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Abstract: Describing diatomic and polyatomic gases at high temperatures requires a deep 

understanding of the molecules’ excitation to a higher vibrational level. We developed new 

second-order constitutive models for diatomic and polyatomic gases with vibrational degrees of 

freedom, starting from the modified Boltzmann-Curtiss kinetic equation. The closing-last 

balanced closure and cumulant expansion of the calortropy production associated with the 

Boltzmann collision term are key to the derivation of the second-order models, compatible with 

the second law of thermodynamics. The topology of the constitutive models showed the presence 

of highly nonlinear and coupled protruding or sunken regions in the compression branch. It was 

also shown that the vibrational mode reduces the level of nonlinearity in the topology. In addition, 

analysis of a strong shock structure highlighted the interplay between the second-order effects in 

the constitutive relations and the vibrational-translational relaxation. Finally, the analysis showed 

that the results of the second-order models were in better agreement with the direct simulation 

Monte Carlo data, when compared with the results of the first-order models, especially in the 

profiles and slopes of density, velocity, and vibrational temperatures. 
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I. INTRODUCTION 

High temperature gas dynamics has been a subject of continuing interest because of the 

complexities of the flow physics involved at a fundamental level.1-3 Understanding diatomic and 

polyatomic gases at high temperatures3,4 requires a deep knowledge of several physical processes, 

such as the excitation of molecules to higher vibrational and electronic quantum levels, and 

changes in the structure or the identity of the molecules resulting from chemical reactions5-7 and 

ionization. High speed flow around re-entry vehicles flying through layers of Earth’s atmosphere  

provides a challenging and interesting example of high temperature gas flows.8 During its descent 

at hypersonic speed, the vehicle has to endure harsh conditions and extremely high temperatures, 

particularly in the shock and the post-shock regions. In addition, the rapidly increasing rarefaction 

at high altitudes results in a high degree of non-equilibrium in the flow, which further complicates 

the situation. 

Numerical simulations are often employed to gain a deeper understanding of these high-

temperature re-entry flows. The two prominent strategies for simulating re-entry flows are 

computational fluid dynamics (CFD) methods, based on the Navier-Stokes-Fourier (NSF) 

equations,9,10 and the direct simulation Monte Carlo (DSMC) method.11-14 The NSF equations are 

based on the conservation laws of mass, momentum and energy and first-order constitutive 

relations. Combined with additional equations for vibrational energy and species, they have been 

widely used to study hypersonic high temperature air flows at lower altitudes (< 55 km). Non-

equilibrium in the trans-rotational and vibrational modes of energy, and the effect of chemical 

reactions in the flow are handled through source terms in the equations of the vibrational energy 

balance and species balance, respectively. In sharp contrast to the CFD methods based on the NSF 

equations in the partial differential equations, the DSMC is not based on any partial differential 
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equations, but a statistical method that directly simulates the motion of gases through probabilistic 

collision models.11,15 The non-equilibrium in the flow and the chemical reactions are handled with 

phenomenological inelastic16,17 and reactive collision models, respectively.11,18,19 

The basic form of the NSF equations was derived in 1822, and they are considered the de facto 

mathematical models for every possible flow problem. However, a vital assumption was 

introduced in the derivation of the NSF constitutive relations, near the local-thermal-equilibrium 

(LTE), and as a result, their validity may be seriously questioned for flows whose status is not near 

the LTE condition. For instance, the NSF constitutive relations may be inappropriate at altitudes 

higher than 55 km, because of the limitations of the first-order constitutive relations originally 

derived for non-rarefied gases. Also, the DSMC simulations become too computationally 

expensive for simulating flows at altitudes below 70 km. These shortcomings provide an 

opportunity to develop an alternative method that is not only more accurate than the first-order 

NSF-based methods but also less resource-intensive than the DSMC method. The so-called 

second-order nonlinear coupled constitutive relations (NCCR) based on Eu’s generalized 

hydrodynamics20,21 were first proposed by Myong22-24 in 1999 and have been studied since by 

other researchers25-29 as a novel alternative to the traditional approaches. 

In the NCCR approach, the second-order constitutive models are derived by first differentiating 

the statistical definition of the non-conserved variables (the viscous stress tensor, the heat flux 

vector, and the excess normal stress in the case of diatomic and polyatomic gases) with time and 

then combining them with the Boltzmann2,20,30 or Boltzmann-Curtiss kinetic equations.22,31-34 The 

constitutive equations for the non-conserved variables are in partial differential form and have 

non-vanishing dissipative terms due to the collision operator of the Boltzmann or Boltzmann-

Curtiss kinetic equations. Upon simplification using the adiabatic assumption and the second-order 
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balanced closure,24 these partial differential equations are reduced to a set of algebraic equations. 

Further, the second-order approximation of the dissipative term in the constitutive equations takes 

the form of a highly non-linear hyperbolic sine function.20-23,35  

According to the balanced closure theory, 24 the approximation on either side of the constitutive 

equations—kinematic (movement) and dissipation (interaction) terms—should be consistent and 

of the same order. Otherwise, the mismatch in the orders of approximation, such as Grad’s original 

formulation,36,37 leads to a blow-up singularity in the high Mach number shock structure problem.24 

A detailed description of the second-order effects on the shock structure with respect to the shock 

thickness at high Mach number flows was previously reported.38,39  

In addition to treating the high Mach number flows encountered in re-entry situations, the 

NCCR and NSF models have been employed to understand flows in the transition regime of 

microscale gases34,40-42 and, recently, in dusty and granular gases43,44 as well. In passing, it is worth 

mentioning that diatomic and polyatomic gases require an additional constitutive equation of the 

excess normal stress in a non-Stokesian framework. This results in the introduction of a non-zero 

bulk viscosity45-47 which plays a critical role in the molecular theory of diatomic and polyatomic 

gases. 

The second-order NCCR theory has been well established for studying monoatomic, diatomic, 

and (linear) polyatomic gases at temperatures lower than the vibrational excitation temperature; 

for example, 1000 K. However, the NCCR theory needs to be extended to account for the high-

temperature effects, such as vibrational excitations and chemical reactions, to accurately model re-

entry flows at various flight conditions. 

To tackle this challenge, we aim to develop new NCCR models for diatomic and polyatomic 

gases with vibrational degrees of freedom. The translational and rotational modes of energy are 
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assumed to be in equilibrium with each other, similar to the two-temperature model proposed by 

Park.1,48 The two-temperature model is a reasonable assumption, since the number of collisions 

required to attain translational and rotational equilibrium is less than those required to establish 

equilibrium between the translation and vibrational modes. In addition to the equations for the 

collisional-invariant moments of the Boltzmann kinetic equation, mass, momentum, and energy, 

an equation for the conservation of vibrational energy (
ve )49 is required, as reported by 

Olejniczak and Candler.50 They formulated a source term by employing coupling models in the 

Landau-Teller equation51 to handle the non-equilibrium between the trans-rotational and 

vibrational modes of energy. The conservation of the vibrational energy equation in non-reactive 

gas flows takes the following form: 

v

( ) ( ) ( )
( )v v v v

v

v

e e T e T
e

t

  




 −
+ + =


u Q , 

(1) 

where v  is the vibrational relaxation time and is commonly modeled by an expression given by 

Millikan and White.52 The additional non-conserved term vQ  in the equation accounts for the heat 

flux in the vibrational degrees of freedom (or simply, the vibrational heat flux). The first-order 

approximation of vibrational heat flux is a product of the gradient of the vibrational temperature 

and thermal conductivity for the vibrational degrees of freedom: 

v v vk T= − Q . (2) 

The formulation of vibrational heat flux (2) is similar to Fourier’s law for heat flux. Further, 

the vibrational energy can be expressed by either assuming a simple harmonic oscillator (SHO) or 

a more realistic anharmonic oscillator (AO) model. The vibrational relaxation time needs to be 

modeled appropriately depending on the choice of the oscillator model. Based on this equation,  
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Olejniczak and Candler
50

 reported accurate results for the shock stand-off distance and the 

interference patterns for the conditions considered. 

There exists a large body of literature on the theory of diatomic and polyatomic gases in a state 

away from thermal equilibrium. Based on extended nonequilibrium distributions and Boltzmann 

collision terms and the so-called extended thermodynamic theory, Ruggeri and Sugiyama and their 

collaborators53-58 investigated the dispersion relation of ultrasonic wave and the shock structure of 

CO2 at low Mach number and low temperature range below the vibrational excitation temperature. 

Pavic-Colic et al.59 also studied the shock structure of diatomic and polyatomic gases at low Mach 

number and low temperature range using the 6-fields theory. Struchtrup and his collaborators60-62 

developed a high-order macroscopic model without the vibrational mode for rarefied polyatomic 

gases, based on rational extended thermodynamic theory. Aoki and his collaborators63,64 also 

investigated the shock structure of CO2 at low Mach number and low temperature range, based on 

the ellipsoidal statistical (ES) model of Boltzmann kinetic equation, and compared with the results 

of the direct solution of ES model and Taniguchi et al.53 Kustova et al.65 studied the Boltzmann 

equation in the form of Wang Chang-Uhlenbeck with vibrational mode and investigated the shock 

structure of CO2 at high Mach number and high temperature range. Based on the Chapman-Enskog 

method and a first-order closure, they also reported that the bulk viscosity value of CO2 is in the 

range of 0.5~2.6, when the vibrational mode is included. 

In this study, we first propose a modified Boltzmann-Curtiss kinetic equation which includes 

the vibrational mode of energy. We then derive the second-order NCCR models for the non-

conserved variables (viscous stress tensor, excess normal stress, heat flux, and heat flux for 

vibrational energy) from the modified Boltzmann-Curtiss kinetic equation. The effect of the non-

equilibrium of the non-conserved variables—not only the heat flux for the vibrational degrees of 
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freedom, but also the viscous stress tensor—is a significant contribution which is absent in the 

first-order NSF theory. This non-equilibrium effect is amplified due to the coupled nature of the 

second-order NCCR theory. To the authors’ best knowledge, no study has been reported in the 

past on the Boltzmann-Curtiss-based second-order constitutive model that includes the vibrational 

mode and, at the same time, is applicable to very high Mach number gas flows. 

Section II explains the modification of the Boltzmann-Curtiss kinetic equation in detail, 

introduces the statistical formula for conserved and non-conserved variables, and derives the exact 

conservation laws and second-order NCCR models. The contrast between the first-order and 

second-order approximations is discussed at length. Section III explores the topological 

ramifications of the second-order NCCR models and explains the effect of non-equilibrium on the 

topology of the second-order NCCR models. Finally, conclusions and a brief discussion of future 

topics in line with the present study are given. 

II. THERMODYNAMICALLY CONSISTENT SECOND-ORDER 

CONSTITUTIVE MODEL FOR VIBRATING MOLECULES 

A. Modified Boltzmann-Curtiss kinetic equation 

The Boltzmann kinetic equation derived by Boltzmann in 1872 is the basic kinetic equation 

describing the statistical behavior of monoatomic molecules. For diatomic and (linear) polyatomic 

molecules with rotational degrees of freedom, Curtiss32 in 1981 proposed an extension to the 

Boltzmann kinetic equation, where the probability distribution function has an additional 

dependent variable for the rotational quantum level and angular momentum. The kinetic equation 

governing the statistics of diatomic and polyatomic gases with both rotational and vibrational 
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degrees of freedom—which is essential to derive the second-order NCCR models—can be 

obtained by extending the Boltzmann-Curtiss kinetic equation.  

