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Abstract  

The present work investigates the bubble formation and vortex shedding phenomena in the 

viscous flow of a compressible gas seeded with dust particles. A new modal discontinuous 

Galerkin method was developed for solving the two-fluid model of dusty gas flows. Most 

previous studies have been limited to flows with low Mach numbers without the presence of 

shock waves. This study considered a wider Mach number range, from subsonic to 

supersonic, in the presence of shock waves. We also investigated in detail the effects of the 

presence of solid particles on flow properties such as bubble size and frequency and the 

amplitude of the Bérnard-von Kármán vortex street. A novel approach was employed to 

circumvent the non-strictly hyperbolic nature of the equations of the dusty-gas flow model 

caused by the non-existence of the pressure term. This allowed the same inviscid numerical 

flux functions to be applicable for both the gaseous Euler and solid pressureless-Euler 

systems. The simulation results revealed that the transition from stationary flow to unsteady 

flow is dependent on both the Reynolds and Mach numbers of the flow. Moreover, it was 

shown that in stark contrast with the pure gas case above the critical Reynolds number in the 

supersonic regime, where no flow instability was observed, in the multiphase flows, adding 

particles produced flow instability. This unusual behavior is because the two-way coupling 

effects between the gas phase and solid phase override the compressibility effect and cause 

severe flow instability and spontaneous symmetry breaking in the coherent dynamics of the 

vortices. 
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1. Introduction 

Flow past bluff bodies is an important subject because they appear in a diverse number of 

applications, including the aerodynamic designs of flying objects and structures on the 

ground, electronic cooling, aeroacoustic noise, convective heat exchangers, and flow dividers. 

The shape and size of the bluff body influence the location of flow separation as well as wake 

dynamics behind the body. The location of separation on bodies with smooth surfaces 

(circular or elliptical cylinders) depends on the geometry of the body and the state of the 

boundary layer, as defined by the free-stream Reynolds number. In contrast, on bodies with 

sharp-edged surfaces (triangular or rectangular prisms), the location depends only on the 

shape of the body. 

It is also well known that above a certain Reynolds number (critical Reynolds number 

Recr), stable flow around the bluff body becomes unstable, initiating the onset of the so-called 

von Kármán vortex street. The Bérnard-von Kármán instability leads to the deformation of 

symmetrical twin vortices (bubbles), and the vortices are shed with frequencies defined by 

Strouhal number. The vortex shedding phenomenon can occur in laminar or turbulent flows. 

Plenty of research articles have investigated these crucial features, both experimentally and 

numerically. 

The problem of flows past bluff bodies like circular and square cylinders has been well-

reviewed and documented by many researchers [1-11]. However, very few studies have 

focused on flows past triangular prisms. Jackson [12] reported the critical Reynolds number 

to be 34.3 for isosceles triangles with base 1.0 and height 0.8. In another numerical 

investigation, Zielinska and Wesfreid [13] reported a critical Reynolds number of 38.3 for 

flow past an equilateral triangular prism with a blockage ratio of 1.15. This finding was 

further confirmed in experiments by Goujon-Durand et al. [14] and Wesfreid et al. [15]. 

Johansson et al. [16] investigated the turbulent flow past a triangular cylinder using the k-ε 

turbulence model. De and Dalal [17] investigated two-dimensional laminar flow past a 

triangular cylinder and predicted a critical Reynolds number of 39.9. 

Other crucial features like the time-averaged drag coefficient, the root mean square values 

of lift, and the Strouhal number have also been studied in the past. Prhashanna et al. [18] 

conducted comprehensive numerical investigations on the influence of the index of power-

law fluids on the formation of the wake, and the onset of vortex shedding in flow across an 

equilateral triangular cylinder. The effects of Reynolds number and Prandtl number on the 
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drag coefficients and heat transfer in the steady regime were also investigated. Further, 

Chatterjee and Mondal [19] investigated the characteristics of forced convection heat transfer 

for flow past a long heated equilateral triangular cylinder in an unconfined medium in the low 

Reynolds number laminar regime. However, very few works have explored the effects of 

Reynolds number in a flow regime with high Mach numbers beyond the incompressible limit.  

The influence of dust particles on viscous flows is another important subject requiring 

further investigation. This problem can be found in many natural phenomena like soil erosion 

by natural winds or volcanic eruptions, and engineering applications like the purification of 

crude oil in the petroleum industry, the enhancement of heat transfer processes with the use 

of dust, in dust/mist/fume collators in gas cooling systems or even in the decent phase of a 

Lunar landing [20]. The importance of better understanding such two-way coupling effects 

has motivated extensive numerical experiments, investigating the influence of particles on the 

steady and unsteady behavior of vortices [21].  

