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Highlights

• A modal DG method for computing rarefied gaseous flows interacting with rigid particles and granular medium is presented.
• Full continuum models based on a two-fluid model can cover a wide range of gas and solid phase regimes.
• A high-fidelity approach is developed to treat the non-strictly hyperbolic equations of a dusty gas.
• The computational model is used to simulate the impingement of an underexpanded jet on a dusty surface in a rarefied condition.
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Abstract  

A modal discontinuous Galerkin method was developed for computing compressible 

rarefied gaseous flows interacting with rigid particles and granular medium. In contrast to 

previous particle-based models that were developed to handle rarefied flows or solid phase 

particles, the present computational method employs full continuum-based models. This work 

is one of the first attempts to apply the modal discontinuous Galerkin method to a two-fluid 

model framework, which covers a wide range of gas and solid phase regimes, from a 

continuum to non-equilibrium gas, and from dusty to collisional regimes. The rarefaction 

effects were taken into account by applying the second-order Boltzmann-Curtiss-based 

constitutive relationship in a two-fluid system of equations. For the dust phase, computational 

models were developed based on the kinetic theory of the granular flows. Due to the 

orthogonal property of the basis functions in the method, no specific treatment of the source 

terms, commonly necessary in the conventional finite volume method, was required. 

Moreover, a high-fidelity approach was selected to treat the non-strictly hyperbolic equations 

of a dusty gas. This allows the same inviscid numerical flux functions to be applied to both 

the gaseous Euler and solid pressureless-Euler system of equations. Further, we observed that, 

for the discretization of the viscous fluxes in multiphase cases, the local discontinuous 

Galerkin is superior to the first method by Bassi and Rebay. After a verification and 

validation study, the new computational model was used to simulate the impingement of an 

underexpanded jet on a dusty surface in a rarefied condition. A surface erosion model based 

on viscous erosion associated with aerodynamic entrainment was implemented at a solid 

surface. Simulation cases in the near-field of the nozzle flow were tested to evaluate the 
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capabilities of the present computational model in handling the challenging problems of 

multi-scale multiphase flows. 

Keywords: discontinuous Galerkin, two-fluid model, rarefied gases, granular flow  

1. Introduction 

Multiphase flows are observed in many geophysical flows and industrial applications. One 

significant class of multiphase flows is the gas-solid flow, which involves a flow of gases 

(carrier phase) with suspended rigid particles (particulate phase). Some technological 

examples include the transport of nanoscale soot particulates in gas turbine engines, air-

droplet mixed flow in atmospheric icing, explosions in coal mines, the separation of 

particulate matter from fluids, and the interaction of a rocket plume with lunar dust. Volcanic 

eruptions, cosmic explosions, and star formation are other natural geophysical examples. The 

gas-solid flow is considered to be a dusty gas flow when the interaction between the gas and 

particles is more dominant than particle-particle interactions. The gas-solid flow is considered 

a granular flow when the particle-particle or wall-particle interactions are more dominant 

compared to the interstitial forces. And when the gas passes through a porous solid structure 

with pores―sometimes as small as the mean free path of the gas molecules―the gas-solid 

flow is called a gas flow in porous media. 

The categories of mathematical models used to describe dusty gas flows (generalizable to 

other multiphase classes) are illustrated in Table 1. In the Lagrangian framework 

(alternatively known as the trajectory, non-continuum or Eulerian-Lagrangian model), each 

particle is tracked through space based on Newton’s equation of motions. In the Eulerian 

framework (also known as the continuum or Eulerian-Eulerian model), the particles are 

considered a continuum, and a set of partial differential equations in a given coordinate 

system is derived to characterize the flow. A third category (or a sub-category of the Eulerian 

models) is called the mixture models, where both phases are defined by solving the 

continuum-based equation of a single fluid with modified properties. 
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Table 1. Mathematical models for simulating particulate flows. 

 

In the present study, the two-fluid model is chosen over the trajectory model, since it is not 

only applicable to a broad spectrum of particulate loading in multi-phase regimes but also has 

less computational cost, compared with the Lagrangian counterpart. The model is, however, 

not efficient when the distribution in particle size is the primary interest, since a separate set 

of equations must be solved for each diameter size. The pressureless Euler equations, when 

applied as the mathematical model to describe the solid phase, have been shown to provide 

reasonable predictions in a variety of multi-phase/multi-fluid problems. Some examples 

include one-dimensional [1-5] and multi-dimensional [7-10] problems. It should be noted that, 

since the collision term scales with the square of the volume fraction of particles, the pressure 

and stress tensors of the solid-phase tend to vanish in the dilute limit, which makes the 

pressureless gas assumption valid in that regime. 

However, when the role of particle-particle collisions is not negligible in the description of 

the solid phase, the closure for the stress tensor in the solid phase plays a significant role in 

mathematical modeling. The closure models are the main factor that distinguishes the various 

two-fluid models [11].  

There are three approaches that are used to define the stress tensor in the solid phase (solid 

viscosity, more accurately). In the early models [12-14], experiments were used to describe 

the dependence of solid phase pressure on the particle volume fraction, and thus, an empirical 

constant was used to define the solid viscosity. These models are known as constant viscosity 

models (CVM). 

The other class of models, by using the analogy from the gas phase, defines the viscosity. 

These models are, however, restricted to dilute dusty gas flows since the effect of particle-

particle collisions is not included. On the other hand, efforts based on the kinetic theory, 

which adopt an analogy similar to rarefied gas flows, have led to the so-called kinetic theory 
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of granular flows (KTGF), which is a class of closure models for kinetic-collisional stresses 

[15-19]. This type of approach provides a link between the microscopic and macroscopic 

descriptions of the granular flow. Even though these models have mainly been applied to 

simulate fluidized beds and moving beds in the majority of previous works, with a reasonable 

level of approximation, they can be used in other applications where modeling particle-

particle interactions (through binary and frictional contacts) is crucial [18, 20, 21].  

One must keep in mind that the granular flow of particles is significantly different from 

molecular gas flows. The main differences are 1) elastic and inelastic collisions occur in 

gases while elastic-plastic deformation and surface friction occur in particles and, 2) kinetic 

energy is conserved in an isothermal system for gases while an equilibrium state does not 

exist in granular systems without external energy sources [11]. Schneiderbauer et al. [19] 

demonstrated that this class of models could provide substantial improvement compared with 

simulations using the discrete element method (DEM). Two-fluid models based on KTGF 

have shown a desirable capability by providing particle pressure, viscosity, and other 

transport coefficients; besides, less ad hoc adjustments are required,  compared with the 

aforementioned models. The KTGF models are also known to provide promising results 

when the volume fraction of particles is less than 40% (where the assumption of binary 

collisions holds). When the solid volume fraction is higher, the solid phase undergoes 

multiple particle-particle frictional contacts, and the kinetic theory then fails to explain the 

physics of dense granular media.  

The Eulerian models based on mono-kinetic closure models, even though they are capable 

of correctly predicting the formation of depletion zones and stiff accumulation regions, have 

difficulty in describing the so-called particle trajectory crossing (PTC) for high Stokes 

number flow.  This limitation has motivated the introduction of a class of method of moments 

that allows for the coexistence of several velocities at the same location by solving higher 

order moments and applying Gaussian closures [10, 22-24]. On the other hand, using an 

approach based on the integral solution of the kinetic model in the flux evaluation across the 

cell interface, Liu et al. [25] proposed a scheme for dilute disperse gas-particle multiphase 

flows (UGKS-M) in a finite volume framework. Promising results were demonstrated, which 

could satisfactorily resolve the PTC and wall reflecting phenomena. 

