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Abstract

Design optimization is a mathematical process to find an optimal solution through the use of formal optimization algorithms. 

Design plays a vital role in the engineering field; therefore, using design tools in education and research is becoming more 

and more important. Recently, numerical design optimization in fluid mechanics, which uses computational fluid dynamics 

(CFD), has numerous applications in the engineering field, because of the rapid development of high-performance computing 

resources. However, it is difficult to find design optimization software and contents for educational purposes in aerospace 

engineering. In the present study, we have developed an aerodynamic design framework specifically for an airfoil, based on the 

EDucation-research Integration through Simulation On the Net (EDISON) portal. The airfoil design framework is composed of 

three subparts: a geometry kernel, CFD flow analysis, and an optimization algorithm. Through a seamless interface among the 

subparts, an iterative design process is conducted. In addition, the CFD flow analysis and the design framework are provided 

through a web-based portal system, while the computation is taken care of by a supercomputing facility. In addition to the 

software development, educational contents are developed for lectures associated with design optimization in aerospace and 

mechanical engineering education programs. The software and content developed in this study is expected to be used as a tool 

for e-learning material, for education and research in universities.
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1. Introduction

Fluid mechanics and aerodynamics are key academic 

courses in the engineering curriculum, and advanced 

flow solution methods of computational fluid dynamics 

(CFD) are increasingly introduced in both undergraduate 

and graduate curricula. Practical examples are numerous, 

ranging from simple potential flows around a cylinder that 

can be analytically solved by hand, to viscous flows around 

a complex three-dimensional configuration that have to be 

solved by advanced numerical schemes.

On the other hand, numerical design optimization is a very 

important topic in the engineering field, and is considered a 

fundamental concept that can be applied to many practical 

engineering problems. It requires thorough understanding 

of the target system, through the systematic definitions 

of objectives, constraints, and design variables, as well as 

sufficient knowledge for the modeling & simulation (M & S) 

that evaluates the objective function. Also, an optimization 

algorithm to find a search direction has to be derived from 

applied mathematics and numerical analysis. 

However, computational design optimization in fluid 

mechanics and applied aerodynamics that directly uses 

the CFD methods to solve practical problems has not been 

actively introduced in education. Only a few universities have 

graduate programs to specialize in computation for design 
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and optimization, in general engineering problems [1]. 

Educational software for flow analysis using CFD solvers, 

and its tight integration with design optimization application 

in undergraduate curricula, is even less available. Moreover, 

it typically focuses on only certain purposes of the local 

university, or on classes, but not with wide-ranging 

applications [2, 3]. This is because a thorough understanding 

of the fundamental physics of flow analysis and its interface 

to the numerical optimization framework, as the modeling & 

simulation (M & S) of CFD solvers, is difficult. 

There have been a number of attempts on the academic 

side, both domestically and abroad, to develop and 

implement specialized engineering software programs, 

for both research and educational purposes. Nanohub [4], 

which is specialized software for nanotechnology, is being 

used by many students and researchers in that field. In 

fluid mechanics in mechanical and aerospace engineering, 

e-Fluid [5], engapplet [6], and Interactive Classroom [7] are 

some of the well-known tools for high-fidelity flow analysis. 

However, education software programs for numerical 

design optimization for aerodynamic shape design using 

CFD flow analysis has not yet been developed. Currently, 

EDISON [8] is a portal system for the users of universities 

and industries, and it divides into CFD, Nano-physics, and 

Chemistry. Among them, EDISON_CFD is a system that can 

easily access and use high-fidelity CFD solvers, through the 

GUI interface of an Internet website, where the numerical 

schemes of the CFD algorithms are provided in a parallel 

computation environment. This web-based CFD solver for 

educational purpose was initiated by e-AIRS [9], and was 

then integrated into the EDISON portal system, with new 

interface and functions. Now, researchers, professors, and 

graduate students in the universities are being involved in 

developing various software and contents for diversification 

of EDISON_CFD [10]. In addition, the EDISON project is an 

on-going education and research project that is currently co-

developed by university professors and computer scientists 

of the national supercomputing center of KISTI (Korea 

Institute of Science and Technology Information). The 

center also provides high-performance computing facilities 

for EDISON users. Developers in universities can discuss 

or share their solvers under the EDISON environment. The 

EDISON center in KISTI intermediates works related to 

developers, and supports computing resources for their 

software development.

