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Abstract 

 Relaxation models for the pressureless gas dynamics (PGD) equations attempt to satisfy the strictly 

hyperbolic conservation law in order to employ the well-posed approximated Riemann solvers. In this study, 

a new type of relaxation model is proposed to resolve two shortcomings of the existing relaxation models: 

the constant propagation speed of sound, and the collapse of delta shock waves in multidimensional 

problems. The proposed model seeks a strictly hyperbolic system of equations without any special 

consideration for the proper values of the propagation speed of sound. Numerical tests showed that the 

proposed model can accurately describe the behavior of the PGD equations, in particular, the occurrence of 

delta shock waves and vacuum states in a multidimensional problem. 
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1. Introduction 

A wide variety of physical phenomena is governed by pressureless gas dynamics (PGD)-type 

mathematical models. An important class of problems of practical interest includes dispersed phase 

transport within a continuous fluid phase in multiphase combustion [1, 2], liquid water droplets in the 

atmosphere [3], and alumina particles in rocket engines [2], as well as cosmology [4]. These particle flows 

result in the zero pressure of gas dynamic equations. The resulting PGD equations are a time-dependent 

system of non-linear partial differential equations of the hyperbolic type. Their main features are 

occurrences of delta shock waves and vacuum states, which bring non-trivial numerical challenges.  

In general, both the shock wave and vacuum are well captured using existing Godunov-type upwind 

schemes [5]. These schemes, however, have been developed for the strictly hyperbolic conservation laws 

[6], and consequently they may not be carried over to the non-strictly hyperbolic conservation law case, 

due to lack of a distinct eigensystem [7, 8]. This presents a serious numerical difficulty for adopting the 

well-posed Godunov-type upwind schemes in the following PGD equations, 
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where, t > 0, x ∈ ℝ, and ρ(x, t) ≥ 0 and u(x, t) are in ℝ. Here, ρ and u denote the density and velocity of the 

gas or particle, respectively. The system of equations (1.1) represents the conservation of mass and 

momentum in the absence of pressure and has a non-diagonalizable Jacobian matrix with degenerate 

eigenvalues, Λ=[λ1, λ2]T=[u, u]T. In order to derive the single-valued weak solutions to these equations, 

special treatments, like relaxation models, may be essential to circumvent the numerical difficulty 

associated with degenerate eigenvalues. Specifically, system (1.1) is modified as follows;   
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where A=f(c, ρ) is an artificial term multiplied by a very small value of propagation speed of sound, c→0. 
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Most of the previous studies on relaxation models have focused on the isothermal and isentropic Euler 

equations. A state variable model and perturbation-based numerical scheme have been also studied with a 

small value of c. Table 1 presents several types of relaxation models for the PGD equations. Interestingly, 

all the models rely on a time-independent globally constant property of c, except for the model of Berthon 

et al. [7].  

Table 1. Literature review on relaxation models for the PGD equations 

 

Authors Relaxation models Remarks 

Berthon et al. [7] A=П, additional eq., (𝜌П)𝑡+∇𝐗 ∙ (𝜌П𝑢 + 𝑐2𝑢) = 0 c > 0 

Chen et al. [8] Isentropic (A=cργ) γ > 1, c = const. 

Bouchut et al. [9] Isothermal (A=c2ρ) c = 0.2 

Degond et al. [10] A=εP(ρ) ε → 0, ε = const. 

LeVeque [11] Isothermal 𝑐 ≪ 1, c = const. 

Smith et al. [12] Perturbation (ε)-based numerical scheme 0 < ε ≪ 1 

 

 

Although these studies, based on one-dimensional tests, have demonstrated numerical accuracies in 

comparison with exact solutions of the PGD equations, there remain two unsolved issues; 1) the proper 

value of c in A, and 2) the multidimensional effects of A beyond the simple one-dimensional case. For 

example, if using the depth positivity condition [14], the isothermal Euler equations may not provide the 

proper values (ranges) of c, because a logarithmic function of (A.6) derived by the generalized Riemann 

invariant has an infinite number at ρ*=0, where ρ* is a density in the region between the left and right waves 

identified by the eigensystem. In case of the isentropic Euler equations, c may be derived by minimum and 

maximum bounds with the ratio of specific heat γ. However, γ cannot be set up with a specified number 

due to the absence of pressure in the PGD equations. Hence, both isothermal and isentropic Euler equations 

cannot resolve issue 1), as described in the appendices.  

