
1 

 

Investigation of a trifold interaction mechanism of shock, vortex, and dust using 

a DG method in a two-fluid model framework 

Omid Ejtehadi a,b, Amin Rahimi a, R. S. Myonga* 

a School of Mechanical and Aerospace Engineering, and ACTRC, Gyeongsang National 

University, Jinju, Gyeongnam 52828, South Korea 

b Supercomputing Modeling and Simulation Center, Korea Institute of Science and 

Technology Information (KISTI), Daejeon 305-806, South Korea 
 

*Corresponding author: Tel +82 55 772-1645 (Fax 1580); myong@gnu.ac.kr 

Abstract  

We investigate a trifold interaction mechanism of shock, vortex, and dust by solving the 

dusty Schardin’s problem. A modal discontinuous Galerkin method was developed for 

solving the two-fluid model of the dusty gases. We focused on larger-scale wave patterns and 

smaller-scale vortexlets under the addition of dust particles. The dynamics of the shock-

vortex interaction in a dusty medium was found substantially different from a pure gas 

equivalent. The main differences are the acceleration or deceleration of the shock waves, and 

attenuation or diminishing of the slip lines. It was also demonstrated how the solid phase with 

various particulate loadings and particle diameters affects the dynamics of the vortexlets. 

Two different trends related to the transient formation and attenuation of the main vortex and 

vortexlets were identified. It was shown that the enstrophy behavior is directly affected by the 

diameter and particulate loading of particles that are seeded in the domain. 

Keywords: dusty gas, two-fluid model, shock-vortex interaction, dust-vortexlet interaction, 

discontinuous Galerkin 

  



2 

 

1 Introduction 

The interaction of shocks and vortices–two fundamental fluid dynamics phenomena–has 

been a topic of interest for decades. Understanding such interactions is essential in various 

technological and environmental applications, including noise generated by supersonic jets, 

shock-enhanced mixing (especially in non-premixed supersonic combustion), strake-wing 

configurations, and compressors operating near their stability limits [1-5].  

The importance and intrinsic complexity of the problem have motivated various 

experimental and numerical investigations in different contexts.  Extensive investigations 

have focused on the acoustic wave generated from this interaction, both in early experiments 

[6, 7] and numerical simulations [8]. Weeks and Dosanjh [9] applied Stratton's method of 

integrating the governing nonhomogeneous wave equation in two dimensions to the shock-

vortex problem, to expand upon the concept of noise generation by shock-vortex interaction. 

Almost thirty years later, Inoue and Hattori [10], in a paper with the same title, studied the 

mechanics of the interaction between a single vortex and a pair of vortices and a shock wave 

at an early stage of interaction by solving Navier-Stokes equations via a finite difference 

method. They reported that sound generation is related to the generation of reflected shock 

waves. So far, several numerical studies have investigated the problem using different models 

developed in the finite element [11], finite difference [4, 12, 13], finite volume [14-19], and 

discontinuous Galerkin [20, 21] frameworks.   

Among the aforementioned studies, some analyzed the interaction of a planar shock with a 

single vortex [12], a pair of vortices [4], and a vortex ring [14]. The interaction of a planar 

shock with a strong vortex was also investigated [13, 17]. 

 Another group of researchers considered the shock-vortex problem in Schardin’s problem, 

named after the experiments done by Schardin [22], i.e., the interaction of a reflected shock 

with the vortex formed after the passage of an incident shock from a wedge, with the help of 

various numerical tools, e.g., finite element method-flux corrected transport (FEM-FCT) [11], 

high-resolution TVD method and adaptive quadrilateral grid refinement in a finite volume 

framework [15, 16],  fifth-order MUSCL interpolation with the ASUM+ flux function [18]. 

Among these works, which mostly solved inviscid Euler equations, Halder et al. [18] applied 

the Navier-Stokes equation and focused on vortices generated by the Kelvin–Helmholtz 

instability.  
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More recently, the problem has been investigated in microscale [23]; the viscous 

attenuation of the vortex distinguishes the microscale problem from the macroscale 

counterpart. Koffi et al. [23] considered the interaction of a planar shock and a vortex using 

the direct simulation Monte Carlo (DSMC) method. Xiao and Myong [20] approached the 

problem by solving conservation laws in conjunction with an implicit type second-order 

constitutive relation using a mixed discontinuous Galerkin (DG) formulation. Singh et al. [21] 

investigated the problem, including the role of the rotational mode of the diatomic and 

polyatomic gas molecules, by solving the conservation laws in conjunction with constitutive 

equations derived from the Boltzmann-Curtiss kinetic equations. It was found that in 

microscale, the quadrupolar acoustic wave structure disappears, the dissipation rate increases, 

and the enstrophy decreases or increases depending on the degree of interaction. A survey of 

some of the important studies on the shock-vortex interaction is provide in Table 1. 

On the other hand, when these two flow structures (shock and vortex) form in a dusty 

environment, the dust-gas interaction can significantly affect the dynamics of the flow. The 

interaction of shocks with dusty or granular environments has been a topic of interest for 

decades [24-31]. A great deal of research has been conducted on the interaction of dust 

particles with vortices, especially in the context of free mixing layers. The dispersion of 

particles in free shear layers can be observed in a variety of applications including coating by 

aerosols, chemical reactors and combustors, boilers and heat exchangers, fluidized beds, and 

sedimentation, where it has been shown to be due to coherent, large scale vortical structures 

[32-38].  The research extends from engineering-oriented applications [35, 38, 39] to more 

fundamental studies, such as the investigation of the underlying physics of the interaction of 

vortices and particles in flows past bluff bodies [32, 34, 40-42] and turbulent particle-laden 

flows [43]. For more information on this topic, interested readers may refer to [44] and the 

references therein.  