We developed a computational design framework, 

EDISON_Design, for aerodynamic shape optimization, 

which uses accurate CFD solution algorithms for the main M 

& S of computational design. A main purpose is to develop 

an aerodynamic design optimization framework that can be 

easily used for the students as in-class, e-learning materials, 

to carry out flow analysis and related design optimization, 

in the area of fluid mechanics and applied aerodynamics. 

The framework is composed of several modules: surface 

geometry kernel, mesh generation and deformation, 

sensitivity analysis, CFD flow solutions, and mathematical 

optimization algorithms. The geometry kernel mediates 

between the numerical values of design parameters, and 

the geometric shape. The mesh deformation technique 

guarantees smooth variation of the computational mesh, 

corresponding to geometric shape changes during the 

design process. The sensitivity analysis determines the 

gradient values of the objective function with respect to 

the design variables, to provide an optimization algorithm 

with descent search directions. The mathematical algorithm 

defines the aerodynamic design problem in terms of surface 

parameterization, flow analysis for objectives and constraints 

evaluation, and sensitivity analysis, by calculating the 

derivative of CFD flow solutions. 

The organization of the current paper is as follows. 

Theoretical backgrounds of the numerical design 

optimization methods and CFD flow solution procedure 

are explained in Sections 2 and 3. Sections 4 and 5 describe 

the design optimization framework in the EDISON portal 

system, with details of its component modules, along with 

its utilization of the framework for engineering education. 

Examples of airfoil shape optimization and their design 

results are also shown in Section 5. Finally, Section VI 

concludes the current study, along with a plan for future 

work. In future work, we will further expand the design 

framework for aircraft design, and develop research contents 

that will be able to supplement the theoretical background. 

We also plan to find ways to utilize the framework in general 

engineering education and research.

2. Design Optimization Methods

2.1 Theoretical backgrounds

Design optimization is a mathematical process to find 

a minimum or maximum of a function of interest, while it 

is under a specified constraint requirement. It is defined 

mathematically as below. 

Minimize f(X) with respect to X in Rn

subject to:

hi (X) = 0 (i=1, 2, …, mh)

gj (X) ≤ 0 (j=1, 2, …, mg)

XL ≤ X ≤ XU

where, f is an objective function, X is a vector of design 
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variables with n elements, hi is an equality constraint, and gi 

is an inequality constraint. A general solution procedure is 

an iterative movement of the design candidate point toward 

the optimal location of the function, based on the search 

direction and step length in that direction, in each movement. 

The iterative movement can be written mathematically:

5 
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where, S is a search direction, α is the step length, and n is the number of design iterations. To update 

a set of the design variables in Eq. (1), the directional vector S and the distance α must be determined 

from the sensitivity analysis, which requires the computation of the derivative of the objectives and 

constraints, as well as the function evaluation itself. The distance α is determined by minimizing 

1( )nf X   in the direction of S, by the formal one-dimensional minimization problem. Various 

techniques are used to determine the distance, such as the equal interval search, the golden section 

search, and the approximated method. With respect to the design framework in this study, an 

approximated method based on a Maclaurin series expansion is included. A detailed mathematical 

formulation is omitted in this paper, and is referred to the papers [11-13]. 