Considerable efforts have been devoted to investigating the interaction of particles with 

vortices in the past, for applications like combustion systems, wire and plate electrostatic 

precipitators, and the spread of fires by firebrands [21, 22]. Saffman [23] showed that for fine 

dust particles, the addition of dust can destabilize a gas flow, while for coarse-grain particles, 

the addition of dust can stabilize gas flows. Damseh [24] investigated a viscous 

incompressible flow of gas across an isothermal cylinder in the presence of a cloud of 

uniform dust particles. Mehrizi et al. [25] investigated the effect of nanoparticles on natural 

convection heat transfer in a two-dimensional horizontal internal flow in an annulus made up 

of a heated triangular inner cylinder and a circular outer cylinder.  

In a more recent study, Xu et al. [26] investigated the behavior of fine particles in the 

laminar flow of air past a triangular prism both experimentally and numerically. Bai and Li 

[27] investigated the motion and deposition of particles in a supersonic flow past a wedge 

using an Eulerian-Lagrangian numerical model. The present study may be considered the first 

to attempt a simulation of dusty gas flow past bluff bodies from subsonic to supersonic 

regimes in an Eulerian-Eulerian framework. 

In recent decades, the discontinuous Galerkin (DG) method [28-37] has become a popular 

method for solving a system of conservation laws. In this study, we first develop a new modal 

discontinuous Galerkin method, for solving the two-fluid model of dusty gas flows. We then 

investigate the effects of coupling in the gaseous and solid phase on symmetrical vortices, the 
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onset of unsteadiness, and the frequency of the vortex shedding. We limit our investigation 

here to the laminar flow case. A set of numerical experiments was selected based on the 

Reynolds and Mach numbers from subsonic to supersonic regimes.  

The Mach number regime based on the conventional categorization can be divided into 

low subsonic (incompressible limit, 0.3M  ), subsonic ( 0.3 0.8M  ), transonic 

( 0.8 1.2M  ), and supersonic (1.2 5.0M  ) regimes. In setting up the test cases, the 

Mach numbers were selected in a way to cover almost the entire range. Moreover, we 

focused on the low Reynolds laminar flows before and after the onset of the vortex shedding 

phenomena characterized by the critical Reynolds number. The range of flow conditions 

simulated in this work is summarized in Table 1. 

Table 1 Categories of regimes based on the Reynolds and Mach numbers and regimes 

considered in this work 

Pure gas  Dusty gas 

 Re<Recr Re>Recr 

M=0.1 ✓ ✓ 

M=0.3 ✓ ✓ 

M=0.8 ✓ ✓ 

M=1.2 ✓ ✓ 

M=2.0 ✓ ✓ 
 

 Re<Recr Re>Recr 
Loading 

ratio (β) 

M=0.1 ✓ ✓ ✓ 

M=1.2 ✓ ✓ ✓ 
 

 

 

2. Theoretical formulation 

Among the three primary models for modeling particulate flows, i.e., the Eulerian-

Eulerian, Eulerian-Lagrangian, and mixture models, the Eulerian-Eulerian model was 

selected because of its efficiency in terms of computational cost. In the majority of two-fluid 

models for dusty gas flows, the gas phase is considered to be compressible, which follows the 

perfect-gas law, while the solid phase is considered incompressible [38-41]. The inter-particle 

collisions are neglected (thus there is no pressure term in the conservation laws of the solid 

phase), and the particles are assumed to be uniform sized spheres with a constant diameter, 

density, and temperature. The specific heat of the particle material is also assumed to be 

constant. Moreover, particles are considered to be inert and the thermal and Brownian 

motions of particles are neglected. The gravitational and buoyant forces, the turbulence 

effects, and the effect of the particles’ wakes are considered to be negligible. In this model, 
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the number density of the particles should be large enough not to violate the continuum 

assumption. 

