heat flux  tanQ  at the wall; in dimensional form as (Myong 2016; Chourushi et al. 

2021), 
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 
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where wallu  refers to the velocity vector of a solid surface, and mean  denotes the mean free 

path. Also, the terms tan  and tanQ  can be defined in general coordinates as, 

 tan

tan

,

,

  

 

n S

Q Q S

 
 (47) 

where the surface vector S  is defined as   S I n n  using the dyadic product (⨂), which 

removes the normal components. Once the constitutive relations of viscous stress and heat flux 

are taken as linear with the first-order accuracy, the linear Maxwell slip condition in cartesian 

coordinates is recovered (Myong 2016; Myong et al. 2005; Singh 2018) 
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. (48) 

3.3.3. Smoluchowski jump condition 

By analogy with the Maxwell velocity slip condition, the Smoluchowski temperature jump 

boundary condition (Smoluchowski 1898) can be written as, 

 
mean

slip wall normal

2 2
Q

1 Pr
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T T
k

 

 

 
   

 
, (49) 

where  0 1T T    denotes the thermal accommodation coefficient and 
normalQ  refers to the 

normal heat flux. Furthermore, once the constitutive relations of heat flux are taken as linear 

with the first-order accuracy, the simplified form of the temperature jump condition in cartesian 

coordinates is recovered, 

 
slip wall mean

2 2

1 Pr
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T T

y

 


 

  
   

  
. (50) 

In the present study, both momentum ( u ) and thermal accommodation ( T ) coefficients were 

assumed to be unity.  



27 

 

4. Results and discussions  

4.1. Validation of the DG code: High Mach number flow 

The in-house modal discontinuous Galerkin method code has been extensively verified and 

validated in various problems of pure and dusty gas models under near- and non-equilibrium 

flow regimes (Xiao and Myong 2014; Le, Xiao, and Myong 2014; Singh, Karchani, and Myong 

2018; Singh and Myong 2019; Ejtehadi et al. 2018, 2020; Chourushi et al. 2018, 2020). In this 

section, we performed a validation study specific to high Mach number flows.  

In the validation test, we consider a two-dimensional hypersonic flow past a circular cylinder 

at Mach number (M=12) and Knudsen number (Kn=0.0118) for nitrogen gas. The temperature 

and density of the ambient gas are assumed to be 217.45T   K, and 57.48 10 

    kg/m3, 

respectively. An isothermal boundary condition with temperature wall 1000T   K was imposed 

on the cylinder surface. The geometric considerations of the 2D cylinder were taken to be the 

same as those of the reference (Schwartzentruber and Boyd 2008). Moreover, since the second-

order constitutive model without the vibrational mode is used, we considered a direct 

comparison with a previous DSMC study (Schwartzentruber and Boyd 2008) in which energy 

transfer to vibrational modes is neglected.  

Figure 5 illustrates the normalized temperature contour and heat flux coefficient for the first- 

and second-order constitutive models, and the existing DSMC solutions. It can be noted from 

the temperature contour plot that the bow shock structure of the second constitutive model is 

thicker than that of the first-order constitutive model due to the nonlinear characteristics 

associated with it. On the other hand, the plot for surface heat flux suggests that results of the 

second-order model are in closer agreement with the DSMC solutions than those of the first-

order model. 
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Fig. 5. Comparison of normalized flow properties in two-dimensional hypersonic flow past a 

circular cylinder problem obtained with the first- and second-order constitutive models and 

DSMC result (Schwartzentruber and Boyd 2008), for nitrogen gas, at 12M   and 

Kn 0.0118 : (a) temperature contour; and (b) heat flux coefficient. 