The premise of the governing kinetic equation is that molecules in various vibrational levels 

can be treated as molecules belonging to different species. The interaction between two diatomic 

or polyatomic molecules with vibrational energy exchange can be described in the following 

reaction format: 

( ) ( ) ( ) ( )a i a j a k a l+ → + . (3) 

where a   is a molecule and i , j , k  and l   are vibrational levels. For the cases i k=  and j l= , 

then, the interaction is said to have undergone an elastic collision; otherwise, the interaction is 

termed an inelastic collision. The Boltzmann-Curtiss equation is suitable for describing diatomic 

and polyatomic gases with only elastic collisions, represented by Eq. (3). This is true for gas flows 

at temperatures lower than the characteristic temperature for vibrational excitation. The gas flows 

often encountered in micro-channel applications at conditions close to standard temperature are 

such an example. However, this is not the case for diatomic and polyatomic gas flows at high 

temperatures, where a modification to the original Boltzmann-Curtiss equation is necessary.  

We propose a modified Boltzmann-Curtiss equation for the interaction (3) in the following 

form: 

* * * *( , ,| , ; )( )

[ , ].

i
i r i j k l i j

j k l

i j

j

f
f f dv d W i j k l f f f f

t

C f f


+  +  =   −



=

 



v L

 

(4) 

Here 
if  is the distribution function of the population of molecules in the i th vibrational level. The 

variables 
ir ,

iv ,
iL , and t  represent the position, velocity, angular velocity, and time, respectively. 

For simplicity, the subscripts are dropped, since the molecules essentially belong to the same 
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species. The terms with an asterisk in the superscripts represent the post-collision states. The term 

* *( , ,| , ; )W i j k l   is the probability of the interaction among molecules in the i th and j th 

vibrational levels undergoing inelastic collision to the k th and l th vibrational quantum level, and 

  is the solid angle. The summation over the j th, k th, and l th vibrational levels ensures that 

interactions over all possible post-collision combinations of vibrational levels are handled.  

B. Statistical formula of conserved and non-conserved variables 

As with elastic collisions, during an inelastic collision, the mass, momentum, and total energy, 

which includes translational, rotational, and vibrational degrees of freedom, are conserved. 

However, the energies in the individual degree of freedom are not conserved during such a 

collision due to inelastic energy exchange. The density of diatomic and polyatomic molecules in 

the i th vibrational level is defined as: 

i imf =   , (5) 

where m  is the mass of the molecule of the same type and 
if  is the distribution function of the 

molecules at the i th vibrational level. The symbol  denotes the integral in velocity space and 

the azimuthal angle. The total density, which is the total of densities in all vibrational levels, is a 

conserved quantity, while the density in the individual vibrational quantum level is not a conserved 

quantity. The total density (simply called density) is defined as: 

i i

i i

m f = =    . (6) 

The velocity distribution of molecules in the individual vibrational levels is assumed to be 

equal to the velocity distribution for the ensemble of molecules residing in all vibrational levels. 

The remaining collisional invariant, namely the momentum and total energy for individual 

vibrational levels and their summation, are defined as follows: 



 
 

 

10 
 

i im f =  u v , 
i i

i i

m f = =   u u v , (7) 

, ,( )
2

i i r i v i ie m H H f


=  + + 
c c

, , ,( )
2

i i r i v i i

i i

e e m H H f 


= =  + +  
c c

, 
(8) 

where v  is the molecular velocity, u  is the average velocity and c  is the peculiar velocity, 
,r iH  

and 
,v iH are the molecular energies in the rotational and vibrational degrees of freedom. The total 

vibrational energy and vibrational energy at the i th level are similarly defined as: 

, ,i v i v i ie H f =   , 
, ,v i v i v i i

i i

e e H f = =    . (9) 

The non-conserved variables for the modified Boltzmann-Curtiss equation: stress tensor (Π ), 

excess normal stress ( ), heat flux for trans-rotational energy ( Q ), and vibrational heat flux (
v

Q ), 

are similarly defined at the i th level and the total overall vibrational levels as follows: 

(2)[ ]i im f=  Π cc , (2)[ ]i i

i i

m f= =   Π Π cc , (10) 

( Tr( ) / 3 / )i im p n f =  − cc , ( Tr( ) / 3 / )i i

i i

m p n f =  =  −  cc , (11) 

,( )
2

r i ii m H f


=  + 
c c

Q c , ,( )
2

r i i

i i

i m H f


= =  +  
c c

Q Q c , 
(12) 

v, ,i v i iH f=  Q c , 
v v, ,i v i i

i i

H f= =   Q Q c , (13) 

where subscript  i denotes the vibrational level of the molecular entity, and the term p  in the 

definition of excess normal stress is the hydrostatic pressure calculated over the local equilibrium 

distribution ( 0f  ) given by  

01
Tr( )

3
i

i

p m f=   cc . 
(14) 
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The governing equations for conserved variables for the density, momentum, total energy, 

vibrational energy, and the constitutive equations for non-conserved variables are derived for the 

aggregate or total quantities and not for the individual vibrational levels. Since diatomic nitrogen 

and oxygen molecules are known to have 55 and 37 vibrational levels,66 respectively, this 

simplified procedure makes the systems of equations manageable and practical. The definitions of 

conserved and non-conserved variables can be summarized by the statistical formula  

             ( ) ( )k k
i i

i

h f =  , 
       (15) 

where ( )k
h  indicates the molecular expressions for variables. The leading elements of the set of 

the conserved and non-conserved variables are defined as,67  

               

( ) ( ) ( ) ( )

( )  
( ) ( ) ( ) ( )

1 2 3 4

25 6 7 8

v

, , ,  ,

1
, Tr( , , ,

3

ve e

p

       

   

= = = =

= = =  = = =

u

P P) - Q Q
 

           

(16) 

with the molecular expressions corresponding to this set: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4

, , ,

6 87 7(2)
, , ,

, , ( ),  ,  
2

1
[ ] , Tr( ) / , ( ) , .

3 2

r i v i v i

r i v i v i

h m h m h m H H h H

m
h m h m p n h H H h H


= = = + + =


= = − = + + =

c c
v

c c
cc cc c c

 

(17) 

C. Exact conservation laws 

Upon differentiating the statistical definitions of total density (6), total momentum (7) and total 

energy (8) with time, substituting the Boltzmann-Curtiss equation and invoking the collision 

invariance of mass, momentum, and energy, the following conservation laws for mass, momentum, 

and energy are obtained: 

( ) 0
t





+ =


u , 

(18) 
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( )
( ) ( ) 0p

t





+ + + +  =



u
uu I Π I , 

(19) 

v

( )
(( ) ) (( ) ) 0

e
e p

t





+ + +  +   +  +  =


u Π I u Q Q . 

(20) 

In contrast to these equations, the conservation of vibrational energy equation has a non-

vanishing collisional term, since the vibrational energy is not a collisional invariant. The collision 

term in the present work is modeled based on similar arguments made by Olejniczak and Candler.50 

The conservation of vibrational equation takes the following form: 

v

( ) ( ) ( )
( )v v v v

v

v

e e T e T
e

t

  




 −
+ + =


u Q . 

(21) 

D. Second-order constitutive models: Closing-last balanced closure and cumulant 

expansion 

The constitutive equations for the non-conserved quantities, namely, stress tensor, excess 

normal stress, heat flux, and vibrational heat flux, are derived using the same procedure. They are 

in a partial differential form, comprised of several kinematic terms on the left-hand side and a 

single collision term on the right-hand side, as follows, 

( ) (2) (2)( / )
2[ ] 2( )[ ] ( )

d
p

dt


 + +  + +   = ΠΠ

Π u u Π , 
(22) 

( )( / ) 2
2 ( ) : ( )

3

d
p

dt


   

 +  + +   +  =  Π I u u , 
(23) 

( ) ( )( / )
: ( ) ( ) ( ) ( )p p

d d
C T p C T

dt dt


  + +  +  +  +  + +   = Q PQ u

u Q u Π Π Q , 
(24) 

v( )v
v , , v

( / )
( ) ( ) ( ) ( )p v v p v v

d
C T p C T

dt


 + +  +  + +   = 

QQ
Q u Π Q , 

(25) 

where   , T , 
vT , pC  and ,p vC  are the ratio of the rotational specific heat capacity energy to 

specific heat capacity at constant volume, defined as (5 3 ) / 2  = − , trans-rotational temperature, 
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the temperature associated with the vibrational energy of gas molecules,1,48 specific heat capacity 

at constant pressure, and vibrational specific heat capacity at constant pressure, respectively.  

The collision terms ( ) Π , ( )  , ( ) Q , and 
v( ) Q  on the right-hand side of the equations 

are defined as, 

( ) ( ) [ , ]
k k

i i j
i

h C f f =  , 

 and represent the dissipation in the non-conserved quantities which is attributed to the collisional 

operator in the transport equation. The kinematic higher-order terms on the left-hand side are 

defined as 

( ) (2)[ ] i

i

m f = Π
cc c , 

( ) ( Tr( ) / 3 / ) i

i

m p n f  =  − cc c , 
( )

i

i

m f = P
ccc ,

( )( )

,( ) ( )
2

r i i p

i

m H f C T p


=  +  − + +
Q c c

cc Π I , v( )

,v i i

i

H f =  
Q

cc . 

At this point, it should be mentioned that the constitutive equations for the non-conserved variables 

(22)-(25) are an exact consequence of the modified Boltzmann-Curtiss equation (4) and are thus 

capable of capturing the whole flow physics, if they are provided with the accurate closure on the 

open higher-order terms ( )k  and ( )k . However, the kinematic higher-order terms ( )k  and the 

dissipative terms ( )k  contain the unknown distribution function ( f ), which needs to be resolved 

to obtain a closed system of equations.  

When treating the kinematic higher-order terms ( )k , simply repeating the same procedure 

used in subsection II-C will only add more open terms to the present already-complicated set of 

equations. Instead, we will develop a closure theory to close the constitutive equations in the 

second-order accuracy. On the other hand, the dissipative higher-order terms ( )k  can be handled 
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in a thermodynamically consistent manner such that the system conforms correctly to the second 

law of thermodynamics in all orders. The key idea is to approximate the non-equilibrium 

distribution function as an infinite series of higher-order moments. This requires defining the so-

called calortropy first introduced by Eu,20 a term representing a non-equilibrium extension of the 

Clausius (equilibrium) entropy, and the derivation of the balance equation for the calortropy. The 

calortropy production is then used to calculate the dissipative terms directly related to the 

irreversible processes. This process and the introduction of the conjugate function are described in 

detail in the Appendix. 

The form of the conjugate functions is similar in nature to those calculated for gases with 

translational and rotational degrees of freedom. However, the difference is apparent in the 

formulation of the conjugate function for vibrational heat flux, which contains the vibrational 

temperature and vibrational specific heat capacity at constant pressure. The final constitutive 

equations for the non-conserved quantities with the vibrational degrees of freedom are: 

( ) (2) (2) ( ) ( ) ( )

1

1

( / ) 1
2[ ] 2( )[ ] ( ,...)l l

l

d
p R X q

dt T


  




=

+ +  + +   = 
Π ΠΠ

Π u u , 
(26) 

( ) ( ) ( ) ( )

1

1

( / ) 2 1
2 ( ) : ( ,...)