In most of the aforementioned studies, the main focus has been on the correct modeling of 

the dust phase, and for the gas phase, either classical Euler or Navier-Stokes-Fourier (NSF) 
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equations were solved, depending on the physics considered. However, in flows far from 

thermal equilibrium, these traditional models cannot predict the flow accurately. A case in 

point is the impingement of a rocket plume on the lunar surface, and the subsequent dusty gas 

flows formed by the ejection of solid particles from the regolith during the descent phase of 

the lunar lander [26]. These dusty gas flows are directly related to the number one concern in 

returning to the Moon claimed by the Apollo astronaut John Young [27]. The coexistence of 

various flow physics, such as the transition from continuum to rarefied flow condition, stand-

off shock waves, stagnation regions, viscous boundary layers, the transition from subsonic to 

supersonic flow, surface erosion and particle entrainment in the rarefied condition, makes the 

computational simulation of the flow problem a very challenging topic.  

Other examples that require the application of high-order models beyond the linear first-

order NSF in a gas-solid multiphase flow are the study of the effect of micro-dust on heat 

transfer characteristics in micro/nano-channels, such as computer chip-sets or hard disk 

drives. Another important topic is the simulation of supersonic impactors (also known as 

pressure impactors) used in the classification of nanoparticles. The working principle of 

supersonic impactors is based on rarefaction effects [28].  

A class of discretization methods that are gaining popularity from fluid mechanics 

problems to wave-related problems of acoustics and electromagnetics are the so-called high 

order—higher than second-order—spectral methods. The primary goal here is to provide a 

high-order conservative scheme that has a compact formulation and can handle complex 

geometries in a computationally efficient manner. In these methods, high order solution is 

achieved by increasing the polynomial order, and some of the popular subcategories include 

spectral difference (SD), spectral volume (SV), and flux reconstruction/correction procedure 

via reconstruction (FR/CPR) and discontinuous Galerkin (DG) method.  

In the discontinuous Galerkin formulation, in contrast to its continuous counterpart, 

discontinuous basis functions are applied. This difference yields a local elemental mass 

matrix of the finite element formulation, instead of the globally coupled mass matrix of the 

continuous finite element method, making the DG method more flexible. For example, 

arbitrary triangulation with hanging nodes can be allowed. The p-adaptivity can be achieved 

by varying the polynomial degree, or the basis functions can even be defined for individual 

elements, independently of neighbor elements. Very high parallel efficiency is also 
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achievable because of its local data structure [29]. The DG method is called either modal [30-

33] or nodal [34-37], depending on the type of basis functions. 

 
(a) 

 
(b)

Fig. 1. Schematic of various wave structures in the 1-D dusty gas flows: (a) The gas contact 
discontinuity and boundary particle path are initially located at the same position, (b) The 
particle boundary path is located at a distance from the gas phase contact discontinuity. 
Reproduced with permission from O. Ejtehadi, A. Rahimi, A. Karchani, R.S. Myong, 
“Complex wave patterns in dilute gas–particle flows based on a novel discontinuous 
Galerkin scheme,” Int. J. Multiphase Flow 104, 125 (2018). Copyright 2018 Elsevier. 

While the DG method has been successfully applied to various classes of problems such as 

compressible and incompressible flows, aeroacoustics, magneto-hydrodynamics, and many 



7 
 

more [38], it has recently found its way into multiphase flow problems [39-45]. This is driven 

by recent advances in computational methods and computer resources, which make the DG 

method a feasible tool for more complicated applications. 

The purpose of this work is to develop a modal discontinuous Galerkin method which can 

be applied to the two-fluid system of equations in the Eulerian framework and a broad 

spectrum of gas-phase regimes (from continuum to non-equilibrium) and solid-phase regimes 

(from dusty to granular gas flows). As a first step, an explicit modal DG scheme on triangular 

meshes was developed for solving multi-dimensional conservation laws of gas flows. That 

method was tested for simulations of all flow regimes of hypersonic rarefied and low-speed 

microscale gases [46-49] as well as dusty-gas flows [50, 51]. For dusty-gas flows [50], the 

zeroth-order Boltzmann-based constitutive relationships (Euler equations for the gas phase 

and pressureless Euler equations for the solid phase) were used to provide detailed 

discussions on the formation of intricate wave patterns, as depicted in Fig. 1. It should be 

noticed that complex wave patterns (i.e., pseudo-compound waves as well as composite 

waves) may occur in problems where moving shocks interact with a dusty medium.  

In this study, by extending our previous work [50], we develop a modal discontinuous 

Galerkin method which can handle a far broader spectrum of gas-phase regimes (from 

continuum to non-equilibrium) and solid-phase regimes (from dusty to granular gas flows) in 

a unified framework. The non-equilibrium effects in the gas phase are taken into account by 

using the second-order Boltzmann-Curtiss-based model based on Eu’s cumulant expansion 

and Myong’s closing-last balanced closure [52-54], which has shown high potential in the 

prediction of rarefied and microscale gas flows [46-49, 54, 55]. Moreover, the critical 

particle-particle interactions in granular gas flows are described based on the KTGF models 

as constitutive relations for the solid phase. 

2. Background 

There is growing interest in planetary explorations to the Moon, Mars, comets and 

asteroids, and various space missions are being planned by major space organizations, for 

example, NASA, ESA, JAXA, CNSA, and ISRO. Certain findings gained during the Apollo 

missions are relevant to those future expeditions. They revealed, for example, that during the 

lunar landing, due to the interaction of the descent engine rocket plume and the dusty surface 

of the Moon, the surface could be substantially eroded, leading to dispersion of dust particles 

into the flow field. The astronauts who walked on the Moon reported that electrically charged 



8 
 

dust particles were one of the most challenging issues during the landing phase of the Apollo 

lunar missions [56]. Thus, understanding the physical nature of the interaction of the plume 

and dusty surface is a crucial step in the design phase of lunar/martian missions.  

It is worth mentioning that creating an experimental setup in which a rocket engine is fired 

into a dusty bed–with many unknown characteristics–while maintaining the vacuum and low 

gravity conditions of the Moon is a daunting task, if not impossible. This fact makes 

theoretical studies and, in particular, computational fluid dynamics, an essential tool to study 

this kind of problem.  

The most widely applied method of simulating rarefied multiphase flows is the direct 

simulation Monte Carlo (DSMC) method or hybrid CFD-DSMC methods [57-59], which 

have been proven to provide fairly accurate results for highly non-equilibrium flows. Since 

the DSMC method can be applied in a Lagrangian formulation, the dust phase can be handled 

with minor modifications to the general algorithm. However, the multiscale nature of the 

problem in which various Knudsen and Mach regimes coexist makes the application of the 

DSMC method computationally very expensive, and in particular, when simulating the whole 

transient phase of the flow. 

Furthermore, the hybrid method may not be suitable for cases where particles are present 

in the continuum domain of a hybrid solver. For example, when simulating liquid 

hydrocarbon fuels, incomplete combustion due to insufficient mixing of oxidizer and fuel 

leads to carbon soot formation. The flow can be two-phase inside the nozzle, where the 

DSMC solvers are extremely inefficient due to characteristics of the flow (low Knudsen 

numbers). Another problematic condition for hybrid solvers is simulating flow very close to 

the Moon surface (before engine shut down) where the chances of finding eroded particles in 

the continuum region are high. In such cases, the hybrid methods must be modified so that 

the DSMC solver is active only in the continuum regime for the dust phase, which adds to the 

complexity of the implementation. 

Few previous works have numerically investigated the interaction of plume impingement 

and solid particles due to either erosion or other sources (for example, soot formation in solid 

propellants rockets) in a rarefied condition. Burt and Boyd [60] extended the DSMC 

approach proposed by Gallis et al. [61] to simulate the transport of spherical particles in a 

rarefied gas flow in such a way that the two-way coupling effect was taken into account. In a 

similar work but with a different approach, Gimelshein et al. [62] developed a two-way 
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combined continuum-DSMC algorithm and applied the method to a two-phase plume flow 

produced by a side jet of a small-size aluminized propellant interacting with the rarefied 

freestream air flow.  