 

4.2. Simulation of 2D OREX and Apollo vehicles: Rarefaction effects on 

aerothermodynamic data 

Hypersonic (Mach number 6) flows of monatomic and diatomic gas over the Japanese 

Orbital Re-entry Experiment (OREX) and Apollo vehicles were also considered. The 

geometric details of the OREX and Apollo models are the same as those of the Yoshinaga et 

al. (Yoshinaga et al. 1996) and Schouler et al. (Schouler, Prévereaud, and Mieussens 2020), 

respectively. Like any other re-entry vehicle, these symmetric blunt-body configurations 

generate strong shock waves and dissipate the energy to reduce the surface heat flux. The 

quantities of interest are the aerothermodynamic coefficients of drag and heat flux. In all 

simulations, the flow angle of attack was assumed to be zero and aerodynamic moments 

associated with the non-zero angles of attack are delayed to the subsequent section of a three-

dimensional re-entry vehicle.  

(b)(a)

1st order

2nd order



29 

 

 

 
Fig. 6. Mach contours for hypersonic rarefied gas flow over the OREX (left side) and Apollo 

(right side) re-entry vehicles obtained with the first- and second-order constitutive models at 

00A  , 6M   and Kn 0.05 : (a) argon gas; (b) nitrogen gas. 

 

Figure 6 compares the Mach contours for the hypersonic rarefied flow of argon and nitrogen 

gases over OREX and Apollo re-entry vehicles obtained using the first- and second-order 

constitutive models at zero degrees angle of attack and Knudsen number 0.05. It was observed 

that the stand-off shock moves further upstream for the argon gas when compared with the 

nitrogen gas. This is consistent with the well-known relationship that the shock stand-off 

distance for non-reactive gases is proportional to the ratio of the freestream density to the 

density immediately behind the shock (Belouaggadia et al. 2008), and that the ratio is greater 

1st order
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2nd order
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1st order(a)
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2nd order
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for monoatomic gases than for diatomic gases. Roughly, the order of difference for the shock 

stand-off distance for the Apollo vehicle is comparatively higher because of the increased 

bluntness of the frontal part of the body. Furthermore, the nonlinear property associated with 

the second-order model predicts a thicker shock front than the first-order model, resulting in a 

weaker compression inside the shock wave. In addition, the degree of a gaseous expansion 

predicted by the first-order model near the rear part of the vehicle is considerably higher than 

that of the second-order model.  

Figure 7 compares the normalized temperature contours for the hypersonic rarefied flow of 

argon and nitrogen gases over the different re-entry vehicles. A stagnation region is formed 

between the bow shock and the blunt surface of the vehicle. The order of increase for the 

stagnation temperature of argon gas is substantially higher than that of the nitrogen gas. The 

variation in temperature for monatomic, diatomic, and linear polyatomic gases can be related 

to the specific heat capacity of gas, which is a function of specific heat ratio, as expressed by 

/ ( 1).PC R     The specific heat capacity reduces with increasing specific heat ratio and 

consequently the gas cannot store a significant amount of kinetic energy and progressively 

transfers in the form of heat, which increases the overall temperature (Hwang 1971). Hence, 

an increase in stagnation temperature was noted for the monatomic gas when compared with 

the diatomic gas. Recently, Le et al. (Le et al. 2020) also reported an increase in stagnation 

temperature for argon gas compared with nitrogen gas for the hypersonic flow over a cylinder 

using both OpenFOAM (rhoCentralFoam) and DSMC simulations at varied Knudsen numbers 

(0.01 and 0.05). Further, a comparison of the overall temperature over re-entry vehicles 

suggests that the rise in stagnation temperature is relatively higher for the OREX vehicle.  

A separated flow was observed near the backside region of the OREX vehicle due to the 

shape of the forebody, corner at the shoulder, and the back shell inclination angle of the vehicle. 

Owing to the presence of a re-circulating flow region immediately downstream of the OREX 

vehicle, a temperature rise is noted near the downstream region, as shown in Fig. 7 (a).  
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Fig. 7. Normalized temperature contours for hypersonic rarefied gas flow over the OREX (left 

side) and Apollo (right side) re-entry vehicles obtained with the first- and second-order 

constitutive models at 00A  , 6M   and Kn 0.05 : (a) argon gas; (b) nitrogen gas.  

