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Shock-accelerated bubbles have long been an intriguing topic for understanding the fun-

damental physics of turbulence generation and mixing caused by the Richtmyer–Meshkov

instability. In this study, the impact of bulk viscosity on the flow morphology of a shock-

accelerated cylindrical light bubble in diatomic and polyatomic gases is investigated nu-

merically. An explicit mixed-type modal discontinuous Galerkin scheme with uniform

meshes is employed to solve a two-dimensional system of unsteady physical conservation

laws derived rigorously from the Boltzmann–Curtiss kinetic equations. We also derive a

new complete viscous compressible vorticity transport equation including the bulk viscos-

ity. The numerical results show that, during the interaction between a planar shock wave

and a cylindrical light bubble, the bulk viscosity associated with the viscous excess normal

stress in diatomic and polyatomic gases plays an important role. The diatomic and poly-

atomic gases cause significant changes in flow morphology, resulting in complex wave

patterns, vorticity generation, vortex formation, and bubble deformation. In contrast to

monatomic gases, diatomic and polyatomic gases produce larger rolled-up vortex chains,

various inward jet formations, and large mixing zones with strong, large-scale expansion.

The effects of diatomic and polyatomic gases are explored in detail through phenomena

such as the vorticity generation, degree of nonequilibrium, enstrophy, and dissipation rate.

Furthermore, the evolution of the shock trajectories and interface features are investigated.

Finally, the effects of bulk viscosity on the flow physics of shock-accelerated cylindrical

light bubble are comprehensively analyzed.

a)Electronic mail: satyvir.singh@ntu.edu.sg
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I. INTRODUCTION

The Richtmyer–Meshkov (RM) instability1,2 occurs when an incident shock wave accelerates

an initially disruptive interface between two fluids of different gas properties. The incident shock

wave and disruptive interface produce density and pressure gradients during the interaction pro-

cess, which contribute to a misalignment between those gradients. Consequently, some specific

flow structures emerge and intensify the gas mixing, eventually improving the turbulent mixing

phenomena. The RM instability has received considerable attention in many natural and engineer-

ing fields, and has applications in inertial confinement fusion,3 supernova explosions,4 medical

shock wave lithotripsy,5 scramjet combustion,6,7 and astrophysics.8

In recent decades, shock-accelerated bubbles have been widely studied in an attempt to un-

derstand the physical configuration of the RM instability. The flow configuration in a shock-

accelerated bubble is basically classified based on the Atwood number. If ρb and ρg are the densi-

ties of the unshocked bubble and its surrounding unshocked gas, respectively, the Atwood number

can be defined as At = (ρb − ρg)/(ρb + ρg). If the bubble gas is lighter than the ambient gas,

the Atwood number becomes negative, i.e., At < 0, resulting in a “heavy–light” or “divergent”

configuration. In contrast, if the bubble gas is heavier than the ambient gas, the Atwood number

becomes positive, i.e., At > 0, and this case gives the “light–heavy” or “convergent” configuration.

The typical flow configurations during the early stages of the shock-accelerated bubble process are

depicted schematically in Fig. 1. The deformation of the bubble interface can be seen in the flow

patterns of divergent [Fig. 1(a)] and convergent [Fig. 1(b)] configurations. After colliding with the

incident shock wave, the region upstream of the bubble (the left side) starts to deform. The shock

wave generated within a light bubble propagates faster than the incident shock wave outside the

bubble. This is caused by a mismatch in the acoustic impedances of the flow constituents across

the interface, and results in the bubble deforming into a divergent configuration, as shown in Fig.

1(a). In the case of a heavy bubble, the transmitted shock wave propagates slower than the incident

shock wave, and may become focused at the downstream pole of the bubble and collapse into a

single shock-focusing, high-pressure point. Consequently, the bubble deforms into a convergent

configuration, as illustrated in Fig. 1(b).

As the incident shock wave strikes the bubble, the baroclinic effect creates a vorticity distribu-

tion on the interface between the bubble and its surroundings. The fundamental physics that occur

during the interaction between the incident shock wave and the gas bubble can be interpreted us-
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(a) Divergent configuration

(b) Convergent configuration

FIG. 1: Deformation of a bubble interface during interaction process: (a) divergent configuration

for At < 0, and (b) convergent configuration for At > 0.

ing the equation of vorticity transport.9,10 This equation, which includes several physically distinct

quantities, can be defined as follows:

Dω

Dt
= (ω · ∇)u− ω(∇ · u) +

µ

ρ
∇2ω +

1

ρ2
(∇ρ×∇p)

− µ
ρ2

(∇ρ×∇2u)−
(

1

3
+ fb

)
µ

ρ2
∇ρ×∇(∇ · u),

(1)

where ω(= ∇ × u), ρ, u, p, and µ represent the vorticity, density, velocity, pressure, and shear

viscosity, respectively. We believe this equation is new (the last two terms on the right-hand side

have been incorrectly omitted in the previous literature). The equation was derived under the

assumption of constant transport coefficients. (The exact viscous vorticity transport equation with

varying transport coefficients, but without Stokes’ hypothesis, is summarized in detail in Appendix

A.) The factor fb = µb/µ denotes the ratio of the bulk viscosity to the shear viscosity, and will

play an important role in the compressible shock and bubble interaction. Note the difference from

the well-known incompressible vorticity transport equation first derived by Helmholtz (ν being

the kinematic viscosity), i.e.,

Dω

Dt
= (ω · ∇)u + ν∇2ω.

On the right-hand side of Eq. (1), the term ω(∇ · u) represents the fluid convection and thermal

expansion, which is only appropriate for highly compressible fluids. The term (ω ·∇)u represents
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the vortex stretching, which is critical for three-dimensional turbulence and mixing. The term

(µ/ρ)∇2ω represents the acceleration due to the diffusion of vorticity. The term (1/ρ2)(∇ρ×∇p)

denotes the baroclinic vorticity, which is responsible for the production of small-scale rolled-up

vortices at the bubble interface. Moreover, this term is most prominent at the top and bottom ends

of a vertical bubble due to the extreme misalignment of the density and pressure gradients. The

term (µ/ρ2)(∇ρ×∇2u) represents the vorticity generated by the combination of density gradient

and velocity diffusion. Finally, the last term (1/3 + fb)(µ/ρ
2)(∇ρ × ∇(∇ · u)) represents the

vorticity generated by the combination of density and velocity divergence gradients of viscous

origin, which resemble the baroclinic vorticity generated by the combination of density gradient

and velocity diffusion. Additionally, there exists a term directly related to the bulk viscosity,

fb(µ/ρ
2)(∇ρ × ∇(∇ · u)). As the factor fb = µb/µ is close to unity in the case of diatomic

gases, it may play an important role in the compressive shock–bubble interaction in diatomic and

polyatomic gases.

There have been tremendous efforts in the past to understand the flow morphology of shock-

accelerated bubbles relevant to the RM instability through experiments, theoretical analysis, and

computational simulations. The shock-accelerated bubble problem was first explored experimen-

tally in the seminal works of Markstein11 and Rudinger and Somers,12 which explained a knotty

turbulent flow field phenomenon with long-lived vortex rings. Haas and Sturtevant13 experimen-

tally studied the shock-accelerated bubble problem with lighter and heavier gas bubbles, and

explored the wave patterns phenomenon for both convergent and divergent situations. Later,

Jacobs14,15 experimentally investigated the high-quality flow morphology of shock-accelerated

bubbles based on planar laser-induced fluorescence technology. Layes et al.16,17 experimentally

explored the flow morphology of shock-accelerated bubbles with different gases via high-speed

camera shadowgraph diagnostics. Moreover, Ranjan et al.18,19 conducted experimental studies

of the divergent-geometry-based flow morphology in shock-accelerated bubbles with the aid of

planar laser diagnostics.

Numerous numerical and theoretical studies have also been conducted. Picone and Boris? and

Quirk and Karni20 performed comprehensive studies of the flow morphology of the shock–bubble

interaction, and reproduced the experimental results obtained by Haas and Sturtevant.13 Further,

Zabusky and Zeng21 simulated the Euler equations for the flow morphology in the interaction

of planar shocks with an R12 axisymmetric spherical bubble, and observed that a weak jet was

expelled due to the collapsing shock-bounded cavities in fast/slow spherical and near-spherical
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configurations. Later, the impact of the incident shock Mach number on the flow morphology of

shock-accelerated bubbles was numerically examined by Bagabir and Drikakis,22 who revealed

additional gas dynamic features as the Mach number increased. Niederhaus et al.23 performed

numerical simulations of a multifluid Eulerian configuration to investigate the flow morphologies

and integral properties of shock-accelerated bubbles, and explored the effects of different Atwood

numbers and shock intensities. Zhu and his collaborators24–26 numerically explored the flow mor-

phology in the interaction between shock wave and gas bubble with light and heavy bubbles, and

performed a detailed analysis of the shock-focusing phenomenon and the generation and evolution

of vortex rings and jets. Rybakin and Goryachev27 investigated the deformation and instability of

a low-density gas bubble, the formation and evolution of vortex rings, and the shock wave–bubble

configuration. Later, Rybakin et al.28–30 presented the three-dimensional numerical simulations

for the interaction process of the supernova strong shock wave with interstellar molecular cloud,

and investigated the processes of deformation and fragmentation of molecular cloud in detail. The

vortex breakdown behavior of the scaling criterion in shock-cylindrical bubble interaction was

studied numerically and theoretically by Wang et al.,31 who found that viscosity leads to vortex

breakdown. Recently, Singh32 numerically investigated the effects of the Atwood number on the

flow morphology of a shock-accelerated square bubble containing different gases.

