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Abstract: The topological aspects of fluid flows have long been fascinating subjects in the study of the 

physics of fluids. In this study, the topology of the second-order Boltzmann-Curtiss constitutive model 

beyond the conventional Navier-Stokes-Fourier equations and Stokes’ hypothesis was investigated. In the 

case of velocity shear, the topology of the second-order constitutive model was shown to be governed by 

a simple algebraic form. The bulk viscosity ratio in diatomic and polyatomic gases was found to play an 

essential role in determining the type of topology: from an ellipse to a circle, to a parabola, and then 

finally to a hyperbola. The topology identified in the model has also been echoed in other branches of 

science, notably in the orbits of planets and comets and Dirac cones found in electronic band structures of 

two-dimensional materials. The ultimate origin of the existence of the topology was traced to the coupling 

of viscous stress and velocity gradient and its subtle interplay with the bulk viscosity ratio. In the case of 

compression and expansion, the topology of the second-order constitutive model was also found to be 

governed by a hyperbola. The trajectories of solutions of two representative flow problems—a force-

driven Poiseuille gas flow and the inner structure of shock waves—were then plotted on the topology of 

the constitutive model, demonstrating the indispensable role of the topology of the constitutive model in 

fluid dynamics. 
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I. INTRODUCTION 

Topology is concerned with the properties of objects (or systems) that are preserved under continuous 

deformations (or changes). It appears in almost every branch of physics and mathematics including 

algebra, analysis, geometry, mathematical modeling, discrete mathematics, industrial mathematics, and 

mathematical fluid dynamics. In particular, the study of the topological aspects of the dynamics of fluids 

and plasmas has been very instructive for describing fluid flows with complicated physics.
1
 The spatial 

topological representation of fluid flows begins with the study of curves, surfaces, and other objects in 

two- and three-dimensional space which divide the flow into separate regions. One of the central ideas in 

topology is that objects can be treated in their own right, and knowledge of objects is independent of how 

they are embedded in spatial or phase space. 

The topological ideas in fluid dynamics originated with the renowned works by Helmholtz
2
 and Lord 

Kelvin
3
 on vortex dynamics. Topological ideas were also investigated in Arnold’s work

4
 on the Euler 

equation for an ideal fluid on a group of volume-preserving diffeomorphism. Later, these topological 

ideas were applied to various aspects of the dynamics of fluids and plasmas such as vorticity structure,
5
 

interfacial flow,
6
 stability of magneto-hydrodynamic shock waves,

7
 spatiotemporal chaos,

8
 and water-oil 

swirling flow.
9
 

Topological representations in fluid dynamics can be categorized into several groups, including 

vortex and helicity, stability in dynamical system, phase-transition, and constitutive relations. For 

example, the topology of vortex and helicity provides a fundamental knowledge of the propensity of 

flows to form vortices or coherent structures in classical fluids.
10-15

 The topological study of the stability 

of dynamical systems can provide a basic understanding of time-periodic vortex ring flows.
16

 Phase-

transition, which refers to transitions in a system from one state to another, can also be studied from the 

viewpoint of topology. For example, the phase transition between a liquid and a crystal involves a 

transition in topological order from the continuous translation symmetry of the liquid to the discrete 

symmetry of the crystal.
17

 



3 
 

 Constitutive equations (or relations) in fluid dynamics describe the thermo-fluidic behavior of a fluid 

subjected to certain thermodynamic driving forces like spatial gradients of velocity and temperature. They 

are combined with the physical conservation laws of mass, momentum, and energy and initial and 

boundary conditions to solve specific physical problems. In most cases, constitutive equations—

indispensable in fluid dynamics—are derived with intention of describing the generic property of fluids. 

The most well-known constitutive equations in fluid dynamics are the two-century-old Navier-Stokes 

and Fourier (called NSF hereafter) relations.
18

 Their basic forms were derived in 1822 and they are 

considered the de facto mathematical models for every possible flow problem. Nonetheless, topological 

representations of first-order constitutive relations, like the NSF relations, were found to be trivial, since 

the NSF relations are linear and do not thus require topological development beyond the obvious linear 

topology. This fact explains why there was virtually no previous study on the application of topological 

ideas to the constitutive equations in fluid dynamics. 

However, there are caveats associated with the present status. A vital assumption, near the local-

thermal-equilibrium (LTE), was introduced in the derivation of the NSF relations, and as a result their 

validity may be seriously questioned in flows whose status is not near LTE. Indeed, there have been 

recent active studies on the physics of fluids in high thermal nonequilibrium. They involve various 

disciplines, from gaseous motion in rarefied, micro- and nano-scale,
19-22

 hypersonic conditions,
23-27

 to 

electron transport in semi-conductor devices,
28,29

 and non-Newtonian viscoelastic fluids,
30-32

 such as 

polymer solutions, lubricant fluids, and complex fluids. Moreover, other problems like the odd viscosity 

in chiral active fluids composed of self-spinning objects
33,34

 and relativistic high-energy 

hydrodynamics
35,36

 are known to require higher-order theories beyond the conventional NSF relations. 

Another vital assumption behind the NSF relations is the so-called Stokes’ hypothesis, introduced by 

Stokes
37

 in 1845, that bulk viscosity 
b  vanishes ( and    being the second coefficient of viscosity and 

the shear viscosity of the fluid, respectively), 

             
2 2

0, equivalently .
3 3

b          
       (1) 



4 
 

While the Stokes’ hypothesis is certainly legitimate in the case of monatomic gases like argon, there is 

ever increasing evidence that now indicates this is not the case for diatomic and polyatomic gases
38-49

—

like nitrogen (or air), methane, and carbon dioxide.  

Examples of such cases include the inner structure of strong shock waves in diatomic gases, and 

hypersonic entry into the Mars atmosphere, which consists mostly of carbon dioxide. In fact, a recent 

experimental study on the second-mode instability in the laminar-to-turbulence transition in hypersonic 

boundary layers
43

 showed that, for a real diatomic gas, the growth and decay of the second mode is 

accompanied by a dilatation process, which leads to a 50% increase in dilatation dissipation, in contrast to 

the Stokes hypothesis. Moreover, direct numerical simulation (DNS) studies of turbulence by Pan and 

Johnsen
45

 have shown that bulk viscosity significantly increases the decay rate of turbulent kinetic energy, 

and dilatation is reduced by over two orders of magnitude within the first two eddy-turnover times. 

Further, Singh et al.
46

 found a significant increase in enstrophy with increasing bulk viscosity, which is 

directly related to the rotational mode of gas molecules. 

These recent developments point to an interesting question: what happens to the topology of 

constitutive equations if two vital assumptions in the NSF relations—the near LTE and Stokes’ 

hypothesis—are removed?  

A first hint to this question may be found in an analytical study by Myong
50

 on the role of the first- 

and second-order constitutive relations in a force-driven compressible Poiseuille gas flow. It was shown 

that a convex topological profile with a central maximum in pressure is predicted for diatomic gases, in 

stark contrast to the concave topological profile with a central minimum in pressure for a monatomic gas. 

The pressure profile becomes less concave as the bulk viscosity increases and, across a critical point, it 

turns into a convex shape, clearly indicating the possibility of using topological ideas to unravel the 

ultimate origin of such non-intuitive behavior. 

The study of the topology of constitutive equations beyond the first-order level requires proper master 

kinetic equations for diatomic and polyatomic gases. In recent decades, several such kinetic models have 

been developed, notably the Boltzmann model equations (BGK),
51,52

  Wang-Chang-Uhlenbeck (WCU) 
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model,
53

 Fokker–Planck based kinetic model,
54

 and Rykov model.
55,56

 However, a common drawback was 

identified in these kinetic models for diatomic and polyatomic gases, in that they do not reduce to the 

Boltzmann kinetic equation for monatomic gas when translational–internal (rotational) energy exchange 

is absent. For this reason, an alternative approach to smoothly extend the original Boltzmann kinetic 

equation to diatomic and (linear) polyatomic gases, the so-called Boltzmann-Curtiss kinetic equation,
 57,58

 

will be considered in the present study on the topological representation of the constitutive relations of 

gas flows. 

The Boltzmann-Curtiss kinetic equation additionally introduces the angular momentum and azimuth 

angle associated with the rotational mode of molecules to the kinetic formulation. As a result, an 

additional term, the change in the distribution function in the azimuth angle, appears in the kinematic 

description of the movement of molecules. At the same time, the Boltzmann treatment of collision 

integral based on the concept of gain and loss remains the same, except for the appearance of the 

magnitude of the angular momentum and azimuth angle in the integration in phase space. Therefore, like 

the original Boltzmann kinetic equation for monatomic gas, the high-order constitutive equations for 

diatomic and polyatomic gases can be systematically derived from the Boltzmann-Curtiss kinetic equation 

on the basis of Eu’s modified moment method
59,60

 and Myong’s closing-last balanced closure.
61

  

Among possible high-order constitutive equations, the second-order constitutive relations for 

diatomic gases were studied numerically in the context of multi-dimensional computational models.
21

 An 

important result obtained from this study was that the second-order constitutive relations between stresses 

(and heat flux) and the velocity gradient (and the temperature gradient) are highly nonlinear and strongly 

coupled in states far from LTE. The second-order constitutive relations for monatomic gas have been also 

validated for the force-driven Poiseuille gas flow by the deterministic atomic-level microscopic molecular 

dynamics (MD) simulation of Rana et al. in 2016.
62

 

Encouraged by these developments, in this study, we aim to comprehensively investigate the topology 

of second-order constitutive equations beyond the first-order NSF equations built on the near LTE 

assumption and Stokes’ hypothesis. Emphasis is placed on the effects of thermal non-equilibrium and the 
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bulk viscosity associated with the viscous excess normal stress on diatomic and polyatomic gases and 

their interplay in topological space. Further, we attempt to investigate the trajectory of the shock structure 

solution on the topology of second-order constitutive equations for diatomic and polyatomic gases. To the 

best knowledge of the authors, no study has been reported in the past to explain the topology of the high-

order constitutive equations for diatomic and polyatomic gases in the field of fluid dynamics. 

Toward these goals, we first consider in depth the Boltzmann-Curtiss kinetic equation for diatomic and 

polyatomic gases and derive the second-order constitutive equations. The topological representations of 

the first-order and second-order constitutive equations for diatomic and polyatomic gases are then 

systematically studied to highlight the differences with monatomic gas. A comparative study of the cross-

section features of topology is also presented to characterize the velocity shear and compression-

expansion flows. Further, the role of the second-order constitutive equations in the shock structure 

problem is studied by combining shock structure solutions with the topological representation of the 

constitutive equations. Finally, the effects of Mach number and bulk viscosity on the topology of the 

shock structure solution are investigated. 