If we determine the search direction using a sensitivity value of gradient information, the design 

method is classified as gradient-based optimization; otherwise, it is gradient-free optimization. Given 

a starting point, a search direction is looked for, such that the objective function can be decreased 

along the descent direction, and such methods as steepest descent, nonlinear conjugate gradient 

(Fletcher-Reeves method), Newton, and quasi-Newton provide different approaches, in determining 

the search direction [11]. However, they all use additional information of the gradient, hessian, or 

approximated hessian information of the objective and constraint function, with respect to the design 

variables. A sequential quadratic programming (SQP), or trust-region update method, is more 

popularly used, for their capability to effectively handle both equality and inequality constraints [11-

(1)

where, S is a search direction, α is the step length, and n is 

the number of design iterations. To update a set of the design 

variables in Eq. (1), the directional vector S and the distance 

α must be determined from the sensitivity analysis, which 

requires the computation of the derivative of the objectives 

and constraints, as well as the function evaluation itself. 

The distance α is determined by minimizing f(Xn+1) in the 

direction of S, by the formal one-dimensional minimization 

problem. Various techniques are used to determine the 

distance, such as the equal interval search, the golden 

section search, and the approximated method. With respect 

to the design framework in this study, an approximated 

method based on a Maclaurin series expansion is included. 

A detailed mathematical formulation is omitted in this paper, 

and is referred to the papers [11-13].

If we determine the search direction using a sensitivity 

value of gradient information, the design method is 

classified as gradient-based optimization; otherwise, it is 

gradient-free optimization. Given a starting point, a search 

direction is looked for, such that the objective function can 

be decreased along the descent direction, and such methods 

as steepest descent, nonlinear conjugate gradient (Fletcher-

Reeves method), Newton, and quasi-Newton provide 

different approaches, in determining the search direction 

[11]. However, they all use additional information of the 

gradient, hessian, or approximated hessian information 
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the design variables. A sequential quadratic programming 

(SQP), or trust-region update method, is more popularly 

used, for their capability to effectively handle both equality 

and inequality constraints [11-13]. The greatest advantage of 

the gradient-based method is its efficiency in computational 

cost, as its optimization process is accelerated along the 

descent direction, at each design step.  

On the other hand, the gradient-free optimization 

method does not require sensitivity information, and 

depends only on the function evaluations to find the global 

minimum of the objective function. A pattern search 

algorithm or nonlinear SIMPLEX [14] uses heuristics, 

based on the geometric configuration of a simplex; while 

a genetic algorithm or evolutionary algorithm [15] is a 

nature-inspired, probabilistic method. However, due to its 

expensive computational cost, related to a relatively large 

number of function evaluations, the gradient-free method 

cannot handle many design variables, with their number 

typically limited up to twenty, or so. But for the functions of 

which one cannot compute the gradients at all design points, 

or where it is very difficult to compute the derivative values, 

the gradient-free methods are the practical choice of design 

methods, and the computational cost is reduced, if used in 

combination with the approximation model [16]. Various 

criteria can be used to terminate the design iterations, and 

locate the minimum of the function. Termination criteria of 

the optimization algorithms are listed in Table 1. 

In the current design framework, various optimization 

algorithms are supported, as listed above. For example, the 

MFDA (Modified Feasible Direction Algorithm) [13], which 

is one of the famous gradient-based optimizers, describes 

the direction vector S at q-stage, as below, 
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2.2 Sensitivity Analysis 

We introduce two famous methods, which demonstrate different characteristics, in terms of the 

accuracy and the computational efficiency, to compute the function derivatives: a conventional finite-

difference method, and a complex-step derivative approximation. 

2.2.1 The Finite-Difference Method 

The finite-difference method is the simplest and most intuitive method. It is derived from the Taylor 
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directly proportional to the number of independent design variables. It typically requires (n+1) times 

of function evaluations with n design variables; so if the function evaluation is expensive, as in the 

CFD-based aerodynamic analysis in our study, the corresponding computational cost becomes 

prohibitive.  
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2.2.1 The Finite-Difference Method

The finite-difference method is the simplest and most 

intuitive method. It is derived from the Taylor series 

expansion, by truncating higher order terms. A first-order 

forward-difference is written as below.
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method, as it does not suffer from the subtractive cancellation error, and allows a step size as small as 

10-200. Although the method involves complex variable analysis that requires redefinition of some of 

the operators and function formulations in the real domain, it is still very attractive, for its high 

accuracy. The mathematical formulation is written as below: 
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turbulence models are available, including standard k-ω[22], Wilcox’s k-ω [23], and Menter’s k-ω 

shear stress transport (SST) [24]. To handle a complicated three-dimensional configuration with 

increased computational cost, parallelization of the flow solvers are implemented, using both MPI and 

OpenMP libraries [25]. Preprocessing of load balancing for parallel computation is effectively 

handled by the supercomputing center. 