In this study, a new type of relaxation model is proposed to derive the range of c and prevent the collapse 

of the delta shock wave in the multidimensional problem; 
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The key idea is that, based on (1.3), minimum and maximum bounds of c are derived by invoking the 

positivity-preserving property, satisfying a positive density in the vacuum state, and the value of c is then 

presented as a time-dependent locally constant quantity. It turns out that the new relaxation model does not 

need any consideration for the proper value of c, effectively resolving issue 1). Also, (1.3) is mathematically 

equivalent to (1.1), so that it will not suffer the collapse of the delta shock wave in multidimensional space. 

The new relaxation model is derived by simply adding A into the left- and right-hand sides of the PGD 

equations as a splitting technique for purely numerical purposes. This splitting technique is motivated by 

the work of Myong et al. [13] in computational magnetohydrodynamics and by the work of Jung et al. [3] 

for Eulerian droplet equations in a dilute two-phase flow. Also, Menshov et al. [14] employed the splitting 

technique for calculation of the elastoplastic flows. The left-hand side in (1.3) naturally satisfies the strictly 

hyperbolic conservation law for which the well-posed approximate Riemann solvers can be employed, 

while the right-hand side can be treated as a source term.  

In Section 2, the new relaxation model is described in detail, and then the minimum and maximum 

bounds of c are derived by invoking the depth positivity condition [15] and the generalized Riemann 

invariants across two opposite rarefaction waves. In Section 3, the HLLC approximated Riemann solver 

[16] for the numerical scheme of the new model is briefly reviewed. Wave-speed estimates are presented 

based on the generalized Riemann invariant across rarefaction waves and the Rankine-Hugoniot condition 

for the shock wave. Further, the treatment of the source term and associated finite volume formulation are 

briefly described. In Section 4, numerical tests of the one- and two-dimensional tests are presented to 

evaluate the performance of the new relaxation model. 

2. A relaxation model for the multidimensional pressureless gas dynamics system 

The relaxation models for the PGD equations can be expressed by a variety of hyperbolic systems of 

equations; for example, isothermal and isentropic Euler equations, in which c is assumed to be a very small 

constant. The shallow water equations can be also considered for a relaxation model of the PGD equations. 

The relaxation model of (1.3) can be rewritten with the help of the shallow water equations, as   
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where, t > 0, x ∈ ℝ, and ρ(x, t) ≥ 0 and u(x, t) are in ℝ. Here, u denotes the velocity vector. I is an identity 

matrix, and ρa denotes an artificial density. Dividing ρa (=1) is introduced to be consistent with the physical 

unit in the momentum equation. Thus, ρa does not play any role in numerical simulations. 𝑐2𝜌2/𝜌𝑎𝐈  in (2.1) 

is in principle equivalent to the gravity term 0.5gh2I in the shallow water equations. Thus, the left-hand side 

of the model can be easily treated within the computational framework based on the approximate Riemann 

solver. 

To study the bounds of c, the left-hand side of (2.1) can be rewritten in the one-dimensional non-

conservative vector form, 
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and the Jacobian matrix of (2.2) becomes 

( ) 2 ,2

a

u

c
u
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 

=
 
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F W  (2.3) 

where W=[ρ, u]T. The eigenvalues and right eigenvectors of (2.3) are  

     
T T

1 2,  ,  and ,  ,  ,  ,u a u a a a = − + = − =Λ R R  (2.4) 

where 𝑎 = 𝑐√2𝜌 𝜌𝑎⁄ .  

In the Riemann problem, there are two wave families associated with the eigenvalues, λ1 and λ2 in (2.4). 