Dust entrainment by a planar shock-induced vortex, which has been studied in a number of 

experimental and numerical works, is another relevant subject. Examples include finite 

difference investigation of the problem by Ben-Dor [26], a TVD scheme for the gas, and the 

Eulerian differencing method for particles by Fedorov and Kharlamova [45], and a second-

order flux corrected transport algorithm for the gas along with a Lagrangian approach for the 

solid particles by Ilea et al. [46]. In this problem, the passage of a planar shock over a loosely 

packed dust layer forms a curved cloud of entrained particles that are interacting with the 
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deformed shock. However, there is no further interaction between the shock with the vortex, 

and it is only the dust particles that are engaged in the shock-induced vortex.  

As illustrated above, the interactions of vortices and shocks with dusty environments have 

been investigated from different points of view. However, very few attempts have been made 

on analysis of the shock-vortex interaction in a dusty environment. Therefore, we focus on 

investigation of the trifold interactions of dust particles with shocks and vortices. For this 

purpose, the so-called Schardin’s problem in the presence of dust particles (which hereafter is 

referred to as the dusty Schardin’s problem) is considered, and the effect of the particulate 

phase on the shock-vortex interaction is investigated. For this undertaking, a high-order 

discontinuous Galerkin solver in the Eulerian-Eulerian framework is developed. The 

developed solver has been validated for various benchmark problems by Ejtehadi et al. [47].   

It is well-known that particles inside a vortex will follow a pattern from the vortex core and 

concentrate on the edges of the vortex. Moreover, in dusty gas flows, the presence of 

relaxation regions and the complex mechanisms of wave patterns including pseudo-

compound waves (a reflected shock attached to the rarefaction wave) and composite waves (a 

contact discontinuity attached to the relaxation zone) can be observed, which affect the 

dynamics of the flow. In Schardin’s problem, a traveling shock wave passes by a 

compression corner forming different types of Mach reflections depending on the shock 

Mach number and wall inclination angle. When the shock front passes the wedge, two 

counter-rotating vortices will be created behind the triangular prism, which interact with the 

reflection of the shock wave from the symmetry plane. 

Among the three major models used to model the particulate flows, i.e., the Eulerian-

Eulerian, Eulerian-Lagrangian, and mixture models, the Eulerian-Eulerian (also simply called 

the Eulerian) model was selected because of the efficiency the model offers in terms of 

computational cost. In addition, the model can cover a broader range of particulate flow 

regimes. However, Eulerian models (in their original form) are not suitable for solving 

systems with particle size distributions. Table 2 provides a comparison of the two general 

categories of models for simulating multiphase flows, summarizing the merits and drawbacks 

of each model. Apart from the advantages and disadvantages each method offers, it is still 

necessary to take the target regime of interest into account during the process of selecting the 

mathematical model. Fig. 1 illustrates the selection of a suitable mathematical model based 

on the loading level.  
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Recent advances in computational methods and computer resources have led to the 

successful application of the DG method to various classes of problems such as compressible 

and incompressible flows, aeroacoustics, magneto-hydrodynamics, and many more [48]. The 

method has recently found its way into multiphase flow problems. Examples include the 

development of a robust high order DG method for compressible multiphase flows based on 

the Baer and Nunziato type systems by Franquet and Perrier [49], application of the DG 

method to conservative level set equations for interphase capturing in multiphase flows [50], 

development of a Runge-Kutta DG method together with the front tracking method for 

solving two-medium gas-gas and gas-liquid flows [51], development of a vertex-based DG 

method of multiphase compositional flow [52] and development of a modal DG method for 

dilute dusty gas flows [47] and dusty/granular gas flows in thermal non-equilibrium [53]. 

The Euler equations for the gas phase, and pressureless Euler equations for the solid phase, 

are solved using a modal discontinuous Galerkin approach. The aim is to provide insight into 

how the presence of dust particles can affect the complex shock-vortex interaction in 

Schardin’s problem. In addition to investigating the interactions of discontinuities and the 

vortex with dust particles (which can be explained in larger length-scales), the effects of solid 

particles on the smaller-scale phenomena in the vicinity of the wedge are also examined. It is 

worth mentioning that the proposed method can be applied in various industrial applications 

ranging from compressible flow through porous media [54-56] to petroleum engineering [57]. 

2 Mathematical modeling and numerical procedure 

2.1 Two-fluid model (TFM) 

In the majority of Eulerian models that consider dusty gas flows, the gas phase is 

considered to be compressible, following the perfect-gas law, while the solid phase is 

considered incompressible [28, 29, 58, 59]. Inter-particle collisions are neglected (thus no 

pressure term in the conservation law of solid phase) and the particles are assumed to be 

uniform sized spheres with a constant diameter and microscopic density. The specific heat of 

the particle’s material is constant, and the temperature is uniform within each particle. 