II. SECOND-ORDER CONSTUTIVE MODEL FOR DIATOMIC AND 

POLYATOMIC GASES 

A. Boltzmann-Curtiss kinetic equation and the exact conservation laws for 

diatomic and polyatomic gases 

The Boltzmann-Curtiss kinetic equation for diatomic (and linear polyatomic) molecules with a 

moment of inertia 
mI   and an angular momentum j can be expressed

57
 as follows, when there is no 

external field, 

                , , , , ,
m

j
f t R f

t I




  
    

  
v v r j  

       (2) 

where , , , ,f jv r  and  R f  represent the distribution function, the particle velocity, the particle position, 

the azimuthal angle associated with the orientation of the particle, the magnitude of the angular 



7 
 

momentum vector j, and the collision integral, respectively.  When the angular momentum of the 

molecule related to the rotational mode is ignored, the Boltzmann-Curtiss kinetic equation recovers the 

original Boltzmann kinetic equation for a monatomic gas 

             , , ,f t C f
t

 
   

 
v v r        

where  C f  represents the Boltzmann collision integral of the interaction between two particles. 

There are two different sets of macroscopic variables; the conserved variables  , , Eu    and the 

non-conserved variables  , , , Q  where u is the velocity vector, E is the total energy density, while 

, , Q represent the shear stress tensor, the excess normal stress, and the heat flux, respectively. These 

variables can be defined by a statistical formula  

                
,

k k
h f          (3) 

where the angular bracket denotes the integration over the variables v and .j  The  k
h  indicates the 

molecular expressions for moments. The leading elements of the set of the conserved and non-conserved 

variables are defined as
60

,  

               

     

   
     

1 2 3

24 5 6

, , ,  

1
, Trace , ,

3

E

p

     

  

  

      

u

P P Q
 

           (4) 

with the molecular expressions corresponding to this set  

             

     

   
     

1 2 3 2

24 5 62 2

1
, , ,  

2

1 1 ˆ, / , ,
3 2

rot

rot

h m h m h mC H

h m h mC p n h mC H mh

   

     

v

CC

 

        (5) 

where m is the molecular mass, C = v – u is the peculiar velocity of the molecule, n is the number density 

per unit mass, ĥ  is the enthalpy density per unit mass, and 2 2rot mH j I is the rotational Hamiltonian of 

the particle. The viscous stresses   and   are related to the stress tensor P through the relation 
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              p   P I   
       (6) 

Here, I is the unit second rank tensor,
Bp nk T RT   is the equation of state. The symbol  

 2
A  

denotes the traceless symmetric part of the second-rank tensor A, 

              
   
2 1 1

Trace .
2 3

t  A A A I A  
       (7) 

The conservation laws of mass, momentum, and total energy for diatomic and polyatomic gases can be 

derived directly from the Boltzmann-Curtiss kinetic equation by noting that the molecular expressions for 

conserved variables (5) are collision invariants and thus there is no dissipation term, i.e. 

   1,2,3
0h R f  . After differentiating the statistical definition of the conserved variables with time and 

combining them with the Boltzmann-Curtiss equation, the following conservation laws, all of which are 

an exact consequence of the Boltzmann-Curtiss kinetic equation, can be derived,
21,60

  

   

0

0.p
t

E E p

 

 

 

    
     

            
               

u

u uu I I

u I u Q

 

       (8) 

After the following dimensionless variables and parameters are introduced, 

 

     2

, , , , , , ,

, , , , , ,

r

r r r r r r

p

p

r pr r r r rb r

t k p
t k p

L u L k u p

CT E
T C E

T C u u L k T Lu L

 
 

 

 

      

    

      


      



Q
Q

x u
x u




 

(9)      

where the subscript r stands for the reference state, L denotes the characteristic length, pc  denotes the 

heat capacity per mass at constant pressure, , ,  b k   are the Chapman-Enskog shear viscosity, the bulk 

viscosity, and the thermal conductivity, respectively, the non-dimensional conservation laws for diatomic 

and polyatomic gases (with the asterisks omitted for notational brevity) can be written as,
21
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 

2

2

0
1 1

0.
Re

1
1

Pr

b

b

p f
t M

E
f

EcE p
M




 







 
   
    
     

                        
    
   

u

u uu I I

I u + Q
u





 

(10)      

Here, the dimensionless parameters such as Mach number (M), Reynolds number (Re), Eckert number 

(Ec) and Prandtl number (Pr) can be defined as 

  2,  Re ,  1 ,  Pr .rp rr r r

r rr

cu u L
M Ec M

kRT





      

(11)      

The specific heat ratio   is assumed to be 5/3 for argon gas, 7/5 for nitrogen gas, 1.289 for methane gas, 

and 1.29 for carbon dioxide. The value of the Prandtl number (Pr) may be calculated through Eucken’s 

relation 

4
Pr

9 5
.







 

(12)      

B. Zeroth-order Boltzmann-Curtiss-based (Euler) constitutive model  

The zeroth-order Boltzmann-Curtiss-based (Euler) constitutive model is a direct consequence of 

assuming local thermal equilibrium, that is, the Maxwellian distribution function.
59

 Therefore, the zeroth-

order Boltzmann-Curtiss-based constitutive model of the shear stress, the excess normal stress, and the 

heat flux is reduced to the following simple relations 

0, 0, 0.   Q  (13)      

C. First-order Boltzmann-Curtiss-based (Navier-Fourier) constitutive model  

After differentiating the statistical definition of the non-conserved variables    4,5,6 4,5,6
h f   with 

time and combining them with the Boltzmann-Curtiss equation, the following first-order Boltzmann-

Curtiss-based constitutive model of the shear stress, the excess normal stress, and the heat flux can be 

obtained; 



10 
 

 
(2)

2 , , .b k T          u u Q  
(14)      

During this process, first-order closure was applied. Furthermore, once the Stokes’ hypothesis (1) is 

applied, that is, 0b  , the conservation laws in conjunction with the first-order NF constitutive equations 

(14) are reduced to the following well-known NSF equations, 

 
 

 

(2)

(2)

0

2 0.

2

p
t

E E p k T

 

  

  

   
    

                      

u

u uu I u

u u u +

 

       (15) 

It should be noted that these first-order linear relations were obtained after very crude first-order 

approximations; all kinematic terms except for the thermodynamic force term were neglected in the 

moment equations and the collision-related dissipation terms  (4,5,6)h R f  were linearized.  

In these expressions, the following Chapman-Enskog linear transport coefficients can be employed 

, , ,s s

b bT f k T      (16)      

where s stands for the index of the inverse power laws of gas molecules, given as 

 

1 2
.

2 1
s


 


 

      

Here the parameter  is the exponent of the inverse power laws for the gas particle interaction potentials. 

The value of s was assumed to be 0.81 for argon gas, 0.78 for nitrogen, 0.84 for methane gas, and 0.93 for 

carbon dioxide gas.
63

 The factor b bf    is the ratio of the bulk viscosity to the shear viscosity. Its 

value may be experimentally determined using a sound wave absorption measurement. The bf  values for 

argon, nitrogen, methane and carbon dioxide gases were considered to be 0.0, 0.8, 1.33 and 1000, 

respectively, based on experiments.
64
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D. Second-order Boltzmann-Curtiss-based constitutive model: closing-last 

balanced closure and cumulant expansion 

Similarly, the high-order constitutive model can be derived by first differentiating the statistical 

definition of the non-conserved variables  4,5,6
  with time and then combining them with the Boltzmann-

Curtiss kinetic equation; 

   
 

  
 

 

     

     

2 2 (4)

(5)

(P) (6)

2 2

2
2 :

3

:

,

,

.
p

D
p

Dt

D
p

Dt

D
p C T

Dt

h R f

h R f

D
h R f

Dt




  







       


          

             

 
 

 

 
 
 

 
 
 

Q

u u

I u u

Q
u Q u + I I

u


 

 

   

         (17) 

Here  5 3 2     and  , ,P Q
  represent the open high-order terms of the shear stress, the excess 

normal stress, and the heat flow, respectively. 

However, it turns out that the derivation of the second-order constitutive model is extremely difficult, 

mainly due to two fundamental issues; the so-called closure problem and accurate treatment of the 

complicated dissipation terms  (4,5,6)h R f , both of which have remained unsolved for several decades. 

In order to accurately calculate the dissipation terms while making the underlying theory compatible with 

the second law of thermodynamics, Eu in 1980 proposed a canonical distribution function in the 

exponential form, instead of the usual polynomial form, after recognizing the logarithmic form of the 

non-equilibrium entropy production.
60

  

On the other hand, Myong in 2014 developed a new closure theory, known as “closing-last balanced 

closure,” from a keen observation of the fact that, when closing open terms in the moment equations 

derived from the kinetic equation, the number of places to be closed was two (movement and interaction), 

rather than one (movement only), having been misled by the Maxwellian molecule assumption in the 

previous theory.
61

 For example, there are two terms requiring closure in the constitutive equation of 
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viscous stress (17): 
 




 and  (4)
h R f . Therefore, the order of approximations in handling the two 

terms—kinematic (movement) and dissipation (interaction) terms—must be the same to satisfy balancing, 

for instance, the second-order for both terms, thus achieving a balance between the kinematic and 

collision term approximation, namely, the second-order closure for the kinematic terms, 

      (P)
: = 0,


     

Q
u


     

while maintaining the same second-order closure for  (4,5,6)h R f . In this balanced closure framework, 

third-order closure for  (4,5,6)h R f  is not necessary; in fact, such higher closure can make the problem 

worse, in particular, in the case of the high Mach number shock structure problem. 

Once these two tenets—Eu’s cumulant expansion based on the canonical distribution function in the 

exponential form to the explicit calculation of the dissipation term, and the aforementioned closing-last 

balanced closure—are applied to the moment equations (17) and after introducing the so-called adiabatic 

approximation derived from the observation that the relaxation times of the non-conserved variables are 

very short, being of the order of 10
-10

 second,
19

 the following second-order constitutive model can be 

derived from the Boltzmann-Curtiss kinetic equation
21

 

 

 

 

(2)

 0 2

0 2

0 0 2

ˆ ˆˆ ˆ ˆˆ 1 ( ),

3 ˆ ˆ ˆ ˆˆ ˆ: ( ),
2

ˆ ˆ ˆˆ ˆˆ 1 ( ).

b nd

b b nd

b nd

f q cR

f f q cR

f q cR

     
 

    

    

u

I u + =

Q Q Q

  





                                            (18) 

All terms in equations (18) were normalized by introducing proper variables and parameters,  

2

ˆˆˆ ˆ, , , 2 ,
/ (2 )

/ 2 1 1
Kn ,  .

Re Pr /

r r
δ

r r

N N N N

p p p pT

u L M
N M

p Ec T T

   


  




        

   


Q
Q u u 

                              (19) 

The caret (^) over a symbol represents a quantity whose dimension is the ratio of viscous stress to 

pressure. Note that the relationships in the second-order Boltzmann-Curtiss-based constitutive model (18) 
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are highly nonlinear and coupled for the given velocity and temperature gradients. The values of 0 0
, ,

and 0Q  are determined by the linear Newtonian law of shear and bulk viscosity, and by the linear 

Fourier law of heat conduction, respectively, given in (14). 

On the other hand, by combining with the Rayleigh-Onsager dissipation function
65

R̂ , the second-

order nonlinear coupling factor 2nd
ˆ( )q cR  in (18) can be expressed as follows, 

2

2nd

2 2 ˆ ˆˆ
ˆsinh( )ˆ ˆ ˆ ˆ( ) ,   :

ˆ
b

f

cR
q cR R

cR

 
    Q Q  . 