Both incompressible and compressible flow solutions are possible for a wide range of Mach 

numbers (from subsonic, supersonic to hypersonic). Complicated flow features, including multi-phase 

flow, thermal flow, and Stokes flow, are also resolved in the current framework of EDISON_CFD. 

Both internal and external flows are computed, to solve diverse types of fluid mechanics problems, 

including pipe and cylinder flows. Flow analysis of both laminar and turbulent conditions is carried 

out for a wide range of Reynolds number, and several transition models to predict the flow separation 

on the surface are implemented, as well. Fig. 1 shows the graphical schematic of the EDISON_CFD 

applications to various problems.  
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and turbulent conditions is carried out for a wide range of 

Reynolds number, and several transition models to predict 

the flow separation on the surface are implemented, as well. 

Fig. 1 shows the graphical schematic of the EDISON_CFD 

applications to various problems. 

3.2.2 Parametric Surface Definition

Although one-time flow analysis requires a set of a fixed 

CAD model and a corresponding mesh for the configuration 

of interest, a design optimization requires different surface 

geometry at each design step, since the design produces a 

new set of design variables that have to be translated into 

shape modification. Therefore, smooth variation of the 

boundary surface and mesh deformation conforming to 

the surface variation is critical in the overall design process. 

Subsequently, flow analysis at each design step is required in 

a fast and automatic manner, for the new design candidate. 

Surface variations are performed with respect to a 

different set of design variables, in two ways: 1) by explicitly 

changing the value of the parameters that initially define the 

surface boundary, or 2) by imposing arbitrary variations on 

the direction normal to the surface, which create implicit 

variations in shape. The surface variation through the control 

of the shape-related parameters requires an additional 

process, called profile fitting, to retrofit the approximate 

solution to the initial shape. A polynomial equation for 

a simple NACA airfoil, PARSEC [26], and NURBS [27] 

can directly have a parameterized relationship, to define 

the airfoil surface. The design parameters of PARSEC are 

shown in Fig. 2. On the other hand, a direct variation of 

the surface, by superposing the variation function onto the 

original surface, allows more flexible representation of the 

surface variation. The Hicks-Henne bump function [28] is a 

representative method in this category. A brief mathematical 

formulation is: ynew = yold + Δy. Its shape is shown in Fig. 3. 

A careful consideration is required to choose the surface 

shape definition function, because it characterizes the design 

space, in terms of variation bounds and its dimension. In the 

current design framework, various types of shape definition 

functions are included, such as the polynomials for NACA 

4-digit airfoil, PARSEC, NURBS, and Hicks-Henne bump 

functions. Users are able to correspondingly choose the 

appropriate shape definition method. 

3.2.3 Mesh Generation and Dynamic Deformation

A pre-processing module of e-Mega is integrated into 

the EDISON_CFD solver, to generate computational grids 

for a user-defined arbitrary geometry. Both structured and 

unstructured mesh generators are possible; but we mostly 

use the structured mesh generation module in the current 

study, for its simplicity and efficiency at grid generation 

time. The clustering of mesh points in an arbitrary direction 

is possible, and various types of smoothing, including elliptic 

and parabolic differential equation solvers, are available to 

enhance the grid quality around the clustering area of the 

near-body, and the region of high pressure gradient.