The two waves separate into three constant states denoted by WL, W*, and WR from the left to the right. 
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The region between the left and right waves is defined as the star region. Then, the wave structure can be 

identified by the following conditions:  

* :K  shock wave, 
* :K  rarefaction wave, (2.5) 

where a subscript K denotes the left and right states. By taking the generalized Riemann invariants across 

the left and right rarefaction waves into (2.3) and (2.4), we have 

( )* *2L Lu u a a= − −  for the left rarefaction wave, (2.6a) 

( )* *2R Ru u a a= − −  for the right rarefaction wave, (2.6b) 

and, finally, we obtain the following relation,  

( ) *2 +4 0.R L R Lu u a a a− − + =  (2.7) 

Note the critical case of zero density in (2.7). The following condition at ρ* =0 must be fulfilled:   

( ) ( )2 .R L R Lcrit
u a a u u  +  −  (2.8) 

(2.8) is called the depth positivity condition as proposed by Toro [15] and can be applied to the left-hand 

side of (2.1) and (2.2). Based on the depth positivity condition, the maximum and minimum bounds of c 

with a time-dependent locally constant property can be introduced in the following assumption and 

propositions.  

Assumption 2.1. Let us assume that the propagation speed of sound c is locally constant c=c(x,t)=cL=cR 

and ρL>0 and ρR >0 as an initial value problem.  

Proposition 2.2. The minimum bound of c has a time-dependent property identified by the left and right 

state variables, 

min

1
,

4
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c
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Proof. cmin can be obtained by inserting 𝑎 = 𝑐√2𝜌 𝜌𝑎⁄  into (2.8),  
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and rearranging c using Assumption 2.1 

min
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cmin has a time-dependent property due to the left and right state variables, cmin=f(u(x,t), ρ(x,t)).  

Proposition 2.3. The maximum bound of c has a time-dependent property identified by the left and right 

state variables, 

max 1/2
min

1
,

4

b u
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
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 where ρmin =min(ρL , ρR).  

Proof. The density ρ* in the star region produced by two opposite rarefaction waves must be smaller than 

ρmin. Hence, (2.7) yields a simple relation among the state variables,   
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and, after rearranging for c, we have 

max1/2
min
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−
 

The cases ρmin = 0, cmax=cmin are included in Proposition 2.2. cmax also has a time-dependent property 

due to the left and right state variables, cmax = f(u(x,t), ρ(x,t)). Thus, the minimum and maximum bounds of 
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c, while locally constant, contain a time-dependent property. The wave speed estimates can be derived using 

Proposition 2.2 and 2.3.  

3. Numerical scheme 

The finite volume method with the Godunov-type upwind scheme is employed as a computational 

framework for the relaxation model. For the sake of simplicity, let us consider a one-dimensional x-split 

conservative vector form of (2.1),  

( ) ( ) ,t x x
+ =U F U S U  (3.1) 

and U=[ρ, ρu, ρψ]T, F(U)=[ρu, ρu2+A, ρuψ]T, S(U)=[0, A, 0]T, where A=𝑐2𝜌2/𝜌𝑎. A tangential velocity 

component ψ represents the concentration of a pollutant or other passive scalar. An integral form of (3.1) 

discretized on intervals Ii=[xi -1/2, xi +1/2] becomes 
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1/2

1/2
1/2 1/2 1/2 1/2, , , , - , .
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When the cell average of interval Ii is defined as ( )
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1/2 1/2i i ix x x+ − = − , the 

explicit finite volume conservative formula in the interval Ii can be derived: 
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where ( ) ( )1/2 1/2 1/2 1/2,  i i i i+ + + += =F F U S S U , and ( )1/2 1/2 ,i ix t+ +=U U . The numerical fluxes 
1/2i+F and 

1/2i+S , and 

the associated wave speed estimates can be derived using the Godunov-type upwind scheme.  