(20)      

The constant c, which is given by    
1/2

2 2
5 12 4 ,c A

       has a value between 1.0138 

(Maxwellian) and 1.2232 ( 3 ); for instance, 1.018 for the nitrogen gas molecule.
21

 The tabulated values 

of  2A   are available in the literature.
63

  

Note also that, once 2nd
ˆ( )q cR  is replaced by the first-order closure, that is, 1 1stq  , and all coupled 

terms in the left hand side of (18) are neglected, the corresponding constitutive models exactly recover the 

NF models (14). The physical properties of monatomic, diatomic and polyatomic gases are given in Table 

I.  

TABLE I. Physical properties of monatomic, diatomic and polyatomic gases. 

Gases Specific 

heat ratio    

(  )  

Bulk 

viscosity 

ratio ( bf )  

Prandtl 

number (Pr) 

Viscosity 

index (s) 

Gas constant 

(R) 

Viscosity 

coefficient  

( ref )  

Maxwellian 1.667 0.0 0.75 1.0 - - 

Argon 1.667 0.0 0.667 0.81 208.24 2.117×10
-5

 

Nitrogen 1.4 0.8 0.7368 0.74 296.91 1.656×10
-5

 

Methane 1.3125 1.33 0.7706 0.84 518.0 1.024×10
-5

 

Carbon 

dioxide 

1.2985 1000 0.777 0.93 188.87 1.38×10
-5

 

 



14 
 

III. TOPOLOGICAL REPRESENTATION OF THE SECOND-ORDER 

BOLTZMANN-CURTISS-BASED CONSTITUTIVE MODEL 

A. Topology of the second-order Boltzmann-Curtiss-based constitutive model 

in velocity shear: A conic section 

In order to investigate the topology of the Boltzmann-Curtiss-based constitutive model, we consider 

monatomic, diatomic, and (linear) polyatomic gases. In general, the second-order constitutive model (18) 

consists of nine equations of ( , , ,
xx xy xz

   , , ,
yy yz zz

   , ,
x y z

Q Q Q ) for 14 known parameters 

( , , , , ,p T u v w T    ). Because of the nine-dimensional topology in phase space and its highly nonlinear 

and coupled nature, investigating its topology in any meaningful way seems very difficult. Nevertheless, 

the topology can be rather efficiently investigated based on the concept of decomposition, which was first 

introduced by Myong.
20

 

In general, the viscous stress and heat flux components on a line (or interface) in the physical plane 

induced by the thermodynamic forces of velocity and temperature gradients can be decomposed (or split) 

into two elementary subsets; one on the velocity shear flow, and another on the gaseous compression and 

expansion flow. In the subset of velocity shear flow, the stresses  , ,xx xy    induced by the 

thermodynamic force xv v x   can be determined from (18)-(20) as follows, 

 

   

 

0

0

0

2

2

2

2ˆˆ ˆ ˆ ,
3

ˆ ˆˆ ˆ ˆ1 ,

ˆ ˆ ˆ ˆ3 .

xx nd xy xy

xy nd b xx xy

nd b xy xy

q cR

q cR f

q cR f

    

     

   

 

(21)      

After some manipulation, the following equations on variables ˆ
xx and ̂ can be derived, 

 
0

2 2 2

2

2 9ˆˆ ˆ ˆ1 1 ,
3 2

9ˆ ˆ .
2

xx nd b xx xy

b xx

q cR f

f

  
        

  

   

 

(22)      
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Furthermore, when the first two components of equations in (21) are divided by each other, the nonlinear 

coupling factor  2
ˆ

ndq cR  and the driving force 
0

ˆ
xy  are cancelled out, leaving only a common kinematic 

viscous stress constraint: 

 
0

1/2

2 2 2 22 9 3 9ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 0,  or  1 1 .
3 2 2 2

xy b xx xx xy xy b xx xxf sign f
     

                  
     

          (23) 

Combining all these relations, the dissipation function (20) reduces to 

              
2 9ˆ ˆ ˆ3 1 ( 3 ) 1 .

2
xx b b xxR f f 
  

       
  

 
(24)      

Surprisingly, when the kinematic viscous stress constraint (23) is expressed in an instructive form 

using the following simple notation, 

ˆ ˆ,   ,
xyxx

xx xyx y
p p


     

the topology of the second-order Boltzmann-Curtiss-based constitutive model is governed by a conic 

section expressed as a second-degree polynomial equation in the phase space (x, y), 

 
2 2

2 2 2

2

2 2

1 22 9
0,  or =1, where 1 ,

3 1 4 3 8 2

2
or  0,  where  ,  0,  ,  1, 0,  0.

3

b

x k y
kx x y k f

k k

Ax Bxy Cy Dx Ey F A k B C D E F


     

           

    (25) 

A conic section is a curve obtained at the intersection of the surface of a cone with a plane and is 

classified into three types: the ellipse, the parabola, and the hyperbola.
66

 The type of conic section is 

determined by the value of the eccentricity e. We obtain an ellipse for 0<e<1 (a circle for e=0), a parabola 

for e=1, and a hyperbola for e>1.  

     The conic section (25) can be also expressed in the matrix of the quadratic form, 
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   

33 33

2
0,

2

2 0 2
,   det ,

2 0 2 3 3

A B x x
x y D E F

B C y y

A B k
A A k

B C

     
       

     

   
     
   

                                           (26) 

or in the matrix of the quadratic equation, 

 

2 2

1 2 2 0,

2 2 1

2 2 0 1 2
1

2 2 0 2 3 0 ,   det ,   rank of 3.
6

2 2 1 2 0 0

Q Q Q

A B D x

x y B C E y

D E F

A B D k

A B C E A A

D E F

   
   


   
      

   
   

    
   
      

                    (27) 

Since the determinant of QA  is not zero for any value of bf , the matrix representation of the present 

conic section is not degenerate and the types of conic section can be easily determined by computing the 

determinant of 33A  or the eccentricity.  

The conic section is an ellipse for a positive determinant of 33A  or 0 2 3 0.471bf  , a 

parabola for a zero determinant of 33A  or 2 3bf  , and a hyperbola for a negative determinant of 

33A  or 2 3bf  . (When A C  and 0B  , or 6 9 0.272bf  , it is a circle.) 

Moreover, in the case of the present non-degenerate ellipse (with a positive determinant of 33A  and a 

non-zero determinant of QA ), we always have a real ellipse, since the following relation always holds: 

23 5
( ) det 0.

4 18
Q bA C A f     

Therefore, the topology of the second-order Boltzmann-Curtiss-based constitutive model is always 

smooth, having the derivatives of all orders everywhere in its conic section. 
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When the non-zero determinant of 33A  or 2 3bf  , a geometric center of the conic section exists, 

and such conic sections (ellipses and hyperbolas) are called central conic sections. The center of a conic 

section is a point that bisects all the chords of the conic section that pass through it. In the present case, a 

central (non-parabola) conic section can be written in centered matrix form as 

 
33

1

det  2 1
,

2 det  4

2 2 1 2
where .

2 2 0

Qc

c c

c

c

c

Ax xA B
x x y y

y yB C A k

x A B D k

y B C E



  
     

   

        
        

      

                                  (28)                                                

Finally, the eccentricity of the present conic section can be written as 

 

 

2
1/2

2 2 2

2 2

2

2 27
,  when 0 6 9,

2 6 27

27 1
,  when 6 9.

4 2

b
b

b

b b

f
f

A C B f
e

A C A C B
f f

 
       

        


                            (29) 

 

FIG. 1. Topology of the second-order Boltzmann-Curtiss-based constitutive models in the velocity shear 

flow problem in a phase space ( , ,xx xy bp p f  ). With increasing bf , the conic section varies from an 

ellipse for 0 0.4714bf  (including a circle for 0.2721bf  ) to a parabola for 0.4714bf  , and then 

to a hyperbola for 0.4714bf  . The topology of the conic section identified in the present second-order 
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constitutive models has been echoed in the orbits of planets and comets in the Solar System governed by 

Kepler’s laws. 

A topological representation of the second-order Boltzmann-Curtiss-based constitutive models (23), 

(25)-(28) in the velocity shear flow problem is given in a phase space ( , , bx y f ) in Fig. 1. First of all, the 

bulk viscosity ratio bf  plays an essential role in determining the types of topology of the conic section. 

With increasing bf , the conic section varies from an ellipse for 0 2 3bf  (including a circle for 

6 9bf  ) to a parabola for 2 3bf  , and then to a hyperbola for 2 3bf  . On the other hand, the 

first-order Navier-Stokes-based constitutive models (14) are reduced to a simple plane, defined by 

0xx   for all ,  xy bf  (or 0x   for all ,  by f ), which makes a topological representation of the first-

order constitutive models completely trivial. Figure 1 also shows the smooth surface (with the derivatives 

of all orders everywhere) consisting of continuous conic sections for varying bf .  Further, it can be noted 

that, when bf  , the conic section approaches asymptotically to a simple line defined as 0xx   for 

all 
xy , which is a counter-intuitive outcome. 

The existence of topology as shown in Fig. 1 implies that, when the diatomic and polyatomic gases 

with a specific value of bf  undergo velocity shear, the viscous shear and normal stresses (in reference to 

the hydrostatic pressure) are not independent at all and must be determined along a topological curve 

defined by a conic section (the ellipse, or the parabola, or the hyperbola) in the phase space. The ultimate 

origin of the existence of the conic section can be traced to the second-order coupling of the viscous stress 

and the velocity gradient of kinematic nature, 
(2)

ˆ ˆ 
 

u , in the second-order Boltzmann-Curtiss 

constitutive model of the viscous stress (18). Because of this coupling, the term 2 22 3kx y appears in the 

equation (25) and, as a result, produces the rich topology of various conic sections. 
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The second-order Boltzmann-Curtiss-based constitutive models (24)-(29) in the velocity shear flow 

problem can be also represented in a different phase space ( , ,xp yp p )—equivalently, ( , ,xx xy p  )—for 

a given value of 
bf , as shown in Fig. 2. It is an ellipse cone for 0bf  , while it is a hyperboloid for 

1bf  . In the case of a monatomic gas ( 0bf  ), a similar type of ellipse cone was studied in the context 

of a phase-transition-like behavior in velocity slips in a cylindrical Couette flow.
67

  Note from Fig. 2 that, 

as the pressure decreases, the ellipse cone keeps its topology, whereas the hyperboloid approaches a 

different topology, the straight lines defined as 2 21xx xy    . 

 
FIG. 2. Topology of the second-order Boltzmann-Curtiss-based constitutive models in the velocity 

shear flow problem in a phase space ( , ,xx xy p  ) for 0bf   and 1bf  . 

