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NSF Navier-Stokes-Fourier 

PIC particle-in-cell 

SD spectral difference 

SET standard Enskog theory 

SMR single Mach reflection 

SV spectral volume 

UGKS unified gas-kinetic scheme 

VE  viscous erosion 

VOF volume of fluid 

CVD chemical vapor deposition 

OLED organic light emitting diode 
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In the last few decades, human never attempted landing on the other planet after the first 

touchdown on the lunar surface on the Apollo 11 mission. Fifty years since then, exploring 

the Moon has resumed. Similar to other developed nations, South Korea has aspirations for 

such exciting missions. Therefore, they are planning to design a lunar lander module with all 

necessary components as well as considering all the steps of reaching to the Lunar surface. 

To achieve this goal, running simulation and conducting experiments are highly crucial. The 

current work is part of the project above, focusing on the descending phase of the lunar 

landing aspect of the mission.  

As the lunar lander approaches its landing site, the rocket plume impinging on the lunar 

surface can cause significant dust dispersal. This study investigates the near-field rocket 

plume-lunar surface interaction and subsequent regolith erosion and particle dispersal. These 

subjects are challenging because of the complicated flow physics associated with the 

inherently multi-physics multi-scale problem, which is further complicated by the special 

lunar conditions characterized by micro-gravity, near-vacuum, extreme dryness, and the 

unique properties of the regolith. To understand the effect of surface erosion on the flow 
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characteristics, in conjunction with the finite volume method of plume impingement of a 

rocket nozzle, the Roberts erosion model was employed for obtaining the influx mass flow 

rate of dust particles based on excess shear stress. The particulate phase was then handled in 

a Lagrangian framework using the discrete phase model. A parametric study on erosion rate 

was also conducted to examine the effect of particle density, particle diameter, Mach number, 

and hover altitude. 

Additionally, the maximum speed and inclined angle of the particles from the surface were 

computed for various particle diameters and hover altitudes. The resulting information about 

the pressure and heat flux distribution on lunar module components can be used for 

engineering design. Finally, high-fidelity simulations of particles eroded from the surface 

indicated that several scenarios may occur depending on particle diameters, grain-inclined 

angles from the surface, and hover altitudes. 

To have better insight on the physics of dusty-gas flows and to understand the gas and 

solid particle interactions, one and two-dimensional dusty gas benchmark problems were 

tested. The Eulerian-Eulerian approach was applied by solving the conservation laws along 

with source terms by utilizing Discontinuous Galerkin (DG) method; where the numerically 

problematic treatment of the source terms was circumvented by inherent features of DG 

method which eliminates the need of any conventional procedures. Furthermore, the DG 

method gives the opportunity of applying high-order numerical methods in our simulations. 

All the numerical results were verified and/or validated with previous works to ensure the 

fidelity of present studies.  

It is worth mentioning that such capability (solving near-vacuum/vacuum state problems) 

can be applied to practical applications, including semiconductor fabrication. An example 

would be the Chemical Vapor Deposition (CVD) process in producing large Organic Light 

Emitting Diode (OLED) displays, which will be discussed briefly in the current study.      
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Abstract in Korean 

 

Computational simulation of near-filed plume-surface interaction and 

regolith erosion along with particle dispersal during the lunar landing  

                                                         

아민 라히미 

경상대학교 공과대학 

기계항공공학부 

항공우주공학 전공 

지도교수: 명 노 신 

지난 수십 년간, 인류는 아폴로 11 임무를 통한 첫 번째 달 착륙 이후로 다른 

행성으로의 착륙을 시도하지 않았다. 아폴로 11 미션으로부터 50년 이후, 달 탐험이 

재개되었다. 다른 선진국들과 마찬가지로, 대한민국도 그러한 흥미로운 임무에 대한 

포부를 갖고 있기 때문에, 달 표면에 도달하는 절차 및 그러한 절차에 필요한 모든 구성 

요소를 갖춘 달 착륙선 모듈을 설계할 계획을 갖고 있다. 이러한 계획을 달성하기 위해, 

전산해석 및 실제 실험을 수행하는 것은 매우 중요하다. 현행 연구는 달 착륙의 하강 

절차에 초점을 맞춘 프로젝트의 일부이다. 
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달 착륙선이 착륙 지점에 도달하면, 달 표면에 부딪히는 로켓 플룸은 상당한 먼지 

입자의 분산을 유발할 수 있다. 이 연구는 로켓 플룸과 달 표면의 근거리 상호작용과 그 

이후의 표토 침식 및 입자 분산에 대해 연구한다. 이러한 주제는 본질적으로 다물리 및 

다차원적 문제와 관련된 복잡한 유체역학적 문제로 인해 더욱 어려워지며, 이는 달의 

미소 중력, 진공, 극도의 건조함 및 표토의 고유 속성들에 의해 특징지어지는 특수한 

착륙 조건에 의해 더욱 복잡해진다. 표면 침식이 유동 특성에 미치는 영향을 이해하기 

위해, 로켓 노즐의 플룸 충돌의 유한 체적법과 연계하여, 먼지 입자의 유입 질유량을 

얻기 위해 잉여전단응력에 근거한 Roberts 침식 모델을 사용하였다. 그런 다음, 

입자상(Particulate phase)은 이산 유동 모델(Discrete phase model)을 사용한 라그랑지안 

체계(Lagrangian framework) 내에서 처리하였다. 입자 밀도, 입자 직경, 마하 수, 호버링 

고도의 영향을 조사하기 위해 침식률에 대한 파라메트릭 연구 또한 수행하였다. 

추가적으로, 다양한 입자 직경과 호버링 고도에서 표면 입자의 최대 속도와 

상승각을 계산하였다. 달 착륙 모듈의 구성 요소들에 가해지는 압력과 열 전도 분포에 

대한 정보는 공학적 설계에 사용할 수 있다. 마지막으로, 표면으로부터 침식된 입자에 

대한 높은 신뢰도 시뮬레이션은 입자의 직경, 표면에서의 입자 경사각 및 호버링 

고도에 따라 여러 시나리오가 발생할 수 있음을 나타냈다. 
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Dust-기체 다상 유동(Dusty gas flow)의 물리적 현상에 대해 더 나은 직관을 갖고 

고체-입자 간 상호작용을 이해하기 위해, 1차원과 2차원 Dust-기체 다상 유동에 대한 

벤치마크 문제를 시험하였다. Eulerian-Eulerian 접근법은 불연속 갤러킨(Discontinuous 

Galerkin, DG) 기법을 활용하여 용출항(Source term)및 보존 법칙(Conservation law)을 

해석함으로써 적용되었다. 여기서, 수치적으로 문제가 되는 용출항(Source term)에 

대한 처리는 불연속 갤러킨 방법의 내재된 특성(관습적인 절차의 요구를 제거함)에 

의해 해결되었다. 또한, 불연속 갤러킨 기법을 이용하면 시뮬레이션에 대해 고차 

수치기법을 적용할 수 있다. 모든 수치적 결과는 현재 연구의 신뢰성을 보장하기 위해 

선행 연구 결과에 대해 검증되었다. 

진공 상태의 문제를 해결하는 이러한 방법들은 반도체 제조 산업 등의 응용 분야에 

적용될 수 있다. 한 가지 예시로는, 현재 연구에서 간략히 설명될 대형 유기 발광 

다이오드(Organic light emitting diode, OLED) 디스플레이 제조 공정에 사용되는 

화학기상증착법(Chemical vapor deposition, CVD)이다. 
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Chapter 1. Introduction  

1.1 Motivation and objectives of the current work 

Fifty years after Apollo 11’s the first Moon landing  [1], lunar exploration has recently 

been resumed. While early lunar explorations were largely propelled by national prestige, 

the driving force now is the pursuit of opportunities to expand the economic sphere of the 

Earth to the Moon. Such opportunities include, for example, the discovery of water ice in 

the craters of the south pole of the Moon [2]. 

Reaching the Moon involves several stages, including launching from the earth, Earth-

Moon transfer, circumlunar orbit, and the final powered descent phase [3]. During the 

powered descent phase of landing on the Moon, as well as the ascent from the lunar 

surface after exploration, a complex dusty gas problem may occur, caused by the rapid 

expansion of rocket plume gas through the nozzle and its subsequent interaction with the 

lunar surface. The report of the appearance of a granular medium near to the lunar surface 

was covered by the early Moon exploration programs including Surveyors I and III. 

 When the lander approaches the lunar surface in the final step of the landing 

procedure, it is possible that the plume flow gets deflected toward the lander and effects 

the components loaded on the module. This deflected flow may exert disturbing torque as 

well as heat flux on sensitive parts of the lander. Further, once the rocket motor plume 

interacts with the lunar surface, some eroded particles from the regolith may get entrained 

into the flow field. These particles can not only alter the flow features but can also 

damage module elements of the explorer or previously settled vehicles and equipment at 

adjacent sites. 

Moreover, as observed in the Apollo programs (11, 12, 14-17), the particles can block 

vision and cause the malfunctioning of tracking sensors. To minimize the effects of dust, 
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the later Apollo 14 program adopted a pinpoint landing procedure, rather than the initial 

Apollo 11’s landing procedure, which allowed the lander to move horizontally a 

considerable distance at low altitude while under the dust influence. Also, in NASA’s 

2012 Mars Science Laboratory mission with the Curiosity lander, a two-step soft landing 

was adopted. This involved, first, hovering at an altitude high enough to avoid dust 

effects, and second, lowering the rover down to the Mars surface on bridles and an 

umbilical cord (called the Sky Crane maneuver). Furthermore, since many planetary 

investigations by major space agencies such as ESA, JAXA, NASA, ISRO, and CNSA 

were conducted, the plume-dust interaction issue became an essential and significant 

study. Variety of such mission is as follows: the Indian Space Research Organization 

(ISRO) plan for the first lunar landing in 2018, the Chang’E-4 lunar lander of China National 

Space Administration (CNSA) by the end of 2018, and NASA’s InSight (Interior Exploration 

using Seismic Investigations, Geodesy and Heat Transport) Mars lander in November of 

2018. 

In addition to the above issues, the entrained particles may jeopardize long-term 

exploration that relies on solar panels, which can be degraded by thermal effects and dust 

contamination. Electrically charged of dust particle was also reported by those who 

walked on the Moon. By all the observations, as Gaier [4] expressed, the influence of 

dust grains on the lunar surface can be assorted into nine categories: vision obscuration, 

false instrument readings, dust coating, and contamination, loss of traction, clogging of 

mechanisms, abrasion, thermal control problems, seal failures, and inhalation and irritation. 

Hence, having a comprehensive vision regarding the physics of gas-particle interaction is 

vitally important, particularly at the last stage of power descend of planetary missions. For 

these reasons, the Apollo astronaut John Young has claimed, “Dust is the number one 

concern in returning to the Moon!”[5].   
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A schematic of an impinging rocket motor plume and the subsequent dusty gas flow 

formed by the ejection of solid particles from the regolith is illustrated in Fig. 1. The 

multi-scale nature of the physical phenomena in this problem leads to the coexistence of 

various flow regimes; the plume expansion, shock and stagnation regions, local erosion, 

granular flow, dusty jet flow, and rarefied flow, which make the computational 

simulation extremely challenging [6]. 

 
Fig. 1 Schematic of an impinging rocket motor plume and the subsequent dusty gas flow 

formed by the ejection of solid particles from the regolith during the lunar landing adapted 

from [7]  

 

It is worthwhile mentioning that designing experiments, which resemble the lunar 

circumstances on the earth if not impossible is an overwhelming task. Indeed, this sort of 

restrictions makes computational fluid dynamics (CFD) an efficient tool for predicting 

this type of flow regimes. The conventional methods for solving highly non-equilibrium 

regimes including direct simulation Monte Carlo (DSMC) method or hybrid approaches 

(CFD-DSMC) provide accurate numerical simulation results, particularly for the flow in 

presence of dust grains, since DSMC method is based on the Lagrangian framework, and 
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it can handle particles with minor alteration in the general form of algorithm. Despite that, 

the multiscale nature of the power descending phase problem with the coexistence of 

various regime’s states including equilibrium, near equilibrium, slightly deviated from 

equilibrium, considerably deviated from equilibrium, and free molecular makes the use of 

DSMC method an inefficient approach for simulating the entire transient flow. Also, in 

the case of solving the near surface domain in which the flow would be continuum pair 

with the occurrence of eroded particles from the lunar surface, the application of hybrid 

method may not be appropriate.  In the present study, we investigated the near-field 

rocket plume-lunar surface interaction and subsequent regolith erosion and particle 

dispersal in detail. As the first task for this endeavor, the physical conservation laws with 

the classical constitutive relations of Navier-Stokes-Fourier (NSF) were solved, based on 

an FVM discretization. It is well-known that the NSF equations will fail to predict the 

flow in a highly rarefied condition. Therefore, applying the NSF model to problems in the 

near vacuum condition of the Moon may be questionable.  

However, when the focus is the near-field interaction of the plume and surface in a 

low altitude hover on the order of a few meters, most flow regimes turn out to be in either 

continuum or near-continuum. Further, for a five-nozzle configuration, the situation 

becomes even closer to the continuum condition. The use of the NSF model in the present 

problem will be justified by a comprehensive analysis of the degree of local thermal non-

equilibrium in the dynamic flow field based on the non-equilibrium entropy production 

associated with the energy dissipation arising from molecular collisions. Therefore, the 

present methodology can be regarded as an efficient simulation tool for engineering 

design purposes, compared to the previous computationally expensive DSMC method. 

Nonetheless, the second-order Boltzmann-based constitutive relations developed by the 
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authors [8-12] beyond the present first-order NSF constitutive relations may be necessary 

for a more accurate and far-field description of this challenging problem. 

Another vital piece in the present work is the regolith erosion and particle dispersal, 

both of which demand challenging modeling work. Few studies on modeling the regolith 

erosion and the effect of entrained particles on the gaseous phase have been reported in 

the past. Mathematical modeling and simulation of erosion phenomena from plume 

impingement on the surface for the Apollo mission was pioneered by Roberts [13, 14]. 

Based on the density distribution at the nozzle exit and the gas properties on the surface 

derived by normal shock relations, he calculated pressure distribution on the surface in 

terms of hover altitude, nozzle Mach number, the ratio of specific heats and pressure of 

the chamber. In another important work by Lane and Metzger [15], the trajectory of 

grains was predicted by utilizing the DSMC solution as input for simple equations of the 

particle trajectory model (PTM). Also, they modified the drag and lift equations to 

include the rarefaction and compressibility effects [16]. In another study, Li et al. [17] 

considered two-way coupling model of gas-particle flow with two different methods of 

treating particles to obtain a better insight of the impact of entrained grains on the module 

and surrounding area. 