Intriguingly, the majority of existing theoretical and numerical research on the shock-accelerated

bubble problem has explored the negligible thermal nonequilibrium effects, which are directly

connected to the internal modes of diatomic and polyatomic gases—the rotational and vibrational

modes. These studies have focused on the Euler or Navier–Stokes–Fourier (NSF) equations, which

are derived from the Boltzmann kinetic equation with the assumption of thermal equilibrium and

near-thermal equilibrium, respectively, and are considered to be the de-facto mathematical models

for any possible flow problem, including compressible gas flows.

Another vital assumption behind the NSF relations is the so-called Stokes hypothesis, intro-

duced by Stokes33 in 1845, which states that the bulk viscosity µb vanishes (λ and µ being the

second coefficient of viscosity and the shear viscosity of the fluid, respectively), i.e.,

µb ≡ λ+
2

3
µ = 0, equivalently, λ = −2

3
µ. (2)

While Stokes’ hypothesis is believed to be valid in the case of monatomic gases such as argon,

there is growing proof that this is not the case with diatomic and polyatomic gases such as nitrogen,

methane, and carbon dioxide.34–49
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Examples of such cases include the inner structure of strong shock waves in diatomic gases and

hypersonic entry into the Mars atmosphere, which consists mostly of carbon dioxide. A recent

experimental study on the second-mode instability in the laminar-to-turbulence transition in hy-

personic boundary layers40 showed that, for a real diatomic gas, the growth and decay of the second

mode are accompanied by a dilatation process that leads to a 50% increase in dilatation dissipation

in comparison with Stokes’ hypothesis. Moreover, direct numerical simulations of turbulence by

Pan and Johnsen42 showed that the bulk viscosity increases the decay rate of the turbulent kinetic

energy significantly, and dilatation is reduced by over two orders of magnitude within the first

two eddy-turnover times. Further, Singh et al.45 found a significant increase in enstrophy with

increasing bulk viscosity, which is directly related to the rotational mode of a gas molecule. Later,

Singh et al.48 investigated the topology of the high-order constitutive model beyond the conven-

tional NSF equations and Stokes’ hypothesis. Recently, Singh and Battiato49 numerically studied

the behavior of a shock-accelerated cylindrical heavy bubble under the nonequilibrium conditions

of diatomic and polyatomic gases.

Inspired by these developments, this study aims to investigate the impact of bulk viscosity on

the flow morphology of shock-accelerated cylindrical light bubble based on the Boltzmann–Curtiss

kinetic equation for diatomic and polyatomic gases. Emphasis is focused on the impacts of thermal

nonequilibrium and the bulk viscosity associated with the viscous excess normal stress on diatomic

and polyatomic gases, and their effects on the flow morphology of shock-accelerated cylindrical

light bubble. To the best of the authors’ knowledge, there have been no reports in the literature on

the impact of bulk viscosity on the flow morphology of shock-accelerated cylindrical light bubble

in diatomic and polyatomic gases. Furthermore, this work can be viewed as a complement to

the RM instability research, investigating the effects of bulk viscosity on the dynamics of shock-

accelerated cylindrical light bubble.

The remainder of this paper is organized as follows. In Sec. II, the problem setup is presented

and we consider the Boltzmann–Curtiss kinetic equation for diatomic and polyatomic gases. The

physical conversation laws are formulated and the bulk viscosity is estimated based on kinetic

and continuum theories. In Sec. III, the numerical scheme is introduced and validated, and grid

refinement analysis is performed with precision estimation. In Sec. IV, the numerical results for

shock-accelerated cylindrical light bubble in diatomic and polyatomic gases are discussed in de-

tail. First, the overall flow morphology is visualized. Next, the effects of diatomic and polyatomic

gases on shock-accelerated cylindrical light bubble are systematically analyzed to illustrate the
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differences in contrast to monatomic gases. Consequently, the effects of bulk viscosity are clar-

ified. Finally, concluding remarks outlining further developments along the lines of the present

study are given in Sec. V.

(a)

(b)

Bubble

Incident shock 
wave

Shocked gas Ambient gas

Ou�low

Ou�low

Inflow Ou�low
90 mm

220 mm

30 mm 50 mm

10 mm

FIG. 2: Problem setup: schematic diagram for (a) computation setup, and (b) density distribution.

II. PROBLEM SETUP AND COMPUTATIONAL MODEL

A. Problem setup

Figure 2 shows a schematic diagram of the flow model used to simulate an incident shock (IS)

wave interacting with a cylindrical bubble surrounded with ambient gas. A rectangular domain of

[0, 220]× [0, 90] is adopted for the numerical simulation of the shock-accelerated bubble problem,

where a moving IS wave and a cylindrical stationary bubble are considered. The IS wave with

Mach number Ms propagates from left to right with respect to the initial shock wave in the com-
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putational domain and interacts with the cylindrical bubble. The initial position of the shock wave

is at x = 30 mm from the left-hand side of the computational domain. The bubble radius is taken

as Rb = 25 mm, and the location of the center of the bubble is set as (xc, yc) = (60, 45) mm. The

initial pressure and temperature are set to P0 = 101, 325 Pa and T0 = 293 K, respectively, around

the gas bubble. As helium (He) gas has been widely adopted as a light gas in previous studies on

the RM instability, we also consider He gas with a density of ρg = 0.16 kg/m3 inside the cylin-

drical bubble. For the ambient gas, three different gases are considered in this study—monatomic

argon, diatomic nitrogen, and polyatomic methane. The left boundary is set to be the inflow, while

the upper, bottom, and right boundaries are set to be outflow boundaries.

B. Physical conservation laws for diatomic and polyatomic gases

Shock-accelerated bubble problems are basically solved by simulating the compressible mul-

tispecies flow model with a gas mixture.53,54 Interestingly, Picone and Boris,55 Samtaney and

Zabusky,56 Quirk and Karni,20 and Bagabir and Drikakis22 have found that assigning different spe-

cific heat capacities γ to each gas does not affect the qualitative details of the vorticity generation,

particularly the creation of large-scale structures. According to Quirk and Karni,20 for the problem

of a shock-accelerated bubble “...the errors introduced by the single-gas model assumption are not

catastrophic and to some extent may be tolerated.” However, such errors cannot be tolerated in ap-

plications such as air–fuel mixing in a supersonic combustion system, where temperature changes

will substantially affect the mixing. Recently, Latini and Schilling57 numerically investigated the

growth dynamics of two- and three-dimensional single-mode reshocked air/SF6 RM instabilities

by considering a single specific heat ratio γ. Based on the above discussion, the present shock-

accelerated cylindrical light bubble problem is configured as an unsteady compressible laminar

flow that assumes a single-component perfect gas with a specific heat ratio of γ.

In the absence of an external force field, the well-known Boltzmann–Curtiss kinetic equation58

for diatomic and (linear) polyatomic molecules with a moment of inertia Im and an angular mo-

mentum j can be expressed as(
∂f

∂t
+ v · ∇+

j

Im

∂

∂ψ

)
f(v, r, j, ψ, t) = R[f ]. (3)

Here, f,v, r, ψ, j, and R[f ] are defined as the density distribution function, particle velocity, par-

ticle position, azimuthal angle of the particle orientation, magnitude of the angular momentum
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vector j, and collision integral, respectively. The Boltzmann–Curtiss kinetic equation reduces to

the original Boltzmann kinetic equation for a monatomic gas when the angular momentum of the

molecule due to the rotational mode is completely neglected:(
∂f

∂t
+ v · ∇

)
f(v, r, t) = C[f ], (4)

whereC[f ] refers to the Boltzmann collision integral of the interaction between two gas molecules.

In gas kinetic theory, the macroscopic variables can be classified into two different groups:

conserved variables (ρ, ρu, ρE) and non-conserved variables (Π,∆,Q), where ρ,u, E denote the

density, velocity vector, and total energy density, respectively, while Π,∆,Q represent the shear

stress tensor, excess normal stress, and heat flux, respectively. These variables can be calculated

using the statistical formulation

φ(k) = 〈h(k)f〉, (5)

where the angular brackets denote the integration of microscopic variables v and j in the com-

putational domain. h(k) indicates the molecular expression of the h-th moment of the distribution

function and φ(k) denotes the equivalent macroscopic quantity. The leading elements of the macro-

scopic set of conserved and non-conserved variables are defined as36

φ(1) = ρ, φ(2) = ρu, φ(3) = ρE,

φ(4) = Π = [P](2), φ(5) = ∆ =
1

3
Trace P− p, φ(6) = Q.

(6)

The molecular expressions corresponding to this set are

h(1) = m, h(2) = mv, h(3) =
1

3
mC2 +Hrot,

h(4) = [mCC]2, h(5) =
1

3
mC2 − p

n
, h(6) =

(
1

2
mC2 +Hrot −mĥ

)
C,

(7)

where m is the molecular mass, C = v − u is the peculiar velocity of the molecule, n is the

number density per unit mass, ĥ is the enthalpy density per unit mass, and Hrot = j2/2Im is the

rotational Hamiltonian of the particle. The symbol [A](2) denotes the traceless symmetric part of

the second-rank tensor A, given by

[A](2) =
1

2
(A + At)− 1

3
I Trace A, (8)

where I denotes the unit second-rank tensor. The viscous shear stresses Π and excess normal

stress ∆ are correlated with the stress tensor P by the relationship

P = (p+ ∆)I + Π. (9)
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Here, the pressure p can be calculated by the equation of state, i.e., p = nkBT = ρRgT , where

n, kB, T , and Rg denote the number density, Boltzmann constant, absolute temperature, and gas

constant, respectively.