Figure 3 shows the trajectories of velocity-shear solutions on the topology of conic sections (an 

ellipse and a hyperboloid) in a phase space , ,xx xy p   for monatomic ( 0bf  ) and diatomic ( 1bf  ) 

gases. The second-order velocity-shear solutions were taken from previous analytical studies on a force-
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driven Poiseuille gas flow in a rectangular channel,
50,68

 which had been validated for a monatomic gas 

using the deterministic atomic-level microscopic molecular dynamics (MD).
62  

 

 
(a) 0.0bf   

 
(b) 1.0bf   

FIG. 3. Trajectories of velocity-shear solutions on the topology of conic sections (tangent trajectories on 

an ellipse cone and hyperbolic tangent trajectories on a hyperboloid) in a phase space ( , ,xx xy p  ): (a) 

0.0bf  , (b) 1.0bf  . 
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The analytic solutions of pressure and shear and normal stresses in a velocity shear flow problem 

defined by Kn 0.1  and a force parameter 0.6
wh   are given by the tangent function on an ellipse cone 

and the hyperbolic tangent function on a hyperboloid 

2 2* * * * * *3 2
1 tan ,  tan tan

2 3
,  ,  where ,

m w

xy xx

m m m m w h

ref ref ref

S S S S
p

T
p p p

s  
 

                       (30) 

2 2* * * * * *3 7
1 tanh ,  tanh tanh

7 3

2
,  ,  where ,

7 d w

xy xx

d d d d w h

ref ref ref

S S S S
p

T
p p p

s  
 

               (31) 

in the domain *0.5 0.5s    for monatomic (
*0,  0.942
mb wf T  ) and diatomic (

*1,  0.962
db wf T  ) 

gases, respectively. The symbols 
*,  refp s  represent the reference pressure in the middle of the channel, 

and the dimensionless distance from the center to the wall of the channel, respectively. 

The topology of conic sections has a long history in science. The most well-known conic sections are 

the orbits of planets and comets in the Solar System.
69

 According to Kepler’s laws of planetary motion, 

each object travels along an ellipse with the Sun at one focus. In a two-body problem with inverse-square-

law force, every orbit is a Kepler orbit. For example, the eccentricity of the Earth’s orbit is about 0.0167. 

There are also many elliptic, parabolic, and hyperbolic comets in the Solar System. Halley’s Comet has a 

value of 0.967, a highly eccentric elliptical orbit. 

Another recent example of conic sections is the so-called Dirac cones, named after Paul Dirac.
70

 They 

represent features that occur in some electronic band structures and describe the unusual electron 

transport properties of two-dimensional materials like graphene and topological insulators. The cones are 

defined in a space consisting of two components of the crystal momentum and energy, ( , ,x yp p E ). Dirac 

cones were experimentally observed in 2009 using angle-resolved photoemission spectroscopy on a 

graphite intercalation compound.
71 

Table II shows analogies among the second-order constitutive model, orbits of planets and comets, and 

Dirac cones. In particular, there is a direct analogy in the second-order constitutive model of diatomic and 
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polyatomic gases and Kepler’s laws of motion of the planets and comets. The bulk viscosity associated 

with the rotational mode of gas particle in reference to the shear viscosity plays a similar role in the 

energy associated with the angular motion of the planets and comets in reference to the gravitational 

potential energy. For example, the case of 0.2722bf   in the second-order constitutive model is 

equivalent to the case of 
min0.9997E E  in the Earth’s orbit with the eccentricity e=0.0167. 

TABLE II. Analogy among the second-order constitutive model, orbits of planets and comets, and Dirac 

cones. 

 Second-order constitutive 

model in diatomic and 

polyatomic gases 

Motion of the planets and 

comets in the two-body Kepler 

problem 

Dirac cones in 

electronic band 

structures 

Form of 

conic 

sections 

2 2 29 2
1 0

2 3
bf x x y

 
    

 
 

bulk viscosity

shear viscosity
bf   

 2 2 21 2 0e x epx y p      

2

2 2

1 2 1 2/ ( )

L
p

Gm m m m



 

1,2

:  angular momentum

:  gravitational constant

:  mass

L

G

m

 

2 3 3

1 2 1 2
min

/ ( )

2

G m m m m
E

L


   

2
*

2 2

*2 /

1 0

y

x
c y

m E E

 
  

 

 

,

*

*

:  momentum

:  merging gap

:  effective mass

:  energy

:  effective velocity

x y

y

p

m

E

c



 

Definition of 

x and y ,   
xyxxx y

p p


   

cos ,  sinx r y r    2

2
,   

yx
pp

x y
E E

   

Eccentricity 
227 1

,  
4 2

for  6 9

b

b

e f

f

 



 
min

min

1 ,  

for  (<0)

E
e

E

E E

 



 

2

2

max

max

1 ,  

for  (>0)

E
e

E

E E

 



 

Topological 

properties 
6 9; 0 (circle),

6 9 2 3; 0 1

                            (ellipse),

2 3; 1 (parabola),

 2 3; 1 (hyperbola)

b

b

b

b

f e

f e

f e

f e

 

   

 

 

 

min

min

; 0 (circle),

0; 0 1 

                         (ellipse),

0; 1 (parabola),

0; 1 (hyperbola)

E E e

E E e

E e

E e

 

   

 

 

 

max

max

; 0 (circle),

0 ; 0 1 

                         (ellipse),

0; 1 (parabola)

E E e

E E e

E e

 

   

 

 

Direct 

analogy 
min

2 3 1 6 2
  3

9 2 9
b

E
f e

E
     
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Earth

Mercury

Halley

0.2722  0.0167,

0.2834  0.2056,

0.4611  0.967

b

b

b

f e

f e

f e

  

  

  

 

 

Until now, we have focused on the topology of the kinematic stress constraints (23), (25)-(28), which 

were derived by cancelling out the driving force 
0

ˆ
xy  from the second-order Boltzmann-Curtiss-based 

constitutive model of the velocity shear flow for diatomic and polyatomic gases (21). However, a further 

investigation is needed on the topology of the relationship between the unknown viscous stresses 

 ˆˆ ˆ, ,xx xy    and the known thermodynamic force of 
0

ˆ
xy . Even though the second-order constitutive 

model (21) involves highly nonlinear implicit algebraic equations, they can be easily solved numerically 

in terms of the thermodynamic driving force 
0

ˆ
xy  in conjunction with (23)-(28) using the method of 

iteration.
19,21

  

Figure 4 shows such solutions of the second-order constitutive model for a given input in monatomic, 

diatomic, and polyatomic gases. The viscous shear stress ˆ
xy  predicted by the second-order constitutive 

model recovers the first-order model near the origin, but it becomes highly nonlinear for all cases as the 

stress force (shear velocity gradient) increases. The second-order constitutive model shows the shear-

thinning characteristics, yielding smaller shear stress compared to the first-order constitutive model. It 

also shows a completely different behavior for normal stress, producing non-zero normal stress values for 

a velocity gradient in shear flow. Interestingly, the general solutions of the second-order constitutive 

model also show asymptotic behaviour with increasing degree of velocity shear, satisfying the free-

molecular limit ˆˆ 1xx bf    or 0xx p   . The ultimate origin of all these behaviors can be 

traced to the kinematic stress constraints in the second-order Boltzmann-Curtiss-based constitutive model, 

as shown in Figs. 1-3. 
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FIG. 4. First-order and second-order velocity-shear solutions of the Boltzmann-Curtiss based 

constitutive model for a driving stress force in monatomic, diatomic and polyatomic gases. The 

horizontal axis represents the driving stress force 
0

ˆ
xy , while the vertical axis represents the shear and 

normal stresses ˆ ˆ,xy xx  . 

B. Topology of the second-order Boltzmann-Curtiss-based constitutive model 

in compression and expansion: hyperbola and sinh-dominated topology 

Based on the concept of decomposition, the second-order Boltzmann-Curtiss-based constitutive model 

can be decomposed into two elementary subsets; the velocity shear flow, and the compression and 

expansion flow. In the case of compression and expansion flow, the viscous stresses and heat flux 

components  , ,xx xQ   induced by thermodynamic forces xu u x    and xT T x    can be 

determined from (18)-(20) as follows, 
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(32)      

where 

                      2 2 2 223 ˆˆ ˆˆ .
2

b

xx x
f

R Q
 

       (33)      

From the first-order Navier law (14), we obtain 

00  

3ˆ ˆ .
4

b xxf    

Similar to the velocity shear case, when the first two components of the equations in (32) are divided by 

each other, the nonlinear coupling factor  2
ˆ

ndq cR  and the driving force 
0

ˆ
xx  are cancelled out, leaving 

only a common kinematic viscous stress constraint between the xx-component of the shear stress and the 

excess normal stress: 

               

 

      

2

2 4 2 2 2

2 2ˆ ˆ ˆˆ ˆ ˆ9 4 0,

1ˆ ˆ ˆ ˆor  9 4 4 81 72 16 32 24 16 .
8

9 4 3
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b xx b b xx b xx

b

b bf f f

f f f f
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f       

            

   

 

(34)      

When the kinematic viscous stress constraint (34) is expressed using the following simple notation, 

ˆˆ ,   ,xx
xxx y

p p

 
      

the topology of the second-order constitutive model of compression and expansion is governed by a conic 

section expressed as a second-degree polynomial equation in the phase space (x, y), 

    

    2 2 2

2 2

2

9 9 4 4 3 0,  or 9 4 3 0,

or  0,  

where  9 ,  9 4,  4 ,  3 , 1,  0.

b b b b b b b

b b b

f x f xy f y f x y f x y x f y f x y

Ax Bxy Cy Dx Ey F

A f B f C f D f E F

          

     

        

          (35) 
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Then, determinants of the matrix of the quadratic form ( 33A ) and the conic section ( QA ) become, 

respectively, 

            2 2 2

33

1 3
det (4 9 ) ,  det 1 3  with rank 3.

4 4
b Q b bA f A f f                                         (36) 

In contrast to the velocity shear case, the present conic section is always a hyperbola, since the 

determinant of 33A  is negative. And the matrix representation of the present conic section is not 

degenerate, yielding a smooth topology with the derivatives of all orders everywhere. In addition, since 

the determinant of 33A  is not zero, a geometric center of the hyperbola exists: 

 

 

2

2 2 2

4 151
.

(4 9 ) 3 2 9

bc

c b b b

fx

y f f f

   
  

      

                                                 (37) 

Finally the eccentricity of the present hyperbola can be written as 

4 24

4 2

2 81 97 16
.

5 81 97 16

b b

b b b

f f
e

f f f

 


  

                                                    (38) 
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(a) 

 

(b) 

FIG. 5. Topology of the second-order Boltzmann-Curtiss-based constitutive models in the compression 

and expansion flow problem: (a) topology in a phase space ( , ,xx bp p f  ), (b) topology in a phase 

space (
ref ref ref, ,xx p p p p  ) for 1.0bf  . 
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A topological representation of the second-order Boltzmann-Curtiss-based constitutive models (34), 

(35) in the compression and expansion flow problem is given in a phase space ( , , bx y f ) in Fig. 5(a). In 

contrast to the velocity shear case, the topology remains a hyperbola for all values of 
bf . The eccentricity 

of the hyperbola varies from 2 ( 0)bf   to the lowest value of 13 3 ( 2 3)bf   and then asymptotically 

recovers the initial value of 2 ( )bf  . The branch of compression obtained for positive x is almost 

linear, but the branch of expansion obtained for negative x is highly nonlinear and changes the sign of y.  