Moreover, particles are considered to be inert, and their thermal and Brownian motion is 

neglected. Furthermore, the gravitational and buoyant forces, the turbulence effects and the 

effect of particles’ wakes are considered to be negligible. In this model, the number density 

of the particles should be large enough not to violate the continuum assumption. 



6 

 

It is worth mentioning that the inter-particle or wall-particle collisions can be taken into 

account in another subcategory of the Eulerian models, usually referred to in the literature as 

the Eulerian-granular model. In this category, models based on the so-called kinetic theory of 

granular flows (KTGF) have been shown to provide accurate predictions of the solid phase 

[60-66]. 

2.2 Governing equations of the gas and solid phases in TFM 

Under the above-mentioned conditions, the conservation laws can be written as follows: 

For the gas phase, 
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and for the solid phase, 
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Here the U, F, and S are the vectors of conservative variables, fluxes, and source terms, 

respectively. The variables t, α, ρ, u, E, p, T, D, and Q represent time, volume fraction, 

density, velocity vector, total energy, pressure, temperature, interphase drag and heat flux, 

respectively. The dust density ρs is assumed to be constant. cv and cm are the specific heat 

capacity of the gas at constant volume and the specific heat of the particle material. The 

equation of state expresses the gas pressure in terms of other gas properties: 

g gp RT=  (8) 

where R is the gas constant.  
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According to Miura and Glass [67], the drag force that solid particles exert on the gas 

phase can be expressed as 

,

3

4

s g

g s D g sD C
d

 
= −u u  (9) 

in which d is the particle diameter and CD is the drag coefficient computed as a function of 

the Reynolds number based on the particle diameter and relative velocity of the particle to the 

gas (i.e. Re /d g g s gd = −u u ). The drag coefficient can then be given by a well-

established semi-empirical correlation [68], 

( )0.68724
1 0.15Re , if Re<1000

Re

0.44, if Re>1000.

dDC


+

= 



 (10) 

To derive more accurate regime-dependent drag coefficients for the spherical particles, 

interested readers can refer to the recent comprehensive review from Tiwari et al. [69] on 

flow past a single stationary sphere. 

Heat transfer, which is proportional to temperature difference, can be expressed as a 

function of the Nusselt number [28], 
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Here μg and κg represent the viscosity and thermal conductivity of the gas, respectively. 

2.3 A modal discontinuous Galerkin method for dusty gas flows 

The equations of the dusty gas flows described in the previous section are discretized 

using a modal discontinuous Galerkin (DG) method. The essential parts of the modal 

unstructured DG method developed in the present work—in particular, high order accuracy 

and positivity/monotonicity preserving property—are summarized in [47]. 

The mathematical model of interest in the present work can be written in a compact form; 

( ) ( )( ) ( ) in ,Ω 0, ,Ωt t t  + =    U F U S U  (13) 

where Ω denotes a bounded domain, and U, F, S are conservative variables for vector, flux 

tensor, and source terms vector, respectively. The solution domain can be decomposed by a 
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group of non-overlapping elements, Ω = Ω1⋃Ω2⋃...Ωn, in which n is the number of elements. 

By multiplying a weighting function φi into the conservative laws (16) and integrating over 

the control volume for each element, the following formulation can be derived: 

 ( ) ( ) ( ) ( ) ( ) Ω 0.
k

t F S d  

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To construct a discretized system of the conservation laws, the global spatial domain Ω 
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By splitting the integral over Ωh into a series of integrals over the sub-elements and 

applying the integration by part as well as divergence theorem to the equation (14), the 

elemental formulation reads as 
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where n̂  is the outward normal vector of the element interface, and Uh is the p-exact 

polynomial approximated solutions of the U on the discretized domain of Ωh. Uh can be 

expressed as the polynomial field that sums the multiplication of the local degree of freedom 

with the corresponding smooth polynomials of degree P in the standard element:  

( ) ( ).
P

h i i

i

a t =U x  (17) 

Here ai(t) and φ(x) denote the local degree of freedom and the basis function, which can be 

chosen to be any continuous polynomial function, respectively.  

2.3.1 Positivity and monotonicity preserving schemes  

High order conservative schemes, including the DG scheme introduced in the previous 

section, usually suffer from non-physical negative density or pressure. This situation leads to 

the ill-posedness of the system and numerical breakdowns as a consequence. When source 

terms are added to account for chemical reactions, gravity, or the interaction of phases in the 

conservation laws, as in the present case, the potential of encountering negative density or 
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pressure during numerical simulation increases. Therefore, it becomes necessary to apply 

efficient positivity preserving schemes to prevent the numerical breakdown.  

In the present work, the positivity preserving scheme of Zhang and Shu [70] for 

compressible Euler equations was applied to ensure the positivity of the density and pressure 

fields, while maintaining higher-order accuracy. Our numerical investigations show that a 

simple application of the positivity preserving scheme is not enough to develop a stable 

scheme, especially in the presence of strong shock waves. The situation deteriorates when the 

multiphase system with source terms is being solved.  In the present study, both the limiter 

from Zhang and Shu [71] for one-dimensional cases, and the limiter of  Barth and Jespersen 

[72], which was initially devised for a finite volume framework, are applied. It is important to 

note that any TVD/MUSCL type scheme can degrade the order of accuracy in the smooth 

regions of the solution, unless a pragmatic shock detection scheme is introduced. 