3

l l

l

d
p R X q

dt T


    


  

=


 + + +   +  = Π I u u , 

(27) 

( ) ( )

( ) ( ) ( )

1

1

( / )
: ( ) ( ) ( )

1
( ,...),

p p

l l

l

d d
C T p C T

dt dt

R X q
T


  






=

+ +  +  +  +  + +  

= 

Q P

Q

Q u
u Q u Π Π

 

(28) 

v

( )v
, ,

( ) ( ) ( )

1

1

( / )
( ) ( ) ( )

1
( ,...).

p v v p v v

l l

v

lv

d
C T p C T

dt

R X q
T


 






=

+  +  +  + +  

= 

vQ

v

Q

Q
Q u Π

 

(29) 
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Again, these equations are an exact representation of the modified Boltzmann-Curtiss equations. 

How to approximate these equations will determine the order of the constitutive equations and 

associated hydrodynamics. 

The system of partial differential equations of non-conserved variables, which is a function of 

time and space, can be simplified into a compact form by introducing a series of approximations. 

The dissipation terms of non-conserved variables always involve open higher-order terms. 

However, arbitrarily choosing the order of approximation of the dissipation term without proper 

treatment of the terms on the left-hand side of the equation can lead to disastrous consequences. 

Myong24 in 2014 demonstrated that the unbalanced nature of the approximations of the terms on 

either side of the equation of the viscous stress tensor leads to the well-known Grad’s high Mach 

number problem (HMNP)37 where a singularity in the shock wave structure is observed for Mach 

numbers greater than 1.65. 

According to the new closure theory developed by Myong,24 known as the ‘closing-last 

balanced closure,’ when closing open terms in the moment equations derived from the kinetic 

equation, the number of places to be closed is two (movement and interaction), rather than one 

(movement only), having been misled by the Maxwellian molecule assumption in the previous 

theory.37 For example, there are two terms requiring closure in the constitutive equation of viscous 

stress (26): ( )
 


  and  (5)

h R f . Therefore, the order of approximations in handling the two 

terms—kinematic (movement) and dissipation (interaction) terms—must be the same to satisfy 

balancing, for instance, the second-order for both terms, thus achieving a balance between the 

kinematic and collision term approximation, namely, the second-order closure for the kinematic 

terms, 
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 ( ) ( ) ( ) ( )v( )
: = 0


     +   = = =

QQ P
u


     , (30) 

while maintaining the same second-order closure for  (5,6,7,8)h R f . The key physical argument in 

this closure is simply to impose the same level of approximations on both places so that the 

resulting constitutive equation may remain balanced even in high nonequilibrium. In this closing-

last balanced closure theory, third-order closure for  (5,6,7,8)h R f  may not be essential; in fact, 

unbalanced higher-order closure in the modified moment method may not provide improved 

solutions as promised, especially in the case of the high Mach number shock structure problem.22,24 

The balanced closure theory can be also applied in the same manner to the constitutive equations 

for the non-conserved quantities for the vibrational degrees of freedom.  

Furthermore, the temporal dependence in the equations can be neglected owing to the very 

short relaxation times of the non-conserved variables, being on the order of 10-10 second,22 

compared to those for conserved variables and the characteristic times of the flow process. This 

so-called adiabatic approximation reduces the unsteady partial differential equation to a set of 

steady-state equations. This greatly reduces the numerical complexities involved in solving the 

constitutive equations. 

Once these two tenets—the aforementioned closing-last balanced closure and Eu’s cumulant 

expansion based on the canonical distribution function in the exponential form to the explicit 

calculation of the dissipation term—are applied to the moment equations (26)-(29) and after 

introducing the adiabatic approximation, the following second-order constitutive model for 

diatomic and polyatomic gases with the vibrational degrees of freedom can be derived: 

(2) (2)

2nd2[ ] 2( )[ ] ( )
p

p q 


 + +  = −Π u u Π , 
(31) 
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2nd

2 2
2 '( ) : ( )

3 3 b

p
p q   


 +   +  = − Π I u u , 

(32) 

2nd( ) ( ) ( ) ( )
p

p p

pC
C T p C T q

k
 + +  = −Π Q , 

(33) 

,

, , v 2nd( ) ( ) ( ) ( )
p v

p v v p v v

v

pC
C T p C T q

k
 + +  = −Π Q , 

(34) 

where 
2nd ( ) sinh( ) /q   = . During the derivation, it is also assumed that the effect of the terms 

Q u  and 
v Q u  in the equations for the heat flux and the vibrational heat flux is negligible. 

The final algebraic form of the second-order constitutive equations for diatomic and 

polyatomic gases with the vibrational degrees of freedom is highly non-linear due to the second-

order term of kinematic nature ( (2)2[ ]Π u ) and the hyperbolic sine term of dissipative nature 

(
2 ( )ndq  ). Besides, these algebraic equations are tightly-coupled through the second-order 

kinematic term (2)2[ ]Π u  and the cumulant   in 
2 ( )ndq  , which represents the contribution 

from all non-conserved variables in the dissipation. Hence, these equations are named the 

nonlinear coupled constitutive relations (NCCR).  

The exact form of the first-order cumulant expansion   appearing in the collision integrals of 

(26)-(29) or (31)-(34) can be calculated using the Chapman-Enskog theory.30 The first-order 

reduced collision integral is expressed as a modified Rayleigh-Onsager dissipation function: 

1/2
1/4 1/4 2

v v /( ) : /

22

vB

b v

Tmk T T

p k kd
 

 

  
= + + + 

 

Q QΠ Π Q Q
, 

(35) 

where d and m are the molecular diameter and molecule mass, respectively. 
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The second-order NCCR (31)-(34) are reduced to the following conventional first-order NSF 

constitutive relations, when the first-order approximations and the zero bulk viscosity assumption,

0b = , are employed, 

(2) (2)2 [ ]   2 [ ]
p

p 


 = −  = − u Π Π u , 
(36) 

( )   
p

p

pC
p C T k T

k
 = −  = − Q Q , 

(37) 

,

, v v( )   
p v

p v v v v

v

pC
p C T k T

k
 = −  = − Q Q , 

(38) 

meaning that the NSF is simply a subset of the NCCR. Here  , k  and 
vk are the coefficients of 

viscosity, thermal conductivity, and vibrational thermal conductivity, respectively.  

It should be noted that these first-order laws were obtained after very crude approximations; 

all of the kinematic terms except for the thermodynamic force term were neglected, and the 

dissipation terms were linearized. Those first-order approximations are valid, when a composite 

number Kn·M—not the Knudsen number alone—is small. The composite number is defined as the 

ratio of the viscous force ( ) to the thermodynamic pressure ( p ) and represents the degree of 

thermal nonequilibrium in thermodynamic space, since the viscous force is a direct consequence 

of the thermal nonequilibrium effect.22,24 On the other hand, when a composite number Kn·M is 

not small (the high Knudsen, the high Mach, or both), the second-order NCCR (31)-(34) should 

be used. Finally, the conservation laws (18)-(20) and the vibrational energy equation (21) with 

these first-order constitutive relations form the set of equations reported by Olejniczak and 

Candler,50 as summarized in Table I. It is apparent that the NCCR describes the second-order 

effects through the nonlinear terms and the tightly-coupled cumulant  , and introduces the effect 

of the diatomic and polyatomic gases through the excess normal stress  . 
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Table I. Summary of the conservation laws and constitutive equations of the first-order NSF and 

second-order NCCR theories. 

 Previous first-order NSF50 New second-order NCCR 

  

( ) 0
t





+ =


u  ( ) 0

t





+ =


u  

u  ( )
( ) 0p

t





+  + +  =



u
uu I Π  

( )
( ) ( ) 0p

t





+ + + +  =



u
uu I Π I  

e  

v

( )
(( ) )

( ) 0

e
e p

t





+  + +



   +  +  =

u

Π u Q Q

 

v

( )
(( ) )

(( ) ) 0

e
e p

t





+  + +



  +   +  +  =

u

Π I u Q Q

 

ve  
v

( )
( )

( ) ( )

v
v

v v v

v

e
e

t

e T e T




 




+ + =



−

u Q

 

v

( )
( )

( ) ( )

v
v

v v v

v

e
e

t

e T e T




 




+ + =



−

u Q

 

Π  (2)2 [ ]= − Π u  (2) (2)

22[ ] 2( )[ ] ( )nd

p
p q 


 + +  = −Π u u Π  

  0 =  
2

2 2
2 ( ) : ( )

3 3
nd

b

p
p q   


  +   +  = − Π I u u  

Q  k T= − Q  

2( ) ( ) ( ) ( )
p

p p nd

pC
C T p C T q

k
 + +  = −Π Q  

vQ  
v v vk T= − Q  

,

, , v 2( ) ( ) ( ) ( )
p v

p v v p v v nd

v

pC
C T p C T q

k
 + +  = −Π Q  

( )q   
1 ( ) 1stq  =  

2

sinh
( )ndq





=  
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III. TOPOLOGICAL ASPECTS OF NONLINEAR COUPLED 

CONSTITUTIVE RELATIONS WITH VIBRATIONAL NON-

EQUILIBRIUM 

A. A dimensionless compact form of the second-order constitutive model 

Studies of topology are concerned with the properties of systems that are preserved under 

continuous changes.  Since the constitutive relation is such a case, the topological representation 

of the constitutive relations can provide new information and fascinating insights into the physics 

of fluids,68,69 which otherwise may not be attainable. Recently, Singh et al.70 reported the topology 

of the second-order constitutive relations for diatomic and polyatomic gases at temperatures lower 

than the vibrational excitation temperature. It was found in the case of velocity shear that the 

topology of the second-order constitutive model was governed by a simple algebraic form; from 

an ellipse to a circle, to a parabola, and then finally to a hyperbola, with increasing bulk viscosity. 

The exact same topology was found in the orbits of planets and comets in the Solar System; for 

example, the case of diatomic gas with the ratio of the bulk viscosity to the shear viscosity 0.2722 

is equivalent to the case of the Earth’s orbit with the eccentricity 0.0167. 

They also investigated the trajectories of the shock structure solution on the topology of the 

second-order constitutive model. The effect of bulk viscosity on the Rayleigh-Onsager dissipation 

function and the non-linear behavior of the second-order kinematic coupling term were also 

described at length. Since the topology of the constitutive relations is separate from the 

conservation laws, it can provide essential information about the connections between various non-

conserved variables, especially in the case of second-order constitutive relations. 
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In the present work, a similar study was conducted to highlight the non-linear coupling effects 

on the topology of the second-order constitutive relations. For this purpose, the dimensional form 

of the second-order constitutive relation needs to be transformed into a non-dimensional form, in 

order to reduce the number of dimensions in phase space. The following dimensionless variables 

and the definitions of non-dimensional parameters (such as the Mach number (M), Reynolds 

number (Re), Eckart number (Ec), Prandtl number (Pr), Knudsen number (Kn) and non-

dimensional rarefaction parameter N ) are employed: 

* / r  = , * / rk k k= , * / ru u u= , * / rT T T= , 

* / rp p p= , * / r  = , * /
rp p pC C C= , 

* / rd d d= , 

* / ( / )r ru L=Π Π , * / ( / )r ru L =  , * / ( / )r rk T L=Q Q , /
rb b rf  = , 

/r rM u RT= , Re /r r ru L = , 2Ec / ( )
rr p ru C T= , Pr /

rp r rC k= , 

2 / ReN M = , Kn / 2 /N M = , 1/ (Ec Pr) = .  