The second-order Boltzmann-Curtiss-based constitutive model in the compression and expansion flow 

problem can be also represented in a different phase space ( , ,xp yp p )—equivalently, ( , ,xx p  )—for a 

given value of 
bf , as shown in Fig. 5(b). In the case of 0bf  , it reduces simply to 0 or 0y    . In the 

case of non-zero 
bf , the topology remains a hyperbola for all values of p. In the limit of vanishing 

pressure, the hyperbola approaches the straight lines defined by (9 4) by f x  in compression and 

by x f   in expansion. 

In order to further investigate the topology of the Boltzmann-Curtiss-based constitutive model for the 

relationship between the unknown stress and heat flux ( ˆˆˆ , ,xx xQ  ) and the known driving (stress and 

thermal) forces of (
0 0

ˆˆ ,xx xQ ), the second-order constitutive model (32), (33) is solved numerically in 

terms of the driving forces 
0 0

ˆˆ ,xx xQ  in conjunction with (34) by the method of iteration. The solutions of 

the second-order constitutive model for ˆˆˆ , ,xx xQ   are compared in Figs. 6-13. We considered three gases: 

monatomic argon ( 0bf  ), diatomic nitrogen ( 0.8bf  ), and linear polyatomic carbon dioxide 

( 1000bf  ). We excluded the polyatomic methane gas ( 1.33bf  ), since it turned out there was no 

significant difference with the diatomic nitrogen gas ( 0.8bf  ). 

Figure 6 illustrates the three-dimensional topology of viscous normal stress ˆ
xx  for the first-order 

Navier-Fourier and second-order Boltzmann-Curtiss-based constitutive models for three values of b
f . 
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Notice that topological representations of first-order Navier-Fourier constitutive models are trivial, since 

the Navier-Fourier relations are linear and therefore they are nothing but  
(2)

0 2 ),(    u   

0 ( ).k T  Q Q  

Figure 7 shows a cross-section of the topology of viscous normal stress at the plane defined by 

0

ˆ 0xQ  or zero thermal force. It is obvious that the topology of the first-order constitutive model to the 

driving (stress and thermal) forces is linear and has uncoupled stress and thermal components. The 

viscous stress is a function of the stress force, but is independent of the thermal force.  

On the other hand, the topology of the second-order Boltzmann-Curtiss-based constitutive model 

becomes highly nonlinear for all cases as the driving forces increase. In addition, the topology becomes 

strongly coupled to the stress and thermal components, as evidenced by the curved surface in the thermal 

force direction for a specified value of stress force. That is, the viscous stress varies nonlinearly with 

respect to the thermal force, although it is more influenced by the stress force. While the topologies of 

both models remain symmetric with respect to the plane defined by zero thermal force, the topology of 

the second-order model becomes non-symmetric, resulting in a drastic difference in compression (positive 

stress force) and expansion (negative stress force) in gaseous states far from thermal non-equilibrium. 

The ultimate origin of the nonlinear behavior can be traced to the second-order kinematic coupling 

term  
0

 
ˆ ˆ ˆ

b xx xx
f     and the dissipative sinh (hyperbolic sine) nonlinear term 

2
ˆˆ ( )

xx nd
q cR  in the second-

order Boltzmann-Curtiss-based constitutive model in (32). It turns out that the second-order kinematic 

term plays a dominant role in expansion (negative stress force), while the second-order sinh dissipative 

term plays a critical role in compression (positive stress force). This property can be explained by 

examining the second-order constitutive model for zero thermal force, as shown in Fig. 7.  
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(a) 0.0bf   

 
(b) 0.8bf   

 
(c) 1000bf   

FIG. 6. Three-dimensional topology of viscous normal stress ˆ
xx  for the first-order Navier-Fourier 

(left) and second-order Boltzmann-Curtiss-based (right) constitutive models for three values of 
bf : (a) 

bf =0.0, (b) 
bf =0.8, (c) 

bf =1000. 
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FIG. 7. A cross-section of the topology of viscous normal stress ˆ
xx  at the plane defined by zero thermal 

force for three values of 
bf . 

In that case, the constitutive model is simplified to 
0 0  

ˆ ˆ ˆ ˆsinh xx xx xx xx     for a monatomic gas. It 

can be easily proved that the second-order kinematic coupling term 
0 

ˆ ˆ
xx xx   plays a critical role in the 

branch of expansion for 
0 

ˆ 0xx  , while the second-order sinh dissipative term ˆsinh xx  plays a critical 

role in the branch of compression for 
0 

ˆ 0xx  . In addition, it is straightforward to show that the 

solutions of the second-order constitutive model satisfy the free-molecular limit ˆˆ 1xx bf    or 

0xx p    in the case of expansion. In contrast, for dissipation-dominated compression, the 
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solutions show logarithmic (sinh
-1

) asymptotic behaviour due to the term ˆsinh xx . Furthermore, the 

coupling of stress and thermal components is present through the Rayleigh-Onsager dissipation function 

R̂ , in which all of stress and thermal components are added. 

It can be also noted from Fig. 6(a) that, for a monatomic gas with 0,bf  both stress and thermal forces 

contribute almost equally in the topology of the viscous stresses. On the other hand, as the value of bf  

increases, the influence of thermal force on the topology decreases, while the influence of stress force 

increases due to the increasing contribution of excess normal stress, as seen in Fig. 6(b). At the extremely 

large value of 1000,bf   the topology is dominated by the stress force, in particular, in the branch of 

compression (positive stress force), as shown in Fig. 6(c).  

Figure 8 illustrates the topology of heat flux ˆ
xQ  for the first-order Navier-Fourier and second-order 

Boltzmann-Curtiss-based constitutive models for three values of bf . Figure 9 shows the cross-section of 

the topology of heat flux at the plane defined by 
0

ˆ 0xx   or zero thermal force. Again the topology of the 

first-order constitutive model to the driving (stress and thermal) forces is linear and uncoupled to the 

stress and thermal components. The heat flux is a function of the thermal force, but is independent of the 

stress force. And the topology of heat flux remains unchanged with increasing the bf values. 

On the other hand, the second-order constitutive model shows nonlinear behavior in both the stress 

and thermal forces. It can be observed from Fig. 8(a) that for a monatomic gas with 0,bf   the heat flux is 

more strongly affected by the thermal force than the stress force. As the bulk viscosity increases to 

0.8,bf  the influence of the stress force decreases and the heat flux exhibits asymmetric behavior with 

respect to the plane defined by zero stress force, as seen in Fig. 9. Eventually, the heat flux shows a fully 

asymmetric topology and takes the shape of a shark fin at the extremely large value of 1000,bf  as 
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shown in Fig. 8(c). Such asymmetry can be explained by examining the constitutive model for zero stress 

force, which is simplified into 
0

ˆ ˆsinh x xQ Q  or 
0

1ˆ ˆsinhx xQ Q . 

 
(a) 0.0bf   

 

(b) 0.8bf   
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(c) 1000bf   

FIG. 8. Three-dimensional topology of heat flux 
ˆ

xQ  for the first-order Navier-Fourier (left) and second-order 

Boltzmann-Curtiss-based (right) constitutive models for three values of 
bf : (a) 

bf =0.0, (b) 
bf =0.8, (c) 

bf

=1000. 

 

FIG. 9. A cross-section of the topology of heat flux ˆ
xQ  at the plane defined by zero stress force for three 

values of 
bf . 

Figure 10 highlights the topology of excess normal stress ̂  for the first-order and second-order 

Boltzmann-Curtiss-based constitutive models. Figure 11 shows the cross-section of the topology of 

excess normal stress at the plane defined by 
0

ˆ 0xQ  or zero thermal force. It should be noted that the 

topology of excess normal stress ̂  is directly connected to the topology of normal stress ˆ
xx  via the 

hyperbolic topology of the second-order Boltzmann-Curtiss-based constitutive model (34), (35), as 
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illustrated in Fig. 5. In a monatomic gas with 0,bf   excess normal stress does not play any role, as 

shown in Fig. 10(a). When the value of bf  increases, the excess normal stress in the first-order model 

shows a linear behavior similar to the normal stress shown in Fig. 6.  

 

(a) 0.0bf   

 

(b) 0.8bf   
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(c) 1000bf   

FIG. 10. Three-dimensional topology of excess normal stress ̂  for the first-order Navier-Fourier 

(left) and second-order Boltzmann-Curtiss-based (right) constitutive models for three values of 
bf : (a) 

bf =0.0, (b) 
bf =0.8, (c) 

bf =1000. 
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FIG. 11. A cross-section of the topology of excess normal stress ̂  at the plane defined by zero thermal 

force for three values of 
bf . 

On the other hand, the second-order constitutive model exhibits strong nonlinear feature, in particular, 

in the stress force, as shown in Fig. 10(b) and Fig. 11. When the value of bf  increases to 1000, the 

influence of the thermal force vanishes, as shown in Fig. 10(c).  

Figure 12 shows the topology of the Rayleigh-Onsager dissipation function R̂  for the first-order and 

second-order Boltzmann-Curtiss-based constitutive models. Figure 13 shows the cross-section of the 

topology of the dissipation function at the plane defined by zero thermal force.  

 

 

(a) 0.0bf   
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(b) 0.8bf   

 

 

(c) 1000bf   

FIG. 12. Three-dimensional topology of the dissipation function R̂  for the first-order Navier-Fourier 

(left) and second-order Boltzmann-Curtiss-based (right) constitutive models for three values of 
bf : (a) 

bf =0.0, (b) 
bf =0.8, (c) 

bf =1000. 
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FIG. 13. A cross-section of the topology of the dissipation function R̂  at the plane defined by zero 

thermal force for three values of 
bf . 

The function R̂  defined in (20) can be also regarded as a non-equilibrium parameter, since it is 

directly proportional to the parameter N  which measures the degree of non-equilibrium. In the first-

order constitutive model, the dissipation function has a circular shape, which implies there is uniform 

contribution by the stress and thermal forces in all directions. In contrast, the dissipation function of the 

second-order constitutive model is not equally distributed and such non-uniformity increases with 

increasing value of bf . In fact, it can be noted from Fig. 12(c) that the dissipation function becomes 
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dominated by the stress force at the extremely large value of 1000bf  , as evidenced by vanishing role of 

the thermal force in states far from thermal non-equilibrium. 

IV. TRAJECTORY OF THE SHOCK STRUCTURE SOLUTION ON THE 

TOPOLOGY OF THE SECOND-ORDER BOLTZMANN-CURTISS 

BASED CONSTIUTUVE MODEL 

A. Compressive shock structure 

A shock structure with strong gradients is regarded as one of the fundamental problems in the kinetic 

theory of gases and has been studied by many theoreticians and experimentalists for the several 

decades.
19-21,46,61,72-77

 For example, it has a big impact on the overall flow patterns around hypersonic 

aerospace vehicles at high altitude.
78

 Although the shock structure problem does not involve any solid 

boundary, the calculation of the shock structure presents severe theoretical and computational challenges. 