2.3.2 Numerical fluxes for the multiphase solver  

The choice of numerical flux can determine the stability and accuracy of the numerical 

method. In order to obtain a stable scheme, the numerical flux should be consistent as well as 

conservative. Here, the local Lax-Friedrichs (LLF) (or Rusanov [73]) and rotated-Harten-

Lax-van Leer [74] fluxes, both of which are known to be simple and free from carbuncle 

phenomenon, were implemented. Implementing the inviscid numerical flux is analogous to 

the well-established FVM procedure, and the details of the implementation can be omitted.  

It should be noted that the AUSM family [75, 76] schemes have been widely used in many 

previous numerical works to simulate the dust phase. However, we aim to use the same flux 

scheme for both phases to be consistent. This may raise numerical difficulties when the solid 

pressure term in the model equations is not included. In such a case, even though the system 

has real eigenvalues, they are not distinct; thus, the system becomes degenerate. Few 

approaches have been proposed to deal with this numerical issue in the past. Nevertheless, in 

the subsection 2.3.4, a simple, easy to implement, and yet effective method to circumvent this 

issue will be proposed.  

2.3.3 Boundary condition  

When implementing boundary conditions in two-fluid or multi-fluid systems, a different 

set of conditions is required for each phase. For the investigated problem, an adiabatic, 

impermeable, inviscid wall boundary condition is applied for both phases [59]. Other choices 

in boundary conditions, such as the adherence condition or reflection conditions, are also 
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viable for the solid phase [77].  When the viscous system of conservation laws (e.g., Navier-

Stokes-Fourier) is considered, it is necessary to use a non-slip boundary condition for the gas 

phase and a slip boundary condition for the solid phase. 

2.3.4 Complexities associated with the numerical solution of TFM of the dusty gases 

The investigated system of equations differs from conventional conservation laws in two 

respects: 1) The presence of the source terms, and 2) the non-existence of a pressure term in 

the equations of the solid phase. These distinctions impose some complexities on the 

numerical simulations. Here remedies to these issues are briefly addressed. 

It was well-known that the stiff relaxation terms in balance laws (i.e., strictly hyperbolic 

systems with source terms) lead to disparate relaxation times, which in turn result in severe 

numerical difficulties. In the two-fluid model, in addition to the time scale related to 

convection, a much smaller relaxation time scale exists that inevitably imposes smaller time 

steps on the numerical solver. The use of a slower time scale in such problems can cause 

severe numerical instability. Methods such as operator splitting and the zero-relaxation limit 

have been used to remedy the issue. However, the choice of orthogonal basis functions in our 

method greatly simplifies the contribution of the high order moments of the polynomial 

approximate solution to the source-term related vector. More detailed discussions on this 

issue can be found in [47].  

Furthermore, the non-strictly hyperbolic nature of the equation of the dust phase (due to 

the non-existence of a pressure term) can impose severe difficulties for the numerical solver 

(mainly when finite volume schemes are applied). The issue can be circumvented either by 

considering the dispersed phase to be incompressible and adding a pressure term for 

statistical purposes [78, 79], or by considering both phases compressible. The former 

approach can yield a hyperbolic system but is not physically justifiable. On the other hand, 

the latter method can lead to unrealistic results in many two-phase flow problems [80].  

In this study, we apply an efficient and easy-to-implement method, which has been 

previously developed by the authors. The idea is to add and subtract a pressure-related term 

to the momentum and energy equations of the dust phase. Even though this manipulation 

does not have any mathematical consequences, from a numerical point of view, the new 

system has an obvious advantage, recovering the strict hyperbolicity of the equation. More 

details can be found in [53]. 
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3 Results and discussion 

Different scenarios for defining the dusty Schardin’s problem can be considered. The dust 

can be initialized uniformly on both sides of the diaphragm, or it can be present only on the 

right-hand side of the membrane. It is also possible that the domain is initialized with dust 

just after the compression corner where the vortex starts to form. The initialization may affect 

the evolution of flow structures. In this work, we chose the case where the whole domain is 

initialized with a uniform distribution of dust grains. 

In Fig. 2 (a) and (b), the initial and boundary conditions for the Schardin’s problem in 

single-phase and multiphase cases are summarized, respectively. The selected geometry is an 

equilateral triangle with a base of 20 cm. Different scenarios for defining the dusty 

Schardin’s problem can be considered. The dust can be initialized uniformly on both sides of 

the diaphragm, or it can be present only on the right-hand side of the membrane. It is also 

possible that the domain is initialized with dust just after the compression corner where the 

vortex starts to form. The initialization may affect the evolution of flow structures. In this 

work, we chose the case where the whole domain is initialized with a uniform distribution of 

dust grains.  

Fig. 2 (c) provides a schematic of the various types of discontinuities and other 

compressible fluid features that are present in Schardin’s problem. As a result of the 

impingement and therefore the reflection and deflection of the moving planar shock over the 

wedge, various features such as Mach stems, slip lines, Mach triple points, vortices, and 

vortexlets emerge in the flowfield, which makes the study of the problem more interesting. In 

the following subsections, after validating the developed numerical tool for this specific 

problem, we investigate the effects of the addition of dust particles on the behavior of the 

featuring structures. The values of the parameters used in the simulations are tabulated in 

Table 3. 