Liu et al. [63] developed a numerical approach, adopting the DEM method to simulate a 

single dust particle ejection. The particles were then overlayed in the flow field obtained by 

the DSMC and gas kinetic Bhatnagar–Gross–Krook (BGK) method. However, because of the 

deterministic nature of the DEM method, this approach was found to be computationally very 

costly. He et al. [57] extended the DSMC method to incorporate molecule–molecule, 

molecule–particle, and particle–particle collisions and applied the method to the problem of 

lunar landing. Morris et al. [58, 64] developed a loosely coupled CFD/DSMC method in 

which the DPLR (NASA's continuum flow solver [65]) was used to calculate the nozzle core 

flow, while the DSMC method was applied to calculate the rarefied region and solid phase. 

Promising results were obtained, and the work was later extended to three-dimensional 

problems [59]. On the other hand, Rahimi et al. [66] recently computationally investigated 

the near-field interaction of the plume and surface in a low altitude hover on the order of a 

few meters using the first-order NSF constitutive relationships and the discrete phase model 

which handles the particulate phase in a Lagrangian framework. 

A rough but sensible classification of the regimes and definitions of the three important 

regions in nozzle proximity are provided in Fig. 2. The particulate loading and the Stokes 

number can be used to characterize the flow. In region 1, just beneath the nozzle, the onset of 

erosion occurs. Here the gas flow after passing through the strong stand-off shock wave 

would stagnate because of a collision with the surface. In this region, the static pressure 

reaches a maximum, while the gas velocity remains minimum. In region 2, the fictitious 

passage formed by the stand-off shock and the surface acts as a converging-diverging passage 

accelerating the gas to reach supersonic velocities. The maximum erosion occurs at the 

surface in this region. In region 3, both the dust particles and gas molecules expand further 

into the near-vacuum condition and undergo free-molecular movement with high velocities. 

Previous simulation studies have indicated that the granular flows in the limits of suspensions 

and early fluidized bed may appear depending on the erosion rate.  
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Fig. 2. Graphical categorization of different regions with various specifications in the 
problem of lunar landing.  

 

Table 2. Range of important parameters in different regions present in lunar landing. 

 Region 1 Region 2 Region 3 

ug Very low High High 

us 0 Low High 

ρg O (10-3) O (10-4) ≥ O (10-4) 

ρs Constant Constant Constant 

αs Very low High Intermediate 

αg ≈1 Low Intermediate 

β ≈0 Intermediate High 

St  ≪ 1  ൏ 1  ൎ 1
 

 

As can be seen in Table 2, various multiphase regimes coexist in the present flow problem, 

clearly indicating the need for a unified multiphase solver, which can cover a wide range of 

Knudsen and Mach regimes. For this purpose, a two-fluid model is employed to take the 

multiphase effects into account. The conservation laws are solved in conjunction with the 
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Boltzmann-based constitutive models for both phases. The proposed method can be used in 

other problems where dust particles (with a wide range of volume fractions) are present in a 

gas mixture in either continuum or non-equilibrium conditions. 

3. Mathematical modeling of rarefied and multiphase flows in the Eulerian framework 

In the lunar landing problem, a wide range of particulate loadings may exist. The Eulerian 

models can provide acceptable results in a wide range of applications—especially when the 

volume fraction of the two phases is comparable or when the interaction of the phases 

signifies the hydrodynamic feature of the flow. In Fig. 3, the flow regimes in the lunar 

landing problem are categorized based on the volume fraction of particles, number density, 

and particle diameter. The regime of interest can be determined based on the approximate 

values of the parameters for a lunar landing case like the Apollo lander, as marked in Fig. 3. 

 

Fig. 3. Regimes encountered in the lunar landing problem overlaid on the classification of 
the particulate flows based on number density and particles volume fraction. 

The regime of main interest falls in the category of the dilute suspension. With larger 

particle diameters, when the number densities or volume fractions are higher, the regime may 

belong to the category of dense suspensions, and thus further considerations need to be taken 

into account. In this work, to cover regimes encountered in the typical lunar landing problem, 

the two-fluid Eulerian model was employed as the most efficient approach, and applied for 

the test cases considered. In the lunar landing problem, predicting the shape and location of 
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the gas-solid interface is not essential, and thus dispersed Eulerian models can describe the 

main characteristics of the flow regimes. 

3.1. Two-fluid model equations for dusty gas flows 

In the majority of two-fluid Euler-Euler models for dusty gas flows, the gas phase is 

considered a compressible gas, which follows the perfect-gas law, while the solid phase 

respectively as incompressible [7, 67-69]. The inter-particle collisions are neglected (thus no 

pressure term in the conservation laws for the solid phase), and the particles are assumed to 

be uniformly sized spheres with a constant diameter, density, and temperature. The specific 

heat of the particle material is also assumed to be constant. Moreover, the particles are 

considered to be inert, and the thermal and Brownian motions of particles are neglected. 

Furthermore, the gravitational and buoyant forces, the turbulence effects, and the effect of 

particles’ wakes are considered to be negligible.  

On the other hand, in the Euler-granular models the solid pressure and viscous fluxes are 

retained for the solid phase to simulate granular flows. In these two-fluid models, the number 

density of the particles should be large enough to avoid violating the continuum assumption. 

Under the aforementioned conditions, the conservation laws (taking viscous effects and 

solid pressure into account) can be written as follows: for the gas phase, 

t g g∂ +∇⋅ =U F S, (1)
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2se = Θ , (7)

1g sα α+ = . (8)

Here the U, F, and S are the vectors of the conservative variables, fluxes, and source terms, 

respectively. The variables t, α, ρ, u, E, p, T, Π, and Q represent time, volume fraction, 

density, velocity vector, total energy, pressure, temperature, viscous stress tensor, and heat 

flux vector. In equation (5), γ  is the dissipation of pseudo-thermal energy (PTE) due to 

inelastic particle collisions. Further, D and Q represent the interphase drag and heat flux, 

respectively. In the Euler-granular model, a new equation for PTE es is solved to yield the 

granular temperature Θ. The dust density ρs is assumed to be constant; thus, solid-phase 

compressibility is controlled by the changes in the solid volume fraction. 

3.2. Second-order Boltzmann-Curtiss-based hydrodynamics model for modeling gas in 

thermal non-equilibrium using method of moments 

3.2.1. Conservation laws from the Boltzmann-Curtiss kinetic equation 

Because of the collisional invariant properties of mass, momentum, and energy, the exact 

conservation laws can be derived from the Boltzmann-Curtiss kinetic transport equation. The 

Boltzmann-Curtiss kinetic equation for diatomic (and linear polyatomic) molecules with a 

moment of inertia mI  and an angular momentum j can be expressed [70] as follows, 

( ) [ ]2, , , , , ,v
m

j F f t C f f
t I

ψ
ψ

 ∂ ∂+ ⋅∇ + + ⋅∇ = ∂ ∂ 
v v r j  (9)
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where , , , ,f jψv r  and C[f, f2] represent the distribution function, the particle velocity, the 

particle position, the azimuthal angle associated with the orientation of the particle, the 

magnitude of the angular momentum vector j, and the collision integral, respectively. F is the 

external force on unit mass, and 
v∇  denotes the gradient vector in the velocity space. The 

Boltzmann-Curtiss kinetic equation describes the changes in the probability distribution 

function along a molecular pathway due to intermolecular collisions and under the presence 

of external force F. 

The conservation laws of mass, momentum, and total energy for monatomic gases can be 

derived directly from the Boltzmann-Curtiss kinetic equation by noting that the molecular 

expressions for conserved variables are collision invariants. After differentiating the 

statistical definition of the conserved variables with time and combining them with the 

Boltzmann-Curtiss kinetic equation, the following conservation laws, all of which are an 

exact consequence of the Boltzmann-Curtiss kinetic equation, can be derived [52, 71, 72]: in 

the absence of external force, 

( ) ( )

0
0.pt E E p

ρ ρ
ρ ρ
ρ ρ

                            

∂ +∇⋅ + +∇⋅ + Δ =
∂

+ Π + Δ ⋅ +

u
u uu I I

u I u Q
Π  (10)

There are two different sets of macroscopic variables; the conserved variables ( ), , Euρ ρ ρ  

and the non-conserved variables ( ), ,Δ QΠ , where u is the bulk velocity vector, E is the total 

energy density, while , ,Δ QΠ  represent the shear stress tensor, the excess normal stress, and 

the heat flux, respectively. It should be noted that the set of equations (10) remain open 

unless non-conserved variables are determined. Because of the presence of the non-conserved 

variables , ,Δ QΠ  (whose molecular definitions do not yield a collisional invariant), the 

evolution equations of these variables should be derived. 