2.1. Mathematical model of viscous dusty gases 

Under the aforementioned conditions, the conservation law can be written as follows: for 

the gas phase, 

t g g + =U F S  (1) 

,
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and for the solid phase, 

t s s + = −U F S , (4) 
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21

2
s m p sE c T= + u , (6) 

1g s + = . (7) 

Here the U, F, and S are conservative variables, fluxes, and source terms, respectively. The 

variables t, α, ρ, u, E, p, T, D, and Q represent time, volume fraction, density, velocity vector, 

total energy, pressure, temperature, interphase drag, and heat transfer, respectively. The 

density of dust particles ρs is assumed to be constant. cv and cm are the specific heat capacity 

of the gas at constant volume and the specific heat of the particle material. The equation of 

state expresses the gas pressure in terms of other gas properties: 

g gp RT= , (8) 

where R is the gas constant.  
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According to Miura and Glass [42], the drag force acting on a solid particle by the gas 

phase can be expressed as 

,

3

4

s g

g s D g sD C
d

 
= −u u , (9) 

where d is the particle diameter and CD is the drag coefficient computed as a function of the 

Reynolds number based on the particle diameter and relative velocity of the particle to the 

gas (i.e. Re /d g g s gd = −u u ). The drag coefficient can then be given by a well-

established semi-empirical correlation [43], 

( )0.68724
1 0.15Re if Re <1000,

Re

0.44 if Re >1000.

d d
dD

d

C


+

= 



 (10) 

The heat transfer, which is proportional to temperature difference, can be expressed as a 

function of the Nusselt number, 

g

2

6Nu
( )g s g sQ T T

d


= − , (11) 

1

2

1

3Nu 2 0.65Re Prd= +  , Pr
p g

g

c 


= . (12) 

Here μg and κg represent the viscosity and thermal conductivity of the gas, respectively. 

2.2. Dimensionless form of the equations 

The following dimensionless variables and parameters are used to derive the non-

dimensional governing system of equations. Here the dimensionless parameters are 

superscripted by *, and the subscript ref denotes the reference values, 

* * * * * *

* * * *

* *
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, , , ,
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(13) 

In the above relations, x and cp are the spatial coordinates and the specific heat capacity at 

constant pressure, respectively. We then define the references and non-dimensional 

parameters as follows: 
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After applying these definitions to equations (1) and (4), the following non-dimensional 

system of equations can be derived:  

,
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Here the superscript * has been omitted for the sake of simplicity. The reference values for 

the length, pressure, temperature, and velocity are defined for each test case depending upon 

the problem under investigation.  
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3. Numerical method 

The equations of the dusty gas flow described in the previous section can be discretized 

using a modal discontinuous Galerkin (DG) method. The essential parts of the modal 

unstructured DG method developed in the present work—in particular, the high order 

accuracy and positivity/monotonicity preserving property—were summarized in [44]. The 

discontinuous Galerkin method seems to be a natural choice for simulating dusty gas flows 

from subsonic to supersonic regimes for several reasons.  

Apart from the distinguishing features provided by DG schemes, including compact 

stencil, parallelizability, and the ability to handle adaptive strategies, the method offers a 

special feature for simulating the dispersed particles in a gas. To resolve the important 

features of many types of flows, such as a supersonic compressible flow, fine computational 

grids are in general necessary.  

An important constraint imposed on the computational grid for accurately simulating 

solid-gas multiphase flows, whether in the Eulerian or Lagrangian framework, is the 

minimum cell volume, which should be coarse enough to accommodate enough particles of 

certain diameters so that the solid phase can be considered a fluid. High order methods such 

as DG can achieve a higher order of accuracy even in coarser grids, through the use of high 

order polynomial expansions. In the following subsections, the essential features of the 

present DG scheme will be outlined briefly.  

3.1. A modal discontinuous Galerkin method for simulating viscous dusty gas flows 

The mathematical model of inviscid two-phase flows can be written in a compact form, 

( ) ( )( ) ( ) in ,Ω 0, ,Ωt t t  + =    U F U S U , (17) 

where Ω denotes a bounded domain, and U, F, S are conservative variables vector, flux 

tensor, and source terms vector, respectively. The solution domain can be decomposed by a 

group of non-overlapping elements, Ω = Ω1⋃Ω2⋃...Ωn, in which n is the number of elements. 