The physical conservation laws of mass, momentum, and total energy for diatomic and

polyatomic gases can be formulated directly from the Boltzmann–Curtiss kinetic equation by

considering the collision-invariant property, where the dissipation term is usually ignored, i.e.,

〈h(1,2,3)R[f ]〉 = 0. After differentiating the statistical description of the conserved variables with

respect to time and combining them with the Boltzmann–Curtiss equation, the following physical

conservation laws for diatomic and polyatomic gases can be derived:

∂

∂t


ρ

ρu

ρE

+∇ ·


ρu

ρuu + pI

(ρE + p)u

+∇ ·


0

Π + ∆I

(Π + ∆I) · u + Q

 = 0. (10)

In Eq. (10), the symbol E denotes the total energy, which can be defined as

E =
1

(γ − 1)

p

ρ
+

1

2
u · u. (11)

The following dimensionless variables and parameters are then considered:

t∗ =
t

(L/ur)
, x∗ =

x

L
, µ∗ =

µ

µr
, k∗ =

k

kr
, u∗ =

u

ur
,

p∗ =
p

pr
, ρ∗ =

ρ

ρr
, T ∗ =

T

Tr
, C∗p =

Cp
Cpr

, E∗ =
E

u2r
,

Π∗ =
Π

(µrur/L)
, ∆∗ =

∆

(µbrur/L)
, Q∗ =

Q

kr∆T/L
,

(12)

where the subscript r denotes the reference state, L denotes the characteristic length, Cp denotes

the heat capacity per mass at constant pressure, and µ, µb, k are the Chapman–Enskog shear vis-

cosity, bulk viscosity, and thermal conductivity, respectively. The dimensionless physical conser-

vation laws for diatomic and polyatomic gases (with the asterisks removed for notational brevity)

can be written as43,45,48,50–52

∂

∂t


ρ

ρu

ρE

+∇ ·


ρu

ρuu + 1
γM2pI

(ρE + 1
γM2p)u

+
1

Re
∇ ·


0

Π + fb∆I

(Π + fb∆I) · u + 1
EcPr

Q

 = 0. (13)

Here, dimensionless parameters such as the Mach number (M), Reynolds number (Re), Eckert

number (Ec), and Prandtl number (Pr) are defined as

M ≡ ur√
γRgTr

, Re ≡ ρrurL

µr
, Ec ≡ (γ − 1)M2, P r ≡

Cprµr
kr

, fb =
µbr
µr
, (14)
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TABLE I: Viscosity ratio fb for common dilute diatomic and polyatomic gases at 300 K.

Gas fb Gas fb Gas fb

Carbon monoxide 0.55 Methane 1.33 Hydrogen 35

Oxygen 0.73 Dimethylpropane 3.27 Chlorine 751.88

Nitrogen 0.80 Water vapor 7.36 Carbon dioxide 1000

where the subscript r denotes the reference state, L denotes the reference length,Rg is the universal

gas constant, and Cp denotes the heat capacity per mass at constant pressure. In the present study,

the sound speed of a diatomic or polyatomic gas before the shock wave is chosen as the reference

velocity ur, resulting in M = 1. Nonetheless, we keep the reference Mach number M in the

equations to clarify its role in the formulation. Additionally, the bubble radius is used for the

reference length, i.e., L = Rb = 25mm. The dimensionless equation of state is expressed as

ρr = Pr/Tr, where Pr = 101, 325 Pa and Tr = 273 K are used for the reference pressure and

temperature, respectively.

The specific heat ratio γ is assumed to be 1.67 for argon, 1.40 for nitrogen, and 1.31 for

methane. The factor fb = µbr/µr is the ratio of the bulk viscosity to the shear viscosity, and

its value can be experimentally calculated based on a sound wave absorption measurement.39 The

viscosity ratios fb for common dilute diatomic and polyatomic gases at 300 K are listed in Table

I. Note that the dilute monatomic gases have a viscosity ratio of zero. The Prandtl number (Pr)

can also be determined through Eucken’s relationship as

Pr =
4γ

9γ − 5
. (15)

When the statistical definitions of the non-conserved variables φ(4,5,6) = 〈h(4,5,6)f〉 are differ-

entiated with respect to time and combined with the Boltzmann–Curtiss equation, the following

Navier–Fourier (NF) constitutive equations of the shear stress tensor, excess normal stress, and

heat flux vector can be obtained:

Π = −2µ[∇u](2), ∆ = −µb∇ · u, Q = −k∇T. (16)

Moreover, when Stokes’ hypothesis [Eq. (2)] is applied, i.e., µb = 0, the NF constitutive equations

in Eq. (16) reduce to the well-known NSF equations. In such expressions, the following Chapman–
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TABLE II: Physical properties of the tested monotonic, diatomic, and polyatomic gases at

standard conditions.

Specific heat Prandtl number Viscosity Gas constant Viscosity coefficient

Gas ratio (γ) (Pr) index (s) (Rg) µr

Argon 1.67 0.67 0.81 208.24 2.12× 10−5

Nitrogen 1.40 0.74 0.74 296.91 1.65× 10−5

Methane 1.31 0.77 0.84 518.24 1.02× 10−5

Enskog linear transport coefficients are used:

µ = T s, µb = fbµ, k = T s, (17)

where s is the index of the inverse power law of gas molecules, given as

s =
1

2
+

2

ν − 1
. (18)

Here, the parameter ν is the exponent of the inverse power law for the gas-particle interaction

potential. The value of s is assumed to be 0.81 for argon, 0.78 for nitrogen, and 0.84 for methane.59

The physical properties of the tested monatomic, diatomic, and polyatomic gases are listed in Table

II.

C. Estimation of bulk viscosity

In this section, we present a detailed overview of the estimation of the bulk viscosity based

on the theories of gas kinetics and continuums. In the present work, the only rotational mode is

considered to be that which can be excited at room temperature, and therefore ubiquitously over

all flow conditions. For this reason, the excitation of the vibrational mode is usually ignored in the

study of diatomic and polyatomic gases.

Based on the gas kinetic theory, the bulk viscosity µb in single-mode perfect diatomic and

polyatomic gases can be mathematically expressed as60

µb =
pR

C2
v

crotτrot = (γ − 1)p
crot
Cv

τrot. (19)
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Here, Cv is the total specific heat, crot is the rotational energy mode, and τrot is the rotational

relaxation time, which can be computed easily from Parker’s formulas as61

τrot =
π

4

µ

p
Zrot, (20)

where Zrot is the rotational collision number defined as

Zrot =
Z∞rot

1 +
(
π3/2

2

)√
Tr
T

+
(
π2

4
+ π
)
Tr
T

. (21)

For diatomic nitrogen gas, we consider the following parameters: Z∞rot = 15.7, Tr = 80 K,

crot = R, Cv = 5/2R. Thus, based on kinetic theory, the bulk viscosity µb is estimated as

µb =
π

10
(γ − 1)µZrot. (22)

Consequently, the viscosity ratio fb is estimated as

fb =
µb
µ

=
π

10
(γ − 1)Zrot. (23)

Using continuum theory, the bulk viscosity can be estimated as62

µb = Kτ = γpτ, (24)

where K is the isentropic bulk modulus of the fluid,63 defined as K = −V (∂P/∂V ), and τ is the

average relaxation time. For the rotational mode in a single species, this is defined as

τ =
crot
Cv

τrot. (25)

Therefore, for diatomic nitrogen gas, the bulk viscosity based on continuum theory is estimated to

be

µb =
π

10
γµZrot, (26)

and the corresponding viscosity ratio fb is

fb =
µb
µ

=
π

10
γZrot. (27)

The shear viscosity µ is determined separately according to the inverse power law and Suther-

land’s law:

µ =

µr
(
T
Tr

)s
, inverse power law,

µr

(
T
Tr

)1.5 (
Tr+Ts
T+Ts

)
, Sutherland’s law,

(28)
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FIG. 3: Temperature variation of (a) Shear viscosity µ, (b) bulk viscosity µb, and (c) viscosity

ratio fb for nitrogen gas obtained from theories and experiments.

where s is the gas viscosity index, µr is the gas reference viscosity, and Ts = 104 K.

Figure 3 illustrates the temperature variation of the estimated shear viscosity µ, bulk viscosity

µb, and viscosity ratio fb for diatomic nitrogen gas. In Fig. 3(a), the computed shear viscosity is

compared with the experimental data of Vogel et al.,66 the theoretical results using the Green–Kubo

method,47 and the computational results of Hanley et al.64 and Billing et al.65 The selected potential

law replicates the thermodynamic properties of the simulated gas within an appropriate limit of

errors. The estimated bulk viscosity is compared with existing data61,65,67–71 in Fig. 3(b). Clearly,

the bulk viscosity based on kinetic theory is more compatible with the existing data at around 300

K. The viscosity ratio fb obtained by kinetic theory is also far closer to the experimental data than
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that obtained by continuum theory, as can be seen in Fig. 3(c). In summary, the general formula

for the viscosity ratio is not a fixed constant value, but applies to any temperature through Parker’s

Zrot model.