3.2.2. Boltzmann-Curtiss-based constitutive relationships for the gas phase 

The exact same approach used to derive the conservation laws can be applied to the 

derivation of the evolution equation of non-conserved variables. After differentiating the 

statistical definition of the corresponding non-conserved variables with time and combining 

them with the Boltzmann-Curtiss kinetic equation, the following first-order Boltzmann-

Curtiss-based constitutive model of the shear stress tensor, the excess normal stress, and heat 

flux vector can be derived:  
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(2)
2 ,

,
.

g g g

g b g

g g gT

μ

μ
κ

 = − ∇ 
= − ∇ ⋅

= − ∇

Π u
Δ u
Q

 (11)

The symbol [ ]( )2A  denotes the traceless symmetric part of the second-rank tensor A. It should 

be mentioned that these first-order linear relations were obtained after very crude first-order 

approximations; all kinematic terms except for the thermodynamic force term were neglected 

in the evolution equations and the collision-related dissipation terms were linearized. 

Moreover, a distinction should be made regarding Navier-Fourier (NF) and Navier-Stokes-

Fourier (NSF) relations. In the latter, the Stokes’ hypothesis, 0bμ = , was applied. 

Similarly, the second-order Boltzmann-Curtiss-based constitutive models can be derived 

by first differentiating the statistical definition of the non-conserved variables with time and 

then combining them with the Boltzmann-Curtiss kinetic equation. Once the two tenets—

Eu’s cumulant expansion based on the canonical distribution function in the exponential form 

to the explicit calculation of the dissipation term [73, 74], and Myong’s closing-last balanced 

closure [72]—are applied to the evolution equations and after introducing the so-called 

adiabatic approximation derived from the observation that the relaxation times of the non-

conserved variables are very short, being on the order of 10-10 second, the following second-

order constitutive model can be derived from the Boltzmann-Curtiss kinetic equation [52, 71, 

72]: 

( ) ( ) ( )

( ) ( )
( ) ( )

( ) 2

2

2 0

2 0

2 0 0

2
2

(5 3 ) ˆ

ˆ ˆ ˆ ˆ ˆ ˆ1

3ˆ ˆ ˆ ˆ ˆ ˆ:
2

ˆ ˆ ˆˆ ˆ ˆ1

ˆsinh( ) ˆ ˆˆ ˆ ˆ ˆwhere ,   : .ˆ
b

nd b

nd b b

nd b

nd f

q cR f

q cR f f

q cR f

cRq cR R
cR

γ−
Δ + ⋅

 = + Δ + ⋅∇ 

Δ = Δ + + Δ ∇

= + Δ + ⋅

= ≡

Π Π Π u

Π I u

Q Q Π Q

Π Π Q Q+

 (12)

The caret (ˆ) over a symbol represents a quantity with the dimension of the ratio of the stress 

to the pressure. The values of Π0, Δ0, and Q0 are determined by the Newtonian law of shear 

and bulk viscosity and the Fourier law of heat conduction, respectively. R̂  represents the 

Rayleigh-Onsager dissipation function [75], and the constant c has a value between 1.0138 

(Maxwellian) and 1.2232; for instance, 1.018 for the nitrogen gas molecule [52, 71, 72]. The 
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factor b bf μ μ=  is the ratio of the bulk viscosity to the shear viscosity. Its value may be 

experimentally determined using a sound wave absorption measurement; for instance, 0.8 for 

the nitrogen gas molecule. Even though the second-order constitutive model (12) involves 

highly nonlinear implicit algebraic equations, they can be easily solved numerically for the 

given thermodynamic driving forces, based on the concept of decomposition and the method 

of iteration [52, 71, 72]. More details regarding the second-order Boltzmann-based and 

Boltzmann-Curtiss-based constitutive relationships and the closing-last balanced closure can 

be found in [52-54, 72]. 

3.3. Constitutive relationships for the solid phase 

In generic KTGF models, to achieve explicit expressions for the non-conserved variables, 

the distribution function is expanded from the equilibrium distribution function via the 

Chapman-Enskog expansion to yield the following expansion 

,s s sp= +P I Π  (13)

,s s sTκ=− ∇Q  (14)

where 

( ) ( ) ( )2
3

T
s s s s s s sμ λ μ  = − ∇ + ∇ − − ∇⋅       

Π u u u I .
 (15)

The pressure ps and the coefficients in the above relations, viz., κs, μs, λs, can be 

determined if the collision integrals of the Boltzmann-type kinetic equation for the solid 

particles are known. A simple linear BGK model will not provide desirable results for the 

solid phase since it does not contain a description of particle-particle interactions. Thus, after 

introducing a joint probability function (2)
sf  in terms of solid distribution function fs  and pair 

distribution function g (which itself is dependent upon the distance 12 2 1r = −r r  and the solid 

fraction) [11], explicit expressions can be derived for pressure, shear viscosity, and thermal 

conductivity by computing the collision integral of the solid phase, 

s s s sp Tα ρ= ,
 (16)
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5
96

s
s s

Tdμ πρ
π

= , (17)

75
384

s
s s

Tdκ πρ
π

= . (18)

The above expressions are derived for sufficiently low particle density (where g=1) and 

can thus be applied to the limit of dilute flow. According to Chapman and Cowling [76], the 

shear viscosity and thermal conductivity of standard Enskog theory (SET) can be defined as  

1
2

1 4 4 121
5 25

SET
s s s s

s

c b b
b c

μ μ χ ρ ρ
χ ρ π

  
= + + +     

,
 (19)

1
2

1 4 4 121
5 25

SET
s s s s

s

c b b
b c

κ κ χ ρ ρ
χ ρ π

  
= + + +     

, (20)

where ( )
11

3
max( ) 1 /s s sgχ α α α

−
 = = −  

and 32 /3sb d mα π= . Taking c1=c2=1.0016, the 

relations (19) and (20) can be reduced to,  

1 4 0.7614
5

SET
s s s s

s

b b
b

μ μ χ ρ ρ
χ ρ

 
= + + 

 
,
 (21)

1 4 0.7614
5

SET
s s s s

s

b b
b

κ κ χ ρ ρ
χ ρ

 
= + + 

 
. (22)

The coefficient 0.7614 is slightly different from the coefficient 0.771 in most expressions in 

the literature including [17] with c1=c2=1. Moreover, the pressure of a dense system is given 

by [77] as follows, 

( )1SET SET
s sp p y= + ,

 (23)

where ySET is the excess compressibility of the elastic hard-sphere system given by 

4SET
s sy bχ ρ χα= = .

 (24)

The generic form of ySET can be written as a function of αs 
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( )
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n sSET n
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α

α α

+

==
−

 .
 (25)

A comparison of ySET values in the above relation used in references [78-80] with MD 

simulations [81, 82] was provided in reference [11]. 

4. A modal positivity/monotonicity preserving discontinuous Galerkin method 

To solve the system of equations of the conservation laws, the modal discontinuous 

Galerkin method was selected. The DG method combines key features of the finite element 

and finite volume methods. The DG method was first introduced by Reed and Hill [83] and 

was extensively developed in [31, 84, 85]. Recently, the DG method has become a prominent 

tool for solving the fluid dynamics equations in different fields, including compressible and 

incompressible flows, aeroacoustics, magneto-hydrodynamics, multiphase flows, and many 

more [38]. 