3.1 Verification and validation of results 

The developed computational tool has been extensively verified and validated in various 

problems for both pure gas and dusty gas models, in [47, 53, 81]. The pure gas solutions in 

the Sod shock tube problem, single-Mach reflection in compression corner, underexpanded 

jet with various pressure ratios, and jet impingement on a surface were compared with 

analytical, numerical, and experimental solutions available in the literature. The dusty gas 

model was also validated with the experimental results [82] for the particle-laden 
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underexpanded jet problem. It was shown that the relaxation zone behind the shock front and 

the pressure increment at the contact discontinuity which occur due to the presence of solid 

particles are perfectly resolved. Further, it was demonstrated that the upstream movement of 

the Mach disk as a result of the addition of dust particles is correctly predicted. A more 

detailed verification and validation for the specific problem of interest in this work is 

established in this section.   

3.1.1 Grid independency study  

 A study on the grid-independency of solutions is presented in Fig. 3, where four different 

mesh sizes of h=1/4, 1/8, 1/16, and 1/32 are considered, with h being the characteristic size of 

the grid. The normalized profiles of pressure, density, temperature besides Mach number 

along the symmetry plane are compared for this analysis. A grid resolution with h=1/32 was 

found to provide results almost identical to h=1/64, and hence this grid was used for the rest 

of the simulations. The same grid was used for the multiphase cases as well. It is noteworthy 

that the selected grid does not resolve all the smaller-scale features of the flow, including a 

von Kármán vortex street type shedding of vortexlets. Such nearfield features will also be 

analyzed using a truncated domain with finer mesh sizes and will be discussed in the 

upcoming sections.  

3.1.2 Validation of results with experimental results  

In Fig. 4, the density isopycnics of the DG solution are compared with the experimental 

results (holographic interferograms) for five different recorded times (t = 28, 53, 102, 130, 

and 172 μs) in accordance with [15]. The figure demonstrates how the flow evolved during a 

course shorter than 0.2 ms. The step by step process is comprised of several distinguished 

phenomena: 1) shock impingement on the wedge and formation of a single Mach reflection, 2) 

passage of the incident shock and Mach stem over the wedge and formation of an expansion 

fan, 3) development of the primary vortex, 4) emerge of a slip line from the triple point into 

the vortex, 5) reflection of the Mach stem on the symmetry axis leading to the emanation of 

the reflected shock interacting with the vortex, and 6) formation of a second triple point and a 

new slip line. It should be noted that the reflected shock interacting with the vortex is split 

into an accelerated and a decelerated shock. The comparison, in Fig. 4 (a) to (f), demonstrates 

there is a perfect qualitative agreement with the results of the experiments in space and time.  

In Fig. 5, the numerical shadowgraphs of the pure gas model are compared with the 

experimental shadowgraphs of Chang and Chang [15] for different time steps. It can be 
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observed that the basic flow structures, including the two split shocks after impingement on 

the vortex (one in and the other against the direction of vortex circulation), and the V-shaped 

decelerated deflected shock are nicely captured. The only feature which is not properly 

resolved in the numerical solutions is the vortexlets string emerging in the slip layer of the 

main vortex due to a Kelvin–Helmholtz instability. It should be noted that this feature can 

also be resolved if a finer grid or higher-order polynomials are applied. While the main 

purpose of the current work is to investigate the effect of the addition of dust particles on the 

overall (large-scale) structure of the flow, we have also covered the role of the addition of 

dust particles on the smaller-scale structures (vortexlets). 

Fig. 6 investigates the details of the shock-vortex interaction in the vicinity of the wedge. 

To save computational cost, a smaller domain with a finer grid size is simulated, to highlight 

the smaller-scale features present in the flowfield. The same grid is then used to analyze how 

the addition of dust particles affects these flow structures. As mentioned earlier, the reflected 

shock, which is sucked towards the main vortex, is scattered into accelerating and 

decelerating shocks, as evident in the figure. In Fig. 6, one can also observe how, with the 

passage of the secondary slipstream, a series of vortexlets are shed alongside the slip layer of 

the main vortex which interacts with the discontinuities and disappears as time passes by. 

Further, the decelerated shock inside the vortex generates a transmitted shock. Subsequently, 

the interaction of the decelerated shock with the vortexlets leads to the emergence of 

diverging acoustics. The above-mentioned process is described in detail in Fig. 6 (a) to (e) 

during the initial time steps of the formation of the flow. 

3.2 Multiphase results  

3.2.1 The effects of adding dust particles on wave patterns in Schardin’s problem  

Fig. 7 demonstrates the effects of adding particles to the flow. In the simulated test case, 

glass beads with a diameter of 10 μm and a microscopic density of 2,500 kg/m3 were 

distributed uniformly in the whole domain. The particulate loading (β) was set equal to 10.  In 

the figure, the top half of each slot is the pure gas solution, and the bottom half represents the 

dusty gas case. It can be seen that all the basic structures observed in the pure gas case are 

present in the dusty gas case as well; however, all the discontinuities are either decelerated or 

accelerated when dust particles are added. More specifically, the left running discontinuities, 

i.e., the reflected shock wave and rarefaction waves, are accelerated, while all the other right-

running discontinuities including slip lines, incident, and accelerated shocks, are decelerated 
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compared to the case of pure gas. When the incident shock wave passes by the seeded 

flowfield, the particles are accelerated by the drag force that the gas phase imposes on them. 