To treat particle dispersal in gas, there are two distinctive approaches; Lagrangian and 

Eulerian [18]. In the present study, we employ a Lagrangian framework in which one- 

and two-way coupling of the discrete phase model (DPM) [19] with the NSF equations is 

easily described. In this model, particles are injected into the domain to simulate the 

eroded lunar surface particles. The coupling between the dust and gas can be either one or 

two-way, depending on the level of interaction of the phases. To determine the rate of 

particle influx, the Roberts model based on excess shear stress in [20] is applied at the 

lunar surface boundary. Also, a sensitivity analysis on the effect of the variation of 



 

6 

 

parameters on erosion influx in the Roberts model was conducted. Finally, the maximum 

speed and inclined angle of the particles from the surface were computed for various 

particle diameters and hover altitudes, which may provide valuable information for the 

analysis of landing procedures. 

In parallel to the above-mentioned numerical simulations, to have better insight 

regarding the physics in dusty-gas flows and knowing more about the effect of gas and 

solid particle interaction, one- and two-dimensional two-fluid model benchmark 

problems were adopted. The Eulerian-Eulerian approach was applied by solving the 

conservation laws along with source terms by utilizing Discontinuous Galerkin (DG) 

method; where the numerically problematic treatment of the source terms was 

circumvented by inherent features of DG method by which eliminates the need of any 

conventional procedures. Furthermore, the DG method gives the opportunity of applying 

the high-order solution in our numerical simulations. All the numerical results were 

verified and validated for zero-order Euler and first-order Navier-Stokes-Fourier 

equations in single phase and multiphase problems with previous works to make sure the 

fidelity of present studies.  

As the fidelity of the aforementioned numerical results was approved, one can extend 

the numerical method by considering some modifications such as applying slip or 

temperature jump boundary condition pair with conservation laws and first-order 

constitutive relations to solve more complicated problems under the condition of 

equilibrium, near equilibrium, and slightly deviated from the equilibrium state. To 

consider the effect of highly non-equilibrium regimes, one can implement the 

conservation laws along with second-order constitutive relations as [7] has done.  An 

example can be an estimation of accumulation of organic material in chemical vapor 
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deposition (CVD) systems to fabricate micro- to large panel displays (LCD or OLED) 

subject to vacuum or near vacuum circumstances.  

1.2 Background and review of previous studies 

As the main concern of this study is focusing on near-filed plume surface interaction 

as well as the dispersal of eroded particles, before digging into the main problem a 

literature review of the previous studies related the problem is needed. To this end, the 

survey is divided into three parts. Firstly, some critical works on the subject of nozzle 

plume and plume interaction will be studied. Secondly, the surface erosion physics and 

model will be discussed in the various highlighted works, and at the end, relevant papers 

will be investigated by considering the effect of rarefaction on multiphase flow.   

1.2.1 Literature survey on ‘plume and plume impingement simulation.’ 

The complexity of plume associated with surface interaction, resulting in the 

occurrence of various wave patterns such as expansion fan, different shock waves as well 

as strong shear layer, and also the existence of stagnation region which leads to a 

challenging issue called jet impingement. Since the jet impingement problem can be 

investigated from different aspects, in the present study, we will restrict to works relevant 

to the topic of this dissertation. 

  In the case of non-zero ambient pressure (near vacuum) which significantly differs 

from extremely vacuum condition, when the gas flow emanates from the nozzle exit 

expands freely into the flow filed. The gas at high pressure tends to adjust itself with the 

environment state to equalize the pressures. As a result, a jet boundary called the free 

boundary, associated with Kelvin-Helmholtz instability appears. All the waves, including 

the shocks and expansions, must reflect from the jet boundary in such a way to preserve 

the pressure downstream of the jet exit. In contrast to the solid boundary where the waves 
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are reflected as they collide, the free boundary returns a compression wave as expansion 

impinges and reflects an expansion when compression wave encounters the free 

boundary. The compression waves accumulate and form a barrel shock. A normal shock 

front is observed just after the interaction of hot jet gas with high velocity to the 

surrounding quiescent and extends towards the axis in a Mach-disk configuration. Several 

experiments [21-26] have provided valuable knowledge in plume-surface interaction; 

where, surface pressure was measured with respect to change in pressure ratio, flat plate 

inclination angle, and nozzle-plate distance. Nakai [25] has proved that the distance from 

the nozzle lip to the point where the jet shock first collides on the plate, plays an essential 

role in defining flow pattern. 

Analytical solution for the highly rarefied jet, in the collision-less limit, has been 

suggested by Khasawneh et al. [27] in the case of jet impingement on a flat surface. The 

results have been verified by DSMC solutions. In the other works, Cai [28] generalized 

the relations provided by Khasawneh for the case of inclined plates. Later, he [29] 

investigated the effects of rarefaction on jet impingement loads for a variety of regimes 

from continuum to collision-less flows, purposed analytical relations, and verified the 

results with DSMC solutions.  

Due to the restrictions of an experiment in producing rarefied conditions, and the 

associated high-priced equipment, researchers tend to use numerical tools. In many of the 

studies which deal with highly non-equilibrium regimes, and the main focus was toward 

the rarefaction effects, DSMC method [30-33] were utilized. Tosh et al. [6] applied a 

hybrid continuum-rarefied method to simulate the impingement of hypersonic rocket 

exhaust gas on the surface at the lunar environmental conditions. The final results (with 

the first-order accuracy in space) have been validated with available experiments. In the 

last few decades, various studies have investigated not only the rocket nozzle plume [34, 
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35], but also the effect of exhaust gas on the field of operation [36-39], the lander module 

components in space missions [40], and the surface of the landing site.  

He et al. [41] illustrated the aerodynamic effects of cushion engines on the explorer’s 

bottom, the landfall legs, and antenna in Chinese “Tanyue” project. They conducted a 

numerical study based on the DSMC method and analyzed the engine plume and its 

impacts on the lander components. It showed the existence of compression waves near 

the landfall legs, as well as high-pressure regions on the bottom caused by the presence of 

the landfall legs. In another work, Yim et al. [42] carried out an analysis for European 

service modules (ESM) on the plume effects of various engines, such as the reaction 

control system (RCS), auxiliary engines, and orbital maneuvering system engine (OMS-

E). They evaluated the heat flux generated by the plume on sensitive surfaces, and 

particularly on the solar panels, during a thermal analysis of the ESM engine. Sharma et 

al. [43] investigated the effect of multiple engine plumes and thermal load on India's 

second lunar exploration mission, Chandrayaan-2, using a Navier-Stokes solver coupled 

with the radiative transport equation. Zheng et al. [44, 45] and Wei et al. [44, 45] 

investigated the dynamics of soft-landing under different scenarios to guide the future 

design of manned lander or larger modules in lunar landing missions. 

1.2.2 Literature survey on ‘surface erosion modeling.’ 

The surface erosion occurs once the kinetic energy of the exhaust gas emanated from 

jet exit transfers to the surface stresses, and as a result, regolith particle being dislodged 

from the rest position and entrained into flow-filed. As demonstrated in [46], the erosion 

can be influenced by nozzle characteristics including the thrust level, the hover altitude 

and the degree of expansion of the jet, as well as regolith cohesion strength and particle 

size. As noted earlier, the surface erosion modeling for simulating erosion rate induced 

by plume-surface interaction for Apollo mission mathematically was suggested by 
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Roberts [47, 48] for the first time. The model is based upon the first principle assumption 

that the mentioned phenomenon occurs only when the gas-phase shear stress exceeds the 

critical shear strength of the soil. The model above has a deficiency on rigorous 

anticipation of erosion rate below a critical hover altitude. Moreover, it doesn’t cover the 

fundamentally variable  lunar condition and merely deals with shear process. Later on, 

Metzger et al. [20, 49] improved Roberts’ theory by scrutinizing the assumptions. The 

previously unrecognized diffusion-driven mechanism accommodated the new model. It is 

worth discussing that more fundamental elaboration is required in order to provide 

advanced models whereby it can take into account the complex phenomenological 

processes of surface erosion. Nevertheless, based on the objectives of simulation, the 

current models are capable of demonstrating large-scale phenomena to an acceptable 

level. For instance, the Roberts model was expanded upon by Morris et al. [50-52] vastly, 

and it was revealed that regardless of various reality-inconsistent assumptions, the theory 

is an adequate tool depending upon the purpose of simulation. 

1.2.3 Literature survey on ‘rarefied multiphase flow.’ 

The number of numerical studies considering the existence of solid particles in the 

plume flow field and their interaction on each other is considerably scarce. The extension 

of the suggested DSMC approach by Gallis et al.  [53] was carried out by Burt and Boyd 

[54] where the attention was given to solve the transportation of spherical particles in a 

rarefied gas flow according to apply two-way coupling. In other work, to circumvent the 

deficiency of the DSMC method in a continuum regime, Gimelshein et al. [32], by means 

of a hybrid model, simulated the small aluminized propellent thruster interacting with 

plume flow and expanding into the rarefied atmosphere by employing CFD-DSMC 

algorithm. A numerical approach based on the discrete element method (DEM) was 

developed by Liu et al. [55] in order to consider a single dust particle injection. The 
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injected particles are scattered in the flow field solution domain established by DSMC 

and gas kinetic BGK method. However, the inherent feature of the DEM, which is 

deterministic makes this approach expensive from the computational cost standpoint. He 

et al. [56] employed the DSMC method to the problem of the last stage of lunar landing 

called as power descend phase. He included all the possible interactions of dust grains 

and gas molecules. Morris et al. [50, 57] took advantage of NASA’s continuum flow 

solver [58] called as DPLR and loosely coupled with DSMC method to investigate the 

effect of the interaction of exhaust gas and lunar surface in two- and three-dimensional 

space. The continuum solver calculated the nozzle core flow and the non-equilibrium 

regime as well as eroded particle handled by DSMC solver [51, 52]. The significant 

effects of granular particles on the flow structures including shocks, wakes, and surface 

properties in high speed flows was investigated by Chinnappan et al. [59]. 

1.2.4 Literature survey on ‘fabrication of Organic Light Emitting 

Diode (OLED) 

Emission of light from OLEDs by applying electricity makes them suitable for digital 

displays. However, the manufacturing cost of OLEDs is very high. The high rate of waste 

of expensive organic materials is one of the most important reasons for the high 

manufacturing cost of OLEDs. To deal with this problem, Tung et al. [60] developed a 

novel thin-film deposition system which uses a planar source, loadable with any solvent-

mixed organic compounds. In order to prove the possibility of utilizing this system to a 

large area and various organic materials, they presented an experimental investigation 

along with DSMC simulation. They claimed that this system provides low-cost 

manufacturing for OLEDs by improving the material utilization rate and scaling up for 

deposition of large area-size substrate. 
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Farber et al. [61] simulated the production of organic light-emitting diodes. In this 

process, they deposited the layers of organic molecules from the gas phase on a substrate. 

The deposition takes place in a high-vacuum chamber. Simulation of this process is 

challenging because different parts of this system have different length scales from the 

order of 1 meter in the whole system to order of millimeter in nozzles of outgoing pipes. 

Furthermore, the OLED layer thickness is in the order of nanometers and pressure 

throughout the system differs from 10
-1

 to 10
-5

 Pa. Since in this system, the pressure 

decreases, and the Knudsen number increases sharply, only a coupled Navier-

Stokes/DSMC simulation is possible. They used ANSYS Fluent for the whole domain, 

while DSMCFOAM solver was applied in high Knudsen number regions.  

In optoelectronic devices such as thin film transistors (TFTs), organic photovoltaics 

(OPVs) and OLEDs, thin metal films have been used as cathodes and anodes. Different 

techniques are used to deposit metals such as Physical Vapor Deposition (PVD), Vacuum 

Thermal Evaporation (VTE). The latter is a high vacuum method which is commonly 

used for OLEDs, OPVs and TFTs. 

High vacuum methods have some disadvantages such as inefficient material utilization 

and high expense for large substances. However, by utilizing high vacuum, long mean 

free paths will be achieved, which makes it possible for metal atoms to reach the 

substrate without any collision. Consequently, providing uniform films is possible. Since 

methods like VTE using directional line-of-sight trajectory, the formation of conformal 

films on non-uniform substrates is not possible. As a result, deposition techniques based 

on non-line-of-sight such as chemical vapor deposition (CVD) and atomic layer 

deposition (ALD) attract the researcher’s attention. Navarro et al. [62] used a new 

technique to fabricate thin metal films based on vapor phase deposition (VPD), which is a 

non-line-of-sight method. 
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1.3 Outline 

This dissertation is comprised of three main parts starting with the section includes the 

first four chapters explain the theory, the next three belonging to second part and discuss 

the numerical results obtained in physics study of dusty gas flow during the descending 

phase of the lunar landing , and the last section contains a recent work associated with the 

OLED fabrication.     

In Chapter 2, the fundamentals of multiphase are briefly introduced. Chapter 3 

discusses the governing equations of the mathematical model of gas-particle multiphase 

flow pair with erosion mechanism and modeling. The discontinuous Galerkin method, 

finite volume method along with Discrete phase model as the numerical approaches for 

solving the Eulerian-Eulerian and Eulerian-Lagrangian mathematical models, are 

outlined in Chapter 4.  

Chapters 5, 6, and 7 are devoted to providing the results obtained in inviscid flow 

conditions (conservation law along with zeroth-order constitutive relation), viscous flow 

conditions (conservation law along with first-order constitutive relation) and near-field 

plume-surface interaction. The newly onset research regarding OLED deposition in near 

vacuum regime is included in chapter 8. Finally, in Chapter 9, conclusions are drawn, and 

the possible directions for future works are briefly pointed out.  
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Chapter 2. Physics of Multiphase Flows 

Multiphase flow is simply any fluid flow system: 

 Consisting of two or more different phases co-existing in the mixture, and 

 Having the same level of phase separation at a scale well above the molecular 

level.  

 It should be noted that in multiphase flow, a phase can be clearly expressed as a 

distinct category of material that has a specific inertial response and interaction with the 

flow in which it is immersed.  

  Multiphase flows are vastly observed in different geophysical flow conditions and 

technological applications. Biological flows like blood as well as most of the liquids we 

deal with on a daily basis such as milk and paints are examples of liquid bases containing 

suspensions. Preparation of coffee in a percolator needs steam and hot water to pass 

through coffee beans and is another example of multiphase flows which we may 

encounter daily. In this chapter, various types of multiphase flow are introduced. Since 

the main focus of the current study is on gas-solid flows after the introductory summary 

of the primary principles, then we resume our discussion by taking advantage of what is 

mentioned in this chapter.      

2.1 Various classification of multiphase flows 

Four general groups of multiphase flow have been identified based on the combination 

of the phases which are as liquid-liquid or gas-liquid, gas-solid, liquid-solid, and 

simultaneous existence of three phases. In this section, we will explain each of the 

aforementioned multi-phases pairings with some examples.  
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2.1.1 Characteristics of liquid-liquid and gas-liquid flow  

Liquid-liquid two-phase flow is composed of two immiscible liquids and is employed 

in various engineering applications, particularly in the petroleum industries, where 

transportation of oil and water mixture is the primary concern.  From engineering design 

purposes, it is crucial to predict the characteristics of oil-water flow, including flow 

pattern, water holdup, and pressure gradient rigorously. On the other extreme, despite the 

liquid-liquid importance, it has not been investigated to the same level as gas-liquid flows. 