D. Initialization of the problem

To initialize the computational simulation for shock-accelerated bubble, we employ the ambient

condition on the right-hand side of the shock wave. The primitive variables are calculated on the

left-hand side of the shock wave using the Rankine–Hugoniot conditions. The Rankine–Hugoniot

conditions for primitive variable calculations are expressed as

M2
2 =

1 +
[
(γ−1)

2

]
M2

s

γM2
s −

(γ−1)
2

,

p2
p1

=
1 + γM2

s

1 + γM2
2

,

ρ2
ρ1

=
γ − 1 + (γ + 1)p2

p1

γ + 1 + (γ − 1)p2
p1

.

(29)

In the above expressions, Ms denotes the shock Mach number, and the subscripts 1 and 2 denote

the left- and right-hand sides of the shock wave, respectively. In the present study, the shock Mach

number is set to Ms = 1.22.

III. NUMERICAL SCHEME, GRID REFINEMENT, PRECISION ESTIMATION, AND

VALIDATION

A. Explicit mixed-type modal discontinuous Galerkin-based numerical scheme

In recent decades, the discontinuous Galerkin (DG) method has gained widespread popularity

as an alternative approach to solving partial differential equations.51,72–79 In this work, the two-

dimensional physical conservation laws [Eq. (13)] for diatomic and polyatomic gases are solved

in conjunction with the NF constitutive relations [Eq. (16)] by an explicit mixed-type modal DG

solver based on structured meshes that was developed in-house.32,44,45 The computational domain

is discretized into rectangular elements, and scaled Legendre polynomial functions are employed

for the elements. The Gauss–Legendre quadrature rule is implemented for both the volume and the

boundary integrations, and the Roe flux80 is applied for the inviscid term. The local DG scheme78 is
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employed for the auxiliary and viscous fluxes at the elemental interfaces. A polynomial expansion

of third-order accuracy is used to approximate the solutions in the finite element space, and an

explicit third-order accurate strong stability preserving Runge–Kutta scheme is used for the time

integration. The nonlinear total variation bounded limiter proposed by Cockburn and Shu79 is used

to eliminate spurious numerical fluctuations in the solutions.

To visualize the computational results, numerical schlieren images based on the magnitude of

the gradient of the density field are considered:81

Si,j = exp

(
−k(φi,j)

|∇ρi,j|
maxi,j|∇ρi,j|

)
, (30)

where

k(φi,j) =

20 if φi,j > 0.25,

100 if φi,j < 0.25.

FIG. 4: Grid refinement study: contours of density distribution with different mesh sizes for

shock-accelerated cylindrical He bubble surrounded by nitrogen gas at time t = 10.

B. Grid refinement analysis

To evaluate the quality of the computational results, grid refinement analysis is performed by

computing a test case of a shock-accelerated cylindrical He bubble in N2 gas at Ms = 1.22. Six
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FIG. 5: Grid refinement study: profiles of density distribution along the center-line of computed

bubble at time t = 1. The symbols UI,DI, RS, TS1, and RRW1 denote the upstream interface,

downstream interface, reflected shock wave, first-transmitted shock wave, and first-reflected

rarefaction wave, respectively.

uniform rectangular meshes are considered. The labels ‘Mesh 1’–‘Mesh 6’ correspond to meshes

consisting of 100 × 50, 200 × 100, 400 × 200, 800 × 400, 1200 × 600, and 1600 × 800 cells,

respectively. When the IS wave hits the bubble surface, the volume of the bubble is compressed

and the internal shock waves of the bubble form a divergent shape. Figure 4 shows the density

contours for the computed shock-accelerated bubble at time t = 10. The numerical results for

the rolled-up small-scale vortices are well captured with Mesh 6 (1600 × 800 cells). Further, the

density distribution profiles at the early stage (t = 1) along the centerline of the computed bubbles

are illustrated in Fig. 5 to demonstrate the grid sensitivity. The results show that Mesh 6 is very

close to the asymptotic range. Based on this analysis, all subsequent computations are carried out

using Mesh 6.
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C. Precision estimation

For large-scale simulations of the complex combustion gas dynamics in unsteady-state flows, it

is important to estimate the precision and accumulation of errors. The error depends on accuracy

of numerical scheme and grid resolution, and on the number of time steps. For this problem,

Smirnov et al.82,83 proposed a method to estimate the error accumulation and simulation precision.

In the one-dimensional case S1, the relative error of integration is proportional to the mean ratio

of the cell size ∆L to the domain size L1 in the direction of integration in the power, and depends

on the accuracy of the scheme:

S1 ≡
(

∆L

L1

)k+1

. (31)

For a uniform grid, S1 ≡ (1/N1)
k+1, whereN1 is the number of cells in the direction of integration

and k is the order of accuracy of the numerical scheme. The errors provided by Eq. (31) in two

directions are being summed up:

Serr ≡
2∑
i=1

Si. (32)

The allowable value of the total error Smax is typically 1–5%, because the initial and boundary

conditions are usually not known with a higher degree of accuracy. As a result, the following

inequality should be satisfied:

Serr ·
√
n ≤ Smax, (33)

where n is the number of time steps. The maximal allowable number of time steps can then be

determined by the following formula:

nmax =

(
Smax
Serr

)2

. (34)

and the reliability of results can be defined as

Rs =
nmax
n

. (35)

Table III predicts the accumulation of errors for the present DG scheme with different grid

resolutions. The allowable error is considered to be 5%, and the final simulation time is set to

5. As can be seen, the errors accumulate rapidly for the coarse grid and decrease as the grid

resolution increases. The reliability of the results increases with a higher grid resolution and

scheme accuracy. For the present simulations, all results demonstrate that the computational model

is highly reliable, but this may not be the case for longer simulation periods.82,83
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TABLE III: Error estimation.

Allowable Grid Time Number of Accumulated Allowable number Reliability

error (%) resolution simulated time steps error of time steps (Rs = nmax/n)

5 100× 50 5 53 2.60× 10−4 36982 698

5 200× 100 5 107 9.47× 10−5 2.79× 105 2.61× 103

5 400× 200 5 209 3.44× 10−5 2.11× 106 1.01× 104

5 800× 400 5 419 1.26× 10−5 1.57× 107 3.76× 104

5 1200× 600 5 634 7.19× 10−6 4.84× 107 7.63× 104

5 1600× 800 5 845 1.59× 10−6 9.89× 108 1.17× 106

TABLE IV: Validation of the numerical solver: comparison of velocities of characteristic

interface points between experimental data,13 computational data,20 and the present numerical

data. VDI : velocity of downstream interface; VUI : velocity of upstream interface; VJet: velocity

of inward-jet head.

Velocity Present Experimental % Error Computational % Error

VDI (m/s) 148 145 −2.07 146 −1.37

VUI (m/s) 175 170 −2.86 178 1.67

VJet (m/s) 228 230 0.87 227 −0.44

D. Validation of the numerical solver

To verify the reliability and accuracy of the present computational model and numerical DG

solver, the obtained results are compared with the experimental results of Hass and Sturtevant13

and the computational results of Quick and Karni,20 in which the cylindrical gas bubble was filled

with refrigerant-22 (R22) and the ambient zone was composed of air. The aforementioned exper-

imental and computational studies also had a weak shock with Ms = 1.22. Figure 6 compares

the schlieren images between the experimental results13, computational results,20 and the present

numerical results at different times. These numerical simulations share the same initial condi-

tion, resolution, and diffusion layer thickness. As seen from Fig. 6, the schlieren images are

in good agreement across all experimental and computational results, with the vortex structures
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Experiment (Hass & Sturtevant, 1987)

Present

Computation (Quirk & Karni, 1996)

32 μs 62 μs 82 μs 102 μs 245 μs

FIG. 6: Validation of the numerical solver: comparison of numerical schlieren images between

the experimental results [reproduced with permission from Haas and Sturtevant, “Interaction of

weak shock waves with cylindrical and spherical gas inhomogeneities,” J. Fluid Mech. 181,

41-76 (1987). Copyright 1987 Cambridge University Press]13, the computational results

[reproduced with permission from Quirk and Karni, “On the dynamics of a shock–bubble

interaction,” J. Fluid Mech. 318, 129-163 (1996). Copyright 1996 Cambridge University

Press],20 and the present numerical results for a shock-accelerated R22 cylindrical bubble

surrounded by air at different time instants.

resembling one another. Furthermore, Fig. 7 shows the space–time diagram for the characteris-

tic interface points [i.e., upstream interface (UI), downstream interface (DI), and inward-jet head

(jet)]. The numerical results are in good agreement with the experimental results.13 The posi-

tions and speeds of the various shock waves and the interfaces are accurately simulated by the

computational model.

The velocities of these characteristic interface points (VDI , VUI , and VJet), together with the

time intervals involved in their computation, are presented alongside those obtained by Hass and

Sturtevant13 and Quick and Karni20 in Table IV. These velocities are estimated during the prop-

agation inside the bubble and taken along the x−direction of the centerline of the domain. The
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FIG. 7: Validation of the numerical solver: comparison of computed characteristic interface

points (UI, DI, and Jet) between the experimental results [reproduced with permission from Haas

and Sturtevant, “Interaction of weak shock waves with cylindrical and spherical gas

inhomogeneities,” J. Fluid Mech. 181, 41-76 (1987). Copyright 1987 Cambridge University

Press]13 and the present numerical results for a shock-accelerated R22 cylindrical bubble

surrounded by air. The definitions of the characteristic interface points are inserted.

discrepancy between the experimental, computational, and simulated velocities can be seen in Fig.