Another key aspect to an efficient design is smooth mesh 

deformation, conforming to the surface variation. Automatic 

and dynamic mesh deformation that preserves the initial 

mesh quality is very important, as it does not require new 

mesh generation for a different geometry, at each design 

iteration. In this study, trans-finite interpolation (TFI) [29] 

is applied, to handle shape modification. The TFI method 

is a technique of dynamic mesh deformation for structured 

grids, and propagates the variation of surface nodes, by 

interpolating the neighboring mesh points. Moreover, a 

technique for handling large deformations near trailing 
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edges in an O-type mesh is additionally implemented, and 

shown in Fig. 4. From a trailing-edge node to a far-boundary 

node, a 3rd-order polynomial with a pre-specified boundary 

condition is used to enhance the mesh quality. Then, a 

redefined edge is propagated to the whole mesh system, 

by solving an elliptic equation. The mesh deformation 

technique in this study is validated by undulatory airfoil 

motion [30], as shown in Fig. 4. Despite considerably large 

deformations, compared to a typical deformation during 

the design process, the mesh deformation and quality-

enhancing techniques used in this study can effectively 

handle it. 

4. ��Design Optimization Framework: EDI-
SON_Design

4.1 EDISON and EDISON_Design Portal Systems

The EDISON portal system is a web-based simulation 

environment for engineering education and research, and is 

currently used in many domestic universities as an e-learning 

tool, for the courses of fluid mechanics and aerodynamics 

[8]. As can be seen in Fig. 5, one of the important features 

is that computing resources for the simulations are remotely 

provided with the users, and controlled by the national 

supercomputing center. The students can access the high-

performance computers through the EDISON portal 

system, using their PC, which serves as a terminal to the 

supercomputing center. Users log on to the website through 

an Internet connection, and choose the CFD flow solvers 

and input parameters for the flow condition, and the job is 

launched remotely, via the portal system. Once the job is 

completed, the student can visualize the flow field directly 

in the portal system, or download the solution files to local 

storage. The user does not need to consider the expenses of 

purchasing and operating computing devices. 

A design optimization framework of EDISON_Design is 

implemented in the EDISON portal [8], as one of the sub-

modules. Its major advantage is to integrate the CFD flow 

solver of EDISON_CFD as a main modeling and simulation 

(M&S) tool of the design, for a high-fidelity flow solution. 

Fig. 6 represents an overall schematic of the EDISON_Design 

framework, and the interfaces among the individual modules 

are shown inside the framework. It includes a geometry 

kernel for surface definition and variation, dynamic mesh 

generation and deformation, flow analysis through the 

CFD solvers, and mathematical optimization algorithms 

for computing the search direction and step length. As the 

design proceeds through the design steps, a set of the design 

variables are updated, and represented as a new geometry; 

and corresponding mesh deformation and subsequent flow 

solutions are carried out in the EDISON_Design framework. 

Most of the computational cost is for the CFD flow solutions 
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in function evaluation, and its derivative computation to 

determine the search directions. The whole design process 

is fully automated, through linked information for their 

input and output data, which makes the current framework 

particularly more advantageous for large scale problems 

involving many design iterations. The automatic design 

procedure and its detailed information are behind the GUI, 

which is particularly attractive for those users without much 

a priori knowledge of mathematical design theory. 

The available surface definition and variation algorithms 

for a two-dimensional airfoil are: PARSEC, Hicks-Henne 

bump functions, and NURBS representation. Also, the 

available optimization methods and sensitivity methods are 

summarized in Table 2, along with the available CFD solver 

types. A selection of the various choices of the EDISON_CFD 

solvers and EDISON_Design parameters is done through 

the GUI (Graphic User Interface) of the EDISON portal 

system. Fig. 7 and Fig. 8 show the GUI format of the EDISON 

environment for flow simulation and the corresponding 

input parameter set-up, respectively. Mach number, angle 

of attack, and the Reynolds number are options associated 

with the incoming flow conditions. Additionally, spatial and 

temporal discretization schemes of the CFD solvers, and 

the CFL (Courant-Friedrichs-Lewy) number can be chosen 

with flexibility, depending on the level of user’s knowledge 

of flow solvers. If the user is new to the numerical analysis 

of flow governing equations, default values are provided. For 

graduate students, they can have more options in generating 

meshes, and solving the PDE of the flow governing equations. 