The starred quantities represent the non-dimensional quantities; terms with subscript r are 

reference quantities chosen appropriate to the flow problem. In the case of a shock structure 

problem, generally, the driver side is a suitable choice for the reference quantities. The factor 

/
rb b rf  =  is the ratio of the bulk viscosity to the shear viscosity. Its value may be experimentally 

determined using a sound wave absorption measurement. In addition to the above mentioned non-

dimensional entities, a new set of non-dimensional quantities and new parameters are defined for 

the vibrational degrees of freedom: 

*

,/v v v rk k k= , 
*

,/v v v rT T T= , 
*

, , ,/
rp v p v p vC C C= , 

*

v v , ,/ ( / )v r v rk T L=Q Q , 

2

v , ,Ec / ( )
rr p v v ru C T= , v , ,Pr /

rp v r v rC k= , 
v v1/ (Ec Pr )v = .  
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After those non-dimensional quantities and parameters are substituted into the modified Rayleigh-

Onsager dissipation function ( ), we obtain 

1/2
* ** * * *

* * 2 v v

* * * * *

2
:

/ (2 ) / (2 )b v v v

N
c

p f k T k T

   


 

  
= +  + + 

 

Q QQ Q
Π Π . 

(39) 

In this expression, the coefficient c was first derived by Myong22 with a simple gas assumption 

(due to Chapman and Cowling30): 

1/2
1/4

2

( ) 2
( ) [4 2 / ( 1)]

52

B r

r r

mk T
c A

d


 



   
 =  − −    

  

, 

(40) 

where   is the exponent of the inverse power laws; it turns out that the following relation holds 

*1/4

* *
1

T

d 

 
  =
 
 

. 

(41) 

Upon substituting the non-dimensional form of  into the NCCR (31)-(34), and dropping the 

asterisk superscript for simplicity, the final second-order constitutive relations are: 

(2)

2nd 0
ˆ ˆ ˆ ˆ ˆ ˆ( ) (1 ) [ ]bq cR f= +  + Π Π Π u , (42) 

2nd 0

3ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) :
2

b bq cR f f =  + +  Π I u , 
(43) 

2nd 0 0
ˆ ˆ ˆˆ ˆ ˆ( ) (1 )bq cR f= +  + Q Q Π Q , (44) 

v 2nd v,0 v,0
ˆ ˆ ˆˆ ˆ ˆ( ) (1 )bq cR f= +  + Q Q Π Q , (45) 

where 

ˆ N

p

Π Π , ˆ N

p

   , ˆ

/ (2 )

N

p T






Q
Q , vˆ

/ (2 )v v

N

p T






v

Q
Q , 
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(2)

0

(2 [ ] )ˆ N

p

 − 


u
Π , 0

ˆ bN

p

− 
 

u
, 0

ˆ

/ (2 )

N k T

p T





− 
Q , v,0

ˆ

/ (2 )

v v

v v

N k T

p T





− 
Q , 

and 

1/2

2

v v

2 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ:
b

R
f

 
= +  +  +  
 
Π Π Q Q Q Q . 

The structure of the NCCR for diatomic and polyatomic gases with the vibrational degrees of 

freedoms is exactly the same as that for diatomic and polyatomic gases without the vibrational 

degrees of freedoms, except for the additional relation (45) and extra term v v
ˆ ˆQ Q  in the modified 

Rayleigh-Onsager dissipative function. 

B. Decomposition of the second-order constitutive model in elementary flows and its 

topology in velocity shear 

In order to investigate the topology of the second-order constitutive model, we consider 

monatomic, diatomic, and polyatomic gases. In general, the second-order constitutive relations 

(42)-(45) consist of twelve unknowns:  five components of the traceless viscous stress tensor 

(Π ,Π ,Π ( Π Π ),Π ,Π ,Πxx yy zz xx yy xy xz yz= − − ), the scalar excess normal stress ( ), three components 

of the heat flux vector ( Q ,Q ,Qx y z
), and three components of the vibrational heat flux vector 

(
v, v, v,Q ,Q ,Qx y z

). Because of the twelve-dimensional topology in phase space and its highly 

nonlinear and coupled nature, investigating the topology in any meaningful way seems very 

difficult. Nevertheless, the topology can be rather efficiently investigated based on the concept of 

decomposition, which was first introduced by Myong.23 

In general, the viscous stress and heat flux components on a line (or interface) in the physical 

plane induced by the thermodynamic forces of velocity and temperature gradients can be 

decomposed (or split) into two elementary subsets; one for the velocity shear flow, and another for 
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the gaseous compression and expansion flow. In the velocity shear flow subset, the stresses 

( ), ,xx xy     induced by the thermodynamic force 
xv v x    can be determined from (42)-(43) 

as follows, 

( )

( ) ( )

( )

0

0

0

2nd

2nd

2nd

2ˆˆ ˆ ˆ ,
3

ˆ ˆˆ ˆ ˆ1 ,

ˆ ˆ ˆ ˆ3 ,

xx xy xy

xy b xx xy

b xy xy

q cR

q cR f

q cR f

 = −  

 = +  + 

 =  

 

(46) 

where 

2 9ˆ ˆ ˆ3 1 ( 3 ) 1
2

xx b b xxR f f 
  

=  + +  −  
  

. 

When the first two components of equations in (46) are divided by each other, the nonlinear 

coupling factor ( )2
ˆ

ndq cR  and the driving force 
0

ˆ
xy  are canceled out, leaving only a kinematic 

stress constraint, 

2 2 22 9ˆ ˆ ˆ1 0
3 2

xy b xx xxf
 

 + −  + = 
 

. 
(47) 

The vibrational heat flux does not play any role in the velocity shear flow, so that the topology 

remains the same as those of the non-vibrating diatomic and polyatomic gases,70 as reproduced in 

Fig. 1. Note that the topology shows rich and complex patterns; for example, with increasing b
f , 

the conic section varies from an ellipse for 0 2 3
b

f   (including a circle for 6 9
b

f = ) to a 

parabola for 2 3
b

f = , and then to a hyperbola for 2 3
b

f  . 
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Figure 1. Topology of the second-order Boltzmann-Curtiss-based constitutive models in the 

velocity shear flow problem in a phase space (Π ,Π ,xx xy p ) for 
bf  =0 and 

bf  =1.0. Reproduced 

with permission from S. Singh, A. Karchani, K. Sharma, and R. S. Myong, “Topology of the 

second-order constitutive model based on the Boltzmann-Curtiss kinetic equation for diatomic 

and polyatomic gases,” Physics of Fluids 32, 026104 (2020). Copyright 2020 AIP. 

 

C. Topology of the second-order constitutive model in compression and expansion: sinh-

dominated topology 

Similar to the previous velocity shear flow, another elementary flow, gaseous compression and 

expansion, can be obtained based on the concept of decomposition. From (42)-(45), the viscous 

stresses and the heat fluxes, including the vibrational mode driven by thermodynamic forces 

xu u x    and 
xT T x   ,  can be determined as follows: 
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0 0

0 0

0

0 0

2nd

v, v,v, v,

ˆ ˆ ˆ ˆˆ ˆΠ (1 Π )ΠΠ Π

ˆ ˆ ˆ ˆˆ ˆ (1 3( Π ))
ˆfn ,  ,    ( )

ˆ ˆˆ ˆˆ ˆQ (1 Π )QQ Q

ˆ ˆˆ ˆˆ ˆQ QQ (1 Π )Q

xx b xx xxxx xx

b xx

b

x b xx xx x

x xx b xx

f

f
c f q cR

f

f

   +  +   
     
   +  +     
  =  =   
  +  +    
     
   +  +      0x

 
 
 
 
 
 
 
 

, 

(48) 

where 

2 2 2 2 2

v,

3 2 ˆ ˆˆ ˆˆ Q Q
2

xx x x

b

R
f

 
=  +  + + . 

This highly nonlinear mapping function in four-dimensional phase space is strongly dependent 

on the ratio of the bulk viscosity to the shear viscosity, 
bf , whereas its dependence on the 

coefficient of potential in the gaseous power laws c (=1.1038 in the present study) is negligible. 

When the first two components of the equations in (48) are divided by each other, the nonlinear 

coupling factor ( )2nd
ˆq cR  and the driving force 

0

ˆ
xx  are canceled out, leaving only a kinematic 

stress constraint between the viscous shear and excess normal stresses, 

2 2 2ˆ ˆ ˆˆ ˆ ˆ9 (9 4) 4 3 0b xx b xx b b xxf f f f + −   −  +  − = . (49) 

It is noteworthy that the topological features of the present mapping function are very similar 

to that of the diatomic and polyatomic gases without vibrational degrees of freedom. This is 

primarily because the vibrational heat flux term is connected to the viscous stresses only through 

the common nonlinear coupling factor of dissipative nature, ( )2nd
ˆq cR , which cancels out in the 

present framework. In contrast to the velocity shear case, the second-degree polynomial equation 

(49) in the compression and expansion cases always results in the topology of a hyperbola with 

the following eccentricity for all values of 
bf , 
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4 24

4 2

2 81 97 16

5 81 97 16

b b

b b b

f f
e

f f f

+ +
=

+ + +

. 
(50) 

At zero bulk viscosity 0bf = , the eccentricity is equal to 2 . The variation in eccentricity with 

respect to the bulk viscosity has a well-shaped profile which reaches the minimum value of 13 / 2  

at 2 / 3bf =  and asymptotically recovers the initial value of 2  as the bulk viscosity ratio 

approaches infinity. 

In order to further investigate the topology of the second-order constitutive model for the 

relationship between the unknown stresses and heat fluxes ( v,
ˆ ˆˆˆ , ,Q ,Qxx x x  ) and the known 

driving (stress and thermal) forces of (
0 0 0v,

ˆ ˆˆ ,Q ,Qxx x x ), the constitutive model should be calculated 

for the given driving forces, either analytically or numerically. For the first-order Navier-Fourier 

constitutive relations, the excess normal stress is linearly related to the viscous stress in a non-

Stokesian framework through the relation 
00 0.75 xxbf =   in one-dimensional cases.  

On the other hand, in an implicit form the second-order constitutive model (48) can be solved 

numerically in terms of the driving forces 
0 0 0v,

ˆ ˆˆ ,Q ,Qxx x x  in conjunction with (39), using the 

method of iteration. The first case with zero bulk viscosity is reduced to a monoatomic gas, in 

which case the vibrational degrees of freedom are absent. In the present study, this case represents 

a gas with vibrational degrees of freedom, with the bulk viscosity asymptotically approaching to 

zero.  

The second case is defined by considering a diatomic nitrogen gas whose bulk viscosity ratio 

is equal to 0.8. At this stage, it should be mentioned that the available experimental data for the 

bulk viscosity of diatomic and polyatomic gases obtained in 1960-80s from the measurement of 
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sound wave attenuation are a matter of controversy.71,72 Recent new experimental data reported by 

Wang et al.73 using Rayleigh-Brillouin light scattering spectroscopy indicated that the values of 

bf  in gases (such as CO2) previously known to possess very large values are questionable; for 

example, the value of CO2 was claimed smaller than 1.0. In addition, a recent theoretical study65 

based on the Boltzmann equation in the form of Wang Chang-Uhlenbeck with vibrational mode 

and the Chapman-Enskog method showed that the value of CO2 is in the range of 0.5<
bf <2.6 

when the vibrational model is included, not an order of 100 or 1000. In this study, even though 

there is no limitation for the value of 
bf  in the present formulation, we focus on 0.8bf =  case, 

since our primary interest is in the air flows around reentry and hypersonic vehicles on the Earth, 

dominated by nitrogen and oxygen (
bf  being smaller than 1). We hope to work more on the larger 

bulk viscosity cases in the future. 