The most complex two-phase flow is gas-liquid, thanks to coexistence of interface 

deformation and compressibility features of carrier phase. There is an infinite number of 

configurations that could be formed by the gas-liquid interfacial distribution. However, 

these configurations can be categorized into commonly called flow patterns. Various flow 

patterns have been observed either in vertical flow including bubble, churn, and slug flow 

or in horizontal flows, which particular example is stratified flow.   

 
Fig. 2 Flow patterns for vertical pipe flow of air and water. 
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2.1.2 Characteristics of gas-solid flows 

The gas-solid flows are involved in many applications. From technological processes 

to geophysical phenomena. The flow consists of the gaseous phase with suspended 

particle grains. The summary of the most well-known applications of such flow is 

illustrated below: 

Table 1 Presence of dusty-gas flows in various applications  

Technological processes 

Solid rocket boosters 

Flight in the presence of particles 

Fluidized beds 

Dust collectors 

Coal mine explosions 

Geophysical phenomena 

Volcanoes 

Avalanches 

Star formation 

Cosmic Explosions 

Dust (Sand ) storms 

Quick-sands 

 

The gas-solid is assumed to be a granular flow when wall-particle or particle-particle 

collisions are more dominant compared to the interstitial forces.  In the case of stationary 

particles, the governing physics identified on the particle surface is prevailed by viscous 

force. Thus the flow turns to the porous medium.   

2.1.3 Characteristics of liquid-solid flows 

It is called to flow with liquid continuum fluid companied by dispersed solid particles 

where the solid particles are transported in liquid. The fluid influences the solid grains by 

exerting drag and pressure forces. The slurry flow, which falls into this category, contains 

a thin sloppy fluid mixture occupied by fine particles in liquid for a vast range of 

industrial purposes as well as sediment transportation. Some natural instances illustrated 

in soil erosion due to rain and storm, waterjet cutting in industrial processes, and 

sediment transport in rivers and sea.  
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2.1.4 Characteristics of multiple phases (three-phase) flow 

This flow is also included in some engineering problems. As the name implies, these 

types of flow are identified by the simultaneous presence of three phases. Mostly they 

can be distinguished as a combination of two of the above categories. Examples include 

bubbles in a slurry flow and simultaneous presence of droplets and particles in gaseous 

flows. 

2.2 Overview of gas particulate flows 

As noted earlier, the presence of solid grains in the gaseous phase, which identified as 

the gas-solid flow has occupied the significant portion of industrial applications among 

all the various categories of the multiphase flows. A class of multi-phase flows, 

composed of compressible gases carrying a substantial amount of small particles like dust 

or droplets, has emerged as an exciting topic in recent years. The interest is largely driven 

by the increasing need to understand technological processes (e.g., explosions in coal 

mines [63], the separation of particulate matter from fluids [64], and the interaction of 

rocket plumes and lunar dust [65]) and natural geophysical phenomena (e.g., volcanic 

eruptions [66], cosmic explosions [67], and star formation [68]), as summarized in Fig. 3. 



 

18 

 

 

Fig. 3 Various applications of dusty gas flows adapted from [18] 

The dynamics of dusty gas flows are known to be significantly different from those of 

pure gas flows. This difference is mainly caused by the mass, momentum, and heat 

exchange that occurs between the two phases. In dusty gas flows with shock waves, such 

as coal mine explosions or the interaction of the lunar lander’s rocket plume with the 

dusty surface of the moon during the descent phase, there is a transition region where the 

velocity of the shock wave continuously changes due to the inertia and the heat capacity 

of the particles. Moreover, the mass exchange effects as a result of phase change or 

chemical reactions are essential in many applications [69]. Such complexities have 

motivated various theoretical [70, 71] and experimental [72, 73] studies. However, most 

of these studies have mainly focused on the one-dimensional shock tube problem in order 

to obtain a comprehensive physical understanding of the dusty gas flows, and 

consequently, the development of proper mathematical models. 

From a theoretical standpoint, there are two common approaches for predicting the 

dispersed flows: the trajectory (discrete or Lagrangian) and two-fluid (Eulerian-Eulerian) 

models [74].  In the trajectory model, the dispersed phase is described in the Lagrangian 

framework, while in the two-fluid model, the dispersed phase is treated as a continuum. 
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In the present study, the two-fluid model is preferred over the trajectory model, since it is 

not only applicable to a wide spectrum of particulate loading in multi-phase regimes but 

also incur a less computational cost, compared to the Lagrangian counterpart. The model 

is, however, not efficient when the distribution of particle size is the main interest since a 

separate set of equations should be solved for each diameter size. 

While most of the theoretical research has been limited to the one-dimensional 

numerical problem [75-79], many recent studies have focused on developing multi-

dimensional numerical tools with the capability of handling unstructured grids. Saito [80], 

[81] developed a two-dimensional numerical tool to solve the two systems of 

conservation laws using the finite volume method. Igra et al. [82] investigated shock 

wave reflection from a wedge in a dusty gas flow by using an accurate second-order 

scheme in a finite difference framework based on the generalized Riemann problem and 

dimensional splitting. Moreover, they conducted an extensive parametric study on 

particle size and mass loading in two different time steps. In another attempt, Igra et al. 

[83] extensively studied shock wave reflection from a wedge placed in various 

suspensions by using a finite volume method of a two-fluid model. 

On the other hand, Volkov et al. [84] solved the viscous two-phase gas-particle flow 

over a blunt body using a Eulerian-Lagrangian approach and investigated the effects of 

inter-particle collisions and two-way coupling. Pelanti and LeVeque [85] developed the 

fractional step method in the finite volume framework and applied the method to the one-

dimensional shock tube and two-dimensional volcanic eruption problems. Gurris et al. 

[86] solved the two-fluid model of dusty gas flows with a high-resolution finite element 

method along with a TVD type limiter, and Douglas-Rachford splitting method to handle 

the source terms. Recently, Carcano et al. [87] solved the problem of jet decomposition 

in both two and three dimensions using a second-order accurate semi-implicit finite 
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volume method. In another work, Carcano et al. [88] extensively investigated the grain-

size distribution on the dynamics of under-expanded volcanic jets.  Vié et al. [89] 

analyzed the capability of the Eulerian moment method for solving two-way coupled 

particle-laden turbulent flow systems. 

2.3 Principle parameters of gas-particle flows 

Prior to deal with the model selection, some substantial parameters need to be defined 

in order to choose proper mathematical approaches. The volume fraction of the dispersed 

phase (αs) and the mass loading (β) are used to define the extreme of phases’ interaction. 

Therefore, one can neglect the impact of solid phase on the carrier phase by applying a 

small magnitude of αs and β as a result the one-way coupling is satisfactory. In cases 

where the masses of both phases are comparable, to take both phases into account, the 

two-way coupling is necessary. For larger αs, to consider more governing physics 

including the particle-particle interactions (collision), agglomeration, and break-up may 

not be ignored, requiring a four-way coupling. The next factor which plays a significant 

role in defining the solid grains flow pattern in the flow field and enumerates how the 

phases can equilibrate is the Stokes number, calculated as the ratio of the aerodynamic 

response time of the particle (τs) to some characteristic time of the carrier phase (tref). The 

readers are referred to [90] regarding more details and comprehensive explanation of 

multiphase parameters. 

 

2.3.1 Definition of the volume fraction and densities 

In our considered multiphase gas-solid system, the solid phase is defined as small 

separate grains in such a fashion that the volume of each particle is small compared to the 



 

21 

 

overall volume of the solid material. The volume fraction of solid (dispersed) phase is 

then defined as, 

0

lim s
s

V V

V

V



 . 

(1) 

Here Vs and V are the volumes occupied by the solid and the total volume, respectively. 

The limiting volume, V0 is the volume in which flow properties do not vary significantly 

from point to point. Equivalently, the volume fraction of the gas (continuous) phase can 

be defined as: 

0

lim
g

g
V V

V

V



 , 

(2) 

where Vg is the volume of the gas phase in the total volume,, which is referred to as the 

void fraction in some literature. The sum of the volume fractions must be unity (the 

axiom of continuity).  

1s g   . 
(3) 

Accordingly, the bulk densities (apparent density) of the dispersed and continuous 

phase, which are related to the material density can be given by: 

s s s   . 
(4) 

g g g    
(5) 

 

2.3.2 Definition of the particle spacing 

Another parameter which plays a vital role in characterizing the mechanics of a 

dispersed phase flow is the particle (or droplet) spacing and is defined as the average 

distance between the dispersed phase elements. This parameter can be used to determine 

if a particle can be treated as an isolated system or not. The relation between particle 

spacing and volume fraction is as follows 
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. (6) 

Here d is the particle diameter. For l >> d, the particles can be treated as isolated and 

when l ~ 1 the interaction between particles cannot be neglected.  

2.3.3 Definition of the momentum and temperature response times 

The momentum (velocity) and thermal response times (τV and τT) are essential 

parameters in establishing dimensionless parameters to characterize the flow. The 

velocity responds time refers to a time that the particle or droplet takes action on the 

velocity alteration.  The term called temperature response time is defined by the 

responsiveness of suspended grains or droplets to the thermal changes in the carrier fluid. 

These parameters are defined in [91] as 
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c d
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
  

(8) 

where ρs and cm are solid phase bulk density and specific heat of the particle material.  μg 

and κg represent gas viscosity and thermal conductivity, respectively.  

2.3.4 Definition of the concentration and loading 

The ratio of the mass of the dispersed phase to that of the continuous phase in the 

multiphase mixture is defined as dispersed phase mass concentration or as the mass 

particle ratio. It should be noted that in some literature, the volume fraction of the 

dispersed phase is considered as concentration.  

s s s

g g g

C
  

  
  . 

(9) 
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Another critical parameter to the definition of the particulate flows is loading, which can 

be defined as the ratio of particulate mass flux to that of the continuous phase. The terms 

loading, mass loading, and particulate loading have also been used to denote the 

concentration. 

s

g

m

m
 . 

(10) 

2.3.5 Definition of the Stokes number 

A crucial parameter in fluid-particle flows to characterize the response rate of the 

particles to changes in fluid motion or, to evaluate the kinetic equilibrium of the particles 

with the carrier gas, is the Stokes number, defined as 

V

ref

St
t


 . 

(11) 

1St  implies that the response time of the particles is much less than the 

characteristic time of the flow. In this case, the particles have enough time to equilibrate 

with the career phase leading to nearly equal velocities. These types of flows can be 

safely simulated with a one-way coupled model. On the other extreme, when 1St , the 

response time of the particles is much more than that of the career phase. Consequently, 

particle velocity is little affected by the fluid velocity change. A two-way coupling 

algorithm should thus take into account the back-influence of the particle phase on the 

career fluid.  

With the same methodology, a thermal Stokes number can be defined as the ratio of 

the thermal response time to the characteristic time of the flow to provide an 

understanding about the response rate of the particles towards temporal changes in the 

flow.  
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Chapter 3. Governing mathematical model of 

multiphase gas-particles flows 

 

3.1 Survey on various mathematical models for multiphase 

flows 

To describe mathematically the dusty-gas flow and all other multiphase classes based 

on assumptions made in the dispersed phase, one can categorize the models into two 

distinct families. The first group would be Eulerian where the particles are considered as 

a continuous phase identical to carrier fluid, and the second category is the Lagrangian 

approach in which the grains are analyzed as a discrete phase. In the latter framework 

(alternatively known as trajectory, non-continuum or Eulerian-Lagrangian model), the 

motion equation of Newton is governed to each particle which is traced in the entire 

domain. On the other hand, in the Eulerian approach (also referred to as continuum or 

Eulerian-Eulerian model), a system of partial differential equations are applied to the 

continuum solver in which the particles are assumed as a united phase. There would be 

another family to categorize multiphase modeling where basically it is covered by the 

Eulerian framework. This group is called a mixture model, where the phases are 

considered as an equivalent single phase with the characteristics of a continuous fluid and 

can be included in sub-division of the Eulerian framework. The properties of the mixture 

phase are derived from the averaged features of the phases.    

. A third category (or a sub-category of Eulerian models) can be devoted to mixture 

models, where both phases are defined by solving the continuum-based equation of a 
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single fluid with modified properties. Throughout the present study, the carrier fluid (gas 

phase) being modeled by applying the Eulerian framework. However, it should be noted 

that employing a Lagrangian approach to solve continuum fluids could be an efficient 

strategy in specific cases.   

The Eulerian family, in comparison with the Lagrangian counterpart, is more diverse 

in terms of sets of sub-categories to be applied. While two-fluid and mixture models are 

capable candidates for the solution of dispersed flows, volume of fluid (VOF) method, 

homogeneous equilibrium model (HEM) and two-fluid VOF method have shown 

desirable features in resolving separated flows or in conditions where the tracking and 

locating the fluid-fluid interface is of importance. The most popular models of the 

Lagrangian family include discrete particle model (DPM) and discrete element method 

(DEM). While DPM can produce fast computations compared to DEM, it is known to be 

appropriate only for modeling dilute particle flow (with particle volume fractions of less 

than 0.12). On the other hand, DEM can provide accurate solutions for a broader range of 

flow regimes based on particle concentration. The high computational demands in the 

methods above motivated the development of models such as the dense discrete phase 

model (DDPM) and multiphase particle-in-cell (MP-PIC) method in which the particle-

particle and particle-wall collisions are presented by a force function rather than being 

explicitly tracked. This categorization is summarized in Table 2. 
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Table 2 Most well-known mathematical models for the simulation of particulate flows 

 

3.2 Selection of appropriate model  

 The determination of an appropriate approach is based upon the investigated 

characteristics of the flow under study and the feasibility of the model to resolve the 

features of interest. In fact, due to the relative merits and limitations of every 

computational model or scheme, one should conclude specifying a suitable method for a 

specific application. From a more general standpoint, it is believed that the Eulerian-

Eulerian approaches are computationally more economic than that of the Eulerian-

Lagrangian (or Lagrangian-Lagrangian) methods, though the latter predicts rigorous 

numerical solutions. The preference of computationally low-cost model may provide an 

opportunity to investigate more details of the whole transient phase of the flow. While it 

may require relatively more considerable computational effort to the same applied to the 

Lagrangian models. A comparison between the two general categories of models of 

simulating multiphase flows, which summarizes the merits and drawbacks of each model 

is provided in Table 3. 



 

27 

 

 

Table 3 Comparison of Eulerian and Lagrangian  

 

It can be deduced from the tabulated pros and cons of the two approaches that the 

proper model of resolving the flows should be applied according to the strength of each 

model and based on the specific requirement of the simulation.  