This leads to an increase of pressure and total pressure behind the incident shock wave; 

therefore, compared to the pure gas case, a larger pressure difference powers the reflected 

shock wave, which consequently translates into its acceleration. Some discrepancies between 

the pure gas case and dusty gas in the vicinity of the vortex become obvious as the particles 

are transferred from the vortex core towards the vortex edges. Moreover, as the intensity of 

the shadowgraph lines implies, in the dusty gas case, the discontinuities are more relaxed 

compared to the pure gas counterpart, as solid particles with non-negligible inertia cannot 

follow the abrupt changes in gas flow. The diameter, density, and heat capacity of the solid 

particles determine the size of this relaxation zone [47]. 

The accumulation of dust particles and the formation of a particle-free region in the center 

of the vortex are demonstrated in Fig. 8. The overlaid gas density contour lines on the 

concentration contours of the dust are shown for two particulate loadings in a zoomed view 

behind the prism. The dust particles are clearly convected towards the edge of the vortex and 

form a low-density region in the core of the vortex. The accumulation of the particles 

diminishes the slip layer and slip line. Moreover, the waves are not only decelerated but also 

attenuated. The larger the particulate loading, the more intensive the multiphase effects. 

3.2.2 Parametric study of dust particles diameter 

Fig. 9 illustrates the effects of varying particle diameter on some of the parameters, which 

describe the structure of the flow. Interestingly, at a certain particulate loading, as the 

diameter of the particles decreases, the coupling effects increase. Accordingly, dust particles 

can follow the gas phase more closely. Larger particles, on the other hand, have a shorter 

response time and therefore, the particle motion is largely defined by the carrier gas phase 

rather than its previous history. Because the drag force acting on the particles is proportional 

to the velocity difference between the phases, the carrier gas is less affected when seeded 

with larger particles. This can be observed in the normalized profiles of density, Mach and 

tangential velocity plotted alongside the symmetry line in Fig. 9 (a) to (c). As time passes, the 

fine-grained dispersed phase deviates more from the gas phase.  

For large diameter particles (50 and 100 μm), the trends are almost identical to that of the 

pure gas. However, when small diameter particles are added to the flowfield, the dynamics of 

the flow are completely different. As shown in the figure, for a particle diameter of 1 μm, the 
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vortex region is not developed to the same extent as the other cases. Even the formation of 

some of the inherent features in Schardin’s problem, including the accelerated shocks and the 

shear layer, are not observed. Fig. 9 (d) represents the time transition of the locus of the 

vortex core. This location is plotted for three time-steps, demonstrating the increase in 

deviation of the small-sized dust diameter from pure gas with passing time. It can be seen that 

the downstream movement of the vortex locus is slowed down when particles are added to 

the flow. Again, the smaller the diameter of the particles, the slower the movement of the 

vortex locus.  

3.2.3 Parametric study on particulate loading 

Particulate loading manifests itself as the mass of particles in the formulation of the 

response time. The higher particulate loading corresponds to the longer response time of the 

particulate phase. The effect of increasing particulate loading is investigated in Fig. 10. For 

this analysis, particles with a diameter of 10 μm were selected and plots of various 

parameters alongside the symmetry plane for pure gas and particulate loadings of 1 and 10 

are compared. It can be observed that increasing the particulate loading postpones the 

formation of shock-vortex structures, due to more pronounced coupling effects between the 

carrier phase and solid grains. As can be seen in Fig. 10 (d), in a flow with a larger particulate 

loading, the vortex is convected towards the reflected shock at a slower pace. The reflected 

shock is also more attenuated as the particulate loading is increased. The superposition of 

these effects leads to a very weak shock-vortex in which many of the innate patterns of the 

pure gas case are predominantly altered. Some of these changes include the disappearance of 

the accelerated shock in density and Mach profiles, as well as the disappearance of the slip 

layer effect in tangential velocity. These effects can be observed in Fig. 10 (a) to (c). 

3.2.4 On the role of dust on noise generation in shock-vortex interaction 

A crucial parameter which can shed light on the time evolution of the vorticity is the area-

weighted enstrophy, defined as [23] 

( )2( ) , ,z
A

En t x y t dxdy


=  , (18) 

in which Ω is the vorticity of the compressible gases as follows 

z

v u

x y

 
 = −

 
. (19) 

In Fig. 11, the enstrophy plots for two different particulate loadings and four different particle 

diameters are plotted with respect to time. This analysis provides a better understanding of 
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how the dust particles can affect the strength of the incident shock via attenuation, and hence 

affect the strength of the primary vortex as well as vortexlets. The enstrophy profiles soar at 

t=30 μs. This is when the primary vortex is being formed. The profiles reach a maximum just 

a little before t=100 μs. Then, depending on the diameter size and the particulate loading of 

the simulated case, two different trends may be observed: 1) A slight decrease followed by a 

slight increase and 2) a slight monotone decrease. The smaller the particle diameters and the 

higher the particulate loadings, the larger the decay of vorticity. As time passes (t>100 μs), 

the formation of vortexlets in the slip layer induces a slight increase in enstrophy magnitude.  

The addition of particles is, however, acting in the opposite direction. It is clear that 

particles tend to decay the vorticities. For the higher particulate loading case simulated here 

with a particle diameter size of 1 μm, the effect is so potent that even the primary vortex is 

not formed in the time considered. In the following subsection, when the effects of added 

dust particles on the behavior of smaller-scale vortexlet are investigated via plots of 

streamlines, these explanations will be justified. 