For instance, the high order hydrodynamic approach based on the Grad’s moment method failed to yield 

shock solutions beyond a relatively small value of M ( 1.65 ).
73

 

The stationary shock wave structure problem is defined as a very thin (on the order of the mean free 

path; in other words, a Knudsen number close to 1.0) stationary gas flow region between the supersonic 

upstream and subsonic downstream. The upstream and downstream states are determined by the so-called 

Rankine-Hugoniot condition.
19

 For a comparison of various results of shock structure, the following 

parameters can be very useful: the inverse of the shock density thickness ( 1  ), and the shock 

temperature-density separation ( s ), which measures the separation between density and temperature 

profiles, defined as 

 
   1

max2 1

1
,     0.5 0.5 ,s

d
x x T

dx


 

 

        
 

(39)      

where the subscripts 1 and 2 denote the upstream and downstream states, and   and T  are the 

normalized density and temperature profiles defined as 
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1 1

2 1 2 1

, .
T T

T
T T

 


 

 
 

 
 (40)      

In addition, for the known density profile, the shock asymmetry (
sQ ) can be expressed as follows, 

 

 
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2
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1

2
0

( )( )

( ) ( )

a

a

s

x dx dx
Q

x dx x d
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



  

   






 





 
 .                                                       (41) 

Note that the area defined by the integration  
2

0
( )x dx 



  is equal to the area defined by the 

integration 
2

( )
a

x d



    in the present monotonic shock profile bounded by 1  and 2 . The density a  

at the central position x=0 is defined as the arithmetic mean of the upstream and downstream density. In 

the numerical results, we use x   as a spatial variable, which was non-dimensionalized by the mean free 

path  2RT    . 

B. Numerical method based on an explicit modal discontinuous Galerkin 

method and its validation 

The conservation laws (10) in conjunction with zero-order, first-order, and second-order constitutive 

models, described in (13), (14) and (18),(20), respectively, were solved by the one-dimensional explicit 

modal discontinuous Galerkin method.
79,80

 The domain was decomposed into line elements, and the 

scaled Legendre basis functions were employed for elements. The Gauss-Legendre quadrature rule was 

implemented for both the volume and the boundary integrations, and Roe’s flux was applied for the 

inviscid terms, while the BR1 scheme
81

 was employed for the auxiliary and viscous fluxes at the 

elemental interfaces. A polynomial expansion of third-order accuracy was used to approximate solutions 

in the finite element space, and the third-order total variation diminishing Runge-Kutta (TVD-RK) 

scheme was used for the time integration. To eliminate the spurious numerical fluctuations of the 

solutions, the Hermite WENO limiter proposed by Cockburn and Shu
82

 was used. 
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In order to validate the present computational model and associated numerical DG solver, we 

compared the solutions of the inverse shock density thickness—one of the important factors 

characterizing the shock structure—obtained from the first-order and second-order models and 

experimental data for monatomic argon and diatomic nitrogen gases.
83-86
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FIG. 14. Inverse density thickness of the shock wave structure: (a) argon and (b) nitrogen. 

 

Figure 14 shows that the general configuration of the shock inverse density thickness for the second-

order Boltzmann-Curtiss based model are in excellent agreement with the experimental data. And the 

second-order Boltzmann-Curtiss based model precisely captured the shock-density thickness for all Mach 

number regimes. The numerical results show that the first-order model yields an inverse shock density 

thickness that is much larger than the experimental data.  

  
(a) Mach =1.53 (b) Mach =3.8 

  
(c) Mach =6.1 (d) Mach =10.0 

FIG. 15. Comparison of normalized density solutions of 0
th
-, 1

st
-, 2

nd
-order models for nitrogen gas in the 
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shock structure problem for various Mach numbers: (a) Mach=1.53, (b) Mach=3.8, (c) Mach=6.1, (d) 

Mach=10.0. 

 

Figure 15 compares the normalized density solutions of the shock structure in nitrogen gas for various 

Mach numbers (1.53, 3.0, 6.1 and 10) with the experimental data. It shows that the difference between the 

first-order solution and experimental data becomes noticeable for high Mach number flows, while the 

second-order solution is very close to the experimental data. 

C. Connection between sinh-dominated topology and shock structure 

solution 

The existence of a topology in the kinematic stress constraints and the relationship between the non-

conserved properties and the thermodynamic forces in the constitutive model implies that, when the 

diatomic and polyatomic gases with a specific value of bf  undergo compression, the non-conserved 

variables appearing in the conservation laws must be determined on the surface of sinh-dominated 

topology and hyperbola in the phase space. In the case of velocity shear, the second-order solutions were 

taken from previous analytical studies on a force-driven Poiseuille gas flow.
50,68

 Therefore, it will be 

instructive to investigate the connection between the topology and a flow solution by computing the 

trajectories of the shock structure solution on the topology of the second-order constitutive model. For 

this purpose, we consider the shock structure problem of Mach numbers 3 and 5 in monatomic ( 0bf  ) 

and diatomic ( 0.8bf  ) gases. 

Figure 16 illustrates the connection between the topology of viscous normal stress and the shock 

structure solution in monatomic and diatomic gases. In this figure, the origin ‘0’ denotes the equilibrium 

solutions of the shock structure, that is, upstream and downstream. Note that the trajectories are located in 

the fourth quadrant defined by positive stress and negative thermal forces. The shape of the trajectories 

was found to remain the same in the following sense: 1) it is a not-overlapped, not-crossing topology, and 

2) the upstream branch is closer to the zero thermal force curves than the downstream branch. On the 



45 
 

other hand, the range of trajectories from the origin changes substantially with respect to the values of bf  

and Mach number. In particular, the range increases with increasing Mach number, since the Mach 

number contributes directly to the thermal non-equilibrium. 

 

 

(a) Mach number =3.0 

 

(b) Mach number =5.0 

FIG. 16. Trajectories of the shock structure solution on the topology of viscous normal stress ˆ
xx  in 
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monatomic (left) and diatomic (right) gases: (a) Mach =3.0, (b) Mach =5.0.  

 

 

 

(a) Mach number =3.0 

 

(b) Mach number =5.0 

FIG. 17. Trajectories of the shock structure solution on the topology of heat flux ˆ
xQ  in monatomic (left) 

and diatomic (right) gases: (a) Mach =3.0, (b) Mach =5.0. 
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(a) Mach number =3.0 

 

(b) Mach number =5.0 

FIG. 18. Trajectories of the shock structure solution on the topology of the dissipation function R̂  in 

monatomic (left) and diatomic (right) gases: (a) Mach =3.0, (b) Mach =5.0. 

Figure 17 illustrates the connection between the topology of heat flux and the shock structure 

solution in monatomic and diatomic gases. Like the normal stress case, the trajectories on the topology 
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are not-overlapped, not-crossing, and the upstream branch is closer to the zero stress force curve than the 

downstream branch. The range of trajectories from the origin also increases with increasing Mach number. 

Figure 18 illustrates the connection between the topology of the dissipation function and the shock 

structure solution in monatomic and diatomic gases. As expected, the trajectories are located in the fourth 

quadrant and are not overlapped. 

  
(a)  (b) 

  
(c) (d) 

FIG. 19. Effects of diatomic and polyatomic gases on the shock structure at Mach =3.0: (a) normalized 

variables, (b) normalized non-conservative variables, (c) stress vs heat flux, and (d) 1
st
-order dissipation 

function vs 2
nd

-order dissipation function. 
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D. Effects of diatomic and polyatomic gases on the shock structure 

We investigated the effects of diatomic and polyatomic gases on the shock structure solutions: profiles, 

topology in phase space, and the main characteristics. For this purpose, we selected three gases: 

monatomic argon ( 0bf  ), diatomic nitrogen ( 0.8bf  ), and linear polyatomic methane ( 1.33bf  ). 

Figure 19 summarizes the effects of diatomic and polyatomic gases on the shock structure at Mach =3.0: 

the conserved variables (density, velocity and temperature), the non-conserved variables (stress and heat 

flux), the stress versus heat flux in the phase space, and the dissipation function.  

An interesting feature is that the shock transition regime extends upstream as the value of bf  increases, 

as seen in Fig. 19(a)-(b). There is a noticeable difference in the trajectories of the shock solutions in the 

phase space of the viscous stress and heat flux, as shown in Fig. 19(c). The effects of diatomic and 

polyatomic gases on the dissipation function ˆ( )R  are illustrated in Fig. 19(d). The shock transition 

regime follows nonlinear curves very different from the first-order dissipation function. The actual trend 

in the dissipation function is very similar to the topological cross section plot depicted in Fig. 13. 

Lastly, we investigated the effects of diatomic and polyatomic gases on the main characteristics of 

shock structure—inverse density thickness, asymmetry, and temperature-density separation distance. In 

order to examine the effect of the order of the constitutive model, the first-order NSF analytical solutions 

are also considered. Full analytical NSF solutions in closed elementary functional form in the case of 

Pr=3/4 were developed in 2014 by Myong
72

 for Maxwell and hard sphere molecules; for a Maxwellian 

molecule, the solutions of the implicit type are for dimensionless density r 
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and O, P are integration constants for the conservation laws of mass and momentum, respectively. 

The shock thickness based on the maximum slope of the density in the shock profile can be computed 

by solving the following differential equation (s being the exponent of the inverse power laws of gas 

molecules) 

1 2
1 2

1 2

( )( )3
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However, by noting that dr/dξ becomes maximum at the location ξ satisfying 

2 4 3 26 10 (1 2 ) 5( 1) 2(2 1) 0,r r s r s r s                                           (44) 

the maximum slope can be determined without actually solving (43). A unique real root of the quartic 

equation of r (r1<r<r₂) can always be obtained using Ferrari’s method
87

. The inverse shock density 

thickness δ  is then calculated by 
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On the other hand, for the known density profile, the shock asymmetry is reduced to
72
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Another parameter, the so-called shock temperature-density separation, can be easily calculated as 

follows, 

     
1/2

1 232
( ) = ( )  where ( )  and .

25 16 2
a a a a ax r x r x r r
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   



  
    

 
           (46) 

Figures 20-22 show the effects of diatomic and polyatomic gases on the important parameters of the 

shock wave structure for varying Mach numbers: the inverse density thickness, the asymmetry, and the 

temperature-density separation distance, respectively. The shock inverse density thickness is known as 

one of the more important parameters for characterizing the shock structure.  

 
FIG. 20. Effects of diatomic and polyatomic gases on the inverse density thickness of the shock wave 

structure for varying Mach numbers (1
st
 -order and 2

nd
 -order Boltzmann-Curtiss solutions). 
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Figure 20 shows the inverse density thickness of three gases (monatomic argon, diatomic nitrogen, and 

linear polyatomic methane) computed by the second-order Boltzmann-Curtiss-based model. The full 

analytical NSF solution for a Maxwellian molecule  1s   is also shown for reference. All models show 

the same qualitative trend in the inverse density thickness—increase up to a critical Mach number and 

then decrease. However, the inverse density thickness increases with increasing bf . The gap between 

argon and Maxwellian molecule in monatomic gas is due to the difference in the order of the constitutive 

model; the second-order and the first-order, respectively. 