The volume fraction of the solid phase flow can be considered as one factor of the 

model selection to define various regimes of flow. Fig. 4 is illustrating the classification 

as mentioned earlier [90]. 
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Fig. 4 Classification of particulate flows and the coupling effects based on solid volume 

fraction 

The particulate flows (including dusty gas flows) can be categorized into dispersed 

and dense. For volume fractions higher than 10
-3

, the regime is categorized as dense, 

where high-frequency particle-particle collisions and contacts influence the flow structure. 

The volume fraction of 10
-1

 marks the boundary of collision dominated, and contact 

dominated flows. The other extreme, i.e., volume fractions of less than 10
-3

 corresponds 

to the dispersed flow regime. When the volume fraction is less than 10
-6

 (or 10
-4

 in some 

literature), the flow is called sparse, and only a one-way coupled modeling can provide 

satisfactory solutions [91]. In Table 4, the suitable mathematical model based on the 

loading level is illustrated.  

Table 4 Selection of the most efficient model based on the type of multiphase problem, adapted 

from [7] 

 

In the problem of Lunar landing, which has been the central motif of this dissertation, 

a wide range of particulate loadings may exist. Moreover, the Eulerian models can 

provide acceptable results in a wide range of applications— especially when the volume 

fraction of the two phases is comparable or when the interaction of the phases signifies 
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the hydrodynamics of the flow as shown in Table 4. Also, it should be mentioned that we 

have also applied Lagrangian for very low loading and low volume fraction since the 

model can be computationally economic in this range as it is depicted in Table 4. In Fig. 

5, categorization of flow regimes based on the volume fraction of particles, number 

density, and particle diameter is provided. Moreover, the regime of interest (marked by a 

dashed circle) is determined based on the approximate values of the parameters above in 

a typical Lunar landing obtained from previously published results for Apollo descent 

engine. Thus, the two-fluid Eulerian model has been employed to the number of dusty-

gas benchmark problems as well as the Eulerian-Lagrangian one- and two-way coupled 

approach has been considered as a suitable/efficient tool to be applied in the Lunar 

landing problem.  
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Fig. 5 The range of encountered regimes in the Lunar landing problem overlaid on the 

classification of the particulate flows based on number density and particles volume fraction 

It is worth to note that both dusty gas flows and gas-droplet flows are a sub-division of 

gas-particle flows. They are distinguished by the fact that mass transfer does not occur in 

the former but occurs in the latter. Thus, the above discussions are extendable to gas-

droplet flows as well.  

The rest of this chapter is devoted to the introduction of the generic form of the two-

fluid model, which is the focus of current work. Furthermore, variants of the models for 

different types of problems are discussed, and constitutive relations of non-conserved 

variables, which are the primary source of the deviation of models are introduced.  

3.3 General two-fluid model balanced laws 

The two-fluid model is formulated by considering two separate sets of conservation 

equations which govern the balance of mass, momentum, and energy for each phase of 

the two-phase system.  The interaction of the two phases is then taken into account via 

source terms, i.e., by momentum and heat transfer exchange between the gas and 

particles. Other interfacial effects, including lift and gravity, can be neglected since they 

are small compared to drag and heat transfer. In cases where the interface tracking is of 

interest, solving an additional face tracking model is necessary. However, in most of the 

dispersed solid-gas multiphase flows, the evolution and growth of interface if not 

unimportant, it is of secondary importance. In this section, the conventional assumptions 

made for computation of dusty gas flows are introduced. Then the general form of the 

conservation laws is provided, and the constitutive equations necessary to close the 

equations are introduced in the subsequent subsections. Finally, we provide the 

dimensionless form of these equations and briefly explain the significance and role of the 

non-dimensional parameters that appear in the mathematical model.  
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3.3.1 Adopted hypotheticals of a two-fluid dusty gas model 

Several assumptions, conventional in the pioneering and previous literature are 

introduced in order to simplify the computations. These assumptions might be further 

refined for specific purpose applications in order to resolve the governing physical 

phenomena which are significant in that specific problem. These general assumptions in 

the majority of the works which considered dusty gas flows are as follows  

– the gas phase is considered as compressible which follows the perfect-gas law; 

– the solid phase is considered as incompressible;  

– the particles have a constant density (constant microscopic density); 

– the thermal and Brownian motion of particles are neglected; 

– the number density of the particles should be large enough not to violate the continuum 

assumption; 

– particles are assumed to be uniform sized spheres with a constant diameter; 

– the inter-particle collisions are neglected (and thus no pressure term in the solid phase 

conservation law); 

– specific heat of the particle’s material is constant, and the temperature is uniform within 

each particle; 

– the particles are considered as inert; 

– the gravitational and buoyant forces are negligible; 

– the volume occupied by the solid phase is negligible compared to that of gas; 

– The gas is considered as inviscid. Therefore, viscous and heat-conduction effects are solely 

considered between the gas and particles;  

– the turbulence effects of gas and particles are neglected 

– the effect of particles’ wake is neglected. 

While some of the assumptions introduced above are consequent of fundamental 

characteristics of the model which cannot be ignored, there is room for modifying some 
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of the other assumptions which have been used in the previous literature in order to 

provide solutions closer to reality specific to the problem under investigation.  For 

example, the effect of gravity (which finds importance in problems such as volcanic 

eruptions) can be quickly taken into account by additional source terms without 

disturbing any fundamental assumptions [87, 92, 93]. The models for inter-particle 

collisions has been also proposed [94-96]. The viscous effects in the gas phase can also 

be considered. Kinetic theory approaches have also been considered for continuum 

modeling of the dispersed phase [97].  

3.3.2 Conservation laws of partial differential equations 

In this section, a simplified but general two-fluid model of dusty gas flows will be 

explained briefly. In what follows, the carrier phase (gas) and the dispersed phase (solid 

dust) are indicated by the subscripts g and s.  

Under the conditions above, the conservation law can be written as follows: 

For the gas phase, 

t g g  U F S , (12) 
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moreover, for the solid phase, 

t s s   U F S , (14) 
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,

( ) .

s s s s s

s s s s s s s s s s

s s s s s s s s s sE E

   

   

    

   
   

  
   
      

u

U u F u u Π

u Π u Q

, (15) 

Here the U, F, and S are the vectors of conservative variables, fluxes, and source terms, 

respectively. The variables t, α, ρ, u, E, p, T, Π, and Q represent time, volume fraction, 

density, velocity vector, total energy, pressure, temperature, stress tensor, and heat flux 

vector. Further, D and Q show interphase drag and heat flux, respectively. The dust 

density ρs is assumed to be constant.  

3.3.3 Axisymmetric conservation law equations in three-dimensional 

space form 

The above system of equations was written in a general form and can be easily re-

written for one to three-dimensional flows. However, a particular case is the three-

dimensional flows with axial symmetry. A two-dimensional formulation in the two space 

variables (x, r) can be achieved by rewriting the equations in cylindrical coordinates (x, r, 

θ). Axisymmetric flow equations for the inviscid gas phase are provided in here as they 

are the governing equation in most of the cases of this thesis. Extension of this system of 

equation for viscous flows and as well as for the dust phase is trivial.   

1 2( ) ( ) ( )g g g g g
t x r

  
   

  
U F U G U S S  

(16) 
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 (17) 
 

In the above relation, x and r are the axial and radial directions; u and v are the 

corresponding velocities. F and G are the inviscid flux in axial and radial directions. S1 

and S2 are source terms responsible for phase interactions and axisymmetric geometry.  

3.4 Constitutive relations for a two-fluid dusty gas model 

To close the conservation law equations mentioned in the previous sections series of 

constitutive relations are necessitated. These closure relations are introduced in this 

section. Employment of different constitutive relations for the non-conserved variables 

results in variants of the generic model, which will also be discussed in the following 

sections.   

3.4.1 Closure of volume fraction  

This closure is an indication that the phases are treated as interpenetrating continua, 

defined as  

0 1, 0 1,

1.

g s

g s

 

 

   

 
 

(18) 
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3.4.2 Equation of state and total energy for an ideal gas 

The equation of state expresses the gas pressure in terms of other gas properties: 

g gp RT , 
(19) 

where R is the gas constant.  

The solid phase does not require the equation of state since it is treated as incompressible. 

The total specific energy of the gas and particulate phases are defined as 

21

2
g v g gE c T  u , 

(20) 

21

2
s m p sE c T  u , 

(21) 

where cv and cm are the specific heat capacity of the gas at constant volume and the 

specific heat of the particle material. 

3.4.3 Drag forces on spherical particles 

As stated by Miura and Glass [75], the drag force that solid particles exert on the gas 

phase can be expressed as, 

,

3
,

4

s g

g s D g sD C
d

 
 u u

  
(22) 

in which d is the particle diameter and CD is the drag coefficient computed as a function 

of the Reynolds number based on the particle diameter and relative velocity of the 

particle to the gas (i.e. Re /u ud g g s gd   ). Based on experimental studies of Morsi 

and Alexander [98], drag coefficient on a particle can be defined as a function of 

Reynolds number as follows 

1 2
0 2Re Re

D

p p

a a
C a   .  

(23) 
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  where 0a , 1a  and 2a  are empirical coefficients which differ for different Reynolds 

numbers. 

The other expression for DC , which is widely used is provided by Durst et al. [99] 

0.68724
(1 0.15Re )

Re
D p

p

C   . 
(24) 

A better estimate is the following well-established semi-empirical correlation [92], 

 0.68724
1 0.15Re , if Re <1000

Re

0.44, if Re >1000

d d
dD

d

C




 



  
(25) 

Other drag coefficient models are also evaluated in the literature [100] including the 

early models by Newton, Stokes and Oseen defined as 

Newton  0.44DC    51000 Re 2 4.10d    

Stokes  
24

Re
D

d

C    Re 1d   

Oseen  
24 3

1 Re
Re 16

D

d

C
 

  
 

 Re 1d   

(26) 

Researchers were kept improving the calculation of drag coefficient to obtain a wide 

range of validity, a number of those estimations are introduced, such as: 

Klychko [101]  
 

2/3
Re24

1
Re 6

D

d

C
 

  
 
 

 Re 1000d   

Gilbert [102]   
0.85

0.48 28 ReDC


     5Re 2 4.10d   

Clift [103]

 

 
 

0.687

0.687 5

1.16

24
1 0.15Re , if 0 Re <800

Re

24 0.42
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Re 1 42500 Re

d d
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d d
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


 


 
   
 

 

(27) 
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 To consider the gas compressibility, different models of modified drag coefficient 

based on Mach number, have also been proposed by Henderson [104].   

 
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2 8
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(28) 

where,  

2
S M


 . 

(29) 

The effect of Knudsen number is also taken into account in determining the drag 

coefficients which can be found in the literature [105], 

  0.68724 / Re (1 0.25Re )DC A    where  1/ 1 Kn 3.83 1.28exp( 1/ Kn)A       . 

Selection of suitable and efficient drag models applied in the dusty gas flows are 

available in the literature such as [81]. Calculation of the drag in the studies above 

indicated almost similar results except for low Reynolds number (Re<1) where Stokes 

and Oseen hypothesis is valid. However, negligible variation in results may lead to the 

choice of a model with less complexity. As it is stated in [106], the use of incompressible 

drag coefficient for Mach number in the early stages of the supersonic regime could be 

sufficient. Therefore, even though most of the flow problems under investigation in this 

work are compressible flow simple piecewise functions such as the one provided in (25)  
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is used. The main purpose of this selection is to keep consistency with previous studies 

[80, 85, 86] as well as taking into account the computational efficiency. It is worth 

mentioning that more investigation on the calculation of the drag coefficient is needed 

after obtaining an intermediate solution.  

The heat transfer, which is proportional to temperature difference, can be expressed as 

a function of the Nusselt number [107], 

g

, 2

6Nu
( )g s s g sQ T T

d


  , 

(30) 

1

2

1

3Nu 2 0.65Re Prd   , Pr
p g

g

c 


 . 

(31) 

Here μg and κg  represent the viscosity and thermal conductivity of the gas, respectively. 

More sophisticated relations for Nu number are expressed in [108-110]. 

3.4.4 Calculation of non-conserved variable of the carrier phase 

The first step in describing the modeling of the majority of the particulate flow is the 

foundation of a rigorous hydrodynamic explanation for particulate phase[111]. However, 

in the Lunar landing problem, this is not the case, i.e., the establishment of the accurate 

model is as important as or even more critical than the modeling of the dust phase. The 

zeroth and first-order approximation of high order terms in constitutive relations would 

recover the Euler and Navier-Stokes classical relationships. However, by a second order 

approximation (equipped with the concept of balanced closure) a non-linear coupled 

constitutive relationship (NCCR) can be achieved, where proposed by [12]. When the 

viscous effects become significant, the validity of classical relationships are questionable, 

and the application of second-order Boltzmann-based relationships are necessary. These 

relations are introduced in this section, for the sake of comparison, particularly the 

second-order relations are also included. However, the numerical simulations of the 
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present study covers only up to the first-order constitutive relations due to the fact that 

under specific adopted circumstances as well as the governing physics of the near-filed 

plume-surface interaction problem in the lunar landing case, the closure relations are free 

of using second-order approximation.  

The constitutive relations from zero-order to second order based on the balanced 

closure of Myong [112] are provided in Table 5. 

 

 

 

 

Table 5 Summary of zeroth to second order Boltzmann-based constitutive relationships, 

adapted from [7] 

Zeroth-order Boltzmann based (Euler-type) constitutive models 
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0,
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
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Second-order Boltzmann based (NCCR type) constitutive models 
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The bulk viscosity, shear viscosity, and second coefficient viscosity are related 

according to the following relation, 

2 .
3b     (32) 

Here, a distinction should be made regarding Navier-Fourier (NF) and Navier-Stokes-

Fourier (NSF) terms. In the latter, the Stokes hypothesis ( 0b  ) implies 2
3

   . 

3.4.5  Calculation of non-conserved variables of the solid phase 

The most portion of previous woks in application of dusty gas flows have presented 

the numerical results for Euler-type relations (Πs=0 and Qs=0) [69, 71, 75, 76, 83, 85, 

106, 113-117] by two-fluid model and it was revealed that their approach is capable of 

explaining the hydrodynamic behavior of  solid phase sufficiently. The pressureless 

assumption in the solid grain phase equations in dilute regimes appears when the pressure 

and the shear stresses tend to zero as the collision term is proportional to the square of 

particle phase volume fraction. Nevertheless, the above-mentioned presumption results in 

a flaw in the two-fluid model thanks to occurrence of delta-shocks and advent of intense 

particle segregation. Moreover, when the role of particle-particle collisions in the 

description of the solid phase is not negligible, the closures models for the solid stress 

tensor would play a significant role in the modeling. The closure models are the main 

elements that make the two-fluid models to be distinguished from each other 

considerably [111]. As Castellanos et al. [118] expressed, four different granular regimes 

can be defined as illustrated in Fig. 6. These are plastic, inertial, fluidized, and entrained 

regimes which are characterized by the tightly packed granular bed, inter-particle 

collisions, interstitial effects, and large mean free paths, respectively. The latter, also 

known as rapid granular flow, is of interest when the simulation of erosion and 
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consequent entrainment of the eroded particles into flow field due to impingement of 

descent engine plume of a Lunar Lander.  