3.2.5 On the role of dust on the decay of the vortexlets 

In the following figures, we aim to analyze the role of the addition of dust particles on 

smaller-scale structures observed in the vicinity of the wedge. Fig. 12 shows the time 

transition of the gas density isopycnics when dust particles with different diameters are added 

to the flowfield. Here, the particulate loading is set equal to 1. The level of interaction of gas 

and particles depends on the Stokes number, which is defined as the ratio of the relaxation 

time of the particles to the time scale of the fluid flow [83], 
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=  
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Here tref is a reference time which can be defined as the characteristic length divided by the 

characteristic speed, and τv is the momentum (velocity) response time of the particles given 

by [83] 
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A summary of the important parameters in gas-particle flows is provided in Table 4. It can 

be observed that the coupling effects gain significance as the diameter of the particles 

decrease. This is due to the fact that smaller particle diameters lead to flows with a smaller 

Stokes number. For very small diameter particles (St<<1), the particulate phase will be in 
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dynamic equilibrium with the career phase. Therefore particles will closely follow the 

streamlines of the vortical flow. 

On the other hand, large particles (St>>1) will be unaffected by the vortices of the fluid 

flow due to large inertia. There may be an intermediate case where intermediate particle sizes 

(St≈1) will be centrifuged from the vortex cores and accumulate at the edge of the vortices, 

leading to inhomogeneous particle concentrations. The follow-up and accumulation of 

particles on the vortex edge leads to the decay of these structures. However, it should be 

noted that the accumulation of particles in the core of the main vortex is much more effective 

than the small vortexlets. As Fig. 13 demonstrates, these effects are amplified by increasing 

the particulate loading. Comparison of Fig. 12 and Fig. 13 reveals that when β=1, the 

addition of particles with diameters larger than 10 μm has an almost negligible effect. 

However, as the particulate loading increases, particles as large as 50 μm can slightly affect 

the structure of the flowfield. For β=10 and particle diameters smaller than 50 μm, the 

coupling effects are significant. 

4 Conclusions 

The primary motivations for this study were the importance of the shock-vortex 

interaction problem, the potential for this phenomenon occurring in a dusty environment, and 

the lack of an analysis that considers this triple interaction. Here, the Schardin’s problem in a 

dusty environment was analyzed numerically using a modal discontinuous Galerkin method. 

Applying a DG method in the simulation of dusty gas flows with the presence of 

discontinuities is beneficial in many ways. A case in point is when resolving the flow features 

requires a very fine grid, but the size of the particles limits the computational grid size.  

Cases covering a wide range of particle diameters with two different particulate loadings 

were simulated and the results were discussed in terms of isopycnics, shadowgraphs and 

profiles. Regarding the interaction of shocks with dust, it was observed that while the incident 

shock and other discontinuities are decelerated, the reflected left-running shock is accelerated 

in a dusty environment. It is also worth noting that the initial condition of the dust seeded in 

the domain affects the strength of the shock in the first place. The attenuated incident shock 

can, however, produce a vortex behind the wedge. The case of β=10 and d=1 μm was the 

only exception among present numerical experiments where no vortex can emerge.  

It was shown that as the particle diameter became smaller, the effects became more potent. 

Moreover, increasing the particulate loading magnifies the effects. Table 5 wraps up the step 
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by step process of formation of different features which appear in the Schardin’s and dusty 

Schardin’s problems.  

We have further demonstrated that the downstream movement of the primary vortex takes 

place at a slower pace when dust particles are added. This is partially due to interaction with 

the particles, and the drag force which is imposed on the core. The other factor is the 

attenuation of the initial incident shock which itself is caused by the presence of dust particles. 

The enstrophy profiles can also provide essential information regarding the flow evolution 

over time, and the role of dust on damping the instabilities. The formation of a dust-free 

region in the core of the vortex and a concentrated region on the edge of the vortex was also 

demonstrated. 

In the current work, regardless of the validity of the mathematical model in the regime 

investigated, we applied a dusty gas model equation. In future work, we aim to focus on the 

so-called granular flow regime when the particle-particle or wall-particle interactions are 

more dominant compared to the interstitial forces. Considering other variants of the problem 

with different dust initialization is also a topic of interest that will be pursued in future works.  
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Fig. 1 Efficient mathematical models based on the level of phase coupling  
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Fig. 2 Schematic of the initial and boundary conditions for (a) pure gas, (b) two-phase 

simulation, and (c) compressible flow elements present in Schardin’s problem  
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Fig. 3 Verification of the developed solver: Grid independency test: t=140 μs  
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Fig. 4 Validation: Comparison of density solutions (right) with experimental data from 

Chang and Chang [13] (left) 

  



26 

 

 

Fig. 5 Comparison of the numerical Schlieren photos (bottom) with experimental data from 

Chang and Chang [13] (top)  
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Fig. 6 Detailed analysis of time evolution of shock-vortex interaction: density isopycnics  
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Fig. 7 Time evolution of numerical shadowgraphs; pure gas (top half) compared with dusty 

gas (bottom half) (d=10 μm, β=10) 
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Fig. 8 Comparison of gas density contour lines overlaid on dust phase contours for pure gas 