The relaxation models for solving the PGD equations involve a critical numerical issue, the positivity 

of density in a vacuum. Accordingly, the positivity-preserving property of numerical schemes becomes the 

key to accurately resolving the nonlinear wave regions. Einfelt et al. [17] introduced a class of numerical 

schemes that always preserved the positivity of density from physical data. They showed that the Harten–

Lax–van Leer (HLL) scheme [18] can serve as a positivity-preserving scheme because the absolute values 
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of the maximal and minimal wave speeds satisfy certain stability bounds. On the basis of these findings, 

Toro et al. [16] developed the Harten–Lax–van Leer-Contact (HLLC) approximate Riemann solver, which 

restores the contact and shear waves to account for the influence of intermediate waves, λ=u in the HLL 

scheme. In this study, the HLLC approximate Riemann solver is employed for the new relaxation model. 

3.1. HLLC solver for the relaxation model  

Let us recall the left-hand side of (3.1) for the general initial value problem,  

( ) ( )
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if 0.
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The Godunov inter-cell numerical flux 
1/2ix +

F appearing in the explicit finite volume formulation can be 

derived for the HLLC solver as 

* *

1/2

* *

if 0 ,

if 0 ,

if 0 ,

if 0,

L L

L L

i

R R

R R

S

S S

S S

S

+

 


 
= 

 
 

F

F
F

F

F

 (3.5) 

where ( )* * ,K K K K KS= + −F F U U  and the states U*K are given by  
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middle wave S* in (3.5) can be obtained by assuming ρ*L=ρ*R in the exact Riemann solver,  

( ) ( )
( ) ( )

* .
L R R R R L L L

R R R L L L

S u S S u S
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u S u S
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The third component of the flux in (3.1) can be expressed in terms of the first component, that is, F3=F1ψ. 

In fact, the relation of the third component is derived from the solutions of the exact Riemann problem 

using the generalized Riemann invariant, v*L≠v*R and the Rankine-Hugoniot conditions, v*=vR and v*=vL. 

An expression for the third component based on the velocity in a star region is given as   
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where ( )*
2
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L R

u u c
u
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+
= + −  from (2.6a) and (2.6b), and u* is only for the third component of the flux, 

which changes across the middle wave. In summary, the wave speeds, SL and SR, are required to compute 

the numerical fluxes as a closed form in the HLLC solver. 

3.2. Wave-speed estimates 

Several possible choices for estimating the wave speeds are available in the Riemann problem: a simple 

estimate by the direct use of eigenvalues [19], the Roe average eigenvalues for the left and right non-linear 

waves [20], and the exact solutions based on the Rankine-Hugoniot conditions and eigenvalues [16]. In this 

study, the wave speeds were estimated by applying the Rankine-Hugoniot condition for shock wave and 

the eigenvalues for the rarefaction wave into (2.2)-(2.4) as  
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and 2K K aa c  = . ρ* in (3.8b) is the same as the one derived in Proposition 2.3, 
2

*
4

b u

c
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.  

In (3.8a) and (3.8b), c is still too ambiguous to apply in the closed form of the HLLC solver, even 

though the minimum and maximum bounds of c are known. We need to determine the value of c. 

Corollary 3.1. c must avoid a singularity in the case that 
L R =  and be placed between cmin and cmax 

min max1/2 1/21
min min2

1 1 1
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4 4 4

b u b u b u
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  
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− −
 

3.3. Treatment of source term  
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The source term in (3.1) can be treated numerically using a splitting scheme [21]. The attraction of the 

splitting scheme is the simplicity and freedom available in choosing the numerical operators. The splitting 

scheme relies on solving the following two initial value problems,  
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where Uadv is regarded as a predicted solution. Then, (3.9) can be summarized to 
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where ( )1/2 1/2

n

i i+ +=F F U  and ( )1/2 1/2
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i i+ +=S S U . The source term can be treated by the HLLC solver,  
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where ( )
T

2

0, ,0adv

K K ac  =
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S and ( )
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2

* *0, ,0 ,S
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 and 
*
adv
K  is given by U*K of (3.5). 