Before every simulation steps, the characteristics of every existing regime should be 

identified to have a wise selection of mathematical modeling. In power descend phase of 

the lunar landing problem as it is depicted in Fig. 7 three different regions near to nozzle 

proximity could be defined in order to estimate the Stokes number and particulate loading. 

Region 1, just beneath the nozzle, is the onset of erosion. Here the gas flow after 

undertaking the strong stand-off shock wave would stagnate because of a confrontation 

with the surface. In this area, the gas static pressure is maximized, and the gas velocity is 

tending to zero. In the second region, the fictitious passage formed by the stand-off shock 

and the surface is resembling converging-diverging nozzle whereby the gas accelerating 

to reach supersonic velocities. The maximum erosion happens in this area due to the high 

dynamic pressure. In region 3, both the particles and gas molecules expand further into 

Moon semi-vacuum atmosphere and undergo free traveling with high velocities. The data 

range of the simulation results by previous studies indicates that the granular flows in the 

limits of suspensions and early fluidized bed may emerge depending on the erosion rate.  
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Fig. 6 A typical phase diagram determining the transition between granular flow regimes as a 

function of particle diameter, adapted from [118] 

 

 

 

Fig. 7 Graphical categorization of different regions with various specifications. Regions 1-3 

are quantified in Table 6, adapted from [7] 

 

Properties of the various regions from Fig. 7 have been summarized in Table 6. 

Table 6 Range of important parameters in different regions of  Fig. 7 

 
Region 1 Region 2 Region 3 

ug Very low High High 

us 0 Low High 

ρg O (10
-3

) O (10
-4

) ≥ O (10
-4

) 

ρs Constant Constant Constant 

αs Very low High Intermediate 

αg ≈1 Low Intermediate 

β ≈0 Intermediate High 

St ≪ 1 < 1 ≈ 1 
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As shear stresses are depended on viscosity, the first step to investigate the available 

models to define solid shear stresses is to classify the solid viscosity, where three 

approaches have been illustrated. Several early experimental researches [119-121] have 

conducted an investigation into the dependency of solid phase pressure on particle 

volume fraction in which the experiments were carried out by using constant viscosity. 

These models are known as constant viscosity models (CVM). The second introduced 

model belongs to particle turbulent viscosity. Nonetheless, this model is confined to 

dilute dusty gas flows since particle-particle interactions are negligible. Also, kinetic 

theory-based relations have been proposed that leads to a class of closure models for 

kinetic-collisional stresses[97, 122-125]. These approaches are known as the kinetic 

theory of granular flows (KTGF). The significant feature of this model is referred to 

providing a connection between microscopic and macroscopic descriptions of the 

granular flow. These models have been mostly employed in fluidized beds and moving 

beds, nonetheless, they can be applied (with a reasonable level of approximation) in 

different applications when the particle-particle collisions (through binary and frictional 

contacts) modeling is crucial. It should be noticed that the particle granular and molecular 

gas flows are two different worlds where one can find significant differences. The main 

discrepancies come form 1. elastic collisions in gases versus elastic-plastic deformation 

and surface friction in particles and, 2. conservation of kinetic energy in an isothermal 

system for gases versus inexistence of an equilibrium state in granular systems without 

external energy sources [111]. The considerable improvement compared to the DEM 

solution was observed by Schneiderbauer et al. [125] by applying the model to their 

method.  Two-fluid models based on KTGF has indicated the appropriate capability in 

providing the particle pressure, viscosity, and other transport coefficients; besides, less ad 

hoc adjustments are needed,  compared to the previously discussed models. Despite all 
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features, the models undergo some restrictions [124] which are under development. An 

alternative approach for the models above is the application of higher-order constitutive 

relations, which can be derived with a similar approach applied for the gas phase, detailed 

in [7]. Even though the KTGF provides promising results for particle volume fractions 

less than 40%, once it increases more than 40% and the multiple particle-particle 

fractional contacts come into the picture. As a result, the physics description of the dense 

granular flow would fail in the context of kinetic theory.   

 The formulations of KTGF are comprehensively being addressed in [7] but to become 

more familiar with those relations, a brief introduction is provided here. The KTGF 

allocates the time evolution of the granular temperature as follows, 

     
3

. : . 3
2

s s s s s s s s s s s s sT T p
t
     

 
         

u I Π u Q T ,
 (33) 

where β and γs are the momentum exchange coefficient and the dissipation of kinetic 

energy due to inelastic particle collisions, respectively. Moreover, pressure tensor 

(indicates the transport of momentum by thermal velocity): 

( , , ) ( , , )s sm f t m f t d

  

  

    P cc r v cc r v v , 
(34) 

2 21 1
( , , ) ( , , )

2 2
s s smc f t mc f t d

  

  

    Q c r v c r v v . 
(35) 

where r is the Cartesian coordinates of the physical space and v the molecular velocity 

which can be stated in terms of the stream (macroscopic) velocity u and thermal (peculiar) 

velocity c. The symbol ...   represents integration over velocity space v.  

In KTGF, to achieve explicit expressions for the above variables, the distribution function 

is expanded about the equilibrium distribution function to second order (via the 

Chapman-Enskog expansion) to yield the following expansion  
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,s s sp P I Π  
(36) 

.s s sT  Q  
(37) 

Thus,  

     
2

.
3

T

s s s s s s s  
                

Π u u u I .
 (38) 

The undefined variables in the above relations, viz., κs, λs, μs, and ps, can be 

determined if the collision integral of the Boltzmann equation for the solid particles are 

identified. Hence, after introducing a joint probability function (2)

sf  in terms of solid 

distribution function fs and pair distribution function g (which itself is dependant upon the 

distance 12 2 1r  r r  and the solid fraction), the collision integral of the solid phase can 

be estimated bringing about explicit expressions for pressure, shear viscosity, and thermal 

conductivity: 

5

96

s
s s

T
d 




 
(39) 

75

384

s
s s

T
d 


  

(40) 

s s s sp T   
(41) 

The above expressions are derived for sufficiently low particle density ( 1g  ) and can 

be applied to the limit of dilute flow.  
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3.5 Governing equations of the two-fluid dusty gas model in 

dimensionless form  

The following dimensionless variables and parameters are used to derive the non-

dimensional governing system of equations. Here the dimensionless parameters are 

superscripted by *, and the subscript ref denotes the reference values, 

* * * * * *

* * * *

* *

, , , , , ,

, , , ,

, .

ref ref ref ref ref

ref ref ref ref
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 

 

     

   

 

x u
x u

  
(42) 

In the above relations, x and cp are the spatial coordinates and the specific heat capacity 

at constant pressure, respectively. We then define the references and non-dimensional 

parameters as follows: 
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(43) 

After applying these to equations (12) and (15), the following non-dimensional system of 

equations can be derived:  
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(44) 

Here the superscript * has been omitted for the sake of simplicity. The reference values 

for the length, pressure, temperature, and velocity are defined for each test case 

depending upon the problem of under investigation.  

3.5.1 Dimensionless parameters and their physical interpretation 

The substantial role of the dimensionless parameters in solving fluid dynamics 

problem aids in better understanding of governing physics. The introduced parameter in 

the previous section is tabulated in Table 7.  

The Reynolds number is regarded as the ratio of inertial forces to viscous forces. Flow 

regimes with high Reynolds number can be modeled by inviscid Euler equations where it 

implies the dominance of inertial forces and the negligible effects of viscous terms. On 
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the other extreme, i.e., Re 1 , comprises a class of flow regimes known as Stokes or 

creeping flow that can be modeled by Stokes equation (linearized Navier-Stokes).  

The ratio of fluid velocity to the speed of sound in the medium is called Mach number 

and can be applied to characterize the compressibility effects. The Mach number equal to 

0.3 is a criterion to distinguish compressible flow with the variation of density from the 

incompressible flow in conjunction with constant density. 

The Prandtl number is the ratio of momentum dissipation to thermal conduction. 

Pr 1  implies the dominance of momentum diffusivity and Pr 1 represents the 

dominance of thermal diffusivity.  

The Eckert number characterizing the heat dissipation in high speed flows for which 

dominance of viscous effects is remarkable, is supposed to be the ratio of kinetic energy 

to enthalpy (or heat dissipation to advective transport). When 1Ec , viscous dissipation, 

pressure alters, and body forces in the energy equation can be ignored. 

The Peclet number, defined as the ratio of adjective transport rate to diffusive 

transport rate. When Pe , the heat diffusion can be neglected due to the small-time 

scale of the advection compared to the large time scale of the thermal diffusion.  

The ratio of convective to conductive heat transfer is defined by the Nusselt number. 

1Nu   is known as slug flow. When Nu is large, conductive heat transfer (diffusion) is 

negligible. 

Stokes number can be applied to characterize the response rate of the particles to 

changes in a fluid motion. When 1St , particles can follow the career phase (one-way 

coupling) and when 1St , particles have an impact on the carrier phase (two-way 

coupling). Froude number estimates flow inertia to the external field where the latter in 

most applications is the gravitational forces. Fr corresponds to a high-velocity flow 

in which gravitational force is negligible.  
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Table 7 Non-dimensional parameters and their physical interpretation 

Dimensionless number Definition Mathematical equation 

Reynolds number 
Inertial forces 

Viscous forces 
Re =

ref ref

ref

u L


 

Mach number 
Inertial forces 

Compressibility forces 
=

ref

ref

u
M

a
 

Prandtl number 
Dissipation 

Conduction 
Pr =

ref p
ref

ref

C


 

Eckert number 
Kinetic energy 

Enthalpy 

2

ref

p ref
ref

u
Ec

C T
  

Peclet number 
Advection 

Diffusion 

ref

ref

Lu
Pe


  

Nusselt number 
Convective heat transfer 

Conductive heat transfer 

ref

ref

h L
Nu


  

Stokes number 
Particle response time 

Fluid characteristic time 

s

ref

St
t


  

Froude number 
Inertial forces 

Gravitational forces 

refu
Fr

gL
  

 

3.6 Lagrangian approach 

Another method to a model particle cloud in a fluid-particle flow is a Lagrangian 

approach, which can be divided into two groups of methods including discrete element 

and discrete parcel (particles). In those methods, the trace of individual particles or 

parcels of the particle are followed through the field, and the determination of the local 

properties are carried out by the particles or parcels features as they cross the point in the 

field. 

The equations in DEM are applied to each particle in the field covering the body 

forces, contact, and fluid dynamic. The features of the cloud are described by solving 

simultaneously the motion and position of each element. This method benefits from 

taking into account the properties of particle-particle interaction. However, it contains 

drawbacks including lack of computational capability for solving a practical problem 
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with numerous particles as well as limitation of particle shapes which is constrained to 

the sphere.  

The particle field in DPM is assorted to the group of particles called as parcels in 

which they have identical properties and move together. The parcel mobility is 

determined based on single particle motion in the parcel called “computational” particle. 

The motion equation of this model in dilute flows application is developed to take into 

account turbulent fluctuation of carrier phase, particle-particle collision, and particle-wall 

interaction. On the other hand, the equation of mobility of the computational particle for 

dense flow applications is extended in order to include particle-particle interaction based 

on the gradient of the solids stress. The most advantage of using DPM lies on breaking 

down the particle field into parcels, which results in computationally feasible in the 

modeling of gas-particle flows for practical problems.  It can be referred as a 

disadvantage of the DPM that it suffers from the lack of the details for particle-particle 

interaction. 

3.7 Erosion mechanism and modeling 

The final significant challenge in the proposed strategy to take into consideration the 

multiphase effects in power descent phase of the lunar landing is surface erosion 

followed by particle influx into the flow field. An efficient erosion model must provide 

adequate information regarding location and time at which erosion appears as well as the 

rate and direction at which particles are lifted from the surface and in-fluxed into the 

domain. Thanks to the erosion of the surface, craters might be formed and alter the initial 

shape of the surface. This phenomenon might influence the final solution. However, the 

effect is not intense. In the current study, first, it is considered the effects of surface 

variation are negligible similar to what has been assumed in [51] secondly, a three-

dimensional simulation has been done to observe how a crater (in this work, the crater is 
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positioned beneath the nozzle axis) can affect the particle trajectory. In case such effects 

are of interest the strategy of the simulation may be modified by applying Eulerian 

multiphase models in which the interface between solid and gas phases is modeled by 

solving another equation as in the volume of fluid or level set models. The more rigorous 

approach (considering microscopic scales) can be the application of Lagrangian models; 

nonetheless, it is worth mentioning that the computational cost would become much 

larger compared to the Eulerian counterpart. The following section provides, first, the 

erosion mechanisms. Next, some of the well-known erosion models which have been 

employed in solving the Lunar landing problem are presented, the relative merits and 

limitations of each model are explained, and the applied model is described. 

3.7.1  Exerted forces on a stationary particle on the sediment bed 

The at rest particle on a sediment bed undergoes several forces such as shear, pressure, 

interparticle and body forces. The particle will be mobilized if the aerodynamic forces are 

dominant about point P compared to the imposed gravitational and interparticle forces. A 

schematic of the exerted forces on an immobile particle is provided in Fig. 8. 
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Fig. 8 The various forces acting on particles on a sediment bed under the action of external flow. 

Modified from [126]. 

 

3.7.2 Exerted forces on an entrained particle 

  The motion of an entrained particle in a flow filed may be influenced by several 

forces comprising the aerodynamic drag dF , aerodynamic lift lF , the gravity force
gF , the 

Magnus force due to the rotation mF , and the electric force EF . The effect of buoyancy 

upon the particle can be ignored because of the large density ratio defined as the ratio of 

particle density to air density. The gravitational force only acts on the vertical direction 

and is set equal to -mg, with m as particle mass, and g is the acceleration of gravity. 

 

Fig. 9 illustrates the physical mechanism whereby aerodynamic drag is produced. 

Once the particle travels relative to the surrounding fluid, it will encounter a force 

opposed to the relative velocity by the fluid. This force is the well-known drag which is 

caused by the pressure difference in front of the particle and the wake behind it, as well 

as the viscous effects in which the momentum is transferred from fluid to the particle via 

molecular movements. The integration of total momentum flux (or total stress) over the 

particle surface is equal to the exerted force.  

di i ij j

S S

F pn dS n dS     
(45) 

The momentum transfer to the particle by the pressure forces (the first right-hand side 

term of the equation (45)) is independent of fluid viscosity. However, the second term is 

associated with fluid viscosity and is known as the frictional drag. 
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Fig. 9 The physical mechanism of a) aerodynamic drag force, b) aerodynamic lift force and c) 

Magnus force on a spinning particle. Reprinted from [127] with permission. 