By multiplying a weighting function φi into the conservative laws (13) and integrating over 

the control volume for each element, the following formulation can be derived: 

 ( ) ( ) ( ) ( ) ( ) Ω 0
k

t d  


 + − = U x F U x S U x . (18) 

In order to construct a discretized system of the conservation laws, the global spatial domain 

Ω can be approximated by Ωh where ΩhΩ as h0. The approximated domain, which is a 

tessellation of the space by bounded elementary control volumes, = {Ω }h e
, is filled with n 
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number of the non-overlapping elements Ωe h . The exact solution of the governing 

equations can be approximated by the numerical solution in every local element as 

1

1

( , ) ( , )
n

e n

h h h h

e

t t
=

 =  + +U x U U x U U . (19) 

By splitting the integral over Ωh into a series of integrals over the sub-elements and 

applying the integration by part, as well as the divergence theorem, to the equation (18), the 

elemental formulation reads as 

ˆ( )dΩ ( ) ( ) ( ) ( )dΩ
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k k k
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i h k
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where n̂  is the outward normal vector of the element interface, and Uh is the p-exact 

polynomial approximated solutions of the U on the discretized domain of Ωh. Uh can be 

expressed as the polynomial field that sums the multiplication of the local degree of freedom 

with the corresponding smooth polynomials of degree P in the standard element:  

( ) ( )
P

h i i

i

a t =U x . (21) 

Here ai(t) and φ(x) denote the local degree of freedom and the basis function, which can be 

chosen to be any continuous polynomial function, respectively.  

The mathematical model of interest in the present work (with the inclusion of viscous 

terms for the gas phase) can be written in the following compact form: 

( ) ( )inv vis( ) ( , ) ( ) in ,Ω 0, ,Ω .t t t  + +  =    U F U F U U S U  (22) 

As can be seen in (22), when the solution of viscous flows is of interest, an approach for 

estimating the derivatives of the conserved variable that appear in the viscous flux terms 

should be applied. In this regard, second-order derivatives required in the estimation of the 

viscous fluxes cannot be accommodated directly in a weak variational formulation using a 

discontinuous space function. One possible approach is the addition of a set of separate 

equations to treat the gradient of the conservative variables as an auxiliary set of unknowns, 

as proposed by Bassi and Rebay [28]. In this work, a matrix A is chosen to be the derivatives 

of the conserved variables U, i.e., =A U . This approach is known as the mixed DG 

formulation and will result in the following coupled system:  
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inv vis

0,

( ) ( , ) ( ).t

− =
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A U
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where Ai(t) denotes the local degree of freedom for the auxiliary variable, we have 
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The process of estimating the surface and volume integrals is analogous to the inviscid 

system procedure. However, for the auxiliary terms, a central flux splitting scheme is applied,  
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3.2. Positivity and monotonicity preserving (limiting) procedure 

High order conservative schemes, including the DG scheme introduced in the previous 

section, usually suffer from non-physical negative density or pressure. This situation leads to 

the ill-posedness of the system and numerical breakdowns as a consequence. On the other 

hand, for conservation laws with source terms which are added to account for chemical 

reactions, gravity, or the interaction of phases, as in the present case, there is a higher 

possibility of encountering negative density or pressure during the numerical simulation. 

Therefore, the application of efficient positivity preserving schemes is necessary to prevent 

numerical breakdown.  

In the present work, the positivity preserving scheme of Zhang and Shu [45], developed 

for compressible Euler equations, were employed to ensure the positivity of density and 

pressure fields, while maintaining higher-order accuracy. Our numerical studies show that the 

mere application of the positivity preserving scheme is not enough to develop a stable scheme, 
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especially in the presence of strong shock waves. The situation deteriorates when a 

multiphase system with source terms is solved.   

In order to ensure the preservation of scheme monotonicity, we employ the limiter of 

Zhang and Shu [46] developed for one-dimensional cases, and the limiter of Barth and 

Jespersen [47] initially devised for a finite volume framework. It is important to note that any 

TVD/MUSCL type scheme can degrade the order of accuracy in the smooth regions of the 

solution unless a pragmatic shock detection scheme is introduced. 

3.3. Circumventing the non-strict hyperbolicity of the dusty gas model equation 

The non-strictly hyperbolic nature of the dust phase equation (due to the non-existence of 

a pressure term) can impose serious difficulties on the numerical solver (especially when 

finite volume schemes are applied). In this study, a simple but effective strategy is introduced 

to remedy this issue, which has long been considered a challenging task. The basic idea was 

inspired by a strategy initially developed in computational magnetohydrodynamics (MHD) 

[48-50] which has since been applied in other fields, including aircraft and wind turbine icing 

in the atmosphere [51]. Here we apply the approach to treat the two-fluid equation model of 

dusty gases.  