In the optimization through EDISON_Design, numerous 

choices of the shape definition types, optimization algorithms, 

the objective function, and the constraints definition are 

available, as shown in Fig. 9. Like EDISON_CFD, the level of 

the user’s expertise in CFD analysis and design optimization 

is taken into consideration. For advanced users, detailed 

input parameters for the optimization algorithm can be 

selected, without the default options. The flexibility of the 

proposed design framework of EDISON_Design is mainly 
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Table 2. Optimization methods and sensitivity analysis method
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Gradient-based optimization 

BFGS (quasi-Newton) method 
Nonlinear conjugate gradient method 
MDFA (modified feasible direction) 

method 
SLP & SQP (Sequential linear and 

quadratic programming) 

Gradient-free optimization Genetic Algorithms 
Non-linear SIMPLEX 

Approximation and surrogate models 
Kriging 

Co-Kriging 
Radial Basis Function 

Sensitivity analysis method 

Finite-difference method 
Adjoint solution method 

Complex-step derivative approximation 
Automatic difference method 

Types of available CFD solvers 
1D Euler solver for nozzle flow 

2D Compressible N-S Equation solver 
2D Incompressible N-S Equation solver 

 

 

 

 

 

 
Fig. 7. User interface of EDISON: choice of various flow solution and design methods 

 

16 
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including the optimization algorithms, and definition of the design variables, has to be different, in the 

usage of the EDISON_Design. The resultant accuracy and efficiency of the design solutions have to 

be addressed at the same time.  
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attributed to the capability of the EDISON_CFD solvers that 

can handle various types of flow problems, in the fields of 

aerospace, mechanical, civil, ocean engineering. Though 

the applications are different with the individual geometry 

of the configuration of interest and a proper EDISON_

CFD solver for specific flow conditions, a basic approach 

for the design optimization is common for all problems. 

However, depending on the complexity of the problems, 

and the size of the computation domain, the choice of the 

design strategy including the optimization algorithms, and 

definition of the design variables, has to be different, in the 

usage of the EDISON_Design. The resultant accuracy and 

efficiency of the design solutions have to be addressed at 

the same time. 

4.2 Computation Resources

Another advantage of the current design framework is 

the provision of powerful computing resources for multiple 

users. For complicated problems with a large computation 

domain, parallel computation is needed, and made available 

through the high-performance computing environment. The 

national supercomputing center of KISTI (Korea Institute of 

Science and Technology Information) provides computation 

resources with various user interface options of GUI, via 

the web-based connection. Depending on the scale of the 

problem, and the size of the computational mesh, a different 

level of parallelization is recommended to the user. Load 

balancing is carried out, to handle a large number of users 
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Table 3. Computer clusters that are provided for the EDISON users 

Name of the 
cluster 

Sinbaram 
(Apple Green 

Blade GB812X) 

Solbaram 
(Intel Modular 

Server) 

Baekdusan 
(Dell PE R410) 

Tachyon 
(SUN Blade 

6048) 

Rpeak 14769.6 GFlops 1,440 GFLOPS 1,017 GFLOPS 24 TFLOPS 

Number of 
Nodes 32 18 14 188 

Number of CPU 512 144 112 3,008 

Processor Intel Xeon 
2.6 GHz 

Intel Xeon 
2.5 GHz 

Intel Xeon 
2.27 GHz 

AMD Opteron 
2 GHz 

Memory 64GB 24GB 16GB 6TB 

Storage - 72.0GB 250GB 207TB 

Network IB 4x DDR 2GbE(bonding) 1GbE IB 4x DDR 
 

5. Educational Applications: Aerodynamic Shape Optimization for Airfoil 

As the main purpose of the current study is to solve design problems of aerodynamic shape 

optimization, we take an example of a two-dimensional airfoil to reduce wave drag at transonic flow 