For each set of simulations at a specified bulk viscosity ratio, the non-conserved variables, 

v,
ˆ ˆˆˆ , ,Q ,Qxx x x  , are calculated for the given thermodynamic driving forces, 

0 0 0v,
ˆ ˆˆ ,Q ,Qxx x x  (or 

0 0 v,0
ˆ ˆˆ ,Q ,Q  in simpler notation). This will yield a topology in a four-dimensional space such as 

( 0 0 v,0
ˆ ˆˆ ˆ,Q ,Q , xx  ). For visualization in a three-dimensional space, surface plots of a non-

conserved variable as a function of the driving forces (stress, 0̂ , and thermal, 0Q̂ ) are constructed 

at a specified vibrational thermal force, v,0Q̂ , and the given bulk viscosity ratio. 

Figure 2 (a) shows the three-dimensional topology of viscous normal stress in ( 0 0
ˆˆ ˆ,Q , xx  ) at 

zero vibrational thermal force and at the vanishing bulk viscosity ratio. The topology well matches 

one constructed for a monoatomic gas reported previously.70 The corresponding topology of the 

first-order Navier-Stokes-Fourier constitutive model is a simple linear surface, since they are 
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nothing but 0
ˆ ˆ , 

0
ˆ ˆQ Q . Figure 2 (b)-(c) shows the topology at a non-zero vibrational 

thermal force, when the bulk viscosity is neglected. It can be noted that the vibrational mode 

reduces the level of nonlinearity in the topology, including the case with a vanishing thermal force. 

Figure 3 (a) shows the three-dimensional topology of viscous normal stress at the bulk 

viscosity ratio, 0.8bf = , when the vibrational degrees of freedom are absent. Figure 3 (b)-(c) 

shows the effect of the vibrational heat flux on the viscous normal stress in the second-order 

constitutive model. As in Figure 2 (b)-(c), the vibrational mode reduces the level of nonlinearity, 

especially in the compression branch (positive stress force 0
ˆ 0  ).  

Figure 4 (a) shows a cross section of the topology of viscous normal stress at the plane defined 

by 0Q̂ 0= , or zero thermal force. Compared with the linear NF relation, the expansion (negative 

stress force 0
ˆ 0  ) branch is significantly flattened, while the compression branch shows a high 

degree of non-linearity and approaches to the logarithmic (sinh-1) asymptotes. However, the most 

noticeable feature of the topology is a distinct ‘protruding region’ in the positive compression 

branch, where the viscous normal stress of the second-order constitutive model remains bigger 

than that of the first-order Navier-Fourier constitutive model. The ultimate reason behind this 

behavior is the presence of the second-order kinematic stress-strain coupling term, 
0

ˆ ˆΠ Πxx xx , in the 

second-order constitutive model (48),  
02nd

ˆ ˆ ˆ ˆ ˆΠ ( ) (1 Π )Πxx b xx xxq cR f= + + . When the stress force 

0
Π̂xx  is small, the coupling term 

0

ˆ ˆΠ Πxx xx  of quadratic nature on the right-hand side will prevail 

over the dissipation term 2nd
ˆ ˆΠ ( )xxq cR  of hyperbolic sine nature on the left-hand side, resulting in 

0

ˆ ˆΠ >Πxx xx . On the other hand, when the stress force 
0

Π̂xx  increases, the dissipation term 
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2nd
ˆ ˆΠ ( )xxq cR  of the hyperbolic sine exponential nature will dominate over the coupling term 

0

ˆ ˆΠ Πxx xx  of quadratic nature, leading to the logarithmic (sinh-1) asymptote.  

Similar to Figure 3 (b)-(c), with increasing vibrational thermal force, the level of nonlinearity 

in the second-order constitutive model decreases, as shown in Fig. 4 (b).  This trend remains the 

same for the non-zero bulk viscosity ratio. It is also interesting to note that the profiles of excess 

normal stress become symmetrical with increasing vibrational thermal force. 
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Figure 2.  Three-dimensional topology of viscous normal stress Π̂ xx for varying stress and thermal 

forces at a specified vibrational thermal force v,0Q̂  and 
bf  =0. 
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Figure 3.  Three-dimensional topology of viscous normal stress Π̂ xx for varying stress and thermal 

forces at a specified vibrational thermal force v,0Q̂  and 
bf  =0.8. 
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Figure 4.  A cross-section of the topology of viscous normal stress Π̂ xx  at the plane defined by 

0Q̂ 0=  or a zero thermal force at three different vibrational thermal forces and two different ratios: 

a)
bf  =0 and b)

bf  =0.8 (left). 

 

Figures 5 (a) and 6 (a) show the three-dimensional topology of heat flux in ( 0 0
ˆ ˆˆ ,Q ,Q x ) at 

zero vibrational thermal force and at the bulk viscosity ratios, 0bf =   and 0.8bf = , respectively. 

As expected, the heat flux is more strongly affected by the thermal force than the stress force. 

Interestingly, there are two regions with higher values of heat flux in the compression branch near 

0

ˆ 4xx = ; one ‘protruding region’ for positive 
0Q̂ , another ‘sunken region’ for positive 

0Q̂ . They 

are the same in nature, since the heat flux satisfies the asymmetric property of the heat flux, 

0 0( ) ( )ˆ ˆ ˆ ˆQ Q Q Q− = −  in (49). Again, the reason behind such distinct regions is closely related to the 

presence of the second-order kinematic coupling term, 
0

ˆΠ̂ Qxx x , in the second-order constitutive 

model (48), 
02nd

ˆ ˆˆ ˆ ˆQ ( ) (1 Π )Qx b xx xq cR f= + + . 
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Figure 5.  Three-dimensional topology of heat flux ˆ
xQ  for varying stress and thermal forces at a 

specified vibrational thermal force v,0Q̂  and 
bf  =0. 
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Figure 6. Three-dimensional topology of heat flux ˆ
xQ  for varying stress and thermal forces at a 

specified vibrational thermal force v,0Q̂  and 
bf =0.8. 
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Figure 7.  A cross-section of the topology of ˆ
xQ  at the plane defined by 0Π̂ 0= or a zero stress 

force at three different vibrational thermal forces and two different ratios: a)
bf  =0 and b)

bf  =0.8. 

Like the viscous normal stress in Fig. 2, Figs. 5 (b)-(c) and 6 (b)-(c) show that the vibrational 

mode reduces the level of nonlinearity in the topology. This is because the contribution of each 

mode in ( v,
ˆ ˆˆˆ , ,Q ,Qxx x x  ) is calculated by the quadratic form of the modified Rayleigh-Onsager 

dissipation, 
2 2 2 2 2

v,
ˆ ˆˆ ˆˆ Q Q3 / 2 2 /

xx x xbR f=  +  + + , leading to a reduction in ˆˆˆ , ,Qxx x   by the 

addition of the vibrational heat flux mode v,Q̂ x . 

Figure 7 (a) shows the cross-section of the topology of heat flux at the plane defined by 

0

ˆ 0xx = , or for varying thermal force. The topology of heat flux in the first-order constitutive 

model denoted by solid lines is linear and uncoupled, meaning that the heat flux is a function of 

the thermal force only, but is independent of the stress force. On the other hand, the second-order 

constitutive model not only presents the tight coupling of stress and thermal components, shown 

in Figs. 5 and 6, but also the nonlinear behavior in the thermal force. At zero vibrational thermal 

force, the topology takes an asymmetric functional form of 
0

ˆ ˆsinh( )x xcQ cQ=  or 
0

11ˆ ˆsinh )x xQ (cQ
c

−= . 



 
 

 

37 
 

With increasing vibrational thermal force, the topology of the heat flux experiences a substantial 

reduction in nonlinearity for both 0bf =   and 0.8bf = . 

Figure 8 shows the three-dimensional topology of excess normal stress in ( 0 0
ˆ ˆˆ ,Q ,  ) at the 

bulk viscosity ratio, 0.8bf = , and for three cases of the vibrational thermal force, v,0Q̂ 0,10,20= . 

As in Figs. 3 and 6, the level of nonlinearity decreases with increasing vibrational thermal force, 

and particularly, in the compression branch (positive stress force 0
ˆ 0  ). 

Figure 9 shows the three-dimensional topology of vibrational heat flux in ( 0 0 v
ˆ ˆˆ ,Q ,Q ) at the 

bulk viscosity ratio, 0.8bf = , and for three cases of the vibrational thermal force, v,0Q̂ 0,10,20= . 

Obviously, as seen in Fig. 9 (a), the vibrational heat flux vanishes for zero vibrational thermal 

force, consistent with the physical requirement that the non-equilibrium stress and heat flux should 

vanish when there are no thermodynamic driving forces. However, as the vibrational thermal force 

increases, an interesting topology emerges: a ‘protruding region’ with higher values of vibrational 

heat flux in the compression branch near  
0

ˆ 4xx = . The reason behind this region is again related 

to the dominant role of the second-order kinematic coupling term, 
0v,

ˆΠ̂ Qxx x , in the second-order 

constitutive model of vibrational heat flux in (48), 
0v, 2nd v,

ˆ ˆˆ ˆ ˆQ ( ) (1 Π )Qx b xx xq cR f= + + . The 

combination with the same type of second-order constitutive model of heat flux, 

02nd
ˆ ˆˆ ˆ ˆQ ( ) (1 Π )Qx b xx xq cR f= + + , results in a maximum near 

0 0

ˆˆ 4,  Q 0xx x = = , which is a unique 

feature in the present second-order constitutive model with the vibrational heat flux. This in turn 

demonstrates the strong coupling between the various non-conserved variables that are neglected 

in the first-order Navier-Fourier constitutive model. 
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Figure 8. Three-dimensional topology of excess normal stress ̂  for varying stress and thermal 

forces at a specified vibrational thermal force v,0Q̂  and 
bf =0.8. 
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Figure 9. Three-dimensional topology of vibrational heat flux vQ̂  for varying stress and thermal 

forces at a specified vibrational thermal force v,0Q̂  and 
bf =0.8. 
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Figure 10. Three-dimensional topology of non-vibrational and vibrational heat fluxes in a) 

( 0 v,0
ˆ ˆ ˆQ ,Q ,Q ) and b) ( 0 v,0 v

ˆ ˆ ˆQ ,Q ,Q ) at a zero driving stress force and 0.8bf = . 