Figure 8 compares the normalized surface variables for the hypersonic rarefied flow of argon 

gas over the OREX and Apollo vehicles with varied rarefaction parameters N . As the 

rarefaction parameter increases, there is a significant increase in the order of normalized shear 

stress and heat flux, which is caused by the reduced freestream dynamic pressure and 

freestream power, respectively. In general, the aerothermodynamic heating over the OREX 

vehicle is significantly enhanced with increasing rarefaction compared with that of the Apollo 

vehicle, because of the relatively higher stagnation temperature. A closer examination of the 
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constitutive models suggests that the shear-thinning characteristics of the second-order model 

predict lower wall shear stress and heat flux when compared with the first-order model.  

 

 
Fig. 8. Comparison of normalized surface variables for hypersonic rarefied argon gas measured 

on the surface of the OREX (left side) and Apollo (right side) re-entry vehicles with varied 

rarefaction parameters ( N ) at 00A   and 6M  : (a) shear stress  2

W ru ; (b) heat flux 

 3

W rQ u . 
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Fig. 9. Rarefaction effects on the aerothermodynamic data for the hypersonic rarefied flow of 

argon gas over the OREX (left side) and Apollo (right side) re-entry vehicles for varying 

degrees of rarefaction ( N ) at 00A   and 6M  : (a) drag coefficient; (b) heat flux 

coefficient. 

A further comparison of drag and heat flux coefficients for varying degrees of rarefaction is 

presented in Fig. 9. As the gas becomes more rarefied, fewer gas molecules interact with the 

surface, resulting in a reduction in drag. However, since the freestream dynamic pressure 

decreases more rapidly than the drag, the resultant drag coefficient (defined as drag divided by 

freestream dynamic pressure) increases. Similarly, an enhanced heat flux coefficient is 

observed because of the reduced freestream kinetic energy. It is seen that the drag coefficient 

for the OREX vehicle is lower than that of the Apollo vehicle due to the reduced resistance 
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from the smoother shape. Nonetheless, the heat flux coefficient for the OREX vehicle is 

relatively higher when compared with the Apollo vehicle. Besides, the second-order model 

predicts lower values for the drag and heat flux coefficients than the first-order model because 

of the shear-thinning characteristics for velocity and temperature, respectively.   

 

 
Fig. 10. Comparison of normalized surface variables for hypersonic rarefied nitrogen gas 

measured on the surfaces of the OREX (left side) and Apollo (right side) re-entry vehicles for 

varying degrees of rarefaction ( N ) at 00A   and 6M  : (a) shear stress  2

W ru ; (b) 

heat flux  3

W rQ u . 
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Next, we compared the normalized surface variables for hypersonic rarefied nitrogen gas 

over the OREX and Apollo vehicles for varying degrees of rarefaction, as illustrated in Fig. 10. 

It is seen that both normalized shear stress and heat flux over the re-entry vehicles increase 

with rarefaction, and the predicted surface heat flux over the OREX vehicle is comparatively 

higher. Moreover, compared with Fig. 8, both shear stress and heat flux values for the nitrogen 

gas are lower than that of argon gas. The decrease in shear stress can be related to the increase 

in intermolecular collisions which consequently decrease the momentum exchange with the 

surface. On the other hand, the increased heat flux for the argon gas can be associated with the 

larger values of temperature gradients near the surfaces of the re-entry vehicles. In general, the 

second-order model predicts lower shear stress and heat flux values than the first-order model. 

Figure 11 compares the drag and heat flux coefficients for the hypersonic rarefied flow of 

nitrogen gas over the OREX and Apollo vehicles for varying degrees of rarefaction. As with 

argon gas, both the drag and heat flux coefficients increase with rarefaction because of the 

significant reduction in freestream values. Compared with Fig. 9, the aerothermodynamic force 

exerted by nitrogen gas over the re-entry vehicle is relatively lower than that of argon gas. 

Moreover, the increased bluntness of the Apollo vehicle experiences a relatively larger drag 

and lower heat flux. In general, the second-order model predicts these values further low.  