conditions. Although the EDISON_DESIGN framework itself can be applied to the design problems 

involving both two- and three-dimensional complex geometries, we demonstrate a two-dimensional 

design problem that can be taught in undergraduate design courses. This problem was discussed in the 

courses of Aerospace Systems Design, and Advanced Numerical Analysis. Students often want to 

design transonic aircraft, which fly at a transonic Mach number that is in the neighborhood of the 

drag-divergence Mach number. The design of a supercritical airfoil that reduces the strength of the 

shock on the airfoil is critical. Thus, the design of an airfoil shape that has low wave drag becomes a 

good design practice for the students to understand the fundamentals of transonic flows, and to learn 

mathematical design optimization procedure. The design problem has a practical meaning for aircraft 

design courses.    

5.1 Design Problem Statement 

Drag minimization of an airfoil in the transonic flow regime was conducted. Geometrical 

constraints of the maximum thickness ratio and area of the airfoil, as well as performance constraints 

on lift coefficient are imposed, and a design vector is bounded with lower and upper limits, and 

creates a feasible region of the design space. For the geometric design variables, 10 weighted values 
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simultaneously. The following are the available computing 

resources, and their detailed performances, in terms of 

Rpeak, processor type, number of CPUs, and memory, and 

are summarized in Table 3. Also additional storage for the 

students is available in each computer cluster. 

5. ��Educational Applications: Aerodynamic 
Shape Optimization for Airfoil

As the main purpose of the current study is to solve design 

problems of aerodynamic shape optimization, we take an 

example of a two-dimensional airfoil to reduce wave drag at 

transonic flow conditions. Although the EDISON_DESIGN 

framework itself can be applied to the design problems 

involving both two- and three-dimensional complex 

geometries, we demonstrate a two-dimensional design 

problem that can be taught in undergraduate design courses. 

This problem was discussed in the courses of Aerospace 

Systems Design, and Advanced Numerical Analysis. 

Students often want to design transonic aircraft, which fly at 

a transonic Mach number that is in the neighborhood of the 

drag-divergence Mach number. The design of a supercritical 

airfoil that reduces the strength of the shock on the airfoil 

is critical. Thus, the design of an airfoil shape that has low 

wave drag becomes a good design practice for the students 

to understand the fundamentals of transonic flows, and to 

learn mathematical design optimization procedure. The 

design problem has a practical meaning for aircraft design 

courses.   

5.1 Design Problem Statement

Drag minimization of an airfoil in the transonic flow regime 

was conducted. Geometrical constraints of the maximum 

thickness ratio and area of the airfoil, as well as performance 

constraints on lift coefficient are imposed, and a design 

vector is bounded with lower and upper limits, and creates a 

feasible region of the design space. For the geometric design 

variables, 10 weighted values of the Hicks-Henne bump 

function are set, 5 each for the upper and lower surfaces of the 

airfoil respectively, to impose surface perturbations. Their 

locations and bounds are shown in Table 4. A mathematical 

formulation of the problem definition is stated in Table 5. 

The lift coefficient is allowed to increase, to result in a better 

lift-to-drag ratio of the airfoil. The maximum thickness ratio 

is set to vary with both positive and negative variations of 

6–22% that of the baseline. In addition, the lower bound for 

the lift coefficient is set to be that of the baseline, so that it 

increases the efficiency of finding the optimum solution.

Two-dimensional, compressible Euler equations, which 

govern inviscid fluid flows, are solved, to analyze flow around 

the airfoil. For the spatial discretization of the governing 

equations, a RoeM scheme is used, and an implicit LU-SGS 

method is chosen for the temporal discretization. Moreover, 

fluid analysis using the Navier-Stokes (N-S) equation is also 

conducted, to verify differences between flow solutions 

calculated by the Euler and N-S solvers. For the turbulent 

model, Menter’s k-w SST is used. The CFL number is set to 

be 0.5, considering computational efficiency. The baseline 

airfoil is NACA0012, its flow condition is M = 0.75, and AoA 
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Design variables % chord Upper bounds Lower bounds 
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= 2°. Structured O-type meshes (401 × 80) are generated 

around the airfoil, as shown in Fig. 10 (a). In the transonic 

flow regime, a strong shock appears near the mid chord of 

the upper surface, as indicated in Fig. 10 (b).