Figure 10 shows the three-dimensional topology of non-vibrational and vibrational heat fluxes 

in ( 0 v,0
ˆ ˆ ˆQ ,Q ,Q ), ( 0 v,0 v

ˆ ˆ ˆQ ,Q ,Q ), respectively, at zero driving stress force, and at the bulk viscosity 

ratio, 0.8bf = . In this case, the topology is dominated by the dissipation term v, 2nd
ˆ ˆ ˆ( , ) ( )x xQ Q q cR  

of hyperbolic sine (or sinh-1) nature. In addition, due to a relation, v v,0 0
ˆ ˆ ˆ ˆQ / Q Q / Q= , in the second-

order constitutive model in (48), the two topologies are basically identical in form. However, it 

should be pointed out that, although the topologies of the non-vibrational and vibrational heat 

fluxes are the same in the non-dimensional hat form, dimensional heat fluxes may deviate from 

each other, when a difference exists between the value of thermal conductivity and vibrational 

thermal conductivity, and in the absolute value of the trans-rotational and vibrational temperatures. 
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IV. EFFECTS OF VIBRATIONAL MODE ON THE SHOCK 

STRUCTURE OF DIATOMIC AND POLYATOMIC GASES 

A. Shock structure with vibrational degrees of freedom 

The maximum temperature limit for the present Boltzmann-Curtiss-based second-order model 

is around 2,800 K, which does not exceed substantially the initiation temperature of dissociation 

of oxygen (approximately 2,500 K).3 The Mach number range has no upper limit, but the realistic 

maximum Mach number is around M=26 when the downstream temperature of normal shock wave 

for the low upstream temperature (20 K) reaches the maximum temperature limit, 2,800 K. The 

Knudsen number range is up to the transition regime including the shock wave structure, for 

example, up to Kn=1.0~2.0. 

A shock structure with strong gradients is considered one of the fundamental problems in the 

kinetic theory of gases, including the high temperature regime. The one-dimensional shock 

structure in a single component of diatomic and polyatomic gases can be described by the 

following one-dimensional system of equations, which are derived from the conservation laws of 

mass, momentum, energy, and vibrational energy (18)-(21): 

2

v,

0

0

( ) ( ) Q Q 0

Q

xx

xx x x

v xv v

u

u pu

u e p uet x

uee







 

    
    

+ + +       + =
    + +  +  + + 
     +    

v,

, 

(51) 

where  , u , e , and 
ve  represent the conserved quantities; the density, momentum in the x-

direction, energy, and vibrational energy, respectively. With the constitutive models ((31)-(35) in 

the NCCR theory or (36)-(38) in the Navier-Fourier theory) for undetermined non-conserved 

variables, 
xx ,  , Qx

, v,Q x , and the equation of state, p RT= , the system (51) can be closed.   
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The non-zero source term 
v ( ( ( ) ( )) /v v v ve T e T   − ) in the equation of vibrational energy 

is modelled using the Landau-Teller equation. The following relaxation time 
v  in the source term 

in (51) can be obtained: 

v V T cZ −= , (52) 

where 
V TZ −

is a constant relaxation factor (assumed to be 50 in the present study) and 
c  is the 

cell mean collision time. The modified Millikan-White relation52 with Park’s correction factor1 

may also be considered; however, it was not adopted in the present shock structure analysis for the 

sake of simplicity. 

 

 

M1, ρ1, T1, p1, u1, a1, γ1 

 

M2, ρ2, T2, p2, u2, a2, γ2 

 

Figure 11. A shock tube problem with the driver side on the left and the driven side on the right 

side (nitrogen gas with 
bf =0.8). 

Figure 11 shows a shock tube partitioned into two sections and separated by a diaphragm. The 

driver side or the pre-shock state (left side) is filled with nitrogen gas at standard temperature (
1T ; 

with the subscript 1 denoting the upstream state) to ensure that all of the nitrogen molecules occupy 

the vibrational ground state. There are five total degrees of freedom for the nitrogen molecule in 

the driver side (three for the translational mode (
t ) and two for the rotational modes (

r )). At 

sufficiently large Mach numbers, the driven side or the post-shock state (right side) is at 

temperature (
2T ; with the subscript 2 denoting the downstream state) greater than the characteristic 
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temperature for vibrational excitation, 
v (=3,371 K), and the nitrogen molecules are excited to 

higher vibrational levels. In addition to the five degrees of freedom, the gas in the driven side has 

additional degrees of freedom for the vibrational mode (
v ) given by, 

2

2 2

2 ( )
 where .

exp( / ) 1

v v
v v

v

e T R
e

RT T





= =

−
 

(53) 

This excitation of vibrational degrees of freedom leads to a shock structure problem that has a 

varying ratio of specific heat at constant pressure to specific heat at constant volume ( ) on the 

two sides of the diaphragm. The post-shock conditions for a given set of pre-shock conditions can 

be analytically determined using the following generalized Rankine-Hugoniot74,75 shock relations, 

which include the effect of the varying ratio  : 

2 2 2 2

1 1 2 2

2 2 2 21 1 2 2
1 1 1 2 2 2

1 2

(1 ) (1 )

( ) ( )
1 2 1 2

M M

M M M M

 

   
 

 

+ +
=

+ +
− −

, 
(54) 
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(55) 
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M
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u M
M

 

 
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

+
−

=

+
−

. 

(56) 

It is noteworthy that the post-shock Mach number is related to the post-shock specific heat 

ratio, which is in turn dependent on the post-shock temperature, resulting in an implicit system. 

An iterative numerical procedure is needed to obtain the post-shock conditions using the 

generalized Rankine-Hugoniot relations.  In a hypothetical case with zeroth-order assumptions for 
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the non-conserved variables and assuming an infinitely fast vibrational-translational relaxation, 

the shock structure is a simple Heaviside step function on the pre- and post-shock conditions, 

centered on the diaphragm. However, the realistic modeling employed in a two-temperature 

framework in the present study is intended to describe an explicit interplay between the gradients 

of the non-conserved variables and the vibrational-translational relaxation. 

B. Effects of vibrational mode on the shock structure  

The order of constitutive relations (the second-order NCCR or the first-order NSF), when 

determining the non-conserved variables in the conservation laws, has a big impact on the shock 

structure. The thin structure of the shock wave is ultimately the region with a high degree of 

thermal non-equilibrium, across which the gas properties change drastically and the kinetic energy 

of the gas transforms into thermal energy, which is always an irreversible process.  In the present 

study, a flow of diatomic nitrogen gas with a high Mach number with M=15 (driver side: 

1 101,325 Pap = , 
1 5,054.4 m / su =  and 

1 273 KT = , driven side: 
2 27,773,949 Pap = , 

2 672.16 m / su =  and 
2 9,957.03 KT = ) is considered to validate the second-order vibrational 

relaxation models for non-equilibrium flows of diatomic and polyatomic gases. 

The first theory (denoted NSF) is based on the single-temperature first-order Navier-Stokes-

Fourier constitutive relations with a zero bulk viscosity assumption. In this case, the temperatures 

for the different modes of energy are assumed to be at equilibrium at all conditions across the 

shock structure. The excess normal stress, vibrational energy, and vibrational heat flux in (51) are 

assumed to be zero. 

The second theory (denoted NCCR) is based on the single-temperature second-order nonlinear 

coupled constitutive relations with a finite bulk viscosity ratio equal to 0.8. The vibrational energy 

and vibrational heat flux are set to be zero. 
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The third theory (denoted NSF + vib) is based on the two-temperature first-order Navier-

Stokes-Fourier constitutive relations with a zero bulk viscosity assumption and in conjunction with 

an additional equation of conservation of vibrational energy, as reported by Olejniczak and 

Candler.50 It is assumed that the pre-shock and post-shock vibrational temperatures are equal to 

the respective trans-rotational temperatures. 

The last theory (denoted NCCR + vib) is based on the two-temperature second-order nonlinear 

coupled constitutive relations with a finite bulk viscosity ratio equal to 0.8, which include the 

vibrational degrees of freedom derived in the present study. 

The transport coefficients (viscosity, thermal conductivity, and vibrational thermal 

conductivity) are modeled using the following temperature-dependent power laws: 

( ) r

r

T
T

T



 
 

=  
 

, 
(57) 

( )
( )

Pr

pT C
k T


= , 

(58) 

2

2

( / ) exp( / )
( , ) ( ) / Pr

(exp( / ) 1)

v v v v
v v

v v

T T
k T T T R

T

 



=

−
, 

(59) 

where ( 1.0) =  is the coefficient of the gaseous power law, Pr( 0.75)=  is the assumed Prandtl 

number, 
r (= 51.66 10− Pa s) is the reference viscosity at the given reference temperature (

rT =273 

K).  

Although the shock structure problem does not involve any solid boundary, the accurate 

calculation of the shock structure presents severe theoretical and computational challenges,76,77 

because of its inherent nonlinearity in the formation of the shock wave through self-steepening. 

For instance, the high order hydrodynamic approach based on the Grad’s moment method and the 
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associated assumption of Maxwellian molecules failed to yield shock structure solutions beyond a 

relatively small Mach number value (M ≐1.65).37 

In the present study, we developed a one-dimensional finite volume method (FVM) code based 

on the second-order monotonic upwind scheme for conservation laws (MUSCL)78 with a min-mod 

limiter, Harten-Lax-van Leer-Contact (HLLC) flux solver79 for the convective scheme and the 

central difference scheme for the viscous term, and a third-order strong-stability preserving Runge-

Kutta time integrator. The shock structure calculation requires numerical solutions for the 

compression branch of the second-order NCCR in the FVM code, the essences of which were 

described in previous works.23,34,38 To verify the one-dimensional codes, numerical solutions of 

the NSF model were compared with analytic solutions of the NSF equations with the temperature-

dependence of transport cofficients.80 For all other theories where no analytical solutions were 

available, grid convergence studies were conducted to ensure the accuracy of the numerical 

solutions.  

Figure 12 shows the profiles of normalized density, velocity, trans-rotational temperature, and 

pressure as a function of the distance normalized using mean free path. The reference mean free 

path is defined as / 2 / ( )r r rRT   =  based on the pre-shock conditions. The origin, x/λ=0, 

represents the center of the shock structure, where the normalized density is equal to 0.5. The 

second-order NCCR theory results in thicker shock structure profiles compared with the first-order 

NSF theory. 

Theories based on a two-temperature model, both the first-order NSF and second-order NCCR 

models, show broader shock structure profiles, and in particular, for temperatures and density near 

downstream, compared to the single-temperature model. In addition, the two-temperature theories 
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show an earlier initiation of shock transition near upstream.  These highlight the effects of thermal 

non-equilibrium and vibrational heat flux on the shock structure of diatomic gases.  

 

  

  

Figure 12.  Mach 15 shock profiles of a) normalized density, b) velocity, c) trans-rotational 

temperature, and d) pressure with respect to the distance normalized using mean free path.  

The single-temperature NSF theory predicts shock thickness on the order of a few mean free 

paths. The single-temperature NCCR theory predicts a shock thickness that is greater than that of 

the corresponding NSF theory. On the other hand, in two-temperature theories (both NSF and 

NCCR), the shock thickness is predicted to be approximately the size of the constant vibrational 
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relaxation factor, equal to 50 times the mean free path. In addition, the profiles of pressure and 

velocity are shown to relax to the downstream conditions much quicker than those of temperature 

and density. 

  

Figure 13.  Mach 15 shock profiles of a) normalized viscous stress and b) trans-rotational heat 

flux with respect to the distance normalized using mean free path. 

 

  

Figure 14. Trajectories of Mach 15 shock structure in the phase space of viscous stress and heat 

flux. 
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There is a qualitative change to the shock structure when the theory employs a two-temperature 

framework, by including the vibrational heat flux. Figure 12 (bottom left) shows an overshoot in 

the trans-rotational temperature in the downstream part of the shock structure. In contrast, in the 

single-temperature theories, no such overshoot was found, and all of the profiles remain 

completely monotonic. The origin of this overshoot is basically related to the finite nature of the 

translational-vibrational relaxation process, which distributes the energy in the two degrees of 

freedom at different rates.  