7, where the characteristic interface points do not exactly coincide. These discrepancies could be

caused by the current numerical model ignoring the mass fraction term.

Further, the current computational model is also validated through a comparison with the three-

dimensional experimental work of Ding et al.84 Figure 8 shows schlieren images of the experi-

mental results of Ding et al.84 and the present numerical (two-dimensional) results for a three-

dimensional convex N2 cylinder surrounded by SF6 with Ms = 1.29 at selected time instants. The

evolved shock wave patterns and the convex cylinder shape are in good agreement at these time

instants, indicating that the current numerical model is sufficiently accurate.
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Experiment 3D results (Ding et al., 2017)

Present 2D results

Experiment 3D results (Ding et al., 2017)

Present 2D results

FIG. 8: Validation of the numerical solver: comparison of numerical schlieren images between

the experimental three-dimensional results [reproduced with permission from Luo et al., “On the

interaction of a planar shock with a three-dimensional light gas cylinder,” J. Fluid Mech. 828,

289 (2017). Copyright 2017 Cambridge University Press]84 and the present numerical

(two-dimensional) results for a three-dimensional convex N2 cylinder surrounded by SF6 with

Ms = 1.29 at different time instants.

IV. RESULTS AND DISCUSSION: SHOCK-ACCELERATED CYLINDRICAL LIGHT

BUBBLE IN DIATOMIC AND POLYATOMIC GASES

In this section, the flow morphology of the shock-accelerated cylindrical light bubble in di-

atomic and polyatomic gases is investigated. The impacts of an initial interface perturbation on

the flow morphology, wave patterns, vorticity distribution, interface movements, and qualitative

analysis are emphasized. An incident shock wave with Ms = 1.22 is selected for the numerical
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TABLE V: Atwood number (At) for ambient gas–bubble configurations.

Ambient gas–bubble configuration ρg (kg/m3) ρb (kg/m3) At

Argon− Helium 1.78 0.16 -0.80

Nitrogen− Helium 1.25 0.16 -0.77

Methane− Helium 0.72 0.16 -0.64

simulations. Helium is used as the bubble gas; this has been widely adopted as the light gas in

studies of the RM instability. To investigate the flow morphology of shock-accelerated cylindri-

cal He bubble in diatomic and polyatomic gases, three different types of gases—argon, nitrogen,

and methane—are considered as the gas surrounding the bubble. The physical properties of these

gases are summarized in Table II, and the Atwood number for each ambient gas–bubble gas con-

figuration is listed in Table V.

This section is divided into three parts. First, the overall flow morphology of a shock-

accelerated cylindrical He bubble in nitrogen gas is discussed in depth. The impacts of diatomic

and polyatomic gases on the flow morphology of the shock-accelerated cylindrical He bubble

are then systematically investigated to highlight the differences in comparison with monatomic

gases. This investigation includes flow morphology visualization, vorticity generation, degree of

thermal nonequilibrium, enstrophy, and dissipation rate. Quantitative analysis based on the shock

trajectories and interface features provides a deeper understanding of the effects of diatomic and

polyatomic gases. Finally, the impacts of bulk viscosity on the dynamics of the shock-accelerated

bubble are investigated.

A. Visualization of overall flow morphology

Visualization of the flow evolution is considered the most interesting phenomenon during the

interaction between an IS wave and a gas bubble. To understand this phenomenon, we conducted

an extensive investigation of the time evolution of flow morphology for the shock-accelerated

cylindrical He bubble. Figure 9 illustrates a sequence of density contours and numerical schlieren

images for a cylindrical He bubble surrounded by nitrogen gas (fb = 0.8) accelerated by a planar

IS wave with Ms = 1.22 at different time instants. Before interacting with the IS wave, the initial

state of the bubble interface can be clearly observed (t = 0). When the IS wave reaches the bubble
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FIG. 9: Visualization of overall flow morphology of the shock-accelerated cylindrical He bubble

in nitrogen gas: time evolution of density contour (top), and numerical schlieren images (bottom).

interface, the bubble begins to compress. In addition, a transmitted shock wave (TS1) propagat-

ing downstream inside the bubble is generated, while a reflected shock wave (RS1) simultaneously

travels upstream (t = 1). This process is known as the first step of the reflection–transmission pro-

cess. The propagation speed of the IS wave inside the bubble is smaller than that in the surrounding
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gas due to the small acoustic impedance. Therefore, the generated TS1 inside the bubble travels

faster behind the IS wave. As the interaction develops, the IS and TS1 waves form a quadruple

shock in the gas, which reveals irregular refraction. As a consequence, a Mach reflection con-

figuration is generated with a Mach step (MS), triple point (TP), and slip surface (SS), as can be

seen at t = 2. Later, a secondary transmitted shock wave (TS2) is observed near the downstream

interface (t = 2.5). As TS1 crosses the middle region of the bubble, a second reflected shock

wave (RS2) is generated in the bubble upstream. This is produced by the deformed interface due

to the difference in acoustic impedance of the internal and external gases (t = 3.5), which can be

considered as the second step of the reflection–transmission process.

As time proceeds, another reflected shock wave (RS3) within the bubble moves upwards and

then hits the upstream interface, generating a third transmitted shock wave (TS3) at t = 4.5,

known as the third step of the reflection–transmission process. Simultaneously, the flow fields

become more complicated near the downstream interface, and a fourth transmitted shock wave

(TS4) appears (t = 4.5). During the interaction, the bubble is gradually deformed. The density

inhomogeneity is accelerated at the very beginning, and the upstream bubble interface is flat (t =

1− 3.5). The evolving bubble interface then starts to transform into a mushroom shape at t = 4.5,

and a re-entrant gas jet head is subsequently generated near the center of the bubble (t = 6). As

time proceeds, the jet catches up with the downstream bubble interface, and then a pair of vortex

rings (VR) connected with a bridge (B) emerge and grow almost symmetrically (t = 10 − 20).

Eventually, the flow field is completely controlled by the VR.

B. Effects of diatomic and polyatomic gases on shock-accelerated cylindrical He bubble

1. Flow morphology visualization

Figure 10 demonstrates the impacts of diatomic and polyatomic gases on the flow morphology

in the shock-accelerated cylindrical He bubble at various time instants. In all three cases, a Mach

reflection configuration, including four transmitted shock waves (TS1, TS2, TS3, TS4) and three

reflected rarefaction waves (RSW1, RSW2, RSW3), is formed due to the intense interaction be-

tween the IS wave and the cylindrical bubble. In argon gas (fb = 0), the interaction process is

sluggish and weak due to the high density of the ambient gas, as shown in Fig. 10(a). As the IS

wave passes, the multiple transmitted shock waves and reflected rarefaction waves appear during
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(a) Argon gas (fb = 0)

(b) Nitrogen gas (fb = 0.8)

(c) Methane gas (fb = 1.33)

FIG. 10: Effects of diatomic and polyatomic gases on the shock-accelerated cylindrical He

bubble: numerical schlieren images in (a) argon gas (fb = 0), (b) nitrogen gas (fb = 0.8), and (c)

methane gas (fb = 1.33) at different time instants.

the interaction process. Subsequently, a re-entrant gas jet head is found in the centerline near the

right interface of the bubble. In the case of nitrogen gas (fb = 0.8), the interaction process is

stronger, and the re-entrant gas jet is larger than with argon, as shown in Fig. 10(b). Additionally,

the size and strength of the rolled-up vortices increase significantly, and these vortices are con-

spicuous at the interface between the bubble and surrounding gas due to the baroclinic vorticity

deposition. In methane gas (fb = 1.33), certain areas near the bubble interface become larger after

a long time, as shown in Fig. 10(c). Moreover, the expansion of the reflected rarefaction waves can

be observed in these larger regions. The size of the rolled-up vortices increases and the connect-

ing bridge between the generated vortex pair becomes narrower. Interestingly, a thick He inward

re-entrant gas jet is generated in argon gas, while a different kind of thin He inward re-entrant gas

jet is formed in nitrogen and methane due to the second instabilities. Later, the He jet becomes

vertically elongated with a weaker head because of the diffusion and mixing of the two gases, and

the interface develops strong vortex rings (t = 13). Because of the Kelvin–Helmholtz instability,
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the interface then breaks up, resulting in a slew of small-scale structures.

FIG. 11: Effects of diatomic and polyatomic gases on the shock-accelerated cylindrical He

bubble: evolution of the bubble shape showing early compression in (a) argon gas (fb = 0), (b)

nitrogen gas (fb = 0.8), and (c) methane gas (fb = 1.33).

Further, the evolution of the bubble shape during the interaction with the IS wave, shown in Fig.