4.1 A modal discontinuous Galerkin method for rarefied dusty gas flows 

The mathematical model of interest in the present work can be written in a compact form; 

( ) ( )inv vis( ) ( , ) ( ) in ,Ω 0, ,Ω ,t t t ∂ + ∇ ⋅ + ∇ ⋅ ∇ = ∈ ∞ ⊂ U F U F U U S U    (26)

where Ω denotes a bounded domain, and U, Finv, Fvis, S represent conservative variables, 

inviscid flux, viscous flux, and source terms, respectively. The solution domain can be 

decomposed using a group of non-overlapping elements, Ω = Ω1⋃Ω2⋃...Ωne, in which ne is 

the number of elements. By multiplying a weighting function iϕ  into the conservative laws 

(26) and integrating over the control volume for each element, the following formulation can 

be derived: 

[ ]inv vis( ) ( ) ( ) ( , ) ( ) ( ) ( ) Ω 0
k

t dϕ ϕ ϕ ϕ
Ω

∂ + ∇ ⋅ + ∇ ⋅ ∇ − = U x F U x F U U x S U x . 
(27)

As can be seen in (26) and (27), when the solution of viscous flows is the main interest, 

the derivatives of the conserved variable appearing in the viscous flux terms should be 

computed. These terms cannot be accommodated directly in a weak variational formulation 

using a discontinuous space function. One possible approach for circumventing the 

complexity is the addition of a set of separate equations to represent the gradient of the 

conservative variables as an auxiliary set of unknowns, as proposed by Bassi and Rebay [30]. 
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In this work, the auxiliary variable A is chosen to be the derivatives of the conserved 

variables U, i.e., = ∇A U . This approach is known as the mixed DG formulation and results 

in the following coupled system: 

inv vis

0,
( ) ( , ) ( ).t

−∇ =
∂ + ∇⋅ + ∇⋅ =
A U

U F U F U A S U  (28)

Then the solution of the primary and auxiliary variables can be approximated as, 

( ) ( )
P

h i i
i

U t ϕ=U x  and ( ) ( )
P

h i i
i

A t ϕ=A x . (29)

where Ui(t) and Ai(t) denote the local degree of freedom for the primary and auxiliary 

variables, respectively. By multiplying a weighting function iϕ  into the conservative laws 

and integrating over the control volume for each element, the following formulation can be 

derived: 

[ ]( ) ( ) Ω 0
k

dϕ ϕ
Ω

− ∇ = A x U x , 
(30)

[ ]inv vis( ) ( ) ( ) ( , ) ( ) ( ) ( ) Ω 0
k

t dϕ ϕ ϕ ϕ
Ω

∂ + ∇ ⋅ + ∇ ⋅ − = U x F U x F U A x S U x . 
(31)

By splitting the integral over Ωh into a series of integrals over the sub-elements and applying 

the integration by part as well as divergence theorem to the equations (30) and (31), we have 

ˆ( ) dΩ ( ) ( ) dΩ 0,
k k k

i h k i h i h kndϕ ϕ σ ϕ
Ω ∂Ω Ω

− ⋅ + ∇ ⋅ =  x A x U x U  
(32)

inv inv

vis vis

ˆ( )dΩ ( ) ( ) ( ) ( )dΩ

ˆ( ) ( , ) ( ) ( , )dΩ ( ) ( )dΩ
k k k

k k k

t h i k i h i h k

i h h i h h k i h k

nd

nd

ϕ ϕ σ ϕ

ϕ σ ϕ ϕ
Ω ∂Ω Ω

∂Ω Ω Ω

∂ + ⋅ − ∇ ⋅

+ ⋅ − ∇ ⋅ =

  
  

U x x F U x F U

x F U A x F U A x S U




 

(33)

where n̂ is the outward normal vector of the element interface, and Uh, Ah are the p-exact 

polynomial approximated solutions of the U, A, respectively, on the discretized domain of Ωh. 

In this work, the Dubiner polynomials [86] were selected as basis functions, while a 

collapsed coordinate transformation was used to transform the triangles in the physical 

domain to the standard square elements, Ωe, in which the coordinates (a, b) are bound by 

constant limits:  

{( , ) 1 , 1}a b a b= − ≤ ≤e . (34)
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Another transformation was introduced to transform the triangle in the physical space into the 

computational space where the new local coordinates have independent bounds, as depicted 

in Fig. 4. 

 

Fig. 4. Schematic diagram of the linear mappings of the 2D triangular element. 

The process of estimating the surface and volume integrals is analogous to the inviscid 

system procedure detailed in [50]. However, for the auxiliary terms, more care should be paid 

to the details in the numerical implementation. 

4.2 Implementation of numerical fluxes in multiphase cases 

The choice of numerical flux can determine the stability and accuracy of the numerical 

method. In order to obtain a stable scheme, the numerical flux should be consistent as well as 

conservative. In our numerical code, the local Lax-Friedrichs (LLF) (or Rusanov [87]) and 

rotated-Harten-Lax-van Leer [88] fluxes, both of which are known to be simple and free from 

carbuncle phenomena, are implemented. Implementing the inviscid numerical flux is 

analogous to the well-established FVM procedure, and the details of the implementation can 

be omitted.  

It should be noted that the AUSM family [89, 90] schemes have been widely used in many 

previous numerical works to simulate the dust phase. However, we aim to use the same flux 

scheme for both phases to be consistent. This may raise numerical difficulties when the solid 

pressure term in the model equations is not included. In this case, even though the system has 

real eigenvalues, they are not distinct; thus, the system becomes degenerate. Few approaches 

have been proposed to deal with this numerical issue in the past. Nevertheless, in the next 
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sub-section, a simple, easy to implement and yet effective method to circumvent this issue 

will be proposed.  

The computation of the numerical viscous flux is not as straightforward in the DG 

framework as the inviscid flux. A rigorous mathematical derivation of the numerical flux 

functions for a pure elliptical Laplace equation can be found in [91, 92]. The unified analysis 

of the numerical schemes applied in this study, suggested by Arnold et al. [92] is summarized 

in Table 3. The operators { } and    for scalar variable s and vector quantity v are defined 

as follows, 

  ( )
{ } ( )
  ( )
{ } ( )

,

1 ,
2

,

1 .
2

s s n s n n s s

s s s

v v n v n n v v

v v v

+ + − − + −

+ −

+ + − − + −

+ −

= + = −

= +

= ⋅ + ⋅ = −

= +

  

       

  

 (35)

where the superscripts + and – indicate the left and right side of an element face. 

Table 3. Comparison of the numerical schemes for viscous fluxes. û and â represent the 
numerical approximations to primary viscous and auxilliary flux values. Adapted from [92]. 

Method û â 

Bassi and Rebay [30] (BR1) { }hu  { }ha  

Cockburn and Shu [93] 
(LDG) 

{ } [ ]h hu uβ− ⋅
 

   ( ){ }h h j ha a uαβ −+  
 

The functional operators of rα  and jα , the so-called penalty terms, are defined as 

( ) 1
j e ehα ϕ μϕ η ϕ−= = , 

( ) ( ){ }r e erα ϕ η ϕ= − , 
(36)

where ηe is a positive number, and he is an indicator of element size (e.g., the circumscribed 

circle radius of the element), and ( ) { }e
e

r dx dsϕ τ ϕ τ
Ω

⋅ = − ⋅  . 

In this study, the BR1 and local discontinuous Galerkin (LDG) methods were 

implemented, depending on the problem. In the BR1 scheme, central discretization was used 
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for both the auxiliary and viscous fluxes. This method, which is extensively used by the DG 

community, is shown to have a convergence order of only P (polynomial degree) for odd 

ansatz [93]. Moreover, the stencil is known to not be compact. These deficiencies motivated 

the application of the LDG method, in which one-sided fluxes in opposite directions are used 

for both the auxiliary and viscous fluxes. In our simulations, β was set equal to zero when the 

LDG method was used. Our numerical experiments revealed that, when the Euler-granular 

(first-order constitutive equations for the dust phase) model was used, the use of the BR1 

scheme made the numerical process unstable and led to instant divergence, while the LDG 

method quickly remedied the stability problem. 