The idea is to add and subtract a pressure-related term to the momentum and energy 

equations of the dust phase. Even though this action does not have any mathematical 

consequences, from a numerical point of view, the new system recovers the strict 

hyperbolicity of the equation. The equations of the dust phase after the addition and 

subtraction of a pressure-related term can be written as follows, 
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Equivalently in split form, 
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In this equation, the inviscid flux is equivalent to that of the Euler equation of the gas phase. 

Thus, the conservation law on the left-hand side can be considered strictly hyperbolic, while 

the additional term in the right-hand side can be handled in exactly the same way the source 

terms are treated.  
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The equation of state for the dust pressure has been derived previously based on the 

kinetic theory of gases and is readily available in the present flow problem. Readers are 

referred to the comprehensive review by van der Hoef et al. [52] and references therein for 

further details on the derivation and formulation of the pressure term of the solid phase.  

4. Numerical results 

Schematics of the computational domain, boundary conditions, and grid are outlined in 

Fig. 1. Far-field and outflow boundary conditions are defined at a distance far enough from 

the prism. Grids with a total of 14,214 elements were used, and finer grids were located in the 

regions where flows were expected to evolve more severely. 

 

Fig. 1 Computational domain, boundary conditions, and grid. 

4.1. Validation of the numerical solutions 

The numerical solutions for the gas phase were validated by comparing them with the 

results of De and Dalal [17, 53] and Zeitoun et al. [17, 53] in drag coefficients, as shown in 

Fig. 2. A spatially second-order accurate scheme with first-order polynomials (P1) was 

used in conjunction with a third-order time-accurate Runge-Kutta scheme. Our numerical 

experiments showed that for the grids depicted in Fig. 1, a spatially first-order accurate 

scheme with zero-order polynomials (P0) cannot capture the transition from steady to 

unsteady flow patterns. However, good agreement with previous results was observed 
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when a second-order accurate (P1) scheme was used, especially for medium and high 

Reynolds number cases. 

On the other hand, a small discrepancy was observed when compared with the result 

from Zeitoun et al. [53] for low Reynolds number cases. The gap may be due to differences 

in the mathematical and computational formulations (pressure-based vs. density-based), 

numerical approaches (finite volume vs. discontinuous Galerkin), and computational grids 

(quadrilateral vs. triangular). However, the magnitude of this deviation was negligible 

(<10%). More validation studies on two-phase test cases can be found in works [44, 54-

56].  

 

Fig. 2 Comparison of the drag coefficient. 

4.2. Effects of Reynolds and Mach number in pure gas flow 

Most previous studies have only considered low Mach numbers within the incompressible 

limit (M<0.3). However, the present density-based scheme enables high Mach number flows 

to be considered, from subsonic to supersonic far beyond the incompressible limit. Here we 

investigate the effects of Reynolds number on low and high Mach number flows, as well as 

the effects of Mach number on Reynolds number flow below and above the critical Reynolds 

number. In all the simulations of the current study the cost-effective and carbuncle-free local 

Lax-Friedrichs (LLF) (or Rusanov [57]) scheme for the inviscid flux and the first method of 

Bassi and Rebay [28] (also referred to as BR1) are applied.  
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4.2.1. Effects of Reynolds number on low Mach number incompressible flows 

The effects of Reynolds number on low Mach number incompressible flows have been 

extensively investigated in the past. We study these flow cases mainly for the purpose of 

verifying the present density-based scheme in low Mach number flows. As can be seen in Fig. 

3, the patterns of streamlines are in excellent accordance with the well-known physics in this 

type of flows, i.e., the transition from no separation state to two symmetrical vortices 

followed by two alternating vortexes with increasing Reynolds number. 

 

M=0.1, Re=1 

 
M=0.1, Re=5 

 
M=0.1, Re=20 

 
M=0.1, Re=150 

 
M=0.1, Re=800 

Fig. 3 Effects of Reynolds number on low Mach number incompressible flow. 

 

4.2.2. Effects of Reynolds number on high Mach number supersonic compressible flows 

We also studied the effects of Reynolds number on supersonic compressible flows. The 

Recr (which marks the transition from steady to unsteady flow structure) is much higher when 

compressibility effects are present. As evident from Fig. 4, the increase in Mach number 

substantially hinders the separation and transition processes. The Recr in the incompressible 

flow is known to be around 40. In the present compressible flows, no unsteady behavior is 

observed in flows well above the critical Reynolds number, as high as Re=200. Moreover, it 

can be seen that the topology of the bubble geometry (semi-triangular shape) is very different 

compared to the case when the Mach number is small (semi-elliptical shape). 
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M=1.2, Re=10 

 
M=1.2, Re=20 

 
M=1.2, Re=50 

 
M=1.2, Re=100 

 
M=1.2, Re=200 

Fig. 4 Effects of Reynolds number on high Mach number supersonic compressible flow. 