Overall, the comparison of two-dimensional, geometric, and flow configurations of the re-

entry vehicles suggests that the OREX vehicle experiences lower drag and higher 

aerothermodynamic heating than that of the Apollo vehicle under near/non-equilibrium flow 

regimes.   
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Fig. 11. Rarefaction effects on the aerothermodynamic data of hypersonic rarefied nitrogen 

gas flow over the OREX (left side) and Apollo (right side) re-entry vehicles for varying degrees 

of rarefaction ( N ) at 00A   and 6M  : (a) drag coefficient; (b) heat flux. 

4.3 Simulation of a 3D Apollo capsule: Effect of rotational degrees of freedom 

A hypersonic (Mach number 6) flow of monatomic and diatomic gas was computed over a 

three-dimensional Apollo vehicle. The coefficient of the pitching moment about the z-direction 

was also considered (Priyadarshi P 2015; Moss, Glass, and Greene 2006; Singh 2018). The 

temperature of the freestream gas and the body surface was assumed to be a constant of 273 K. 

The computational domain consists of approximately 300,000 tetrahedral elements and 9,084 

triangular elements for the surface. All numerical simulations were performed using the serial 

DG solver on an Intel Xeon workstation with a single processor, where no parallelization 
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scheme was incorporated. In the case of hypersonic gas flow ( 6M   and Kn 0.05 ) past a 

3D Apollo vehicle, the computing time for the first-order and second-order constitutive models 

was found to be around 61 hours and 93 hours, respectively, resulting in a 52.4 % increase 

compared with the run time of the first-order model. The total forces and moments for nitrogen 

gas in each direction are calculated as (Singh 2018), 

      

      

      

,

,

.

x xx x xy y xz z
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dF n dydz p n dxdz n dxdy

dF n dydz n dxdz p n dxdy

        
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 (51) 

And the moments produced by these forces are represented as, 

z y

x z

surface

y x

yF zF

m zF xF dxdydz

xF yF

 
 

  
  

 . (52) 

Figure 12 compares the pressure contours of the hypersonic rarefied flow of argon and 

nitrogen gases over a 3D Apollo vehicle obtained using the first- and second-order constitutive 

models for different freestream angles of attack  A  at Knudsen number 0.05. It is noted that 

a large amount of kinetic energy in the hypersonic freestream is converted by molecular 

collisions into the high thermal energy surrounding the reentry vehicle and by flow work into 

increased pressure. In this way, the region at the vicinity of the front surface is a zone of strong 

compression, with the maximum value obtained at 00A  . Further, a comparison of 

monatomic and diatomic gases suggests that the stagnation pressure for argon gas is 

comparatively higher because of the reduced internal degrees of freedom. Similar findings were 

reported by Le et al. (Le et al. 2020) in their work, where the authors noticed a larger stagnation 

pressure for argon gas compared with the nitrogen gas for hypersonic flow over a cylinder 

using both OpenFOAM and DSMC simulations. Primarily, the shear-thinning characteristics 

of the second-order model allowed it to predict moderately lower values. 



38 

 

 

 

 



39 

 

 
Fig. 12. Pressure contours of hypersonic rarefied argon (top) and nitrogen (bottom) gas flow 

over a three-dimensional Apollo vehicle obtained with the first- and second-order constitutive 

models for different freestream angles of attack at 6M  , Kn 0.05 : (a) 00A  ; (b) 

010A  . 