 

Because of the difficulty in calculating p and σij distribution over the particle surface, 

equation (45) is not suitable for aerodynamic drag expression. As an other possible 

approach, it is depicted that the drag force is proportional to particle-to-fluid relative 

velocity r
u ; 

1

2
D rC A U d rF u   

(46) 

In the above relation, the aerodynamic drag coefficient is shown by DC . The particle 

cross-section in the direction of flow is denoted by A and for spherical particles, is equal 

to πd
2
/4. rU  is the magnitude of ur. Moreover, 

piu  and iu are the ith particle velocity and 

fluid velocity components, respectively, and the ith component of  ur  is as follows, 

ri pi iu u u  . 
(47) 

Thus, rU  can be defined by 
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2 2 2 1/2

1 2 3( )r r r rU u u u   . 
(48) 

As the aerodynamic drag coefficient is a function of particle Reynolds number

Re /p rU d  , the magnitude of the drag force is dependant upon the flow pattern.  This 

function, (Re )D pC , has been widely investigated by several experimental studies for 

various flow patterns. Fig. 10 shows the variation of the drag coefficient in terms of 

Reynolds number and flow patterns. 

 

Fig. 10 Aerodynamic drag coefficient for different flow regime in terms of the Reynolds number. 

Reprinted from [127] with permission. 

The Reynolds regimes depicted in Fig. 10 can be classified as follows:  

Re 1p
(known as Stokes region) corresponds to high viscous effects and negligible 

fluid inertia. The pressure and viscous stresses on the particle surface in this region were 

first determined analytically to be 24 / ReD pC   [128] for Reynolds numbers smaller 

than 10. 
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When
3 510 Re 3 10p   , the drag coefficient is close to 0.5 and relatively independent of 

Reynolds number. Moreover, viscous drag can be ignored compared to pressure-induced 

drag.  

Lastly, for 
5Re 3 10p   , a significant decrement of drag coefficient from about 0.5 to 

approximately  0.1 can be observed due to the variation of pressure distribution over the 

particle surface, and a transition of the laminar boundary layer to turbulent boundary 

layer on the particle can be seen. In section 4.4.3, various relations for drag coefficients 

were provided.  

The Bernoulli equation describes the aerodynamic lift mechanism shown in Fig. 9(b). 

This equation expresses that the total head produced by velocity head, pressure head, and 

gravity head along the streamline, is unvarying and can be derived from motion equations 

for inviscid barotropic flow in a steady-state condition.  

21

2

p
u gh const


   .  

(49) 

u and h are the velocity of flow along the streamline and the height of streamline 

corresponding to reference level, respectively. The aerodynamic lift phenomenon is the 

result of the pressure gradient caused by shear in the flow. This pressure gradient is 

normal to the shear and in the direction of decreasing velocity. In other words, the faster-

flow region over the upper surface induces lower pressure compared to the lower surface, 

which is exposed to lower velocity and higher pressure. The aerodynamic lift can be 

expressed by 

21
( )

2
l lC A U d F . 

(50) 

In the above equation, lC  corresponds to lift coefficient and is correlated to the drag 

coefficient, 0.85l DC C  given by Chepil [129] and the gradient of 
2

U  u  is denoted as 
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2U . Here, the shape of the particles plays a substantial role in defining Fl. For instance, 

a spherical particle only when is placed in a strong shear flow can experience lift force, 

whereas in the case of a non-spherical particle, considerable lift force may take place 

even in the uniform flows due to the velocity gradient that geometry imposes, and hence 

the distribution of pressure on the surface. 

As shown in Fig. 9(c), for a spinning particle, a force perpendicular to both direction of 

motion and rotation is generated, which is known as Magnus force. In order to explain 

Magnus force in terms of the Bernoulli equation, the viscous effects in relation to particle 

should be taken into account. The flow at the upper surface of the rotating particle (side 

A) undergoes pressure reduction due to an increase of the velocity which itself is a result 

of the same direction in the rotation of particle and fluid motion (in the presence of 

viscous forces). It is trivial that the opposite side experiences contrary conditions. The 

Magnus force is proportional to Re p
, and the ratio of circumferential speed to the 

magnitude of relative velocity, /s rU [130]. In works of [131, 132] regarding the motion 

of sands grains in the atmosphere, the following relation has been applied,   

 

 

3

3

, for low Re numbers
8

, for high Re numbers
8

m

d

d
C

 

 

 

 

m p r

m p r

F Ω u

F Ω u

  
(51) 

In the above equations,
p

Ω  stands for angular particle velocity and mC  is a coefficient 

that accounts for the Magnus force dependency on Re p
 and /s rU . 

In the case of charged soil particles, the motion of windblown particles generates an 

Electric field near the surface [133]. These particles may experience an electric force e
F  

with the strength as large as the gravity force. According to Zheng et al. [133], only the 

vertical component can define the electric field, and the horizontal component can be 
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neglected. Accordingly, the electric force for a particle of mass m  and the particle 

specific charge eC  (charge per unit mass) can be written as 

e emCF E .  
(52) 

In summary, the equation of particle motion for a particle of mass m  with velocity s
u  

can be expressed by the forces detailed above: 

d
m

dt
    s

d l g m e

u
F F F F F .  

(53) 

By using the definition of the forces we have  

 

2
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1 1
( )

2 2

1
.

8

d r l

m e

d
m C A U C A U d mg

dt
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u
u

Ω u E

  
(54) 

In the case of a particle with the spherical shape, 3 / 6sm d  and 
2 / 4A d , the 

above equation can be written in the following form: 

 23 3 3

4 4 4

d l m
r e

s s s

d C C C
U U g C

dt d

  

  
       s

r p r

u
u Ω u E . 

(55) 

 

3.7.3 Particle motion methodology during surface erosion phenomenon 

Depend upon solid particles diameter, the various trend of motions can be followed by 

the particles belong to the same family size, some of which may also be observed in the 

Lunar landing problem. Bagnold [134] characterized the particle motion based on 

experimental observations into three categories: Suspension, saltation, and creep, which 

are schematically demonstrated in Fig. 11.  
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Fig. 11 Suspension, saltation, and creep of grains during wind erosion. Reprinted from [127] with 

permission. 

 

Suspension 

Suspension of the dust particles occurs owing to small terminal velocity, which is 

defined by the relative velocity of the particle to a fluid under negligible particle 

acceleration. The turbulence in the atmospheric boundary layer disperses the dust 

particles away from the surface, and the airborne grains can travel up to thousands of 

kilometers by means of the atmospheric circulation. The suspension is characterized into 

long-term and short-term based on the residence time of the dust grains, which is 

dependent on terminal velocity. According to the observations, the very fine dust 

particles (less than 20 m ) can be suspended for several days, which refers to a long-term 

suspension. The short-term suspension is covered by the particles with a diameter 

between 20  and 70 m  that remain suspended for typically several hours. Since the 

Moon atmosphere is covered by semi-vacuum condition accordingly a less resistance 

time is expected, and also one can neglect the gravitational forces compared to the earth, 

the particles on the lunar would mostly experience long-term suspensions.   
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Saltation 

The bouncing off action of the particles across the surface during erosion phenomena is 

called saltation.  The particles are initially lofted off from the surface with the steep 

vertical ascent then traveled horizontally and eventually struck to the surface with the 

small impact angle. It is observed that the ascent angles are about 55
 , and the striking 

angles are around 10
. 

Creep 

The last mechanism in the wind erosion is called creep; where, the heavy grains with a 

diameter larger than 1000 m  are not able to be lifted from the surface under the typical 

atmospheric circumstances. They could only roll over the surface, owing to either wind 

force or the impact of the particles from the saltation process. 

3.7.4 The lunar surface regolith erosion phenomenology 

The soil erosion is a complex phenomenon which has been studied via various 

theoretical, computational, and experimental investigations from different viewpoints. 

The unique properties of the lunar environment and regolith make the issue even more 

complicated. Replicating the lunar environment for conducting experiments is almost 

impossible. Therefore experimental investigations are not sufficiently reliable. 

Theoretical and numerical studies are still in the development stage, and even with the 

significant effort which has been put in previous research studies [14, 20, 47-49, 65, 135, 

136], a comprehensive model which can explain physics of the erosion even terrestrially 

is not available to date.  These observations make one of the most critical shortcomings 

of solving the problem of Lunar landing from a theoretical point of view. Before 

selecting the erosion model, it is beneficial to know about the erosion mechanisms.  

Four possible erosion mechanism to form craters have been identified by Metzger et al. 

[65], which are summarized as follows:  
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 Viscous erosion (VE) 3.7.4.1

 Viscous erosion takes place when the shear stress on the surface overcomes the 

critical cohesive strength of the soil and causes the solid particles to creep along the 

surface. The rolled particles elevate the possibility of particle-particle collision; 

accordingly, these collisions can lead to scattering of the particles into the flow field.   

 Diffused gas eruption (DGE) 3.7.4.2

 The diffused gas eruption occurs when the gas penetrates a porous media and loosens 

the porous soil such that the soil layer could be fluidized. Therefore, it can be erupted at 

any location and cause the solid particles to be suspended along with it. 

 Bearing capacity failure (BCF) 3.7.4.3

 When the pressure becomes higher than bearing capacity of the soil, a narrow cup 

shape is created, which has unstable circumstances and can easily collapse under the 

gravity force. Consequently, many solid particles would entrain to the flow field. 

 Diffusion-driven flow (DDF) 3.7.4.4

The drag force of fluid jet through the pore spaces of the soil reacts against the grains 

posing a distributed body force in the bulk of the soil, which can shear the material.  

The dominant erosion mechanism on the lunar surface is viscous erosion. Due to the 

existence of a semi-vacuum, the soil layers are tightly packed; therefore, DGE, and DDF 

mechanisms are not in effect during the Lunar surface erosion. Besides, bearing capacity 

failure mechanism is negligible because of high packing density and bearing capacity of 

the Lunar regolith. However, some simulations results [41], which may represent the 

existence of this mechanism make this assumption subject to further investigations.  

Viscous erosion is associated with:  

- aerodynamic entrainment in which aerodynamic forces are dominant compared to 

gravitational forces;  

- saltation bombardment in which high-energy particles dislodge other particles by colliding; 
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- Aggregate disintegration in which particles get together due to thermal cycling and 

cohesion, then break apart when a significant force is exerted [127]. The contents above 

are summarized in Fig. 12.  

 

Fig. 12. Erosion mechanisms and their importance in lunar landing problem 

A simplified yet potent model to simulate erosion on the surface is the Roberts’ erosion 

model. According to Roberts [48], when the induced shear stress on the ground exceeds 

the threshold stress, erosion with a mass flux proportional to the excess shear will occur: 

1

2
cau      

(56) 

In the above equations,   is erosion rate (mass flux), au  is the fraction of gas velocity 

that the particles can obtain, τ is shear stress on the surface and c  indicates the threshold 

stress below which erosion does not occur defined as 

tanc C P   . 
(57) 

Here, ,C P  and   are cohesive stress, gas static pressure on surface and friction angle, 

respectively. The coefficient a  is 
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(59) 

From the above relations, it is clear that the coefficient a  is dependent on various 

parameters. In the equation (59), c  and cT  are the engine chamber viscosity and 

temperature, h is the hover altitude, s  and D are particle density and the particle 

diameter of regolith, hk  is the hypersonic factor which is defined by   21 nM   , where 

  is the ratio of specific heats and the Mach number at nozzle exit plane is specified by

nM . Further,   in the above equation is related to R gas constant as well as drag 

coefficient, DC  (set equal to the constant value of 0.2 by Roberts) and engine thrust, F. 

Less sophisticated models can be derived from an analogy from the sediment beds 

research area. More sophisticated models based on wind erosion are also available; 

However, the dependency of these models on regolith properties which are mostly 

unknown (or at best, limited) makes the use of these models impractical. Moreover, 

empirical relationships to take into account the particle density, diameter and gas density 

and velocity, and gravity are provided by [49, 135, 136].  
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Chapter 4.  Numerical approach 

4.1 The basics of the numerical simulation 

After the selection of an appropriate mathematical model to describe and comprise the 

governing physics of the problem, the next step is applying discretization of the equation 

based on available methods. One should bear in mind that the choice of an efficient 

discretization method should take into account the accuracy and the computational cost 

while compromising these two simultaneously.  

Two steps discretization are involved: space discretization and equation discretization.  

Space discretization is initiated to provide a mesh regarding continuum space 

approximation where the domain is divided into a finite number of grids to determine the 

solution values. Next, the equations are discretized by transforming the differential or 

integral equations into algebraic relations whereby the unknown values are determined. 

4.1.1 Categories of discretization methods and their characteristics 

The most well-known methods for discretization in CFD are as follows: finite 

difference method (FDM), Finite volume method (FVM), and the finite element method 

(FEM). Another class of discretization methods which are gaining popularity in fluid 

dynamics field from fundamental fluid mechanics problems to more sophisticate wave-

based problems of computational electromagnetics are the so-called high order —higher 

than second-order—spectral methods 

The simplest approach among all three is the finite difference, which takes advantage 

of Taylor series expansions. The highlighted features of FDM can be stated as being easy 

to code, capable of providing high-order accurate solutions and can be benefitted from 

hp-additivity. 
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On the other hand, it cannot be used in complex geometries and unstructured grids. 

The next widely used method of discretization is referred to FVM, which directly solves 

the conservation laws in physical space by applying an integral form of the laws above. 

Also, to be a flexible tool of calculating surface fluxes over the control volume, the FVM 

is also capable of handling any arbitrary mesh as well as geometries. The main weakness 

of the FVM is the difficulty associated with the computation of high order solutions, 

especially on unstructured grids, which makes finite volume method limited to second-

order accuracy in most applications. The finite element method, which was originated 

from the field of structural analysis, was first applied in fluid dynamics problem in the 

late 70’s and continued its development till date. It is based on variational methods, can 

reach any order of accuracy and is applicable on an unstructured grid. In FEM, the 

reconstruction data are employed from within the element. One of the main drawbacks of 

the FEM method is the inability of providing the explicit semi-discrete form. In other 

words, the method is inherently implicit; Nevertheless, it can be explicit with major 

modifications.  

The final category, so-called as high-order methods with the purpose of providing a 

high-order conservative scheme that has a compact formulation and can deal with 

complex geometries in a computationally efficient manner. In these methods, high order 

solution can be obtained by increasing the polynomial order, and some of the popular 

subcategories include spectral difference (SD), spectral volume (SV), and flux 

reconstruction/correction procedure via reconstruction (FR/CPR) and discontinuous 

Galerkin (DG) method. In spectral (finite) volume method to achieve a higher order of 

accuracy, each spectral volume is further subdivided into control volumes, and the high-

order reconstruction is based on cell-averaged state variables from these control volumes 

[137]. In the spectral difference method, the concept of discontinuous and high-order 
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local representations is utilized to achieve conservation and high accuracy in such a way 

similar to the DG and SV methods. The difference is the application of the simpler finite-

difference formulation to increase efficiency [138]. Flux reconstruction method employs 

the differential form of the equation identical to what is done in SD. 