 

4.2.3. Effects of Mach number on Reynolds number flows below Recr 

The effects of Mach number on Reynolds number flows below Recr are shown in Fig. 5. It 

can be observed that with increasing Mach number, the symmetrical vortices shrink in size. 

For M=2, there is no separation, and thus no vortices are observed.  

 

Re=30, M=0.1 

 

Re=30, M=0.3 

 

Re=30, M=0.8 

 

Re=30, M=1.2 
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Re=30, M=2.0 

Fig. 5 Effects of Mach number on the flow with Re below the critical Reynolds number. 

 

4.2.4. Effects of Mach number on Reynolds number flows above Recr 

We investigate the effects of Mach number on Reynolds number flows above Recr. As can 

be seen in Fig. 6, an increase in Mach number results in a decrease in amplitude and an 

increase in the frequency of oscillations in the drag coefficients. For the high transonic flow 

(M=1.2), this oscillatory behavior has almost vanished. Virtually no oscillations are observed 

in the case of the supersonic flow (M=2.0). The snapshots of instantaneous vorticity and 

streamlines are plotted for two subsonic cases in Fig. 7 and for two supersonic cases in Fig. 8.  

Fig. 7 illustrates the transient behavior of vortices and how this transient behavior changes 

depending on the Mach number. As indicated in Fig. 6, oscillations in the drag coefficient are 

reduced with increasing Mach number, and increasing the Mach number will stabilize the 

flow. For Mach numbers corresponding to supersonic regimes, the von Kármán vortex street 

changes into two symmetrical counter-rotating vortices as shown in Fig. 8. The topologies of 

these vortices are, however, very different from the symmetrical vortices that appear in the 

low Reynolds and low Mach number regimes.  

 
Re=250, M=0.1 

 
Re=250, M=0.3 

 
Re=250, M=0.8 
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Re=250, M=1.2 

 
Re=250, M=2.0 

Fig. 6 Effects of Mach number on drag coefficient in flow with Re above the critical Reynolds 

number. 

 

  

(a) Re=250, and M=0.1 (b) Re=250, and M=0.8 

Fig. 7 Snapshots of instantaneous vorticity (left) and streamlines (right) in different time 

steps within a shedding cycle for subsonic Mach numbers (a) 0.1 and  (b) 0.8. 

 

  

Re=250 and M=1.2 
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Re=250 and M=2.0 

Fig. 8 Snapshots of instantaneous vorticity (left) and streamlines (right) for supersonic 

Mach numbers 1.2 and 2.0. 

 

4.3. Effects of Reynolds and Mach number in multiphase flows 

We now investigate the effects of added particles on the stability of the flow, the 

streamline patterns, and coherent structures like vorticities. The properties of the particles 

were set to be equivalent to those of glass beads with a particle density of 2,500 kg/m3 and a 

specific heat of 718 J/kg·K. In all the simulation test cases, the particle diameter is assumed 

to be equal to 20 μm.  

4.3.1. Effects of adding particles within the incompressible limit 

We first investigate the effects of the addition of particles with different particulate 

loadings on a low Reynolds and low Mach number flow with Re=30 and M=0.1. In the case 

of pure gas, as shown in Fig. 5, two counter-rotating vortices are formed on the backside of 

the prism. On the other hand, the particulate loading tends to destabilize the flow, as 

demonstrated in Fig. 9. While the addition of particles has no visible effect on the behavior of 

the flow and the shape of the symmetrical vortices in low particulate loading cases (β<0.1), in 

higher particulate loading cases (β>0.5), unsteady behavior and the formation of von Kármán 

vortex street are observed.  

 

 

 
Re=30, M=0.1, β=0.0 

 
Re=30, M=0.1, β=0.05 

 
Re=30, M=0.1, β=0.1 

 
Re=30, M=0.1, β=0.5 
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Re=30, M=0.1, β=1.0 

Fig. 9 Effects of particulate loading (β) on the low Reynolds and low Mach number flows. 

 

We also investigated the effects of particulate loading in the flow above the critical 

Reynolds number (Re=250) within the incompressible limit (M=0.1). The unsteady behaviors 

of drag coefficients (Cd) are plotted in Fig. 10 for increasing particulate loadings. 