 

 
Fig. 13. Contours of the Rayleigh-Onsager dissipation function in a hypersonic rarefied flow 

of argon (left side) and nitrogen (right side) gases over a three-dimensional Apollo vehicle 

obtained with the first- and second-order constitutive models, at 00A  , 6M  , and 

Kn 0.05 . 
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Figure 13 shows a comparison of the contours of the Rayleigh-Onsager dissipation function 

obtained using the first- and second-order constitutive models for argon and nitrogen gases at 

zero degrees angle of attack and Knudsen number 0.05. The Rayleigh-Onsager dissipation 

ˆ( )R  plays a vital role in the theory of irreversible thermodynamics and is directly related to 

entropy production in non-equilibrium processes. The degree of local nonequilibrium is high 

in the bow shock region and the rear part of the Apollo vehicle where the flow experiences 

sudden changes. Moreover, it is noted that the degree of nonequilibrium is significantly higher 

for the argon gas than the nitrogen gas. The reason behind this physical phenomenon is the 

presence of significantly higher values of shear stress and heat flux in the bow shock region for 

the argon gas. Predominantly, it is observed that the first-order model over-predicts these 

values when compared with the second-order model, which is attributed to its limitation at high 

Knudsen and Mach number flows.  

We also compared pressure contours for the hypersonic rarefied argon gas in Fig. 14 using 

the first-order constitutive model with and without slip and jump conditions to analyze the 

effect of slip and jump conditions. A significant increase in the stagnation pressure was noted 

for the first-order model without slip and jump conditions, leading to higher gradients in 

velocity and temperature near the re-entry vehicle. On the contrary, an increase in the gas-

surface interactions was noted for the slip and jump conditions which in turn reduced the 

tangential velocity and temperature gradients near the surface, leading to lower stagnation 

pressure.  
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Fig. 14. Comparison of the pressure contours of hypersonic rarefied argon gas flow over a 

three-dimensional Apollo vehicle obtained using the first- constitutive models with or without 

slip/jump conditions at 00A  , 6M  , Kn 0.05 : (a) first-order model without slip and 

jump conditions; (b) first-order model with slip and jump conditions. 

 

Figure 15 compares the lift-to-drag ratio, heat flux, and pitching moment coefficients for 

varying angles of attack and degree of rarefaction. As the degree of rarefaction and angles of 

attack increase, the lift-to-drag ratio is reduced considerably due to the change in the general 

flow pattern, which becomes smooth with an increased angle of attack. Furthermore, no major 

difference is noted between the values of lift-to-drag ratio for argon and nitrogen gases. On the 

other hand, a comparison of the heat flux coefficients suggests that the heat transfer is reduced 

with increasing angles of attack. The magnitude of the heat flux coefficient for argon gas is 

relatively higher than that of the nitrogen gas because of the higher stagnation temperature in 

the frontal part of the re-entry vehicle.  

Further comparison of the pitching moment coefficient is presented in Fig. 1 (c). As the 

angles of attack and degree of rarefaction increase, the magnitude of the pitching moment 

coefficient (clockwise nose-up) along the z-direction increases, implying that the Apollo 

vehicle remains essentially unstable. However, compared with argon gas, the order of increase 

in the magnitude of the pitching moment coefficient is lower for nitrogen gas because of the 

reduced intermolecular interactions. In general, the first-order model over-estimates the 
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aerothermodynamic coefficients, leading to its poor performance under rarefied flow 

conditions. In addition, the comparison of with and without slip and jump conditions suggests 

that the first-order model without slip and jump (w/o slip) conditions predicts these coefficients 

substantially higher because of the increased gradients for the tangential velocity and 

temperature fields.  

Finally, a comparison of the aerothermodynamic data with recent experimental work 

(Schlegat 2016) revealed that the qualitative trend in the plot of lift-to-drag ratio and pitching 

moment coefficients remained the same. A significant variation in the lift-to-drag ratio with 

increasing degree of rarefaction can be found because rarefaction has a stronger influence on 

the drag coefficient than the lift coefficient. When the drag coefficient was evaluated by 

integrating the surface pressure contribution from the projected frontal area, and the viscous 

contribution from the tangential forces at the wall, its effect became significant with 

rarefaction. Lift, on the other hand, has dominant pressure and negligible viscous part at low 

angles of attack. At higher angles of attack, the viscous part on the lift becomes noticeable; 

however, its effect is not as strong as its counterpart. The reduced lift-to-drag ratio can cause 

the re-entry vehicle to dive deeper into the atmosphere.  