11, illustrates the effects of diatomic and polyatomic gases on the shock-accelerated cylindrical

He bubble. The bubble appears to be compressed by the IS wave along the x−direction, and,

compared with its middle section, the top and bottom edges have been pushed forward near the

horizontal axis of symmetry. At the beginning of the interaction, this compression starts as soon

as the IS wave hits the upstream end of the bubble. For all three gases, both the upstream and

downstream interfaces travel fast, and the middle section of the upstream interface is initially
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pressed inward under the influence of the IS wave, as shown in Figs. 11(a)–11(c). Over time,

the upper and lower interfaces of the bubble fold inward toward the upstream axis, and the bubble

deforms into a divergent shape. Some small-scale rolled-up vortices are generated on the upper

and lower interfaces due to baroclinic vorticity generation. In the case of argon gas, the rolled-up

vortices are relatively small. These rolled-up vortices are continuously increasing over time. At

later stages, the flow field is completely controlled by the rolled-up vortices. Different types of

inward jet-head can be observed near the downstream boundary for each ambient gas, although

these gradually disappear with time, as shown in Figs. 11(a)–11(c). Eventually, the flow field is

completely controlled by the vortex pairs.
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FIG. 12: Schematic diagram of the vorticity generation on the interface of a cylindrical light

bubble during and after initial shock wave transit.

2. Dynamics of vorticity generation

In the investigation of a shock-accelerated bubble, the vorticity due to the misalignment of

the pressure and the density gradients plays a vital role in understanding the flow morphology

phenomena during the interaction process. We now look at how the baroclinic vorticity term

affects the IS and TS1 waves as they pass through the stationary bubble interface early in their

evolution. In the shock-accelerated bubble, the dominant pressure gradient occurs in the plane

IS wave, while the dominant density gradient can be found at the bubble interface. When the

plane IS wave passes over the bubble, it does not deform the bubble significantly. The resulting

vorticity lies on the bubble interface, and has a sinusoidal distribution of magnitude with maxima

at the top and bottom edges of the bubble, decreasing to zero at the front and back edges. A
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schematic diagram of the vorticity generation on the bubble interface after the initial IS wave

transits across the light gas bubble is illustrated in Fig. 12. As the pressure and density gradients

are perfectly aligned at the upper and lower interfaces, a small quantity of vorticity is generated

at the upper and lower interfaces by the IS wave. As the IS wave propagates along the upper

and lower interfaces, Mach reflection occurs, in which the Mach stem (MS) connects the IS wave

with the interfaces. Therefore, the MS contributes to the pressure gradient that causes vorticity

generation on the interface, and the baroclinic vorticity term is thus gradually triggered as the IS

wave travels upwards over the interfaces.

(a) Argon gas (fb = 0)

(b) Nitrogen gas (fb = 0.8)

(c) Methane gas (fb = 1.33)

FIG. 13: Effects of diatomic and polyatomic gases on the shock-accelerated cylindrical He

bubble: contours of vorticity distribution in (a) argon gas (fb = 0), (b) nitrogen gas (fb = 0.8),

and (c) methane gas (fb = 1.33) at different time instants.

Figure 13 illustrates the effects of the diatomic and polyatomic gases on the vorticity distribu-

tion of the shock-accelerated cylindrical He bubble at different time instants. Initially, the vorticity

is equal to zero everywhere. As the IS wave passes across the bubble, the baroclinic vorticity is

deposited locally on the bubble interface, where the discontinuity between the He gas and the am-

bient gas exists. At the top and bottom interfaces of the bubble, where the density and pressure
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gradients are orthogonal, the vorticity attains its maximum magnitude; at the regions of the in-

terface where the density and pressure gradients are collinear, the vorticity is zero. A significant

quantity of positive vorticity is generated along the upper half of the bubble interface, and a sig-

nificant quantity of negative vorticity is generated along the lower half of the bubble interface, as

shown in Figs. 13(a)–13(c). This is because the IS wave propagates from left to right along the

bubble interface. As a result, the density gradient is directed radially outward everywhere along

the bubble interface and the pressure gradient acts across the upstream IS wave. After passing the

bubble, the transmitted shock wave produces a small quantity of vorticity in the filaments con-

necting the rolled-up vortices. Some negative (positive) vorticity is concentrated on the upper-half

(lower-half) plane of the generated inward jet head. It can be observed that there are substantial

gaps in the vorticity distribution for the various gases after the interaction. For argon gas, a small

quantity of vorticity is generated around the rolled-up vortices on the bubble interface, as shown

in Fig. 13(a). These rolled-up vortices are more pronounced for nitrogen and methane, as seen in

Figs. 13(b) and 13(c). In summary, the generation and distribution of vorticity play a dominant

role in the diatomic and polyatomic gases when rolled-up vortices are formed.

The vorticity on the bubble interface plays a crucial role in gas mixing inside and outside

the bubble. Therefore, to obtain a better understanding of the physics of vorticity generation

in diatomic and polyatomic gases, four important spatially integrated fields are investigated in

detail: (i) average vorticity (ωav), (ii) absolute dilatation vorticity (|ωdil|), (iii) absolute baroclinic

vorticity (|ωbar|), and (iv) absolute viscous vorticity (|ωvis|). The spatially integrated field of

average vorticity is defined as

ωav(t) =

∫
D
|ω|dxdy∫
D
dxdy

, (36)

where D represents the entire computational domain. The spatially integrated field of absolute

dilatation vorticity is computed as follows:

|ωdil|(t) = −
∫
D

|ω(∇ · u)| dxdy. (37)

The spatially integrated field of absolute baroclinic vorticity is given by

|ωbar|(t) =

∫
D

∣∣∣∣ 1

ρ2
(∇ρ×∇p)

∣∣∣∣ dxdy. (38)

Finally, the spatially integrated field of absolute viscous vorticity is defined as

|ωvis|(t) =

∫
D

|ωviscous| dxdy. (39)
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where

ωviscous =
µ

ρ
∇2ω − µ

ρ2
(∇ρ×∇2u)−

(
1

3
+ fb

)
µ

ρ2
∇ρ×∇(∇ · u) +

1

ρ
(∇µ · ∇)ω

+
1

ρ
(ω · ∇)∇µ− ω

ρ
∇2µ+

1

ρ
∇µ×∇2u +

2

ρ
∇ (∇µ · ∇)× u− 1

ρ2
∇ρ× (∇µ× ω)

− 2

ρ2
∇ρ× (∇µ · ∇) u +

(
2

3
− fb

)
(∇ · u)

ρ2
∇ρ×∇µ+

1

ρ
∇µ×∇(∇ · u).

(a) (b)

(c) (d)

FIG. 14: Effects of diatomic and polyatomic gases on the shock-accelerated cylindrical He

bubble: spatially integrated fields of (a) average vorticity (ωav), (b) absolute dilatational vorticity

(|ωdil|), (c) absolute baroclinic vorticity (|ωbar|), and (d) absolute viscous vorticity (|ωvis|).

Figure 14 illustrates the effects of diatomic and polyatomic gases on the spatially integrated

fields of average vorticity, absolute dilatational vorticity, absolute baroclinic vorticity, and absolute
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viscous vorticity in the shock-accelerated cylindrical He bubble. It can be observed that argon

gives the smallest values of these spatially integrated fields when the incident and reflected shock

waves collide with the bubble. The spatially integrated fields are substantially enhanced in the

case of methane gas. For all three gases, the spatially integrated fields increase with time, which

implies that the ambient gas is increasingly entrained into the distorted cylindrical He bubble. The

vortices produced by the shock wave–bubble interaction encourage the mixing of ambient gas with

the cylindrical He bubble. When the reflected shock waves impinge on the distorted He bubble

again, the spatially integrated fields exhibit their greatest growth rate, which indicates that the

vorticities are significantly enhanced during this period, as shown in Fig. 14. The growth rate then

slows under the influence of the higher viscosity in the flow field. As a result, the evolution of

the spatially integrated fields for vorticity and its associated components does not exhibit a simple

monotonic relationship with the ambient gas.

(a) Argon gas (fb=0) (b) Nitrogen gas (fb=0.8) (c) Methane gas (fb=1.33)

FIG. 15: Effects of diatomic and polyatomic gases on the shock-accelerated cylindrical He

bubble: contours of degree of thermal non-equilibrium (R) for (a) argon gas (fb = 0), (b)

nitrogen gas (fb = 0.8), and (c) methane gas (fb = 1.33) at time t = 12.

3. Degree of thermal nonequilibrium

In the theory of irreversible thermodynamics, the degree of thermal nonequilibrium based on

Rayleigh–Onsager theory85 is a vital component, and is directly related to entropy production in

nonequilibrium processes. To demonstrate the degree of thermal nonequilibrium, the Rayleigh–

Onsager dissipation function (R) is defined as follows:43,50

R∗ =
γM2/Re

p∗

[
Π∗ : Π∗ + 2γ′fb∆

∗2 +
2

EcPr

Q∗ ·Q∗

T ∗

]1/2
, (40)
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where γ′ = (5 − 3γ)/2. The symbols Π∗, ∆∗, and Q∗ denote the viscous stress, excess normal

stress, and heat flux, respectively.
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FIG. 16: Effects of diatomic and polyatomic gases on the shock-accelerated cylindrical He

bubble: spatially integrated fields of degree of thermal non-equilibrium.