3.4. Temporal discretization  

(3.10) can be rewritten as  

( )1
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+ −= − −U U Q Q  (3.12) 
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 
 =

+
. The following strong stability preserving (SSP) 

third-order Runge-Kutta time discretization [22] is used: 
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(3.13) 

4. Numerical tests 

We consider two numerical test cases: a typical one-dimensional test case studied by [7, 9, 11] for the 

PGD equations and a two-dimensional test case where two clouds collide. A special emphasis is placed on 

the propagation speed of sound c and the collapse of the delta shock wave in the two-dimensional problem. 

For numerical computations, the MUSCL-type second-order scheme [23] with Van Albada’s limiter [24] 

is employed. The rotational invariance is applied to the relaxation model in the two-dimensional finite 

volume formulation. All the computations are carried out with  𝐀 = 𝑐2𝜌2/𝜌𝑎𝐈, 𝜌𝑎 = 1.0, ∆𝑥 = ∆𝑦 = 0.01. 

The numerical solutions of (1.3) (with Corollary 3.1) and (1.2) (with constant c values) are compared with 

the exact solutions of (1.1). 

4.1. 1-D test  

This test is designed to create a vacuum and a mass accumulation. The initial conditions and the 

corresponding exact solutions at the time t=0.5 are 
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u x
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(4.1) 
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where 𝜌0 = 𝜌0(𝑥)  and 𝑢0 = 𝑢0(𝑥) . All of the numerical solutions capture the delta shock wave and 

guarantee the positivity of density in the vacuum state, as shown in Fig. 1. As c decreases, the numerical 

solutions of (1.2) become closer to the exact solutions. In the case of (1.2) with c=0.01, a small CFL number 

(CFL=0.01) was used to avoid a local peak in density and fluctuations in velocities around the middle of 

the vacuum state. In the case of (1.2) with c ≤ 0.001, even when a smaller CFL number was used, the 

computation broke down due to the presence of local extrema with  ∆𝑡 → 0. This observation indicates that 

the (1.2)-type relaxation models may need careful treatment for selecting values of c and associated CFL 

numbers. On the other hand, (1.3) with Corollary 3.1 produces more accurate solutions around delta shocks 

and vacuum states, and allows a relatively high CFL number in the computation. The local oscillations 

around the delta shock waves were also observed in the density profile. The fundamental reason of local 

oscillations around shock waves is the use of the second order scheme, similar to the one reported by 

Bouchut et al. [9]. The first order scheme does not show the local oscillations; however, the first order 

scheme shows a spike within the density at the sonic point [7, 9]. Hence, a stronger monotonicity-preserving 

high order scheme may be needed to reduce these local oscillations. 

 

  

Fig 1. Exact solutions (▬) of (1.1), numerical solutions of (1.2) with c=0.1 (▬) and c=0.01 (▬), and 

numerical solutions of (1.3) with Corollary 3.1 (▬) on initial conditions in (4.1). Other parameters are taken 

to be A=
𝑐2𝜌2

𝜌𝑎
I, ρa=1.0, △x=0.01, and t=0.5. 
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4.2. 2-D test  

A two-dimensional test is designed to compute the collapse of the delta shock and examine the effects 

of A in relaxation models in a multidimensional problem. The following initial conditions are considered,  

( )

( )

( )

( )
0 0 0

1,  0.5,  0 if 0.3 0.2,  0.15 0.05,

, , 1,  0.5,  0 if 0.2 0.3,  0.05 0.15,

0.1,  0,  0 otherwise.

x y

u v x y

 −   −  


= −   −  



 (4.2) 

The solutions of the PGD equations with initial conditions of v=0, u≠0 or u=0, v≠0 do not affect any 

directional quantity due to the absence of pressure. That is, gases or particles do not change their directions 

and move their own way. If a small value of c in the relaxation models affects the entire domain in the PGD 

framework, careful attention must be paid to numerical computations based on these models, in particular, 

for the delta shock and vacuum state. For this purpose, two clouds with the same speed and density but 

opposite direction are considered. A part of each cloud entirely merges at t≈0.52, and another part moves 

further on its own way after that. 