4.3. Circumventing the non-strict hyperbolicity of the dusty gas model equation 

The non-strictly hyperbolic nature of the dusty gas model equation (related to the non-

existence of a pressure term) can impose serious difficulties on numerical methods including 

the DG method. The issue can be circumvented either by considering the dispersed phase 

incompressible and adding a pressure term for numerical purposes [5, 94], or by considering 

both phases compressible. The former approach can yield a hyperbolic system but is not 

physically justifiable. On the other hand, the latter method can lead to unrealistic results in 

many two-phase flow problems [95].  

In this study, a simple but very effective strategy is introduced to remedy this challenging 

issue. The idea was inspired by a strategy initially developed in computational 

magnetohydrodynamics (MHD) [96-98] which has since been applied in other fields, 

including aircraft icing in the atmosphere [99]. This is the first time this approach is being 

used for the two-fluid equation model of dusty gases.  

The basic idea is to add and subtract a pressure-related term to the momentum and energy 

equations of the dust phase. Even though this manipulation does not have any mathematical 

consequences, from a numerical point of view, the new system has an obvious advantage, 

recovering the strict hyperbolicity of the equation. The equation for the dust phase (in the 

Euler-Euler model) after the addition and subtraction of a pressure-related term can be 

written as follows, 

( )

s s s s s

t s s s s s s s s s

s s s s s s s s s

p p
E E p p

α ρ α ρ
α ρ α ρ
α ρ α ρ

   
   ∂ + ∇⋅ + − = −   
   + −   

u
u u u I I S

u
. (37)

Equivalently in split form, 
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0

( )

s s s s s

t s s s s s s s s s

s s s s s s s s s s

p p
E E p p

α ρ α ρ
α ρ α ρ
α ρ α ρ

     
     ∂ + ∇⋅ + = ∇⋅ −     
     +     

u
u u u I I S

u u
 (38)

In this equation, the inviscid flux is equivalent to that of the Euler equation of the gas phase. 

Thus, the conservation law can be considered strictly hyperbolic, and the additional term in 

the right-hand side can be handled in a way that is similar to how the source terms are treated.  

4.4. Positivity preserving scheme 

High order numerical schemes, including the DG scheme introduced in the previous 

section, often suffer from non-physical negative density or pressure. This leads to the ill-

posedness of the system and numerical breakdowns as a consequence. On the other hand, for 

conservation laws with source terms which account for chemical reactions, gravity, or the 

interaction of phases in the present case, there is an increased possibility of encountering 

negative density or pressure during numerical simulation. Therefore, the application of 

positivity preserving schemes is necessary to prevent the numerical breakdown.  

In the present work, a positivity preserving scheme developed for compressible Euler 

equations by Zhang and Shu [100] was employed to ensure the positivity of density and 

pressure, while maintaining higher-order accuracy. The general implementation of the 

scheme can be outlined as follows.  

Limiting the higher-order coefficients for density was achieved first by computing the 

minimum value of the density amongst all quadrature points, ρmin. The coefficients for the 

density expansion were then modified as 1i ia aρ ρθ=  with 1 0 0 minmin ( ) ( ) ,1a aρ ρθ ε ρ = − −  . 

In this expression, the i index accounts for all the bases, and the zero index represents the 

mean solution. Also, the value ε  was determined by 13
0min(10 , , )a pρε −=  where p  denotes 

the mean element pressure. 

For the modification of pressure, the following procedures were used. First, we set s as 

(1 )t β= − +s w q , (39)

where w  and q  are the cell average and conservative variables, respectively. 𝛽 can be 

calculated as follows  
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1 if ( )
the solution of ( ) , if ( )

p
p p

ε
β

ε ε
≥

=  = <

q
s q  (40)

Finally, the coefficients were modified by 2i ia aρ ρθ=  with 2 min( ,1)θ β=  . 

The application of this limiter was confirmed to provide stable schemes for unstructured 

triangular meshes with favorable results [32]. We report the first application of this type of 

limiter to the two-fluid model of dusty gas flows. Our numerical experiments for all the test 

cases show that the application of a positivity preserving limiter is essential to obtain 

converged solutions without compromising the accuracy of the solution. 

4.5. Monotonicity preserving scheme 

Numerical investigations using the present DG scheme further show that the mere 

application of the positivity preserving scheme is not enough to develop a stable scheme, 

especially in the presence of strong shock waves. The situation worsens when the multiphase 

system with source terms is solved.  The present study employs the limiter Zhang and Shu 

[101] developed for one-dimensional cases, and the limiter Barth and Jespersen [102] initially 

devised for the finite volume framework. It is important to note that the TVD/MUSCL type 

scheme can degrade the order of accuracy in the smooth regions of the solution unless a 

pragmatic shock detection scheme is introduced. 

According to Barth and Jespersen [102], the limiting procedure of slopes should be 

performed in a way that the solution at the integration points is confined to the range spanned 

by the neighboring solution averages. The limited solution can then be written as  

0 0 min
0

( , ) ( ) ( ) ( )
p

i i
i

U t a t aϕ λ ϕ
>

= + x x x , (41)

where min imin max( ,0)λ λ= , 

max
2

2

min
i 2

2

min(1, ), if 0

max(1, ), if 0

1, otherwise.

i

i

U U

U Uλ

− Δ > Δ
−= Δ < Δ





 (42)
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Here  *
2 ( )j i jU UΔ = −x  and Umax and Umin are the maximum and minimum solution averages 

of the elements sharing edges, respectively. 
5. Numerical experiments on the second-order Boltzmann-Curtiss continuum model of 
solid-gas multiphase flows 

The solution of model equations for a pure gas in thermal non-equilibrium (i.e., the 

second-order Boltzmann-Curtiss-based constitutive relation) using a discontinuous Galerkin 

method has previously been verified and validated for several benchmark problems [46, 47]. 

The DG solutions for two-fluid models based on 1) the zeroth-order constitutive relation for 

both gas and solid phases [50] and 2) the first-order constitutive relation for gas phase but the 

zeroth-order constitutive relation for dust phase [51] have been verified as well. 

In the following, the problem of interaction between a shock wave and a loose dust layer is 

investigated to verify the DG solution of the Euler-granular model (zeroth-order and second-

order constitutive relations for the gas and solid phases, respectively). The presence of a 

shock wave and its interaction with a dust layer resembles to a large extent the ultimate 

problem of the current work, i.e., modeling and simulation of the lunar landing problem. 

After the numerical studies, the under-expanded jet and finally the impingement of a jet on a 

dusty surface are solved. All the simulations were conducted using a second-order scheme 

(first-order polynomials, P1) in space and third-order in time. 

5.1. Interaction of a shock wave with a loose dust layer 

The problem of a shock wave interacting with a loose dust layer has practical importance 

in various industrial applications. However, in this work, the problem was selected with the 

goal of verifying the DG solution of the Euler-granular model. When a planar shock passes 

by a loosely packed dust layer, entrained particles form a dust cloud and the shock will be 

curved. A schematic of the problem of a shock wave interacting with a dust layer, and the 

geometrical setup and boundary conditions, are shown in Fig. 5.  

As with previous studies on this problem [20, 103], the length (L) and height (H) of the 

computational domain, the horizontal location of the shock front (xS), the left edge of the dust 

layer (xDL), and the height of the dust layer (HDL) were set to 6 cm, 50 cm, 1 cm, 2 cm, and 2 

cm, respectively. A particle diameter of 3 μm was selected. The particle properties 

correspond to coal dust with a particle density of 1,470 kg/m3 and a specific heat of 987 Jkg-

1K-1. The gas phase was initialized with a condition corresponding to a Mach 1.6 shock 
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propagating into the air with a pressure of 101,325 Pa and a temperature of 288 K. The dust 

layer is initialized with a volume fraction of 0.004. The cost-effective LLF flux function and 

LDG scheme for inviscid and viscous fluxes, and activation of positivity and monotonicity 

limiters were shown to be the critical factors in the numerical experiments. 