 
FIG. 21. Effects of diatomic and polyatomic gases on the asymmetry of the shock wave structure for 

varying Mach numbers (1
st
 -order and 2

nd
 -order Boltzmann-Curtiss solutions). 
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Figure 21 shows the asymmetry in the shock structure of the three gases. All gases exhibit an 

asymmetry bigger than 1, meaning that the upstream area is always bigger than the downstream area. All 

gases also show the same qualitative trend with increasing Mach number—a rapid increase and then 

approaching an asymptotic value. The asymptotic value of the asymmetry increases with increasing bf . 

The first-order NSF model of the Maxwellian molecule shows the smallest asymmetry.  

 
FIG. 22. Effects of diatomic and polyatomic gases on the temperature-density separation distance of 

the shock wave structure for varying Mach numbers (1
st
 -order and 2

nd
 -order Boltzmann-Curtiss 

solutions). 

 

Figure 22 shows the temperature-density separation distance, another important parameter of the shock 

wave structure. All models show the same qualitative trend in the distance—a decrease up to a critical 
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Mach number and then continuous increase. The temperature-density separation distance decreases with 

increasing bf  for all Mach numbers.  

However, the most striking finding in Fig. 22 is the big gap between argon (second-order) and the 

Maxwellian molecule (first-order) in monatomic gas. This difference implies that the effect of the order of 

the constitutive model on the shock structure is primarily highlighted by the temperature-density 

separation distance. In summary, it may be concluded that the bulk viscosity and the order of the 

constitutive model play essential roles in the non-equilibrium behavior of diatomic and polyatomic gases, 

and in particular, in the shock wave structure. 

V. CONCLUDING REMARKS 

The topological aspects of fluid flows have been fascinating subjects in studies on the physics of fluids. 

In this study, the topology of the second-order constitutive model beyond the conventional first-order 

NSF equations and Stokes’ hypothesis was extensively investigated. The emphasis was placed on the 

general structure of the topology and the effects of thermal non-equilibrium and the bulk viscosity 

associated with the viscous excess normal stress on diatomic and polyatomic gases and their interplay in 

topological space. 

The second-order constitutive model was derived from the Boltzmann-Curtiss kinetic equation for 

diatomic and polyatomic molecules with a moment of inertia and an angular momentum. During the 

derivation, two tenets—the closing-last balanced closure and the cumulant expansion based on the 

canonical distribution function in the exponential form—were applied to the moment equations of the 

Boltzmann-Curtiss kinetic equation. The initial topology of the constitutive model in nine dimensional 

phase space was decomposed into two subsets; the velocity shear and the compression and expansion.  

In the case of velocity shear, the topology of the second-order constitutive model was shown to be 

governed by a conic section expressed as a second-degree polynomial equation in the phase space. The 

topology turned out to be always smooth, having the derivatives of all orders everywhere in its conic 

section. The bulk viscosity ratio in diatomic and polyatomic gases was found to play an essential role in 
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determining the types of topology of the conic section: from an ellipse to a circle, to a parabola, and then 

finally to a hyperbola, with increasing bulk viscosity ratio. The ultimate origin of the existence of the 

conic section and the rich topology of various conic sections was traced to the second-order coupling of 

the viscous stress and the velocity gradient of a kinematic nature, and its subtle interplay with the bulk 

viscosity ratio in the second-order Boltzmann-Curtiss constitutive model. In the case of compression and 

expansion, the topology of the second-order constitutive model was also found to be governed by a conic 

section, but it was always a hyperbola, irrespective of the bulk viscosity ratio. 

The topology of the conic section identified in the present second-order Boltzmann-Curtiss-based 

constitutive model has been echoed in other branches of science: notably, in the elliptic, parabolic, and 

hyperbolic orbits of planets and comets in the Solar System governed by Kepler’s laws, and Dirac cones 

found in some electronic band structures, that describe the unusual electron transport properties of two-

dimensional materials.  

The second-order Boltzmann-Curtiss-based constitutive model was also investigated in the topology of 

the relationship between unknown viscous stresses and heat flux, and the known driving (stress and 

thermal) forces. In the case of velocity shear, the second-order constitutive model exhibited shear-

thinning characteristics, yielding smaller shear stress compared to the first-order constitutive model. It 

also showed a completely different behavior for normal stress, producing non-zero normal stress for a 

velocity gradient in a shear flow. For compression and expansion, the topology of the second-order 

constitutive model became highly nonlinear and was strongly coupled in stress and thermal components 

for all cases. The ultimate origin of the nonlinear behavior was traced to the second-order kinematic 

coupling term, and the hyperbolic sine nonlinear dissipative term in the second-order Boltzmann-Curtiss-

based constitutive model. 

Lastly, in order to investigate the connection between the topology and actual flow solutions, two 

representative flow problems were investigated: a velocity-shear dominated force-driven Poiseuille gas 

flow, and the compression dominated inner structure of shock waves. Trajectories of the solutions of 

those representative flow problems were then plotted on the topology—consisting of various conic 
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sections and hyperbolic sine dominated surfaces—of the second-order constitutive model, demonstrating 

the indispensable role of the topology of the constitutive model in fluid dynamics going beyond the 

conventional first-order framework. 

The present study focused on a theoretical investigation of the existence and structure of topology in 

the second-order Boltzmann-Curtiss-based constitutive model for monatomic, diatomic, and polyatomic 

gases. However, it will be very instructive to extract information from experimental data based on the 

topologies identified in the present study. Also, since complex fluids like viscoelastic fluids and soft 

matter must be governed by proper second-order constitutive models, the current methodology based on 

the closing-last balanced closure, the cumulant expansion, and decomposition may be extended to the 

study of the topology of constitutive equations of other complex fluids. We hope to report the results of 

studies of these problems in due course. 

ACKNOWLEDGEMENTS 

This work was supported by the National Research Foundation of Korea funded by the Ministry of 

Education, Science and Technology (NRF 2017-R1A2B2007634), South Korea. 

REFERENCES 

1
H. K. Moffatt, G. Zaslavsky, P. Comte, and M. Tabor, Topological Aspects of the Dynamics of Fluids 

and Plasmas (Springer Science & Business Media, 2013). 

2
H. Von Helmholtz, "Uber integrale der hydrodynamichen gleichungen, welche der wirbelbewegung 

entsprechen," J. Reine Angew. Math 55, 25-55 (1858). 

3
L. Kelvin, "On vortex atoms," Proc. R. Soc. Edinburgh 6, 94–105 (1867). 

4
V. I. Arnold, "On the topology of three-dimensional steady flows of an ideal fluid," J. Appl. Math. Mech. 

30, 223–226 (1966). 

5
U. Dallmann, "Three-dimensional vortex structures and vorticity topology," Fluid Dyn. Res. 3, 183 

(1988). 



57 
 

6
M. Brøns, "Topological fluid dynamics of interfacial flows," Phys. Fluids 6, 2730 (1994). 

7
R. S. Myong and P. L. Roe, "Shock waves and rarefaction waves in magnetohydrodynamics. Part 1. A 

model system," J. Plasma Phys. 58, 485 (1997). 

8
N. T. Ouellette and J. P. Gollub, "Dynamic topology in spatiotemporal chaos," Phys. Fluids 20, 064104 

(2008). 

9
L. Carrión, M. A. Herrada, and V. N. Shtern, "Topology changes in a water-oil swirling flow," Phys. 

Fluids 29, 032109 (2017). 

10
R. L. Ricca, An Introduction to the Geometry and Topology of Fluid Flows (Springer Science & 

Business Media, 2012). 

11
S. Tardu, "On the topology of wall turbulence in physical space," Phys. Fluids 29, 020713 (2017). 

12
X. Chu, B. Weigand, and V. Vaikuntanathan, "Flow turbulence topology in regular porous media: From 

macroscopic to microscopic scale with direct numerical simulation," Phys. Fluids 30, 065102 (2018). 

13
F. Zafar, and M. Alam, "A low Reynolds number flow and heat transfer topology of a cylinder in a 

wake," Phys. Fluids 30, 083603 (2018). 

14
M. Lappa, "On the formation and morphology of coherent particulate structures in non-isothermal 

enclosures subjected to rotating g-jitters," Phys. Fluids 31, 073303 (2019). 

15
P. S. Contreras, I. Ataei-Dadavi, M. F. M. Speetjens, C. R. Kleijn, M. J. Tummers, and H. J. H. Clercx, 

"Topological equivalence between two classes of three-dimensional steady cavity flows: A numerical-

experimental analysis," Phys. Fluids 31, 123601 (2019). 

16
K. Shariff, A. Leonard, and J. H. Ferziger, "Dynamical systems analysis of fluid transport in time-

periodic vortex ring flows," Phys. Fluids 18, 047104 (2006). 

17
X. G. Wen, "Topological orders in rigid states," Int. J. Mod. Phys. B. 4(2), 239 (1990). 

18
C. L. M. H. Navier, "Memoire sur les lois du mouvement des fluides," Mem. Acad. Sci. Inst. France 6, 

389 (1822). 

19
R. S. Myong, "Thermodynamically consistent hydrodynamic computational models for high-Knudsen-

number gas flows," Phys. Fluids 11, 2788 (1999). 



58 
 

20
R. S. Myong, "A computational method for Eu’s generalized hydrodynamic equations of rarefied and 

microscale gasdynamics," J. Comput. Phys. 168, 47 (2001). 

21
R. S. Myong, "A generalized hydrodynamic computational model for rarefied and microscale diatomic 

gas flows," J. Comput. Phys. 195, 655 (2004). 

22
Z. Jiang, W. Zhao, Z. Yuan, W. Chen, and R. S. Myong, "Numerical investigation of rarefied 

hypersonic flows over flying configurations using a nonlinear constitutive model," AIAA J. 57-12, 5252 

(2019). 

23
J. G. Kim and G. Park, "Thermochemical non-equilibrium parameter modification of oxygen for a two-

temperature model," Phys. Fluids 30, 016101 (2018). 

24
R. S. Myong, A. Karchani, and O. Ejtehadi, "A review and perspective on a convergence analysis of the 

direct simulation Monte Carlo and solution verification," Phys. Fluids 31, 066101 (2019). 

25
T. K. Mankodi and R. S. Myong, "Quasi-classical trajectory-based non-equilibrium chemical reaction 

models for hypersonic air flows," Phys. Fluids 31, 106102 (2019). 

26
T. K. Mankodi and R. S. Myong, "Erratum: Quasi-classical trajectory-based non-equilibrium chemical 

reaction models for hypersonic air flows [Phys. Fluids 31, 106102 (2019)]," Phys. Fluids 32, 019901 

(2020). 

27
J. H. Chae, T. K., Mankodi, S. M. Choi, and R. S. Myong, "Combined effects of thermal non-

equilibrium and chemical reactions on hypersonic air flows around an orbital reentry vehicle," Int. J. 

Aeronaut. Space, Online 20 December 2019, https://doi.org/10.1007/s42405-019-00243-9. 