In Fig. 2, the numerical solutions of (1.3) with Corollary 3.1 (CFL=0.2), (1.2) with c=0.01 (CFL=0.01), 

and (1.2) with c=0.1 (CFL=0.2) are compared. At t=0.2, (1.2) with c=0.1 starts to break, while the others 

retain their initial shape. At t≈0.52, (1.2) with c=0.1 shows a delta shock at the center, but a moderate 

collapse already took place, indicated by the weaker delta shock. In the case of (1.2) with c=0.01, the clouds 

start to break around the upper and lower edges of the colliding part of the clouds.  

At t=0.8, (1.3) with Corollary 3.1 shows a strong delta shock at the center and the non-colliding parts 

of clouds still keep their directions, indicating that the collapse of the delta shock did not occur in the 

multidimensional problem. In contrast, (1.2) with c=0.1 shows a large circulation as a direct result of the 

complete collapse of the delta shock. Also, (1.2) with c=0.01 shows a weak collapse at the interface between 

the colliding and non-colliding parts. Further, the computation of (1.2) with c=0.01 was not able to advance 

beyond t=0.8, due to the formation of local extrema with ∆𝑡 → 0.  
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Figure 3 shows densities and velocities at a section x=0 of the domain with time of t≈0.52 and t=0.8. 

The model (1.3) with Corollary 3.1 shows very stable density and velocity distributions without any 

fluctuations in the y direction. In particular, a maximum v velocity at the given time is very small, 1.0e-26. 

In contrast, (1.2) with c=0.1 and c=0.01 shows large fluctuations and amplifications in the v velocities 

increasing gradually with time. Further, (1.2) with c=0.01 shows that, unlike (1.3) with Corollary 3.1, the 

shock waves become weak at the interface between the colliding and non-colliding parts and non-uniformly 

distributed densities are observed in the colliding part, where the densities must have uniform distributions 

at the given conditions under the PGD system. Based on this observation, the (1.2)-type relaxation models 

may need careful treatment for the multidimensional PGD system, even when the 1-D test may provide 

accurate solutions. 

(1.3), CFL=0.2 

 

(1.2), c=0.01, CFL=0.01 

 

(1.2), c=0.1, CFL=0.2 
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t=0.2 t≈0.52 t=0.8 

 

Fig. 2. Density fields according to the relaxation models (upper: (1.3) with Corollary 3.1 and CFL=0.2, 

middle: (1.2) with c=0.01 and CFL=0.01, lower: (1.2) with c=0.1 and CFL=0.2) at various times (left: t=0.2, 

middle: t≈0.52, right: t=0.8) on initial conditions in (4.2). Other parameters are taken to be A=𝑐2𝜌2 𝜌𝑎⁄ I, 

ρa=1.0, △x=△y=0.01. 
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t≈0.52 t=0.8 

 

Fig. 3. Numerical solutions of (1.2) with c=0.1 (▬) and c=0.01 (▬), and numerical solutions of (1.3) with 

Corollary 3.1 (▬) at a section x=0 and various times (left: t≈0.52 and right: t=0.8) on initial conditions in 

(4.2). Other parameters are taken to be A=𝑐2𝜌2 𝜌𝑎⁄ I, ρa=1.0, △x=△y=0.01. 
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5. Conclusions 

The relaxation models for the PGD equations have a major advantage because they enable the use of 

the well-posed approximated Riemann solvers for delta shock and vacuum. Two tricky questions remained, 

however, in the existing relaxation models; how small the value of the propagation speed of sound should 

be to guarantee the numerical accuracy of the relaxation models, and how to prevent the collapse of the 

delta shock wave in multidimensional problems.  