In the shock-accelerated bubble, the mathematical expression ofR defined in Eq. (40) measures

the regions of the bubble interface that deviate significantly from the local equilibrium state. Figure

15 illustrates the contours of the degree of thermal nonequilibrium at time instant t = 12 when the

IS wave collides with the bubble interface. The contours of the degree of thermal nonequilibrium

depict the regions where the flow experiences sudden changes and the degree of nonequilibrium

is higher than in other parts of the computational domain. A higher degree of thermal nonequilib-

rium is observed at the bubble interface, where the interaction produces the most visible nonequi-

librium (as high as R = 150). The numerical results show that the degree of nonequilibrium is

much higher for diatomic and polyatomic gases than for monatomic gases. The reason behind this

physical phenomenon is the presence of significantly higher values of the viscous stress, excess

normal stress, and heat flux in diatomic and polyatomic cases. To obtain a better understanding of

the effects of diatomic and polyatomic gases on the shock-accelerated cylindrical He bubble, the

degree of thermal nonequilibrium can be explained based on the spatially integrated fields during

the interaction. Figure 16 depicts the spatially integrated fields of the degree of thermal nonequi-
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librium. The results reveal that, during the interaction, the degree of thermal nonequilibrium rises

significantly in diatomic and polyatomic gases.

4. Enstrophy and dissipation rate

The physical phenomena of vorticity generation during the interaction can be further explained

by measuring the time evolution of the enstrophy. The time evolution of the enstrophy can be

defined as the area integral of the square of the vorticity in the flow field:

Ω(t) =

∫
D

ω2dxdy. (41)

Moreover, the viscous effects of diatomic and polyatomic gases can be investigated by introducing

the area-weighted dissipation rate of kinetic energy:

ε(t) =

∫
D

E(x, y, t)dxdy, (42)

where E(x, y, t) represents the dissipation rate per unit volume, which is defined as

E(x, y, t) = −((Πxx + fb∆)Sxx + ΠxySxy + ΠyxSyx + (Πyy + fb∆)Syy). (43)

Here, Πii is the viscous shear stress, ∆ is the excess normal stress, and Sij is the strain rate, defined

as Sij = ∂ui/∂xj .

Figure 17 illustrates the effects of diatomic and polyatomic gases on the enstrophy and dissi-

pation rate in the shock-accelerated cylindrical He bubble at time t = 12. There are significant

differences in enstrophy and dissipation rate for the different gases after the interaction. Higher

values of the enstrophy and dissipation rate are found inside the rolled-up vortices of the deformed

bubble interface. In comparison with monatomic gases, the enstrophy and dissipation rate during

the interaction are substantially enhanced in diatomic and polyatomic gases. To further explore the

effects of diatomic and polyatomic gases on the shock-accelerated cylindrical He bubble, the spa-

tially integrated fields of the enstrophy and dissipation rate are shown in Fig. 17. The enstrophy

and dissipation rate during the interaction are substantially higher for diatomic and polyatomic

gases than for monatomic gases. Diatomic and polyatomic gases exhibit very similar evolution

profiles. Specifically, the enstrophy increases when the IS and RS waves impinge on the bub-

bles. Subsequently, the enhanced vorticity promotes the mixing of gases inside and outside the

gas bubble, and thus accelerates the transfer and consumption of vorticity energy, which gradually
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Argon gas (fb=0) Nitrogen gas (fb=0.8) Methane gas (fb=1.33)

(a) Enstrophy

(b) Dissipation rate

FIG. 17: Effects of diatomic and polyatomic gases on the shock-accelerated cylindrical He

bubble: contours of (a) enstrophy (Ω), and (b) dissipation rate (ε) in argon gas (left), nitrogen gas

(middle), and methane gas (right) at time t = 12.
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FIG. 18: Effects of diatomic and polyatomic gases on the shock-accelerated cylindrical He

bubble: spatially integrated fields of (a) enstrophy (Ω), and (b) dissipation rate (ε).
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weakens the enstrophy intensity in the bubble region, as shown in Fig. 18(a). This phenomenon

can also be observed in the time evolution of the dissipation rate, as shown in Fig. 18(b). More-

over, nonmonotonic trends appear in the enstrophy and dissipation rate throughout the interaction

process.

(a) (b)IS

DIUI

UI

DIJet

FIG. 19: Schematic diagram with the shock trajectory points during the interaction between the

shock and light bubble: (a) early stage of the interaction, (b) a time instant after the shock wave

passed through the bubble. Characteristics interface points: incident shock IS; upstream interface

UI; downstream interface DI; and jet-head.

5. Shock trajectories and interface features

To investigate the effects of diatomic and polyatomic gases on the shock-accelerated cylindrical

He bubble, a quantitative analysis of the shock trajectories and interface features is now presented.

Figure 19 shows a schematic diagram of the shock trajectory points (incident shock IS; upstream

interface UI; downstream interface DI; and jet-head) at an early stage of the interaction and after

the shock wave has passed through the bubble. Figure 20 illustrates the effects of diatomic and

polyatomic gases on the shock trajectory points (IS, UI, DI, and jet) indicated in Fig. 19. It can be

observed from these figures that the fastest IS wave occurs in methane, while the slowest wave is

formed in argon.

Figure 21 illustrates the effects of diatomic and polyatomic gases on the temporal variations

of the interfacial characteristic scales (i.e., the length and height of the evolving interface) for the

computed cylindrical He bubble. The length and height of the evolving interface are defined in

the figure. Early shock compression rapidly reduces the length of the evolving interface after the
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FIG. 20: Effects of diatomic and polyatomic gases on the shock-accelerated cylindrical He

bubble: shock trajectories (IS, UI, DI and Jet) for the computed bubble in (a) argon gas (fb = 0),

(b) nitrogen gas (fb = 0.8), and (c) methane gas (fb = 1.33).

incident shock arrives for all ambient gases, as shown in Fig. 21(a). The interface lengths in

argon, nitrogen, and methane gases reach a minimum value at around t = 5, 4, and 3, respectively.

As indicated in Fig. 21(a), the upstream interface becomes flatter at this moment. Later, after

the compression phase, the variation of length with time tends to increase due to the enhanced

rolled-up vortices, as seen in Fig. 10. However, the growth in the width of the evolving interface

gradually decreases and tends to a constant value after t = 18, at which time the He jet reaches

the downstream interface. When the He jet penetrates through the evolving interface, a vortex

pair with a nearly constant distance between the two components gradually develops. Figure
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(a) (b)

FIG. 21: Effects of diatomic and polyatomic gases on the shock-accelerated cylindrical He

bubble: temporal variations of the interfacial characteristic scales−(a) the length, and (b) the

height− of the evolving interface for the computed bubble. The definitions of the length and the

height of the evolving interface are inserted.

21(b) shows that methane gives the maximum interface height, while argon produces the minimum

interface height.

C. Effects of bulk viscosity on shock-accelerated cylindrical He bubble

The bulk viscosity plays a vital role in the nonequilibrium effects of diatomic and polyatomic

gases. To investigate the effect of bulk viscosity on a shock-accelerated cylindrical He bubble,

the contours of the degree of thermal nonequilibrium (R) and the dissipation rate (ε) for both

nitrogen and methane gases at t = 13 are plotted in Fig. 22. In these plots, the upper part

corresponds to the numerical simulation without the bulk viscosity ratio, i.e., fb = 0, whereas the

lower part corresponds to the same simulation with the bulk viscosity ratio. The bulk viscosity has

a non-negligible effect on the flow morphology of the shock-accelerated cylindrical He bubble,

particularly in terms of the creation of the rolled-up vortices in the absence and presence of the

excess normal stress, i.e., ∆ = 0 and ∆ 6= 0, as shown in Figs. 22(a) and 22(b). Note that the

excess normal stress is proportional to fb (∆ = −fbµ∇ · u). Interestingly, the deformed bubble

interface is more pronounced with fb 6= 0 than when fb = 0. Moreover, there is a significant

increase in the degree of thermal nonequilibrium and the dissipation rate with a nonzero fb value
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in both nitrogen and methane gases, as seen in Figs. 22(a) and 22(b).

The nonequilibrium effect of the bulk viscosity can also be seen in the spatially integrated

fields of physical quantities, i.e., degree of thermal nonequilibrium and dissipation rate during the

interaction process, as shown in Fig. 23. From the evolution profiles, it is clear that a nonzero bulk

viscosity significantly influences the flow morphology, resulting in nonequilibrium phenomena in

diatomic and polyatomic gases.

(a) Degree of nonequilibrium

(b) Dissipation rate

Nitrogen gas Methane gas

FIG. 22: Effects of bulk viscosity on the shock-accelerated cylindrical He bubble: contours of (a)

degree of nonequilibrium, and (b) dissipation rate for nitrogen (left), and methane gases (right) at

time instant t = 13.
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(a) (b)

FIG. 23: Effects of bulk viscosity on the shock-accelerated cylindrical He bubble: spatially

integrated fields of (a) degree of nonequilibrium, (b) dissipation rate in nitrogen, and methane

gases.

V. CONCLUDING REMARKS

Shock-accelerated bubbles have long been an intriguing topic for understanding the fundamen-

tal physics of turbulence generation and mixing caused by the Richtmyer–Meshkov (RM) instabil-

ity. This study has investigated the impacts of bulk viscosity on the flow morphology of a shock-

accelerated cylindrical light bubble in diatomic and polyatomic gases. A two-dimensional system

of unsteady physical conservation laws for diatomic and polyatomic gases was rigorously derived

from the Boltzmann–Curtiss kinetic equations and solved by employing an explicit mixed-type

modal discontinuous Galerkin method with uniform meshes. A new complete viscous compress-

ible vorticity transport equation including the bulk viscosity was also derived. The computational

model was validated against existing experimental and numerical data for the shock-accelerated

cylindrical light bubble problems.