(top half) and dusty gas (bottom half) 
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Fig. 9 Effect of particle diameter on the structure of the flow, β=1 
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Fig. 10 Effect of particulate loading on the structure of the flow  
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Fig. 11 Enstrophy plots for various particle diameter test cases (Left: β=1, Right: β=10) 
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Fig. 12 Visualizing the effects of the addition different diameter size particles on the decay of 

vortexlets using density isopycnics β=1 
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Fig. 13 Visualizing the effects of the addition different diameter size particles on the decay of 

vortexlets using density isopycnics β=10 
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Table 1 A survey of some of important studies on the shock-vortex interaction 

 

 

Problems  
Mathematical 

models 
Numerical methods 

Schardin’s problem [11] Euler 
Finite element method-flux 

corrected transport scheme  

Shock wave interaction with a 

single-vortex [12] 
Navier-Stokes Sixth-order finite difference 

Shock wave interaction with a 

pair-vortex [4] 
Navier-Stokes Sixth-order finite difference 

Shock wave interaction with a 

vortex ring [14] 

Axisymmetric 

Euler 
Third-order ENO 

Schardin’s problem [15, 16] Euler 

High-resolution TVD method 

and adaptive quadrilateral grids in 

a finite volume method 

Shock-vortex interactions at high 

Mach numbers  [19] 
Euler 

Marquina’s scheme with the 

piecewise hyperbolic method (a 

piecewise hyperbolic ENO-type 

reconstruction technique) 

Shock wave interaction with a 

strong vortex [13] 
Navier-Stokes 

Fifth-order finite difference 

WENO scheme 

Microscale shock-vortex 

interaction [23] 
Boltzmann DSMC 

Schardin’s problem [18] Navier-Stokes Fifth-order MUSCL scheme 

Shock wave interaction with a 

strong vortex [17] 
Euler Ninth-order WENO 

Microscale shock-vortex 

interaction in 

monatomic/diatomic/polyatomic 

gas molecules [20, 21] 

Navier-Stokes 

Nonlinear 

coupled 

constitutive 

relation (NCCR) 

High-order discontinuous Galerkin 
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Table 2 Eulerian versus Lagrangian 

Model Strength Shortcoming 

Eulerian 

 Easy incorporation of particle 

diffusion effects 

 Simple extendibility to multi-

dimensional flows 

 A wide range of validity 

 Numerical instabilities and 

diffusion 

 Large storage requirements for 

multiple particle sizes 

 Additional modeling for inter-

particle interaction 

Lagrangian 

 Embodies the natural solution 

schemes for each phase 

 No numerical diffusion of the 

particulate phase 

 No excessive storage requirements 

for multiple particle sizes 

 Need for empirical diffusion 

velocity or more expensive 

Monte Carlo methods 

 Complex to couple with 

Eulerian phase 

 Computationally expensive at 

high particulate loadings 
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Table 3 Parameters used in simulations 

Parameter Value  

Carrier phase (air) 

Shock Mach number 1.34 

Pressure (driver section)  195374.9 (Pa) 

Temperature (driver section)  357.6396 (K) 

Pressure (driven section) 101325 (Pa) 

Dispersed phase (glass bead) 

Particle diameter (d)  1, 10, 50, 100 (μm) 

Particulate loading (β) 1, 10 

Particle density 2500 (kg/m3) 

* The values of the parameters at the driver section were considered as the reference 

values. 
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Table 4 Summary of important parameters in gas-particle flows 

Term Relation 

Characteristic time  /ref ref reft L= u  

Particle momentum response time 
2

V / (18 )s gd  =  

Stokes number /V refSt t=  

Particulate loading /s gm m =   

The physical interpretation of different Stokes regimes 

St >> 1 

τV >> tref : Enough time for particles to 

equilibrate (one-way coupling). 

 

St << 1 

τV << tref : Particle velocity being little affected 

by the fluid velocity change, therefore remaining 

nearly equivalent velocities (two-way coupling). 

 

-
refL and 

refu  represent the characteristic length and characteristic velocity, respectively. 

- sm and gm  denote particle mass flux and carrier phase mass flux, respectively. 
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Table 5 Summary of the main conclusions  

Flow evolution steps 
Developed features 

Schardin’s problem Dusty Schardin’s problem 

1 Shock impingement on the prism IS, MS1, RS Decelerated IS, MS1, accelerated RS 

2 Shock wave passage over prism’s tip EF Accelerated EF  

3 Main vortex formation V, MTP1, SL1 Displaced V*, MTP1, SL1* 

4 Mach stems collision on the 

symmetry plane 

RS, MS2, SL2 RS*, MS2, SL2 

5 Shock-vortex interaction and 

scattering of reflected shock 

AS, DS 

 

Attenuated AS, attenuated DS  

 

6 Vortexlet formation DA, TS, VL Attenuated DA*, TS*, VL* 

AS   = Accelerated Shock  

DA  = Diverging Acoustics 

DS   = Decelerated Shock 

EF   = Expansion Fan 

IS    = Incident Shock 

MS  = Mach Stem 

MTP = Mach Triple Point 

RS    = Reflected Shock 

SL    = Slip Line 

TS    = Transmitted Shock 

V      = Vortex 

VL   = Vortexlet 

* The feature is not apparent in high particulate loading or low diameter cases. 
 

 

 

  