 

Fig. 5. Schematic of the problem of interaction of a shock wave with a dust layer. 

 

 
(a) Euler-Euler model 

 
(b) Euler-granular model 

Fig. 6. A comparison of zeroth-order and second-order constitutive relations in the contours 
of concentration of solid phase: (a) Euler-Euler model, (b) Euler-granular model. 

A comparison of the concentration of the solid phase computed by the zeroth-order (Euler-

Euler) and the second-order (Euler-granular) constitutive relations is illustrated in Fig. 6. 

Contour plots of the instantaneous concentration show that both models predict an almost 

identical patterns in the general topology of the dust layer after interaction with the shock 
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wave. However, due to the viscous effect, the Euler-granular solution is more diffusive. Also, 

it can be seen that the dust layer is swept less and rises higher, compared with the Euler-Euler 

solution.  

Fig. 7 depicts the effects of grid size and particle diameters. Three different grids with 

sizes of 1.2, 0.8, 0.4 mm were simulated to investigate how each grid resolved the rolling up 

of the dust pile caused by the gaseous drag. As can be seen in Fig. 7 (a), the finer the grid, the 

more the rolling up of the dust particles is resolved. These grid sizes were chosen to be close 

to the values that were used by Houim and Oran [20]. Unlike previous studies which tackled 

this problem using either structured or quadrilateral grids, the present method used 

unstructured triangular grids that can more easily deal with complex arbitrary geometries. 

The contours of the concentration of the solid phase are plotted for three different particle 

diameters of 1, 5, and 10 μm in Fig. 7 (b). The results show trends that are similar to the 

solutions of Fedorov and Kharlamova [103]. 

  

 

Δxmin = 1.2 mm d = 1 μm 

 

Δxmin = 0.8 mm d = 5 μm 

 

Δxmin = 0.4 mm d = 10 μm 

Fig. 7. Contours of concentration of solid phase in the interaction of a shock wave with a 
dust layer at t=0.009 ms: (a) Grid study (left), (b) effect of particle diameters (right). 
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5.2. Under-expansion of a jet in a dusty environment 

To further verify the DG method, we considered the problem of the under-expanded jet, 

which contains some features of the rocket plume expansion and regolith dispersal in the 

lunar landing problem. The problem of a supersonic jet expanding from a high-pressure 

chamber into a low-pressure chamber can be used to verify the first-order Boltzmann-Curtiss-

based constitutive relations. Fig. 8 (a) provides a schematic of the physical features of the 

under-expanded jet flow. The location of the Mach disk in the absence of particles was first 

calculated to validate the pure gas solver. This parameter has been experimentally studied by 

various researchers in the past [104-107]. Recently, Franquet et al. [108] presented an 

extensive review of experimental works on free under-expanded jets. 

(a) (b) (c) 

i ii iii 

iv v vi 
(d) 
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Fig. 8. Verification and validation of the DG solutions in underexpanded jet for pure and 
dusty gas cases: (a) Schematic of the problem, (b) validation of the Mach disk location for 
pure gas, (c) a comparison of numerical shadowgraphs with experimental Schlieren image for 
a pressure ratio of 29.8 in pure gas, (d) upstream movement of the Mach disk location due to 
the addition of dust particles: i) β= 0.0; ii) β= 0.11 ; iii) β= 0.24; iv) β= 0.35; v) β= 0.64; vi) β= 
1.07 (P0 = 0.31MPa, P0/P∞ = 29.8, d = 45µm) (P1 solution) 

The comparison of the Mach disk location with experimental results is shown in Fig. 8 (b). 

Generally, the results are shown to be in good agreement with the experimental data of 

Avduevskii et al. [107] for mid-range pressure ratios. For pressure ratios of 2 and 100, our 

predictions were closer to the experimental results of Lewis and Carlson [104]. A comparison 

of numerical shadowgraphs with experimental Schlieren images for a pressure ratio of 29.8 is 

also shown in Fig. 8 (c). Moreover, the effect of the presence of particles on the flow is 

shown in Fig. 8 (d). The upstream movement of the Mach disk is apparent in the numerical 

shadowgraphs which are in accordance with the experimental results from Sommerfeld [106]. 

Complementary discussions on this topic, including the role of the Stokes number on the 

counter-intuitive behavior of the Mach disk movement, can be found in our recent work [51]. 

5.3 Jet impingement on a dusty surface 

A schematic of the computational domain and boundary conditions is shown in Fig. 9 (a). 

The viscous wall boundary condition was applied to the nozzle wall and lunar surface. The 

symmetry condition was assigned on the central axis. The chamber condition was imposed on 

the inlet of the converging-diverging nozzle. On the other boundaries of the domain, the 

ambient condition of the lunar atmosphere was imposed. A sample computational grid is 

shown in Fig. 9 (b). It must be noted that the computational grid should be extended a 

reasonable distance from the exit jet to minimize the numerical boundary effects on the 

solution. In our simulations, the domain was extended 20L and 10L in the horizontal and 

vertical directions, respectively.  
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(a) (b) 

Fig. 9. Schematic of the computational domain: (a) Boundary conditions, (b) a sample 
computational grid at a hovering altitude of 5 m. 

A comparison of the Mach solution with the experimental Schlieren image obtained by 

Land and Clark [109] is shown in Fig. 10. The working gas is assumed to be nitrogen, and 

the exit Mach number was set to 5. The numerical results show good qualitative agreement 

with the experimental results in the degree of expansion of plume, shock standoff distance, 

and general geometrical shape of the plume. For the test cases where the jet impinges on the 

wall, a shock detection algorithm was activated along with the positivity and monotonicity 

limiters. The rest of the parameters, such as the flux functions and limiters, were set similar to 

previous cases.  
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Fig. 10. Comparison of the DG solution of jet impingement on the surface with the 
experimental result [109] (nitrogen gas, M=5.0, Re=10000, pressure ratio=3.79, h/D=6.7): 
Mean Schlieren image (left) and DG solution of local Mach number (right). 

Because of the technical difficulties involved in performing an actual experiment (vacuum 

condition, low gravity, etc.), very few experimental studies of this type of problem are 

available. Even in the available experiments, some assumptions were inevitably made to 

simplify the problem. Therefore, to further validate the DG method, the results were 

compared with previous DSMC solutions, specifically the works by Morris [110] in 2010. 

Fig. 11. Comparison of pressure contours (hover altitude 5 m): NCCR (left) and DSMC 
solution [110] (right). Throat average properties: M=1.0, p=144630 Pa, T=2458 K. Ambient 
properties: p=5 Pa, T=273 K. Water vapor with a constant specific heats of 1.3 is used for 
simulation. 

 In Fig. 11, the pressure solution of the second-order Boltzmann-Curtiss-based nonlinear 

coupled constitutive relation (NCCR) is compared with the DSMC solution. The DG 

solutions are in qualitatively good agreement with their DSMC counterparts. However, some 

deviations can be observed, in the prediction of the height of the normal shock wave and the 

location of the reflection wave. These deviations may be due to slightly different nozzle 

profiles or differences in some of the setup parameters related to the inherent gap between the 

DSMC and continuum theory. 
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Fig. 12. Comparison of the Rayleigh-Onsager dissipation function for NSF (left) and NCCR 
(right). Simulated gas and the boundary conditions correspond to that of Fig. 11. 

To demonstrate the degree of non-equilibrium, the Rayleigh-Onsager dissipation function 

[75] is shown in Fig. 12. A higher degree of thermal non-equilibrium is expected for higher 

hover altitudes, or when the far-field simulation is of main interest. It can be seen that the 

core plume region and lunar wall proximity are entirely near the thermal equilibrium state—

however, the degree of non-equilibrium is high in the stand-off shock region and the shear 

layer.  