Interestingly, the drag coefficients show a regular periodic behavior until β=0.5, and they 

begin to show irregular chaotic behavior in high particle loading cases. The higher the 

particulate loading, the higher the degree of disorder becomes in the flow patterns. 

When the drag coefficients of the high particle loading cases were analyzed more carefully, 

their behaviors consisted of two components: one regular periodic motion with a time scale of 

25 units, and another irregular chaotic motion with a much smaller time scale, as clearly 

shown for cases β=0.5 and 1.0 in Fig. 10. The second component, which is absent in the case 

of pure gas as shown in Fig. 10, is a new phenomenon, and its origin is directly related to 

two-way coupling effects between the gas phase and solid phase in multiphase flows. Details 

of this irregular chaotic behavior can be explained using snapshots of the vorticities and 

streamlines in Fig. 11. Specifically, the vorticity snapshots show how the irregular chaotic 

behaviors are generated near the solid walls as the vortices are shed from the prism. 

 

β=0.0 

 

β=0.01 

 

β=0.05 
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β=0.1 

 

β=0.5 

 

β=1.0 

Fig. 10 Effects of particulate loading on drag coefficients in the flow (Re=250, M=0.1) above the 

critical Reynolds number and within the incompressible limit. 

 

  

(a) Re=250, and M=0.1, β=0.5 (b) Re=250, and M=0.1, β=1.0 

Fig. 11 Snapshots of instantaneous vorticity (left) and streamlines (right) in different time 

steps within a shedding cycle for different particulate loadings (a) β=0.5 and (b) β=1.0. 

 

4.3.2. Effect of adding particles beyond the incompressible limit 

We further investigated the effects of adding particles with different particulate loadings 

on flow patterns in the flows below and above the critical Reynolds number (Re=30 and 250) 

beyond the incompressible limit (M=1.2). In the flow below the critical Reynolds number 

(Re=30), adding particles to the gas flow led to an increase in the size of the symmetrical 

vortices, as shown in Fig. 12.  

On the other hand, in the flow above the critical Reynolds number (Re=250), adding 

particles produced flow instability when the particulate loading was above a threshold value, 

as shown in Fig. 13. This is in stark contrast with the pure gas case (Re=200, M=1.2, β=0.0) 

shown in Fig. 13 where no flow instability was observed due to the compressibility effect. 
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However, in the cases of multiphase flows (Re=250, M=1.2, β=0.5, 1.0) in Fig. 13, the two-

way coupling effects between the gas phase and solid phase override the compressibility 

effect, causing severe flow instability and spontaneous symmetry breaking of the coherent 

dynamics of the vortices. 

 

 
Re=30, M=1.2, β=0.0 

 
Re=30, M=1.2, β=0.05 

 
Re=30, M=1.2, β=0.1 

 
Re=30, M=1.2, β=0.5 

 
Re=30, M=1.2, β=1.0 

Fig. 12 Effects of particulate loading (β) on flow patterns in the flow (Re=30, M=1.2) 

below the critical Reynolds number and beyond the incompressible limit. 

 

 
Re=250, M=1.2, β=0.0 

 
Re=250, M=1.2, β=0.05 
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Re=250, M=1.2, β=0.1 Re=250, M=1.2, β=0.5 

 
Re=250, M=1.2, β=1.0 

Fig. 13  Effects of particulate loading (β) on flow patterns in the flow (Re=250, M=1.2) 

above the critical Reynolds number and beyond the incompressible limit. 

 

4.3.3. On the role of the Stokes number on the behavior of the bubbles and shedding 

As mentioned by Green [58], both the particle parameters and the carrier phase properties 

play a significant role in the dispersion of the particles by the vortices. The level of 

interaction between the gas and particles depends on the Stokes number which characterizes 

the relaxation time of the particles in comparison with the time scale of the fluid flow: 

.V

ref

St
t


=  (32) 

In this relation, tref is a reference time which can be defined as the characteristic length 

divided by the characteristic speed, and τV is the momentum (velocity) response time of the 

particles given by 

2

.
18

s
V

g

d



=  (33) 

As schematically shown in Fig. 14, for very small particles ( 1St ), the particulate phase 

is in dynamic equilibrium with the carrier gas phase. Therefore particles will closely follow 

the streamlines of the vortical flow. On the other hand, large particles ( 1St ) will not be 

affected by the vortices of the fluid flow because of their large inertia. Therefore, there may 

be an intermediate case where intermediate particle sizes ( 1St  ) tend to be centrifuged from 

the vortex cores and accumulate at the edge of the vortices, leading to inhomogeneous 

particle concentrations.  
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Fig. 14 The schematic representation of the effect of the Stokes number on particle 

dispersion in vortices. 