28
L. V. Ballestra and R. Sacco, "Numerical problems in semiconductor simulation using the 

hydrodynamic model: a second-order finite difference scheme," J. Comp. Phys. 195, 320 (2004). 

29
S. K. Blau, "Conduction electrons flow like honey," Phys. Today 70, 11, 22 (2017). 

30
R. Evans, D. Frenkel, and M. Dijkstra, "From simple liquids to colloids and soft matter," Phys. Today 

72, 2, 38 (2019) 

31
N. Cagney and S. Balabani, "Taylor-Couette flow of shear-thinning fluids," Phys. Fluids 31, 053102 

(2019). 



59 
 

32
J. D. Evans, J. A. Cuminato, I. L. Palhares Jr., and C. M. Oishi, "Numerical study of the stress 

singularity in stick-slip flow of the Phan-Thien Tanner and Giesekus fluids," Phys. Fluids 31, 093101 

(2019) 

33
J. E. Avron, "Odd viscosity," J. Stat. Phys. 92-3/4, 543 (1998). 

34
D. Banerjee, A. Souslov, A. G. Abanov, and V. Vitelli, "Odd viscosity in chiral active fluids," Nat. 

Commun. 8, 1573 (2017). 

35
S. Grozdanov and N. Kaplis, "Constructing higher-order hydrodynamics: The third order," Phys. Rev. D 

93, 066012 (2016). 

36
B. C. Eu, Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized 

Hydrodynamics: Vol. 2 Relativistic Theories (Springer, Switzerland, 2016). 

37
G. G. Stokes, "On the theories of the internal friction of fluids in motion, and of the equilibrium and 

motion of elastic fluids," Trans. Cambridge Phil. Soc. 8, 287-305 (1845). 

38
G. Emanuel, "Bulk viscosity of a dilute polyatomic gas," Phys. Fluids A: Fluid Dyn. 2, 2252-2254 

(1990). 

39
G. Emanuel, "Bulk viscosity in the Navier-Stokes equations," Int. J.  Eng. Sc. 36, 1313 (1998). 

40
N. Carlevaro and G. Montani, "Bulk viscosity effects on the early universe stability," Mod. Phys. Lett.  

A 20, 1729 (2005). 

41
J. F. Brady, A. S. Khair, and M. Swaroop, "On the bulk viscosity of suspensions," J. Fluid Mech.  554, 

109 (2006). 

42
F. Bahmani and M. Cramer, "Suppression of shock-induced separation in fluids having large bulk 

viscosities," J. Fluid Mech. 756, (2014). 

43
Y. Zhu, C. Zhang, X. Chen, H. Yuan, J. Wu, S. Chen, C. Lee, and M. Gad-el-Hak, "Transition in 

hypersonic boundary layers: Role of dilatational waves," AIAA J. 54, 3039 (2016). 

44
T. K. Sengupta, A. Sengupta, N. Sharma, S. Sengupta, A. Bhole, and K. Shruti, "Roles of bulk viscosity 

on Rayleigh-Taylor instability: Non-equilibrium thermodynamics due to spatio-temporal pressure fronts," 

Phy. Fluids 28, 094102 (2016). 



60 
 

45
S. Pan, and E. Johnsen, "The role of bulk viscosity on the decay of compressible, homogeneous, 

isotropic turbulence," J. Fluid Mech. 833, 717 (2017). 

46
S. Singh, A. Karchani, and R. S. Myong, "Non-equilibrium effects of diatomic and polyatomic gases on 

the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss 

equation," Phys. Fluids 30, 016109 (2018). 

47
F. Jaeger, O. K. Matar, and E. A. Müller, "Bulk viscosity of molecular fluids," J. Chem. Phys. 148, 

174504 (2018). 

48
S. Chen, X. Wang, J. Wang, M. Wan, H. Li, and S. Chen, "Effects of bulk viscosity on compressible 

homogeneous turbulence," Phys. Fluids 31, 085115 (2019). 

49
S. Bhola and T. K. Sengupta, "Roles of bulk viscosity on transonic shock-wave/boundary layer 

interaction," Phys. Fluids 31, 096101 (2019). 

50
R. S. Myong, "A full analytical solution for the force-driven compressible Poiseuille gas flow based on 

a1nonlinear coupled constitutive relation," Phys. Fluids 23, 012002 (2011). 

51
K. Xu and L. Tang, "Nonequilibrium Bhatnagar–Gross–Krook model for nitrogen shock structure," 

Phys. Fluids 16, 3824 (2004). 

52
T. Morse, "Kinetic model for gases with internal degrees of freedom," Phys. Fluids 7, 159 (1964). 

53
C. W. Chang and G. E. Uhlenbeck, "Transport phenomena in polyatomic gases," University of 

Michigan Engineering Research Institute Report No. CM-681 (1951). 

54
M. H. Gorji and P. Jenny, "A Fokker–Planck based kinetic model for diatomic rarefied gas flows," Phys. 

Fluids 25, 062002 (2013). 

55
V. Rykov, V. Titarev, and E. Shakhov, "Shock wave structure in a diatomic gas based on a kinetic 

model," Fluid Dyn. 43, 316 (2008). 

56
L. Wu, C. White, T. J. Scanlon, J. M. Reese, and Y. Zhang, "A kinetic model of the Boltzmann equation 

for non-vibrating polyatomic gases," J. Fluid Mech. 763, 24 (2015). 

57
C. Curtiss, "The classical Boltzmann equation of a gas of diatomic molecules," J. Chem. Phys. 75, 376 

(1981). 



61 
 

58
C. Curtiss, "The classical Boltzmann equation of a molecular gas," J. Chem. Phys. 97, 1416 (1992). 

59
B. C. Eu, Kinetic Theory and Irreversible Thermodynamics (Wiley, New York, 1992). 

60
B. C. Eu and Y. G. Ohr, "Generalized hydrodynamics, bulk viscosity, and sound wave absorption and 

dispersion in dilute rigid molecular gases," Phys. Fluids 13, 744 (2001). 

61
R. S. Myong, "On the high Mach number shock structure singularity caused by overreach of 

Maxwellian molecules," Phys. Fluids 26, 056102 (2014). 

62
A. Rana, R. Ravichandran, J. H. Park, and R. S. Myong, "Microscopic molecular dynamics 

characterization of the second-order non-Navier-Fourier constitutive laws in the Poiseuille gas flow," 

Phys. Fluids 28, 082003 (2016). 

63
S. Chapman, and T. G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge 

University Press, Cambridge, 1970). 

64
M. S. Cramer, "Numerical estimates for the bulk viscosity of ideal gases," Phys. Fluids 24, 066102 

(2012). 

65
L. Onsager, "Reciprocal relations in irreversible processes. I," Phys. Rev. 37-4, 405 (1931). 

66
D. A. Brannan, M. F. Esplen, and J. J. Gray, Geometry, Cambridge University Press (1999). 

67
R. E. Khayat and B. C. Eu, "Generalized hydrodynamics, normal-stress effects, and velocity slips in the 

cylindrical Couette flow of Lennard-Jones fluids," Phys. Rev. A 39-2, 728 (1989). 

68
R. S. Myong, "A computationally efficient framework for modeling microscale and rarefied gas flows 

based on new constitutive relations," 48
th
 AIAA Aerosapce Sceince Meeting, AIAA 2010-563, Orlando, 

Florida (2010). 

69
R. Fitzpatrick, Classical Mechanics – An Introductory Course, The University of Texas at Austin (2006). 

70
J.-N. Fuchs, L.-K. Lim, and G. Montambaux, "Interband tunneling near the merging transition of Dirac 

cones," Phys. Rev. A 86, 063613 (2012). 

71
A. Grüneis, C. Attaccalite, A. Rubio, D. V. Vyalikh, S. L. Molodtsov, J. Fink, R. Follath, W. Eberhardt, 

B. Büchner, and T. Pichler, "Angle-resolved photoemission study of the graphite intercalation compound 

KC8: A key to graphene," Phys. Rev. B 80-7, 075431 (2009). 



62 
 

72
R. S. Myong, "Analytical solutions of shock structure thickness and asymmetry in Navier–

Stokes/Fourier framework," AIAA J. 52-5, 1075 (2014). 

73
H. Grad, "The profile of a steady plane shock wave," Commun. Pure Appl. Math. 5, 257 (1952). 

74
M. Al-Ghoul and B. C. Eu, "Generalized hydrodynamics and shock waves," Phys. Rev. E 56, 2981 

(1997). 

75
M. Al-Ghoul and B. C. Eu, "Generalized hydrodynamic theory of shock waves in rigid diatomic gases," 

Phys. Rev. E 64, 046303 (2001). 

76
H. M. Mott-Smith, "The solution of the Boltzmann equation for a shock wave," Phys. Rev. 82, 885 

(1951). 

77
Z. Jiang, W. Zhao, W. Chen, and R. K. Agarwal, "Computation of shock wave structure using a simpler 

set of generalized hydrodynamic equations based on nonlinear coupled constitutive relations," Shock 

Waves (2019). https://doi.org/10.1007/s00193-018-0876-3 

78
E. Josyula, P. Vedula, and W. F. Bailey, "Kinetic solution of shock structure in a non-reactive gas 

mixture," 48
th
 AIAA Aerosapce Sceince Meeting, AIAA 2010-817, Orlando, Florida (2010). 

79
N. T. Le, H. Xiao, and R. S. Myong, "A triangular discontinuous Galerkin method for non-Newtonian 

implicit constitutive models of rarefied and microscale gases," J. Comput. Phys. 273, 160 (2014). 

80
L. P. Raj, S. Singh, A. Karchani, and R. S. Myong, "A super-parallel mixed explicit discontinuous 

Galerkin method for the second-order Boltzmann-based constitutive models of rarefied and microscale 

gases," Comput. Fluids 157, 146 (2017). 

81
F. Bassi and S. Rebay, "A high-order accurate discontinuous finite element method for the numerical 

solution of the compressible Navier–Stokes equations," J. Comput. Phys. 131, 267 (1997). 

82
J. Qiu and C. W. Shu, "Hermite WENO schemes and their application as limiters for Runge–Kutta 

discontinuous Galerkin method: one-dimensional case," J. Comput. Phys. 193, 115 (2004). 

83
H. Alsmeyer, "Density profiles in argon and nitrogen shock waves measured by the absorption of an 

electron beam," J. Fluid Mech. 74, 497 (1976). 



63 
 

84
M. Camac, "Argon shock structure," In Proceedings of the Fourth International Symposium on Rarefied 

Gas Dynamics, Adv. Appl. Mech. 1, 240 (1965). 

85
W. Garen, R. Synofzik, and A. Frohn, "Shock tube for generating weak shock waves," AIAA J. 12, 

1132 (1974). 

86
M. Linzer and D. Hornig, "Structure of shock fronts in argon and nitrogen," Phys. Fluids 6, 1661 (1963). 

87
M. Fogiel, Handbook of Mathematical, Scientific, and Engineering: Formulas, Tables, Functions, 

Graphs, Transforms (Research and Education Assoc., 1997). 

 