To solve these problems, we proposed a new relaxation model based on the idea of adding an artificial 

term to both sides of the multidimensional PGD equations and a propagation speed of sound with a time-

dependent locally constant property. The numerical tests showed that the proposed model can accurately 

describe the behaviors of the PGD equations, in particular, the delta shock waves and vacuum states in a 

multidimensional problem. In the future, a monotonicity-preserving high order scheme for reducing the 

local oscillations around shock waves will be studied. 
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Appendix A: Uncertainty of a propagation speed of sound in the isothermal Euler equations 

The isothermal Euler equations for (1.2)-type relaxation model are  

( )

( ) ( )2

0,

0,

t

t
c

 

  

+  =

+   + =

X

X

u

u u u
 (A.1) 

where c is a positive constant propagation speed of sound. The Jacobian matrix of (A.1) in a conservative 

form becomes 
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( ) 2 2

0 1
,

2c u u

 
=  

− 
F W  (A.2) 

where W=[ρ, ρu]T. The eigenvalues and right eigenvectors of (A.2) are  

     
T T

1 2,  ,  and  1,  ,  1,  .Λ R Ru c u c u a u a= − + = − = +  (A.3) 

Then, the generalized Riemann invariants across the left and right rarefaction waves into (A.3) give 

( )* *
ln ln

L L
u u c  = − −  for the left rarefaction wave, (A.4a) 

( )* *
ln ln

R R
u u c  = − −  for the right rarefaction wave, (A.4b) 

where ρR, ρL, and ρ* must be positive. Then, we obtain the following relation, 

( ) *ln ln +2 ln 0,R L R Lu u c c  − − + =  (A.5) 

and, after rearranging for ρ*, we have 

0.5

* 0,R L
u ce

 




 
 
 

=   (A.6) 

where △u=uR-uL. Note the critical case of ρ* =0 in (A.6). A propagation speed of sound c satisfying the 

depth positivity condition at ρ* =0 remains uncertain due to a logarithmic function of ρ* in the isothermal 

Euler equations. 

Appendix B: Uncertainty of a propagation speed of sound in isentropic Euler equations 

The isentropic Euler equations for (1.2)-type relaxation model are  

( )

( ) ( )

0,

0,

t

t
c 

 

  

+  =

+   + =

X

X

u

u u u
 (B.1) 

where c is a positive constant propagation speed of sound and γ is the ratio of specific heat. The Jacobian 

matrix of (B.1) in a conservative form becomes 
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( ) 2 2

0 1
,

2a u u

 
=  

− 
F W  (B.2) 

where W=[ρ, ρu]T. and a2=cγργ-1. The eigenvalues and right eigenvectors of (B.2) are  

     
T T

1 2,  ,  and 1,  ,  1,  .u a u a u a u a= − + = − = +Λ R R  (B.3) 

Then, the generalized Riemann invariants across the left and right rarefaction waves into (B.3) give 

( )* *

2

1
L L

u u a a


= − −
−

 for the left rarefaction wave, (B.4a) 

( )* *

2

1
R R

u u a a


= − −
−

 for the right rarefaction wave, (B.4b) 

and we then obtain the following relation,  

( ) *

2 4
+ 0.

1 1
R L R L

u u a a a
 

− − + =
− −

 (B.5) 

Based on the depth positivity condition, the minimum bound of c in (B.5) can be derived using the 

assumption 2.1. and proposition 2.2. That is,   

2
2

min ,
b b

L R

b u
c c

  

 
  

+ 
 (B.6) 

where b=
𝛾−1

2
 and △u=uR-uL. Similarly, the maximum bound of c can be derived using the assumption 2.1. 

and proposition 2.3. That is,  

( )

2
2

max

min

,
4 0.5 b b b

L R

b u
c c

   

 
  
 + −
 

 (B.7) 

where ρmin=min(ρL, ρR). After rearranging (B.6) and (B.7) for c, we have 

( )

2
2

2 2

min

.
4 0.5

b b b b b
L R L R

b u b u
c

      

   
   
 + + −   

 (B.8) 
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The isentropic Euler equations can serve as a relaxation model for the PGD equations. However, the ratio 

of specific heat γ appearing in (B.8) cannot be set up due to the absence of pressure in the PGD equations. 

Additionally, any parameter for γ in (B.8) may be considered. However, it is still ambiguous, since (B.8) is 

invalid in three cases of γ (γ <0, γ=0, γ=1). Hence, a propagation speed of sound c also remains uncertain 

in the isentropic Euler equations. 
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