Figures 13 and 14 show profiles of the normalized non-conserved variables (viscous stress and 

heat flux) and their trajectories in the phase space, respectively. The variables are normalized using 

the minimum and maximum values. As expected, both the viscous stress and heat flux quickly 

reach a peak in the middle of the shock structure and then relatively slowly return to the 

equilibrium state downstream. Consistent with Fig. 12, the two-temperature theories show an 

earlier initiation of the shock transition near upstream than the single-temperature theories do. In 

addition, Fig. 14 clearly shows that the shock structure is not symmetrical in the phase space of 

the non-conserved variables. The trajectories of the upstream parts of the shock structure (indicated 

by the lower curves) show higher magnitudes of heat flux than those in the downstream part 

(indicated by the upper curves), for a given value of viscous stress. (If the shock structure is 

symmetric, there should only be one overlapped curve.) 

The overshoot in the trans-rotational temperature observed in the downstream part of shock 

structure in Fig. 12 is also noticeable in Figs. 13 (right) and 14. The change in the sign of the 

normalized trans-rotational heat flux values represents the region of overshoot. This observation 

indicates that the origin of overshoot is closely related to the treatment of heat flux in the two-

temperature theories. That is, in the conservation laws of energy (51), initially one heat flux mode 
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Qx
 in the upstream part of the shock structure will be split into two modes (Qx

, v,Q x ) as the gas 

molecules move to the downstream of the shock structure with high temperature. Since the 

contribution of vibrational heat flux v,Q x  on the sum of heat fluxes ( Qx
+ v,Q x ) increases with the 

shock transition in the upstream part of the shock structure, there must be a peak in the downstream 

part of the shock structure, where its contribution reaches maximum, before returning to a 

vanishing contribution in the downstream of the shock structure. And, in turn, this peak in the 

vibrational heat flux significantly reduces the trans-rotational heat flux, such that the monotonicity 

of the trans-rotational heat flux and associated temperature profiles is no longer maintained, 

ultimately resulting in an overshoot. 

  

Figure 15.  Mach 15 shock profiles for a) normalized trans-rotational and vibrational 

temperatures and b) heat fluxes with respect to the distance normalized using mean free path. 

In fact, this explanation is clearly supported by the profiles of the trans-rotational and 

vibrational temperatures and heat fluxes shown in Fig. 15. Note that the overshoot in the trans-

rotational heat flux is caused by a combination of the finite values of the vibrational heat flux after 

its peak, and the rapid decrease in the trans-rotational heat flux values near downstream of the 
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shock structure. In passing, it is worth mentioning that the vibrational temperature never exceeds 

the trans-rotational temperature. Also, the vibrational temperature has a well-developed 

asymmetric profile, since the relaxation process is proportional to the difference between 

vibrational energies calculated at the trans-rotational and vibrational temperatures. 

Overall, the shock structure can be roughly divided into two zones in the two-temperature 

framework; pre-peak and post-peak zones, separated by the peak in the trans-rotational 

temperature. It is apparent that the shock structure profiles of the second-order NCCR theory, 

especially the trans-rotational temperature and heat flux profiles in the pre-peak zone, are 

substantially different from those in the first-order NSF theory, while both theories are in close 

agreement with each other in the post-peak zone. This points to the fact that the constitutive 

relations of the non-conserved variables have a profound effect on the flow physics in the pre-peak 

regime, whereas the relaxation processes dominate in the post-peak regime, resulting in similar 

profiles.  

In fact, it is this competition of the two rival processes, the second-order effects of the 

constitutive relations and V-T relaxation, that determine the accuracy of the profiles of shock 

structure for diatomic and polyatomic gases with an activated vibrational mode. A detailed analysis 

of the effects of Mach number, bulk viscosity, and relaxation models will provide interesting 

insights in the fundamental study of shock structure for diatomic and polyatomic gases and will be 

taken up in more detail in the future. 

C. Connection between sinh-dominated topology and shock structure solution  

The existence of a topology—the properties of systems that are preserved under continuous 

changes—in the constitutive model implies that, when the diatomic and polyatomic gases undergo 

compression in the shock structure, the non-conserved variables appearing in the conservation 
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laws must be determined on the surface of the compression (positive stress force 0
ˆ 0  ) of sinh-

dominated topology in the phase space, as shown in Figs. 2-10. Therefore, it will be instructive to 

investigate the connection between the topology and a flow solution by computing the trajectories 

of the shock structure solution on the second-order sinh-dominated topology. Singh et al.70 showed 

such trajectories in the shock structure solution for monatomic and non-vibrating diatomic gases. 
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Figure 16 depicts the connection between the shock structure solution and the topology of 

viscous normal stress in diatomic gases with vibrational non-equilibrium. The present problem 

would require a topology in a four-dimensional space such as ( 0 0 v,0
ˆ ˆˆ ˆ,Q ,Q , xx  ). However, since 

it is not possible to visualize a four-dimensional topology, a three-dimensional snapshot of the 

 

 

  

Figure 16. Trajectories of the shock structure solutions on the topology of normal viscous stress 

(top) and trans-rotational heat flux (bottom) in nitrogen gas with vibrational non-equilibrium. 
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topology of viscous normal stress is instead obtained by assuming a zero vibrational thermal force, 

v,0Q̂ 0= . Therefore, the present comparison of the topology and the trajectories in the shock 

structure solution in the three-dimensional space should be considered approximate, rather than 

exact. As already noted, the trajectories in the shock structure solution are located in the fourth 

quadrant, defined by positive viscous normal stress and negative trans-rotational heat flux. Similar 

to the observations in the previous work on monatomic and non-vibrating diatomic gases,70 the 

shape of the trajectories in the shock structure solution in vibrating diatomic gases is not-

overlapped, and the upstream branch is closer to the zero thermal force than the downstream branch.  

D. Comparison with direct simulation Monte Carlo solutions 

Validation of the high Mach shock structure solutions for nitrogen gas obtained in the present 

work is not feasible, mainly because of the lack of available experimental data. However, direct 

simulation Monte Carlo (DSMC) simulations can be used as an alternative tool. Several DSMC 

simulations81,82 of shock structure, and comparisons with experimental data,83 have been reported 

for monoatomic and diatomic molecules with vibrational non-equilibrium. Recently, Wysong et 

al.84 also reported comparative studies of chemistry and vibrational DSMC models and a high 

energy oxygen shock tube experiment.85  

In this study, we first consider a very challenging high Mach number case with M=15 and the 

upstream temperature 273 K. In addition, to avoid the strong chemical effect that may present in 

such high Mach flow, especially the dissociation of oxygen, we consider another case, Mach 9 

flow with the relatively low upstream temperature 150 K, where the downstream temperature of 

shock wave reaches approximately 2,260 K, which is far beyond the vibrational excitation 

temperature (800-1,000 K)3 but lower than the initiation of non-negligible chemical reaction 

(2,800 K). 
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One-dimensional shock structure simulations were performed using the DSMC method 

employing the variable hard sphere (VHS) model to handle collisions, and the Larsen-Borgnakke 

(LB) model with constant rotational and vibrational relaxation factors for the inelastic energy 

exchange. The parameters of the VHS collision model, 1.0,  0.5 0.5,  = = − =  

104.74381 10refd m−=  , were chosen in such a manner that the gas molecules behave like a 

Maxwellian gas. Since both the first-order and second-order theories assume that the translational 

and rotational energy modes are in equilibrium with each other, the relaxation factor for the 

rotational energy exchange in the DSMC simulation was set to one.  

The initial conditions for the driven and the driver side of the shock tube were the same as 

those used in the CFD simulations. The time step chosen for the DSMC simulation was a fraction 

of the mean collision time, corresponding to the driver side. To avoid the random walk effect which 

leads to dispersion of the shock structure, a large number of representative particles (3,000,000 

particles per cell in the driver section) were used. Although this increases the computational cost 

considerably, the shock structure will not be affected by any undesirable effects of artificial 

stabilization techniques.  

Figure 17 compares the results of the first-order NSF, second-order NCCR, and DSMC for 

conserved variables, including trans-rotational and vibrational temperatures. The x-axis for the 

DSMC results was normalized using the same mean free path λ employed in the NSF and NCCR 

simulations. Again, the origin, x/λ=0, represents the center of the shock structure, where the 

normalized density is equal to 0.5. For the temperature profiles in DSMC results, all three 

temperatures (translational, rotational, and vibrational) are plotted. In the case of temperature 

profiles in the NSF and NCCR results, two temperatures (trans-rotational and vibrational) are 

plotted. 
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Figure 17.  Mach 15 shock profiles for a) normalized density, b) velocity, c) temperatures and 

d) pressure with respect to the distance normalized using mean free path. (
1T =273 K, nitrogen) 

The DSMC shock profiles show a smoother transition at the initiation of the shock structure 

near upstream compared to the first-order NSF and second-order NCCR shock profiles. Previous 

studies86-88 have also shown a similar slower rise near upstream of the shock structure. On the other 

hand, it is apparent from these plots that the second-order NCCR results are in better agreement 

with the DSMC data when compared with the first-order NSF results, and in particular, in the 

profiles and slopes of density, velocity, and vibrational temperatures. 
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The peak translational temperature in the DSMC simulation is higher than the peak trans-

rotational temperature in the NSF and NCCR simulations. The trans-rotational temperature profile 

of the second-order NCCR simulation is surprisingly close to the rotational temperature profile in 

the DSMC simulation. This is because, although the translational-rotational relaxation factor for 

the DSMC simulation is unity, it does not ensure that the rotational relaxation is precisely 

synchronized with the translational relaxation across the shock structure. This is apparent from the 

temperature profiles shown in Fig. 17. The rotational energy modes equilibrate with the 

translational mode only through a collision event. This results in slightly different profiles for 

translational and rotational temperatures in the DSMC simulations, unlike the first-order NSF and 

second-order NCCR continuum-based simulations. These arguments do not affect the non-thermal 

quantities, such as the density and momentum. For a more accurate comparison of the present high 

Mach number shock structure solutions with experimental data,85 in future the present second-

order NCCR theory needs to be extended to include the effects of chemical reactions. 

Finally, we consider another high Mach number flow with M=9 but the relatively low upstream 

temperature 150 K. This flow can serve as an ideal case to test the present Boltzmann-Curtiss-

based second-order constitutive models including the vibrational mode, since the downstream 

temperature of shock wave reaches approximately 2,260 K, which is far beyond the vibrational 

excitation temperature but lower than the initiation temperature of non-negligible chemical 

reaction. Figure 18 compares the results of the first-order NSF, second-order NCCR, and DSMC 

for conserved variables, including trans-rotational and vibrational temperatures, for nitrogen gas 

flow with M=9 and 150 K upstream temperature. As expected, it can be observed that the second-

order NCCR results are closer to the DSMC data in the M=9 case when compared with the first-

order NSF results. 
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Figure 18.  Mach 9 shock profiles for a) normalized density, b) velocity, c) temperatures and d) 

pressure with respect to the distance normalized using mean free path. (
1T =150 K, nitrogen) 
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Figure 19.  Mach 15 (top; 
1T =273 K) and Mach 9 (bottom; 

1T =150 K) shock profiles for a) 

viscous stress and b) heat flux with respect to the distance normalized using mean free path. 

(Nitrogen) 

 

    Figure 19 compares profiles of the normalized non-conserved variables (viscous stress and 

heat flux) for M=15, M=9 cases. Both the viscous stress and heat flux quickly reach a peak in 

the middle of the shock structure and then relatively slowly return to the equilibrium state 

downstream. As with Figs. 17, 18, the second-order NCCR results are closer to the DSMC data 

in the lower Mach number (M=9) case. 
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Table II. Comparison of two key measures to characterize the shock structure profiles of 

nitrogen gas for the first-order NSF, second-order NCCR, and DSMC results. 