Conversely, the pitching moment is very sensitive to the location where the resultant dynamic 

pressure force attacks. That means if an aerodynamic force pushes the vehicle away from its 

original trimmed flight condition, a counteracting pitching moment is generated to move the 

vehicle back to its original flight altitude, whereby an aerodynamic static stability is attained. 

In the present scenario, as the rarefaction is increased, a continual increase in the order of 

pitching moment is noticed. This indicates that the body flap of the reentry vehicle is too short 

for the position of the center of gravity, leading to a statically unstable flight transition, in 

agreement with the measured aerodynamic data illustrated in Fig. 4 (Schlegat 2016). The effect 

of rarefaction was observed to be stronger at higher angles of attack, as the pitching moment 

coefficient varied considerably, resulting in a statically unstable transition during re-entry.  
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Fig. 15. Bulk viscosity effects on aerothermodynamic data obtained using the first- and second-
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order constitutive models for the hypersonic rarefied flow of argon (left side) and nitrogen 

(right side) gases over a three-dimensional Apollo vehicle for varying degrees of rarefaction (

N ) and different freestream angles of attack at 6M  : (a) lift-to-drag ratio; (b) heat flux 

coefficient; (c) pitching moment coefficient. 

 

5. Summary and conclusions 

We investigated the non-equilibrium effects of monatomic and diatomic gases experienced 

by hypersonic re-entry vehicles using the mixed modal discontinuous Galerkin (DG) 

formulations. In the mixed modal DG scheme, auxiliary variables were introduced to solve the 

nonlinear second-order constitutive relations of non-conserved variables which describe 

monatomic and diatomic gases in strong thermal nonequilibrium. Additionally, velocity slip 

and temperature jump boundary conditions were implemented at the surfaces for the multi-

dimensional DG code. To ascertain numerical accuracy, hierarchical basis functions based on 

the orthogonal Jacobi polynomials for triangular and tetrahedral elements were incorporated. 

For temporal discretization, a third-order accurate SSP-RK scheme that preserves the 

monotonicity of the spatial discretization was employed.  

The results showed that the rotational mode of energy transfer plays a crucial role in nitrogen 

gas away from equilibrium. Notable differences were seen in the flow fields and measured 

surface quantities for monatomic and diatomic gas over different configurations of re-entry 

vehicles. Distinctively, weaker shock waves and reduced overall stagnation temperature in the 

frontal region of the re-entry vehicle were noted for nitrogen gas compared with argon gas. 

Consequently, reduced aerothermodynamic forces were exerted by nitrogen gas on the re-entry 

vehicle. Further, a detailed comparison of different configurations of re-entry vehicles suggests 

that the OREX vehicle experienced a relatively lower drag and enhanced heat flux than the 

Apollo vehicle under near/non-equilibrium regimes.  

With increasing rarefaction and flow angles of attack, a considerable loss in the lift-to-drag 

ratio was noticed, in contrast to the heat flux coefficients. Also, the magnitude of the nose-up 

pitching moment coefficient was notably enhanced by the angles of attack and rarefaction, 

implying that the re-entry vehicle was susceptible to a loss of stability. The order of increase 
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in the magnitude of the pitching moment was relatively higher for argon gas than nitrogen gas 

because of the reduced internal degrees of freedom. Altogether, the analysis of the first- and 

second-order constitutive models indicated that the first-order model over-predicted the results 

when compared with the second-order model at higher degrees of non-equilibrium.  

The shortcoming of the first-order model was overcome by the inclusion of the second-order 

model. However, at hypersonic Mach numbers sufficiently above 6 and low altitudes, the flow 

becomes more complicated for the nitrogen gas molecules, with increased internal energies and 

chemical reactions. In addition, ionization, thermal radiation, and electronic excitation usually 

intensify under these non-equilibrium flow regimes. In the future, we hope to report DG-based 

computational models which include vibrational and chemical non-equilibrium effects.  
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