One of the critical parameters that affect the structure of the under-expanded jet and 

impinging under-expanded jet is the ratio of the exit to the ambient pressure. Before 

simulating the multiphase flow, an analysis of the effect of ambient pressure was conducted, 

as shown in Fig. 13. As the ambient pressure decreased, the stand-off shock location drew 

closer to the surface. Also, the radius of the normal shock wave changed substantially. The 

degree of under-expansion of the jet was also strongly dependent on this parameter. As can 

be seen in the Mach contours, the lower the ambient pressure, the higher the degree of under-

expansion was. 
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Pamb = 50 Pa Pamb = 15 Pa 

 
Pamb = 5 Pa Pamb = 1 Pa 

Fig. 13. The effect of ambient pressure on pressure (left) and Mach (right) in the impinging 
jet. Throat average properties: M=1.0, p=144630 Pa, T=2458 K. Water vapor with a constant 
specific heats of 1.3 is used for simulation. 

When a simulated jet impingement on a dusty surface includes the nozzle, the flow-field 

will be more complicated, because of the presence of internal and reflected shocks. These 

complexities require higher grid resolution, so that the existing physical phenomena can be 

adequately captured. Moreover, as demonstrated in [110], the effect of the presence of the 

nozzle on the erosion properties compared to the uniform flow is negligible. A comparison of 

the number density solutions of NCCR with DPLR and hybrid DPLR-DSMC pressure 

solutions is shown in Fig. 14.  
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Fig. 14. Comparison of NCCR solution with DPLR and hybrid solutions taken 
directly from [64]. Exhaust conditions are M=5, T=556K. The simulated gas is 
ammonia.  

It can be seen that the NCCR solution is in agreement with both the DSMC solution and 

the DPLR based on the first-order constitutive relation. Near the surface, the accumulation of 

particles right under the nozzle is under-predicted by the first-order model. On the other hand, 

the NCCR model is found to over-predict the area of this range compared to DSMC, while 

the maximum value of the number density predicted by the NCCR model is in accordance 

with the DSMC method. Therefore, the present DG solver in conjugation with the second-

order NCCR model can improve the quality of the solutions compared with the first-order 

constitutive model. At the same time, the computational cost and the statistical noise 

observed in the DSMC solution can be reduced. 

The erosion model in Roberts [58, 64, 110] was shown to be capable of yielding promising 

results for the erosion rate. However, in the works by Morris [110], when calculating the 

shear stress exerted on the surface, the dynamic pressure of the gas was measured at a 
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location away from the surface (slightly more than the height of the boundary layer), which is 

not only physically arguable but also complicates the model implementation in an 

unstructured algorithm.  

In this study, we introduce a more straightforward method in which the excess shear stress 

is calculated based on the difference between the shear stress of the gas phase on the surface 

(rather than dynamic pressure) and the critical shear stress for the lunar regolith surface 

which can be estimated based on the value reported in the literature [111, 112]. In this new 

model, the coefficient of the soil erosion parameter can be adjusted as a scaling factor. This 

yielded predictions in agreement with experimental data, as well as with observations 

gathered from previous lunar missions (for example, Apollo missions). 

 It should be noted that the main interest of the present study was to develop a general 

computational strategy for handling a rarefied gas in the presence of solid particles, rather 

than accurate erosion modeling. Nonetheless, these simple erosion models exhibit satisfactory 

results when applied in the present framework. However, when more sophisticated erosion 

mechanisms are needed, further studies based on microscopic modeling (e.g., MD or DEM) 

will be required in order to provide the adjustable parameters which will be used in the 

erosion modules of continuum theory.  

Furthermore, it is worth noting that when such a sophisticated erosion model is used, the 

second-order constitutive relations may take on a more important role. This is because the 

shear stress of the gas on the surface and the mass flow rate of the eroded particles in the 

erosion model are significantly influenced by non-equilibrium effects.  

 

 
(a) Particle concentration: NSF (left) and NCCR (right) 

 

 
(b) Particles velocity vector overlaid on velocity magnitude: NSF (left) and NCCR 

(right) 
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(c) Shear stress: NSF (left) and NCCR (right) 

Fig. 15. Comparison of first-order and second-order constitutive relations in the erosion 
modeling: (a) Particle concentration, (b) solid phase velocity vector overlaid on vertical 

velocity, (c) shear stress. 

In Fig. 15, the contours of particle concentration, the solid phase velocity vector overlaid 

on vertical velocity, and shear stress are compared for the NSF and NCCR solutions. It shows 

how the different constitutive models affect the estimation of the mass of eroded particles that 

are ejected into the flowfield. The concentration and the velocity of the eroded particles on 

the surface predicted by the NCCR model are shown in general to be higher than those of the 

NSF prediction. This is because the NCCR model provides a better estimation of the 

constitutive parameters when the degree of non-equilibrium is high. 

6. Concluding remarks 

We have presented a novel computational strategy for solving dusty gas flow problems in 

non-equilibrium flow conditions within a full continuum framework. The method can be 

applied to a broad spectrum of gas and solid regimes as long as the fundamental assumptions 

of the two-fluid models are not violated. An important and yet very challenging problem is 

the plume-surface interaction and regolith erosion and dispersal during lunar landing, where 

an underexpanded jet impinges on a dusty bed, and consequent surface erosion leads to a 

dispersion of particles into an almost vacuum environment.  

Even though discrete modeling methods like the DSMC method have shown excellent 

performance when simulating high Knudsen and high Mach number gas flows, the 

computational cost of these methods is still high when dealing with near continuum flow 

regimes. Therefore, in complex flow problems where a variety of regimes co-exist (including 

the lunar landing problem), a unified flow solver is necessary. 

A modal discontinuous Galerkin method was developed based on the second-order 

Boltzmann-Curtiss-based constitutive relations, for solving the two-fluid system of equations 

for dusty gases in rarefied condition. The developed DG scheme not only meets the 

requirement of the positivity/monotonicity preserving property for accurately simulating 

dusty/granular gas flows, but it can also efficiently handle the numerically problematic source 
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terms, without resorting to the operator splitting method commonly used in the conventional 

finite volume method.  

Moreover, a simple and yet very effective approach to treat the non-strictly hyperbolic 

pressureless Euler equations was developed, enabling the straightforward application of the 

existing inviscid Euler flux functions. This eliminates the need to develop schemes that are 

specific only to the equations of the solid phase. Regarding the viscous flux, our numerical 

experiments revealed that, when the Euler-granular model is used, using the BR1 scheme 

makes the numerical process unstable and leads to instant divergence, while the LDG method 

can quickly remedy the stability problem.   

The problem of a shock wave interacting with a loose dust layer was studied to verify the 

new constitutive relations that were used for the solid phase. A comparison was made 

between the zeroth-order Euler-Euler model and the second-order Euler-granular model. An 

analysis was also conducted of the effect of particle diameter on the topology of the dust 

layer after interaction with the shock wave.  

To further validate the DG solutions, the problems of a free under-expanded jet and jet 

impingement on a dusty surface were studied. The simulation results were in good agreement 

with the experimental data in both cases. Lastly, for the case of jet impingement on a dusty 

surface in the rarefied lunar condition, the present second-order DG solution was shown to be 

in better agreement with the DSMC solution than the DPLR based on the first-order 

constitutive relation, specifically near the surface, where the accumulation of particles right 

under the nozzle was under-predicted by the first-order model. 

It should be noted that, near the lunar surface, even the first-order NF or NSF constitutive 

relations can provide acceptable solutions, since the degree of rarefaction in the core of the 

plume is not high. However, if a far-field simulation is of interest, the first-order models 

would considerably deviate from correct solutions. Therefore, second-order constitutive 

relations for the gas phase will remain essential in the study of far-field flow fields and the 

free-molecular trajectory of dust particles in the surrounding. Developing more accurate 

erosion models and second-order Boltzmann-based constitutive relations for the solid phase 

using the method of moments remain important topics for future study. 
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