Nonetheless, in the FR method, the reconstruction of flux polynomial is achieved via a 

more general scheme compared to the interpolation procedure used by SD.  The 

extension of the FR approach [139] to simplex elements provided lifting collocation 

penalty (LCP) framework [140]. The FR and LCP schemes are later renamed to CPR by 

their creators as both the methods provide the same final formulation. Interested readers 

are referred to the review papers of Ekaterinaris [141] and Wang [142] for more details 

regarding the comparison of high-order spectral methods.  

In discontinuous Galerkin formulation in comparison with the continuous counterpart, 

discontinuous basis functions are applied (local elemental mass matrix of the finite 

element formulation versus globally coupled mass matrix of continuous finite element 

method). The discontinuous feature of the basis functions makes the DG method more 

flexible. For instance, arbitrary triangulation with hanging nodes can be allowed. P 

adaptivity can be obtained as the polynomial degree, or even the basis functions can be 

defined for individual elements independent from neighbor elements. Embarrassingly 

high parallel efficiency is also achievable due to extremely local data structure [143].  

These types of methods are known to benefit from the advantages of FVM and FEM at 

the same time. In the current thesis, a DG discretization is applied due to high order 

capability of the method, which is desirable in most of the investigated problems, as well 

as the consistency of the selected mathematical model with some inherent features of the 

scheme which will be discussed in the following sections.  
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4.2 Modal discontinuous Galerkin (DG) method on 

unstructured grid 

The DG method was introduced by Reed and Hill [144] for the first time, and during 

last decades further developed by [145-147], it has become an outstanding tool for 

solving the fluid dynamics governing equations. While the DG method has been 

successfully applied to various classes of problems such as compressible and 

incompressible flows, aeroacoustics, magneto-hydrodynamics, and many more [148], it 

has recently also found its way into the multiphase problem.  

Sun and Wheeler [149] applied primal DG to solve the coupled system of flow and 

reactive transport in porous media. In other work, Klieber and Rivière [150] proposed 

new DG schemes by adaptive techniques in space and time and showed that the methods 

on heterogeneous media are robust. Franquet and Perrier [151] adopted the systems from 

Baer and Nunziato and developed a robust high order DG method for compressible 

multiphase flows and reported good validated results. Later, they also applied the 

extended method to reactive multiphase flows [152].  The DG method extended to 

interphase capturing in Multiphase flow by Owkes and Desjardins [153]. It was revealed 

by Lu et al. [154] that the DG method is able to boost the resolution near discontinuities 

in the single medium and material interfacial vicinities. They applied the Runge-Kutta 

DG method along with the front tracking to solve two-medium gas-gas and gas-liquid 

flows. By using the Mie-Grüneisen family of equations of state, de Frahan et al. [155] 

obtained the DG solution for multiphase flows. Recently, Dumbser and Loubère [156] 

proposed a rigorous nonlinear a posteriori stabilization of the DG method and applied the 

method to the Baer-Nunziato model in two-dimensional space. Applying a solution of 

Navier-Stokes-Korteweg equations for compressible liquid-vapor multiphase flow with 
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phase transition using the local discontinuous Galerkin (LDG) method is done by Diehl et 

al. [157]. It was observed that LDG can provide reliable and efficient solutions in two 

and three space dimensions. 

Although the studies above showed the capability of applying the DG method to the 

diverse multiphase flow problems, few mathematical models have been investigated the 

inherent features of the DG method for various categories of multiphase flow. To the best 

knowledge of the author, there is no previous work on applications of a high order DG 

method to solve a two-fluid model of dusty gas flows. Moreover, existence of stiff source 

terms in equations owing to the coupling effects in the two-fluid model and strong 

discontinuities in the flow, the mere application of high-order methods without 

appropriate manipulation of numerical artifacts or without proper treatment of the non-

homogeneous part of the partial differential equation will generally results in divergence, 

an oscillatory solution or in the best scenario a enormous computational costs, caused by 

small time steps. 

Discretization of dusty-gas flow equations, which are explained in the earlier sections 

has been applied by using modal DG method. In the following section, the most 

important parts of the developed modal unstructured DG method, including high order 

accuracy and positivity/monotonicity preserving property are summarized. For a more 

detailed discussion on general DG methods, readers are referred to [145-148], for DG 

implementations, and [158-161] for limiter-related issues. 

4.2.1 Definition of the problem in the DG method framework 

The compact form of the mathematical model along with source terms can be written 

as follows: 

   inv vis( ) ( , ) ( ) in ,Ω 0, ,Ω ,t t t         U F U F U U S U  
(60) 
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At the first step, we consider the convection dominated problem; where the 

formulation is reduced to 

   inv ( ) ( ) in ,Ω 0, ,Ω ,t t t       U F U S U   
(61) 

where Ω denotes a bounded domain, and U, Finv, S are conservative variables vector, 

inviscid flux vector, and source terms vector, respectively. The solution domain can be 

decomposed by a group of non-overlapping elements, Ω = Ω1⋃Ω2⋃...Ωne, in which ne is 

the number of elements. The partial differential equation of (61) cannot allow for 

solutions with discontinuities. By multiplying a weighting function ϕi into the 

conservative laws (61) and integrating over the control volume for each element, the 

following formulation can be derived: 

 inv( ) ( ) ( ) ( ) ( ) Ω 0
k

t d  


    U x F U x S U x . 
(62) 

In order to construct a discretized system of the conservation laws, the global spatial 

domain Ω can be approximated by Ωh where ΩhΩ as h0. The approximated domain, 

which is a tessellation of the space by bounded elementary control volumes, = {Ω }h k , 

is filled with ne number of the non-overlapping elementsΩk h . The exact solution of 

the governing equations can be approximated by the numerical solution in every local 

element as 

1

1

( , ) ( , )
ne

e n

h h h h

e

t t


    U x U U x U U . 
(63) 

By splitting the integral over Ωh into series of the integrals over the sub-elements and 

applying the integration by part as well as divergence theorem to the equation (62), the 

elemental formulation reads as 

inv inv
ˆ( )dΩ ( ) ( ) ( ) ( )dΩ

( ) ( )dΩ ,

k k k

k

t h i k i h i h k

i h k

nd   



  



     



  



U x x F U x F U

x S U
 

(64) 
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where n̂  is the outward normal vector of the element interface and Uh is the p-exact 

polynomial approximated solutions of the U on the discretized domain of Ωh. Uh can be 

expressed as the polynomial field that sums the multiplication of local degree of freedom 

with the corresponding smooth polynomials of degree P in the standard element:  

( ) ( )
P

h i i

i

U t U x . 
(65) 

Here Ui (t) and ϕ(x) denote the local degree of freedom and the basis function, which can 

be chosen to be any continuous polynomial function, respectively.  

In the one-dimensional case, the orthogonal scaled Legendre functions were selected 

as basis functions, while a linear mapping function was used for mapping from the 

physical space to the standard element. In the two-dimensional case, the PDK 

polynomials [162] were selected as basis functions, while a collapsed coordinate 

transformation was used to transfer the triangles in the physical domain to the standard 

square elements, Ωe, in which the coordinates (a, b) are bound by constant limits  

{( , ) 1 , 1}a b a b   R . 
(66) 

Another transformation was introduced to transfer the triangle in the physical space into 

the computational space where the new local coordinates have independent bounds, as 

depicted in Fig. 13. A suitable coordinate system, which describes the triangular region 

between constant independent limits, can be defined by the following inverse 

transformation: 

(1 )(1 )
1,

2

a b
r w b

 
   . 

(67) 

New local coordinates (r, w) can then define the standard triangular region as follows: 

{( , ) 1 , ; 0}r w r w r w    T . 
(68) 



 

70 

 

For more details on the various transformations used in the DG method, readers are 

referred to subsection 4.3 and the text book  [163].  

 

Fig. 13 Coordinate transformation, adapted from [7] 

 

The simple and efficient local Lax-Friedrichs (LLF) flux function, commonly used in 

the DG method, is applied to all the multiphase test cases in the present study. Despite the 

dissipative nature of the numerical flux, it improves the linear stability of the DG 

numerical approximation. The dimensionless form of the LLF flux is defined as  

       ,invinv ,inv ,inv

1
( ) f ,

2
ih h h i h i h h hC          

 
F U U U F U F U U U , 

(69) 

where C is the maximum modulus of the eigenvalues of the Jacobian matrix, 

,inv
min( , ) max( , )

max | F ( ) |i
U U u U U

U
    

 , and for convex fluxes, it reads as 

 max ,S SC v a v a      . Here /Sa T M  is the speed of sound at an elemental 

interface, and the superscripts (+) and (–) denote the inside and outside of an elemental 

interface, respectively. 

Moreover, a third-order accurate, three-stage total-variation-diminishing Runge-Kutta 

method was employed for time integration, owing to its simplicity, efficiency, and 

robustness. In order to minimize the temporal discretization error, the time step was set in 

such a way that the Courant-Friedrich-Levy (CFL) criterion is always satisfied. The 
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Gauss-Legendre quadrature rule was used to calculate the volume and surface integrals in 

(64), which are proved to be 2P and 2P+1 order accurate, respectively.  

As can be seen in (60), when the solution of viscous flows is of interest, an approach 

for estimation of the derivatives of the conserved variable which appear in the viscous 

flux terms should be applied. In this regard. These first-order derivatives will change into 

second-order derivatives when the viscous fluxes are evaluated. These terms cannot be 

accommodated directly in a weak variational formulation using a discontinuous space 

function. One possible approach is the addition of a set of separate equations to regard the 

gradient of the conservative variables as an auxiliary set of unknowns, as proposed by 

Bassi and Rebay [164]. In this work, A is chosen to be the derivatives of the conserved 

variables U, i.e., A U . This approach is known as mixed DG formulation and will 

result in a coupled system  

inv vis

0,

( ) ( , ) ( ).t

 

    

A U

U F U F U U S U
 

(70) 

Then the solution of the primary and auxiliary variables can be approximated as, 

( ) ( )
P

h i i

i

U t U x  and ( ) ( )
P

h i i

i

A t A x . 
(71) 

where Ai(t) denotes the local degree of freedom for the auxiliary variable. By following 

the similar procedure outlined above for an inviscid system of equations (multiplying a 

weighting function into the conservative laws and integrating over the control volume for 

each element) then the formulation can be derived:  

 ( ) ( ) Ω 0
k

d 


  A x U x  
(72) 

 inv vis( ) ( ) ( ) ( ) ( ) ( ) ( ) Ω 0
k

t d   


     U x F U x F U x S U x  
(73) 

ˆ( ) dΩ ( ) ( ) dΩ 0,
k k k

i h k i h i h kA nd   
  

       x x U x U  
(74) 
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inv inv

vis vis

ˆ( )dΩ ( ) ( ) ( ) ( )dΩ

ˆ( ) ( ) ( ) ( )dΩ ( ) ( )dΩ ,

k k k

k k k

t h i k i h i h k

i h i h k i h k

nd

nd

   

   

  

  

     

     

  

  

U x x F U x F U

x F U x F U x S U
 

(75) 

The process of estimation of surface and volume integrals are analogous to the inviscid 

system procedure. However, for the auxiliary terms, a central flux splitting scheme is 

applied.  

     

 

,visvis ,vis ,vis

,aux

1
( ) f , , , , ,

2

1
f ,

2

ih h h h h i h h i h h

i h h h h

       

   

   
 

    

F U U A U A F U A F U A

U U U U U

 
(76) 

4.2.2 Elemental transformation to computational space 

For th purpose of numerical integrations of equation  (75), it is necessary to describe 

the bases over the standard elements for surface and volume integrations that include 

basis functions as well.   

 One-dimensional elemental transformation 4.2.2.1

The following mapping relation transfers the local element Ωh in space coordinate x to 

standard element Ωe in one-dimensional problems, 

1

2 1i
h

i

x x

x xi
 




   


 

(77) 

where the inverse relation is as follows,  

1

1 1

2 2
i i ex x x x

 


 
     

(78) 

Fig. 14 shows schematic transformation in one-dimension where the range of the 

master element is   [ 1,1]    

 

The transfer Jacobians will be, 
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x

x
x





  


J , / 2x x
x







  


J . 
(79) 

 

 

Fig. 14 Schematic diagram of the linear mapping of the 1D element. 

 Two-dimensional elemental transformation 4.2.2.2

Quadrilateral elements 

It is possible to extend the transformation above to two-dimension from cartesian 

coordinate (x, y) to a standard quadrilateral element  1 2, [ 1,1]     through following 

relations,  

1 2 1 2 1 2 1 2
1 2 3 4

1 2 1 2 1 2 1 2
1 2 3 4

(1 )(1 ) (1 )(1 ) (1 )(1 ) (1 )(1 )

4 4 4 4

(1 )(1 ) (1 )(1 ) (1 )(1 ) (1 )(1 )

4 4 4 4

x x x x x

y y y y y

       

       

       
   

       
   

 
(80) 

The transfer Jacobian form xy-coordinate to 1 2 -coordinate can be written as, 

1 2

1 2

1 2

1 2

( , )

( , )
xy

x x

x y
J

y y


 

 

 



  
  
  
   

   

 
(81) 

where,  
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 

 

 

 

2 2 1 2 3 4

1

2 2 1 2 3 4

1

1 4 1 1 3 2

2

1 4 1 1 3 2

2

1
(1 )(x x ) (1 )(x x )

4

1
(1 )(y ) (1 )(y )

4

1
(1 )(x x ) (1 )(x x )

4

1
(1 )(y ) (1 )(y )

4

x

y
y y

x

y
y y

 


 


 


 



     




     




     




     



 
(82) 

 

 

Fig. 15 Schematic diagram of the linear mapping of the 2D quadrilateral element. 

 

Triangular elements 

Extra effort is needed in the case of triangular elements, in order to map from physical 

element to the standard one. The two-step transformation is introduced here as a 

collapsed coordinate, which is shown in Fig. 16 and includes the following steps:  

1. Transformation of an arbitrary triangle into the canonical (right triangle) element by 

the following, 

1 2 1 2
1 2 3

1 2 1 2
1 2 3

1 1

2 2 2

1 1

2 2 2

x x x x

y y y y

   

   

       
        

     

       
        

     

 
(83) 

Here,  
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1 2

1 2 2 1 3 1

2 1 2 11 2

1 2

( , ) 1
Area / 2

( , ) 2
xy

x x

x x x xx y
J

y y y yy y
 

 

 

 



  
     
     

      
   

 (84) 

2. Mapping of the right triangle element t

e  the standard square element e  by the 

following transformation 

1
1 2 2

2

.
1

2 1,
1


  




  


 (85) 

for which,  

1 2 1 2

1 1

1 21 2 2

2 21 2

1 2

( , ) 1

( , ) 2
J   

 

   

  

 



  
      
   
   

 (86) 

To apply the collapsed coordinate transformation, the master triangular and quadrilateral 

elements should be assumed as follows, 

  

  

1 2 1 2 1 2

1 2 1 2

, 1 , ; 0 ,

, 1 , 1 .

t

e

q

e

     

   

     

     
 (87) 



 

76 

 

 

Fig. 16 Schematic diagram of the linear mappings of the 2D triangular element. 