5.2 Drag Minimization of Airfoil at Transonic Flow

Given the design problem in Table 5, optimization is 

carried out using the MFDA algorithm, with the gradient 

values calculated by the finite-difference method. After 

128 design iterations, the results of drag minimization of 

NACA0012 airfoil are obtained that satisfy the pre-specified 

convergence. The optimized airfoil shape is shown in Fig. 

11, and compared with the baseline. Comparisons of the 

pressure contours of both airfoils are also shown in Fig. 12. 

Aerodynamic force coefficients are also summarized in Table 

9. The leading edge becomes slightly thinner, and a minor 

camber is added toward the rear region, after the mid-chord 

of the airfoil. Strong shock on the upper surface of the airfoil 

is reduced, and decreases the drag coefficient from 105 

counts to 7 counts. This reduction is dramatic, considering 

the minor changes in the airfoil shape; however, previous 

sensitivity analysis shows this region to be very sensitive to 

shock strength and wave drag. 

To verify the aerodynamic improvement at off-design Mach 

numbers, flow simulation is carried out at the wide range of 

Mach number from 0.5 to 0.85, and the corresponding drag 

is plotted in Fig. 13. This shows that the designed airfoil 

also improves aerodynamic performance in the off-design 

condition, beyond the drag-divergence Mach number [29]. 

In other words, drag reduction is possible for a wide range 

of Mach numbers, beyond the design Mach number of 0.75, 

up to Mach = 0.85. It is also noticeable that the lift coefficient 

is almost constant, for a wide range of Mach number. In 

conclusion, following the whole process of the numerical 

design of an airfoil can help students to understand the 

physics of the flow around an airfoil, as well as the standard 

procedures of design in the general engineering field. 

6. Conclusion and Future Work

A computational design framework for airfoil design 

is developed for education and research purposes, in the 
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This shows that the designed airfoil also improves aerodynamic performance in the off-design 

condition, beyond the drag-divergence Mach number [29]. In other words, drag reduction is possible 

for a wide range of Mach numbers, beyond the design Mach number of 0.75, up to Mach = 0.85. It is 

also noticeable that the lift coefficient is almost constant, for a wide range of Mach number. In 

conclusion, following the whole process of the numerical design of an airfoil can help students to 

understand the physics of the flow around an airfoil, as well as the standard procedures of design in 

the general engineering field.  

 

 
Fig. 11. Shape and wall pressure coefficient comparison between baseline and optimized airfoils 

 

 
Fig. 12. Pressure contour comparison of baseline and optimized airfoils 

 

Fig. 11. Shape and wall pressure coefficient comparison between baseline and optimized airfoils
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engineering field of fluid mechanics. It is notable that the 

framework software uses the CFD solver as a functional 

evaluation tool. Owing to the high-fidelity analysis of CFD 

flow solution methods, the design framework can be more 

sophisticated. In general, the high-fidelity analysis of CFD 

requires a high computational cost. However, web-based 

CFD analysis helps the design framework to be more 

efficient. Students and researchers can investigate specific 

flow physics more accurately, and find a more credible 

optimum solution, than with low-fidelity analysis. The 

sub-elements of the framework, such as the geometry 

kernel, mesh deformation, optimization algorithm, and 

flow analysis, are robustly and organically integrated. 

In future work, we will further expand the design 

framework to many other engineering applications, for 

both educational and research purposes. In addition, the 

latest design methodologies will be implemented, such 

as meta-model-based design, and the adjoint variable 

method. Advances in software development will help 

us to add more diverse education contents to provide a 

theoretical background to the users, and a more user-

friendly environment will be developed, using a graphic 

user interface (GUI).
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