 

M=15, T=273 K Inverse shock thickness Temperature-density separation 

NSF 0.1446 5.0741 

NCCR 0.1112 8.0789 

DSMC 0.1083 8.9072 

 

M=9, T=150 K Inverse shock thickness Temperature-density separation 

NSF 0.1661 4.7404 

NCCR 0.2370 2.8746 

DSMC 0.2680 3.2662 
 

 

The judgement on the comparison of precise shock profiles is very subtle and requires careful 

attentions. The stiff shock structure is well known as one of the toughest problems to solve 

numerically and numerical results of the shock structure are found to be very sensitive to various 

factors such as the extent of the computational domain, the imposed downstream boundary 

conditions, the level of intrinsic viscosity and thermal conductivity, physical and artificial, and so 

on, making accurate comparisons of various results very challenging. Furthermore, there exist 

some theoretical gaps between the NCCR and DSMC: 1) DSMC employs a three-temperature 

model, instead of the two-temperature model of NCCR and NSF; 2) the angular momentum of 

particle is not monitored in the kinematic module of DSMC code and, instead, its effect is 

considered during the inelastic collision, while the angular motion is included in both places 

(kinematic and collisional terms) in the case of Boltzmann-Curtiss kinetic equation. 

With these limitations, we compare again the first-order NSF, second-order NCCR, and DSMC 

results, but based on two key measures which can best characterize the essence of shock structure 

profiles—the inverse shock density thickness and shock temperature–density separation.80 Table 

II summarizes two key characteristics of shock profiles for M=15, M=9 cases. It can be observed 
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that the second-order NCCR results improve key measures substantially; for example, reduction 

of deviation in the inverse shock thickness, from 34% to 3% and from 38% to 12%, in case of 

M=15, M=9, respectively. 

Numerical computations of the flow problems studied so far indicated that the computing time 

of the one-dimensional NCCR code is comparable to that of the NSF code. The only excess load, 

which is caused by the addition of few iterations (less than 10 in most cases) when the stress and 

heat fluxes are calculated from the implicit algebraic constitutive equations for given 

thermodynamic forces, occupies a small fraction of computing time in the code (less than 30 

percent).38,39 The NSF, NCCR and DSMC simulations were conducted on Intel Zeon workstation 

using 24 processors. Total run time in this one-dimensional problem for the three methods (NSF, 

NCCR and DSMC) were found to be 147, 175 and 621 CPU hours, respectively, resulting in 19% 

increase compared with the run time of NSF code. 

V. CONCLUSIONS 

New second-order constitutive models of conserved variables for diatomic and (linear) 

polyatomic gases, including the heat flux associated with vibrational nonequilibrium, were derived 

based on a modified Boltzmann-Curtiss kinetic equation. These models are a natural extension of 

the previous nonlinear coupled constitutive relations developed for monoatomic, diatomic, and 

(linear) polyatomic gases at temperatures lower than the vibrational excitation temperature. The 

closing-last balanced closure and the cumulant expansion of the calortropy production associated 

with the Boltzmann collision term play key roles in the derivation of the second-order constitutive 

models, compatible with the second law of thermodynamics. 
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The second-order constitutive models were first studied by considering their topology. The 

properties of the models were preserved under continuous changes. Since the topology of the 

constitutive relations is separate from the conservation laws, it can provide essential information 

about the connection between various non-conserved variables and the thermal driving forces. The 

topology was found to be highly nonlinear and tightly coupled, as illustrated by the presence of 

protruding or sunken regions and logarithmic (sinh-1) asymptotes, in the compression branch in 

the topology. It was also found that the vibrational mode reduces the level of nonlinearity in the 

topology. 

The second-order constitutive models for diatomic and polyatomic gases with the vibrational 

degrees of freedom were then applied to the classical shock structure problem. A comparative 

study of the shock structures, on the basis of the first-order, second-order constitutive models and 

the direct simulation Monte Carlo method, was carried out. The second-order NCCR theory 

resulted in thicker shock structure profiles, compared with the first-order NSF theory. The two-

temperature theories showed an earlier initiation of shock transition near upstream than the single-

temperature theories.  

The two-temperature theories also produced a qualitative change in the shock structure, an 

overshoot in the trans-rotational temperature in the downstream part of the shock structure. The 

existence of the overshoot was attributed to a combination of finite values in the vibrational heat 

flux after its peak, and the rapid decrease in the trans-rotational heat flux values near downstream 

of the shock structure. The analysis showed that competition between the two rival processes—

second-order effects of constitutive relations and V-T relaxation—determines the accuracy of the 

shock structure profiles for diatomic and polyatomic gases with activated vibrational mode. Finally, 

the analysis concluded that the second-order NCCR results were in better agreement with the 
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DSMC data, compared with the first-order NSF results, and particularly, in the profiles and slopes 

of density, velocity, and vibrational temperatures. 

This study focused on the effect of vibrational non-equilibrium combined with the second-

order constitutive models of trans-rotational non-equilibrium within the hydrodynamic framework. 

To fully cover all re-entry flow regimes, from ground to altitudes higher than 55 km and to the 

boundary of earth’s atmosphere, it will be essential to include chemical non-equilibrium. We hope 

to report the results of our study of this problem in due course. 
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Appendix: Thermodynamic solution of the modified Boltzmann-

Curtiss kinetic equation and the cumulant expansion of the collision 

term 

Like the statistical definition of moments of Boltzmann equation, the calortropy20 can also be 

defined for molecules in the i th vibrational level as follows: 

 ˆ ˆ [ln 1] [ln 1]c c

i i B i i B i i

i i i

k f f k f f  =  = −  −  = −  −    . (A1) 

The non-equilibrium canonical distribution 
c

if  represents the thermodynamic branch of the 

modified Boltzmann-Curtiss kinetic equation if . By differentiating the calortropy ̂  with time 

and combining it with the modified Boltzmann-Curtiss kinetic equation (4), the following balance 

equation for the calortropy can be obtained: 
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(A2) 

In calculating the dissipation term, it was assumed that the difference between the distribution 

function 
if  and the corresponding thermodynamic branch 

c

if  is negligible, which is equivalent to 

neglecting fluctuations in the distribution function. The last expression in equation (A2) clearly 

indicates that the present formulation satisfies the positivity of the calortropy production 
c . This 

will guarantee that any subsequent calculation of the dissipation term based on the equation (A2) 

will be compatible with the second law of thermodynamics. 

Unlike Grad’s Hermite polynomial expansion,36,37 the expansion of the distribution function 

in the exponential form assures the non-negativity of the distribution function regardless of the 

level of approximations. What is more, in the physical sense the exponential form is the only form 

that satisfies the additive property of the calortropy and calortropy production, all of which are in 

the logarithmic form. When the terms of vibrational non-equilibrium, (i.e. trans-rotational and 

vibrational temperatures) are added to the exponential form in the distribution function, the 

distribution function at the i th vibrational level,
c

if , can be expressed as 
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The terms 
( )n

ih ,
( )nX and N  represent the molecular expression for thn  moments (stress tensor, 

excess normal stress, and trans-rotational heat flux etc.), the conjugate variables to 
( )n

ih , and the 

normalization factor, respectively. On the other hand, the terms 
( )

,

n

v ih , 
( )n

vX and 
vN  represent the 

molecular expression for higher-order moments related to vibrational energy (vibrational heat flux 

etc.), the respective conjugate variables, and the respective normalization factor. The terms   and  

v  turn out to be the factors
1( )Bk T −

and
1( )B vk T −

, respectively. With a short notation for the 

exponent, the distribution function at the ith vibrational level can be rewritten 

(0) ( ) ( ) ( ) ( )

,

1 1

exp( ),  where ( ) ( )n n n n

i i i i i v v v i v

n n

f f x x X h N X h N 
 

= =

= −  − + −  , 
(A4) 

where the term (0)f represents the Maxwell-Boltzmann equilibrium distribution function at the 

temperatures of the trans-rotational and vibrational modes of energy, T and 
vT . After substituting 

the definitions of the distribution functions (pre-collision: 
(0) exp( )i i if f x= − ,

(0)
exp( )

j jjf f x= − , 

post-collision:
* (0) exp( )k k kf f y= − ,

* (0) exp( )l l lf f y= − ) into (A2), the calortropy production can 

be expressed as 

* * (0) (0)

, , ,

1
( , | , ; ) ( )[exp( ) exp( )]

4
c B i j i j ij kl kl ij

i j k l

k d d d W i j k l f f x y y x =   − − − −   v v . 
(A5) 

where ij i jx x x= +  and
kl k ly y y= + .  

This form of mathematical equation is suitable for the so-called cumulant expansion. The 

mathematical theory of cumulant expansion and its application to the expansion of Boltzmann 

collision integral terms have been reported in Eu’s works20,21,88 and another previous study.24 In 

essence, in the cumulant expansion, the moment-generated function as the expectation value of the 
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exponential function, xe , is expanded in series of the 1st-mean 
1 , 2nd-variance 

2 , 3rd-

skewness 
3 , 4th-excess (or kurtosis) 

4 , etc., 

( ) ( )

0

( ) =exp
!

x
l

x
l

l

e f x dxe
l

 



+

=

 
 
  

  . 
(A6) 

Note that the cumulant expansion assures the non-negativity of the distribution function regardless 

of the level of approximations, which is not guaranteed for the polynomial expansion, 

0
!

l
l

l

x x
l

e




=

= . 
 

The derivation for diatomic and polyatomic gases with the vibrational degrees of freedom is a 

simple extension, summed over the vibrational levels, and is hence skipped in the present study 

for conciseness. 

In addition, when the distribution function (A4) is inserted into the definition of the calortropy 

terms 
c , the dissipative terms can be shown to be directly related to the calortropy terms, 

( ) ( ) ( ) ( )

,

1 1

( ) ( ) ( ) ( )

v

1 1

[ , ] [ , ]

1 1
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 
 

(A7) 

Similar to the classification of the higher-order moments, the dissipative terms are also grouped 

into two bins: those associated with trans-rotational energy ( ( )n ) and those associated with 

vibrational energy ( ( )

v

n ). Finally, the explicit form of the dissipation term can be derived by 

calculating the first reduced collision integrals (
1 ) in terms of the scalar coefficients of the 

collision bracket integrals ( ( )nlR and ( )nl

vR  ) and the conjugate functions ( ( )lX and ( )l

vX ) of the 

higher-order moments: 
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(A9) 

where ( )

1( , )q    represents the cumulant expansion series and the leading term is 

1
1

1

sinh
( )q





= . 

(A10) 

The conjugate variables, which were first introduced in (A3) of the distribution function, can 

be determined in terms of macroscopic variables using the generalized Gibbs ensemble theory.89,90 

The leading order approximate solutions for the four primary non-conserved higher moments of 

the modified Boltzmann-Curtiss equation (viscous stress, excess normal stress, heat flux, 

vibrational heat flux) can be expressed as 

v
v

,

3
( ) ,  ( ) ,  ( ) ,  ( )

2 2 p p v v

X X X X
p p pC T pC T


= −  = − = − = −

QΠ Q
Π Q Q . 

(A11) 
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The data that supports the findings of this study are available within the article [and its 

supplementary material]. 
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