The numerical results reveal that the effects of bulk viscosity associated with the viscous ex-

cess normal stress, including different physical properties of diatomic and polyatomic gases, play

a vital role in describing the RM instability during the interaction between a planar shock wave

and a light bubble. Other physical properties, such as the density and specific heat ratio, may also

have contributed to the current observations. The effects of diatomic and polyatomic gases result

in a significant change in the flow morphology, including complex wave patterns, vortex creation,
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vorticity generation, and bubble deformation. In contrast to monatomic gases, diatomic and poly-

atomic gases generate larger rolled-up vortex chains, different kinds of inward jet formation, and

large mixing zones with strong and large-scale expansion.

The effects of diatomic and polyatomic gases have been studied in depth through the vorticity

generation, degree of nonequilibrium, enstrophy, and dissipation rate. Interestingly, both vorticity

and the degree of nonequilibrium play an important role in describing the essential features of the

shock-accelerated bubble. In addition, the time variations of the shock trajectories and interface

features were investigated. Finally, the effects of bulk viscosity, which is directly related to the ro-

tational mode, were investigated. The numerical results have demonstrated that the bulk viscosity

is pivotal in generating the nonequilibrium effects observed in diatomic and polyatomic gases, and

substantially changes the flow fields of the bubble after interaction with the IS wave. Increasing

the bulk viscosity ratio significantly enhances the degree of nonequilibrium and the dissipation

rate.

The primary focus of this research was to investigate the impacts of bulk viscosity with the

different physical properties of diatomic and polyatomic gases on a shock-accelerated cylindrical

light bubble with a single-component gas model. However, the vibrational mode of the gases

and the chemical reaction kinetics, including the bulk viscosity beyond Stokes’ hypothesis, play

an essential role in determining the nonequilibrium effects of diatomic and polyatomic gases in

compressible multicomponent gas flows. It is also expected that the nonequilibrium behavior will

significantly affect the development of the RM instability in compressible multicomponent gas

flows. In this context, the present work will be expanded in the future to investigate the effects

of the vibrational mode and chemical reaction kinetics, including the bulk viscosity, on the flow

dynamics in shock-accelerated polygonal bubbles with different interface shapes.
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Appendix A: DERIVATION OF COMPLETE VISCOUS COMPRESSIBLE VORTICITY

TRANSPORT EQUATION INCLUDING THE BULK VISCOSITY

We consider flows of diatomic and polyatomic gases with considerable variations in tempera-

ture in the flow fields. As we are dealing with diatomic and polyatomic gases, we abandon Stokes’

hypothesis, resulting in the following compressible version of the momentum equation with vary-

ing transport coefficients:

∂(ρu)

∂t
+∇ · (ρuu + pI)−∇ ·

(
2µ[∇u](2)

)
−∇ · (µb(∇ · u)I) = 0. (A1)

The corresponding viscous compressible vorticity transport equation, after lengthy derivation,

can be summarized as

Dω

Dt
= (ω · ∇)u− ω(∇ · u) +

µ

ρ
∇2ω

+
1

ρ2
∇ρ×∇p− µ

ρ2
∇ρ×∇2u−

(
1

3
+ fb

)
µ

ρ2
∇ρ×∇(∇ · u)

+
1

ρ
(∇µ · ∇)ω +

1

ρ
(ω · ∇)∇µ− ω

ρ
∇2µ+

1

ρ
∇µ×∇2u +

2

ρ
∇ (∇µ · ∇)× u

− 1

ρ2
∇ρ× (∇µ× ω)− 2

ρ2
∇ρ× (∇µ · ∇) u +

(
2

3
− fb

)
(∇ · u)

ρ2
∇ρ×∇µ+

1

ρ
∇µ×∇(∇ · u).

(A2)

We believe this equation to be new. (In the previous literature, only the first four of the fifteen

terms on the right-hand side were retained.) The second line is related to∇ρ, the third line includes

terms in ∇µ, and the fourth line has terms in ∇ρ (or ∇(∇ · u)) and ∇µ. There are two terms

associated with the bulk viscosity, −fb [µ∇ρ×∇(∇ · u) + (∇ · u)∇ρ×∇µ] /ρ2.

The detailed derivation of Eq. (A2) from Eq. (A1) can be summarized as follows. The conser-

vation law of momentum can be rewritten as

∂ρ

∂t
= −(u · ∇)u− 1

ρ
∇p+

1

ρ
∇ ·
(
2µ[∇u](2) + µb(∇ · u)I

)
,

Or
∂ρ

∂t
= −(u · ∇)u− 1

ρ
∇p+

1

ρ
∇ ·
[
µ
(

2 [∇u](2) + fb(∇ · u)I
)]
.

(A3)

Using the relation

2 [∇u](2) ≡ (∇uT +∇u)− 2

3
(∇ · u)I = 2∇uT + tensor(ω)− 2

3
(∇ · u)I, (A4)
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we can show that

1

ρ
∇ ·
(

2µ [∇u](2)
)

=
1

ρ
∇ ·
[
2µ∇uT + µ tensor(ω)− 2

3
µ(∇ · u)I

]
=

1

ρ

[
2∇ · (µ∇uT ) +∇ · (µ tensor(ω))− 2

3
∇ (µ(∇ · u))

]
=

1

ρ

[
2∇ · (µ∇uT ) +∇× (µω)− 2

3
∇ (µ(∇ · u))

]
1

ρ
∇ · (fbµ(∇ · u)I) =

fb
ρ
∇(µ(∇ · u))

(A5)

and

∂u

∂t
= −(u · ∇)u− 1

ρ
∇p+

2

ρ
∇ · (µ∇uT ) +

1

ρ
∇× (µω) +

1

ρ

(
fb −

2

3

)
∇(µ(∇ · u)). (A6)

Using the following identities for a scalar φ, vector A, and tensor T:

∇ · (φA) = φ∇ ·A + A · ∇φ,

∇ · (φT) = φ∇ ·T + T · ∇φ,

∇× (φA) = φ∇×A +∇φ×A,

∇× (∇×A) = ∇(∇ ·A)−∇2A,

we obtain

∇ · (µ∇uT ) = (∇µ · ∇)u + µ∇2u,

∇× (µω) = µ∇× ω +∇µ× ω = µ∇(∇ · u)− µ∇2u +∇µ× ω.
(A7)

Then, Eq. (A6) can be rewritten as

∂u

∂t
= −(u · ∇)u− 1

ρ
∇p+

µ

ρ
∇2u +

2

ρ
(∇µ · ∇)u +

1

ρ
(∇µ× ω)

+
µ

ρ
∇(∇ · u) +

1

ρ

(
fb −

2

3

)
∇(µ(∇ · u)).

(A8)

Finally, we can derive the viscous compressible vorticity transport equation in Eq. (A2) by apply-

ing∇× to each term.

First term:

∇×
(
∂u

∂t

)
=
∂(∇× u)

∂t
=
∂ω

∂t
.
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Second term:

−∇× [(u · ∇)u] = −∇×
[
∇
(u · u

2

)
+ ω × u

]
= −∇× (ω × u)

= ∇ · (ωu− uω) = (ω · ∇)u− (u · ∇)ω − ω(∇ · u),

where we have used the following identities for a scalar φ and vectors A, B:

∇×∇φ = ∇ · (∇×A) = 0,

∇× (A×B) = ∇ · (BA−AB).

Third term:

−∇×
(

1

ρ
∇p
)

=
1

ρ2
∇ρ×∇p− 1

ρ
∇×∇p =

1

ρ2
∇ρ×∇p.

Fourth term:

∇×
(
µ

ρ
∇2u

)
= ∇

(
µ

ρ

)
×∇2u +

µ

ρ
∇× (∇2u) = ∇

(
µ

ρ

)
×∇2u− µ

ρ
× (∇× ω)

= ∇
(
µ

ρ

)
×∇2u +

µ

ρ
∇2ω =

1

ρ
∇µ×∇2u− µ

ρ2
∇ρ×∇2u +

µ

ρ
∇2ω.

Fifth term:

∇×
[

2

ρ
(∇µ · ∇)u

]
= − 2

ρ2
∇ρ× (∇µ · ∇)u +

2

ρ
(∇µ · ∇)ω +

2

ρ
∇(∇µ · ∇)× u.

Sixth term:

∇×
(

1

ρ
∇µ× ω

)
= − 1

ρ2
∇ρ× (∇µ× ω) +

1

ρ
∇× (∇µ× ω)

= − 1

ρ2
∇ρ× (∇µ× ω) +

1

ρ
(ω · ∇)∇µ− 1

ρ
(∇µ · ∇)ω − ω

ρ
∇2µ.

Seventh term:

∇×
[
µ

ρ
∇(∇ · u)

]
= ∇

(
µ

ρ

)
×∇(∇ · u) =

1

ρ
∇µ×∇(∇ · u)− µ

ρ2
∇ρ×∇(∇ · u).
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Eighth term:

∇×
[

1

ρ

(
fb −

2

3

)
∇(µ(∇ · u))

]
=

(
fb −

2

3

)
∇
(

1

ρ

)
×∇(µ(∇ · u))

= −
(
fb −

2

3

)[
(∇ · u)

ρ2
∇ρ×∇µ+

µ

ρ2
∇ρ×∇(∇ · u)

]
.
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