A similar explanation can be applied to the effects of the variation in Stokes number 

depending on the fluid condition. In Fig. 15, the velocity vectors of the dust phase and gas 

phase are compared for two different Mach and Reynolds numbers. In both cases, as the flow 

is decelerated behind the prism, particles cannot follow the gas phase trajectory. When the 

Reynolds number is low (Re=30), particles can follow the streamlines of the carrier gas. In 

this subcritical Reynolds number flow, with increasing Mach number, the velocity vectors of 

the particles show only a slight deviation from those in the gas.  

However, when the Reynolds number is large enough (Re=250), and belongs to the 

supercritical Reynolds number flow, deviation of the particle path from the gas becomes 

significant. Unlike the case with the subcritical Reynolds number flow, with low Mach 

number flow, this deviation is more critical, resulting in irregular chaotic behavior in the flow 

patterns. As explained in subsection 4.3.1 and illustrated further in the case of Re=250, 

M=0.1, β=1.0 in Fig. 15, it is the two-way coupling mechanisms between the carrier gas 

phase and the solid particle phase that drastically change the flow patterns in the gas phase, 

which is initially in the range of laminar flow.  
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Re=30, M=0.1, β=1.0 

 

Re=30, M=1.2, β=1.0 

 

Re=250, M=0.1, β=1.0 

 

Re=250, M=1.2, β=1.0 

Fig. 15 Effects of fluid properties on particle dispersion in vortices using velocity 

vectors of gas (black) and solid (red) phases. 

 

5. Concluding remarks 

The problem of external flows past bluff bodies has remained one of the fundamental 

subjects in fluid dynamics. Great efforts have been devoted to not only understand general 

flow patterns like the formation of the wake and the onset of vortex shedding in the flow but 
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also to investigate crucial flow features like time-averaged drag coefficients and forced 

convection heat transfer. 

In this work, we simulated dusty gas flows past a prism with a focus on the role of 

Reynolds and Mach numbers on laminar multiphase flow. A density-based solver in the 

Eulerian-Eulerian framework was developed using a modal discontinuous Galerkin method. 

This solver allowed compressibility effects to be considered, and, as a result, enabled the 

investigation of a much wider range of Mach numbers, from subsonic to supersonic regimes. 

In particular, the effects of added dust particles on the flow patterns and crucial flow 

features were investigated in a two-fluid model framework. A simple strategy (borrowed 

from computational magnetohydrodynamics and atmospheric icing) to circumvent the 

numerical difficulty resulting from the non-strictly hyperbolic nature of the model equation of 

the solid phase was also introduced. Then, for various combinations of flow parameters, the 

effects of the addition of dust particles with different particulate loadings were investigated, 

and several new physical phenomena were observed. 

For example, it was shown that an increase in the Mach number stabilizes the flow, i.e., 

hinders the transition from stationary to unsteady. Also, it was found that, in a low Mach 

number flow, the addition of dust particles having the properties of glass beads and a 

diameter of 20 μm can destabilize the flow, which is in accordance with previous findings. 

On the other hand, in stark contrast with the pure gas case above the critical Reynolds 

number in the supersonic regime, where no flow instability was observed, adding particles 

produced flow instability in the multiphase flows. Finally, a discussion on the role of the 

Stokes number on the behavior of the bubbles and shedding was presented. 

Several issues remain that deserve further attention.  First, more detailed parametric 

studies on the solid phase parameters including the particle diameter and mass will be needed. 

Also, it will be interesting to explore the problem of defining the critical Reynolds number 

for the onset of vortex shedding in different Mach regimes, and also for different particulate 

loadings, by following the studies of Goujon-Durand et al. [14] and Dušek et al. [59]. This 

will require conducting comprehensive simulations and recording the x and y-direction 

velocities in a set of history points along the axis (global mode analysis).  

Moreover, investigation of the rarefaction effects in terms of Knudsen number in 

conjunction with the presence of particles, using a second-order constitutive relationship [60-
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62] for the gas phase beyond the present first-order Navier-Stokes-Fourier relationship, will 

be an important topic. We hope to report the investigation of these subjects in the future. 
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