 Three-dimensional elemental transformation 4.2.2.3

In the case of three-dimensional transformation, for mapping of the tetrahedron elements 

in physical space to the canonical master element 

  1 2 3 1 2 1 3 1 2, , 0 1;0 1 ;0 1c

e                    (indicated in Fig. 17), the 

employed linear transformations are as follows, 

 

 

 

1 2 3 1 1 2 2 3 3 4

1 2 3 1 1 2 2 3 3 4

1 2 3 1 1 2 2 3 3 4

1

1

1

x x x x x

y y y y y

z z z z z

     

     

     

      

      

      

 
(88) 

1 2 2

1 2 3

1 2 3

1 2 3

6 Volumexyz

x x x

y y y
J

z z z

  

  

  

  



   
 
   
   

   
   
   
 
   

 
(89) 
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Fig. 17 Schematic diagram of the linear mapping of the 3D tetrahedron element 

4.2.3 Foundation of basis functions 

The structure of basis function in order to use for polynomials of degree P on standard 

reference elements is introduced in this section. Two well-known class of polynomials 

are continually applied in discontinuous finite element methods: Lagrange polynomial as 

a non-hierarchical basis and hierarchical basis called Legendre polynomial. The former 

(eigenfunctions of a particular Sturm-Liouville problem) is particularly useful as an 

interpolation basis, and the latter is a particular form of orthogonal Jacobi polynomial. 

The orthogonality feature benefits from useful properties, including solving efficiently 

the block matrices. The mentioned above advantage will be handy in treating the source 

terms, which will be discussed in coming sections in more details. 

The use of the nodal basis will depict a non-hierarchical expansion associated with a 

set of nodes; nonetheless, the modal basis will typically represent a hierarchical 

expansion.  
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The reason behind calling these bases as modal is that the coefficients of the 

expansion functions, which are also called as modes are unknown. 

A schematic of the mass matrices computed by Lagrange and Legendre basis is 

depicted in Fig. 18.  

  

Fig. 18 Comparison of typical mass matrices corresponding to Lagrange (right) and Legendre 

(left) bases, adapted from [7] 

Because of desired features including recursion and orthogonality, the Legendre 

polynomials are used as basis functions in this study, which will be outlined for one, two, 

and three-dimensional space in the following subsections. These functions are solutions 

to the Legendre differential equation. The n
th

 -order Jacobi- polynomial , (x)nP   is given 

by  

, ( 1)
(x) (1 x) (1 x) (1 x) (1 x) , 1

2 !

n n
n n

n n n

d
P

n dx
           

 


       
(90) 

 Basis functions for the one-dimensional problem  4.2.3.1

Legendre basis function in one-dimension can be derived by using Rodrigue’s formula, 

and it is defined by ( )nP  , 

 21
( ) 1

2 !

n
n

n n n

d
P

n d
 


  . 

(91) 

The orthogonality feature of Legendre polynomials can be identified as: 
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1

1

0 if
( ) ( )

if
i j

mn

i j
P P d

C i j
  




 


  

(92) 

The modes of the Legendre basis functions are depicted in Fig. 19 and also the 

polynomials up to 6
th

 order of accuracy are shown as below: 

   
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Scaled Legendre polynomials are defined as:
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Fig. 19 Legendre polynomial space 

 

 Basis functions (rectangular and triangular bases) for the two-dimensional 4.2.3.2

problem  

Rectangular basis 

The structure of the basis functions can be established in each coordinate direction via 

the tensorial product of the Legendre polynomials. The polynomial function of order N, is 

defined as 
1 2 1 2( , ) ( ). ( )k p qL L      with:  ( 1);  0 ;  .k p q N p q N       

where, k is the single indexed multidimensional basis which sorts all the modes of the 

principal functions (P and Q).  It is worth mentioning that owing to the applied bilinear 

mapping [163], these polynomials on rectangular elements cannot provide a diagonal 

mass matrix. 
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Fig. 20 Scaled Legendre polynomial space, based on Pascale’ triangle for standard rectangular 

elements (up to polynomial order of P=6), adapted from [7] 

 

Triangular basis 

Orthogonal basis functions can be constructed over t

e  by tensorial product of the 

Legendre polynomials (principal functions) in the region q

e . 
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Fig. 21 Scaled Legendre polynomial space, based on Pascale’ triangle for standard triangular 

elements (up to polynomial order of P=6) ), adapted from [7]. 

 Basis functions for three-dimensional problem  4.2.3.3

In three-dimensional space, by applying an orthogonal basis functions over e  by 

tensorial product of the Legendre polynomials (principal functions) in the region c

e ; An 

orthogonal mass matrix is obtained, the formulation can be written as, 

 3
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4.2.4 Numerical integration in the computational domain 

Numerical integration is applied to the distinct local weak form of governing 

equations with the purpose of calculating the surface and volume integrals. Among 

various procedures that are widely used in finite element and discontinuous Galerkin 

methods, numerical quadrature (in one-dimensional problems and sometimes it can be 

used as a  genaral method) or cubrature (in two- and three-dimension) is the most well-

known algorithm in which one can approximates the integrals by weighted sum of 

function evaluations. Existence of strong discontinuities or turbulence effects which 

results in aliasing instabilities makes the selection of a rule for integration extremely 

difficult. In the current work Gauss-Legendre algorithm as a sub-category of Gauss 

quadrature procedure is employed. Since it is defined in the range of -1 to 1, a 

transformation of physical coordinate to standard ones is needed. The integration 

approximation for various elements in different dimension is tabulated as below. 

Moreover, the graphical illustrations of the position and required number of quadrature 

points are depicted in Fig. 22 and Fig. 23   
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Table 8 The integration approximation for  various elements in 1D/2D and 3D 

1D element 
1

( ) ( )i

b

ia

i

n

f x dx w f x


 , 

1

11

( ) ( )
i

i i

n

f d w f  


  

2D quadrilateral 

element 

1 1

1 2 1 2

1 11 1

( , ) ( , )
n n

j j

j

i i

i

f d d w w f     


  

   

  1 2 1 2, 1 , 1q

e          

2D triangular 
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111

1 2 1 2

1 1 11 1

1
( , ) ( , ) ( , )

2

n n

i i i

n

j j i j

i j i

f d d w w f w f


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     
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e             

3D tetrahedron 

element 

1 1 21 11
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1
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Fig. 22 Schematic representation of number and location of required quadrature points used 

in numerical integration for (a) 1D elements, (b) 2D quadrilateral elements, (c) 2D 

triangular elements, adapted from [7] 

 

 

 

 

 

 

   

(a) Surface quadrature points 

   

(b) Volume quadrature points 
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(c) Surface and volume quadrature points together 

Fig. 23 Schematic representation of number and location of required quadrature points used 

in numerical integration in a 3D tetrahedron element, adapted from [7]   

4.2.5 Numerical flux functions 

A factor that plays important role from in the stability of numerical simulation is an 

appropriate numerical flux. These fluxes can also determine the accuracy of the solution. 

A proper numerical flux should feature from consistency and conservative as well.  

 Consistency conveys the idea that for smooth continuous inter-element boundary values, 

the solution of the numerical flux is identical to the analytic flux function. Furthermore, 

conservative implies a single-valued flux on the inter-element boundaries. The inviscid 

numerical flux calculation can be classified into two general methods as flux difference 

splitting (FDS) methods and flux vector splitting (FVS) methods. These numerical 

approaches are taking advantage of using the upwind direction identification schemes 

which are referred to as the Riemann approach or Boltzmann approach. These schemes 

are broadly presented in the classical review paper of Harten et al. [165] and other 

references [166-169]. Observation of using the FVS approach reveals that this method is 

more straightforward and more efficient compared to Godunov-type methods of FDS 

class. In current dissertation, to circumvent the complexity of implementation and 

avoiding the carbuncle errors in the numerical simulation  Rusanov [170] (or local Lax-

Friedrichs) and Rotated-RHLL [171] fluxes are applied depending on the problem 
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interests. The implementation of the inviscid numerical flux is exactly analogous to the 

well-established FVM procedure, and the details of the implementation are skipped.  

Extra effort is required to compute the viscous numerical flux in DG framework. Accurate 

mathematical derivation of viscous numerical flux for the problem of pure elliptical equations 

(Laplace problem) can be referred to in [172, 173]. The integrated of some numerical flux 

introduced by [173] is presented in  

Table 9. The definition of the operators such as   and  for scalar variable s and 

vector quantity v  is depicted as follows 

 

 

   

 

   

1

2

. .

1

2

s s n s n n s s

s s s

v v n v n n v v

v v v

     

 

     

 

   

 

   

 

 
(97) 

 

Table 9 Comparison of some the numerical schemes for viscous flux. Adapted from [173]. 

Method û  ̂  

Bassi and Rebay [164] (BR1) { }hu  { }h  

Brezzi et al. [174] { }hu   { } hh r u   

Cockburn and Shu [175] 

(LDG) 
   .h hu u   { } jh h hu     

Douglas and Dupont [176] (IP) { }hu   { }h jh hu u  

Bassi et al. [177] (BR2) { }hu   { }h rh hu u  

In the above table, the penalty terms are defined as, 

  1

j e eh      , 

    r e er     , 
(98) 

where, e  is a positive number and eh  is an indicator of element size (e.g., circumscribed 

circle radius of the element), and    . .e

e

r dx ds   


   . 
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In most of the computations in this thesis, BR1 is applied, where central discretization 

is employed for both auxiliary and viscous fluxes. It should be mentioned that it keeps the 

order of accuracy to only P (polynomial degree) for odd ansatz [175]. Also, the stencil is 

known to be spread. These drawbacks motivated the application of the LDG method in 

which one-sided fluxes in opposite directions for the auxiliary and viscous fluxes are 

utilized. In this thesis, β is set equal to zero when LDG flux is employed yielding to an 

upwind-downwind (also known as alternating flux) scheme.  

4.2.6 Positivity preserving scheme 

High order conservative schemes, including the DG scheme introduced in the previous 

section, usually suffer from the non-physical negative density or pressure. This situation 

leads to the ill-posedness of the system and numerical breakdowns in consequence. On 

the other hand, in the case of conservation laws with source terms which are added to 

account for chemical reactions, gravity or the interaction of phases, as in the present case, 

the possibility of encountering negative density or pressure during numerical simulation 

increases. Therefore, the application of an efficient positivity preserving schemes is 

necessary to prevent the numerical breakdown. In the present work, the positivity 

preserving scheme of Zhang and Shu [178] for compressible Euler equations were 

applied to ensure the positivity of density and pressure fields, while maintaining the 

higher order accuracy. The general implementation of the scheme can be outlined as 

follows.  

Limiting the higher order coefficients for density was achieved first by computing the 

minimum value of the density amongst all quadrature points, ρmin. The coefficients for 

the density expansion were then modified as 
1i ia a   with 0

1

0 min

min( ,1)
a

a














. Here 

the i index accounts for all the bases, and the zero indexes represent the mean solution. 
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Also, the value   is determined by 13

0min(10 , , )a p   where p  denotes the mean 

element pressure. 

For the modification of pressure, the following procedures were used. First, we set s as 

(1 )t   s w q , 
(99) 

where w  and q  are the cell average and conservative variables, respectively. 𝛽 can be 

calculated as follows  

1 if ( )

the solution of ( ) , if ( )

p

p p




 


 

 

q

s q  (100) 

Finally, the coefficients are modified by 
2i ia a   with 2 min( ,1)   . 

The application of this limiter was proved to provide stable schemes for unstructured 

triangular meshes with favorable results [161]. We report the first application of this type 

of limiter to the two-fluid model of dusty gas flows. Our numerical experiments on all the 

test cases show that application of a positivity preserving limiter is necessary to obtain 

converged solutions without compromising the accuracy of the solution.  

4.2.7 Monotonicity preserving scheme 

Our numerical investigations show that simple application of the positivity preserving 

scheme is not enough to develop a stable scheme, especially in the presence of strong 

shock waves. The situation deteriorates when the multiphase system with source terms is 

being solved.  In the present study, the limiter of Zhang and Shu [179] for one-

dimensional cases and the limiter of  Barth and Jespersen [158], which was initially 

devised for the finite volume framework are applied. It is important to note that any 

TVD/MUSCL type scheme can degrade the order of accuracy in the smooth regions of 

the solution unless a pragmatic shock detection scheme is introduced. 
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According to Barth and Jespersen [158], the limiting procedure of slopes should be 

done in a way that the solution at the integration points is confined to the range spanned 

by the neighboring solution averages. The limited solution can then be written as  

0 0 min

0

( , ) ( ) ( ) ( )
p

i i

i

U t a t a  


  x x x , (101) 

where min imin max( ,0),    

max
2

2

min
i 2

2

min(1, ), if 0

max(1, ), if 0

1, otherwise

i

i

U U

U U



  




  






 (102) 

Here  
*

2
( )

j i j
U U  x  and Umax and Umin are the maximum and minimum solution 

averages on the elements sharing edges, respectively. 

4.2.8 Boundary conditions 

The implementation of boundary conditions in two-fluid or multi-fluid systems 

requires a different set of conditions for each phase. The benchmark problems considered 

in this paper are free from boundary effects, except the compression corner test case, in 

which an adiabatic, impermeable, inviscid wall boundary condition is applied for both 

phases (Kim and Chang [116]. Other boundary conditions choices like the adherence 

condition or reflection conditions are also viable for the solid phase [180].  When the 

viscous system of conservation laws (e.g., Navier-Stokes-Fourier) is considered, it is 

necessary to use a non-slip boundary condition for the gas phase and a slip boundary 

condition for the solid phase. 

Some of the applied boundary conditions for the gas phase are summarized below. 
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4.2.9 Novel source terms treatment 

It was well-known that the stiff relaxation terms in balance laws (i.e., strictly 

hyperbolic systems with source terms) lead to disparate relaxation times, which in turn 

results in severe numerical difficulties. In the case of the two-fluid model, in addition to 

the time scale related to the convection, a much smaller relaxation time scale exists that 

inevitably imposes smaller time steps on the numerical solver. The use of a slower time 

scale in such problems can cause severe numerical instability. 

The most well-known methods for removing this limitation are the operator splitting 

and zero-relaxation limit; however, as reported in Béreux [181], the range of validity of 

each method is very limited, to the product of relaxation time and the acoustic wave 

pulsation. Moreover, spurious solutions may arise when the effects of the source terms 

are not properly resolved [182]. Finally, it is well established that the convergence rate of 

the first-order finite difference methods for conservation laws will be no better than 

O(h
1/2

) [183]. Here we demonstrate that the inherent feature of the new DG scheme 

bypasses the need to apply such inefficient treatments in conventional methods. 

For a single variable uh, the elemental formulation (64) reduces to   

ˆ( )d ( ) ( ) ( ) ( )d

( ) ( )d .

k k k

k

h i k h i h i k

h i k

d
u F u n d F u

dt

S u

   



  



     

 

  



x x x

x

  
(103) 

Taking U as the global vector of degrees of freedom, this equation can be written in a 

matrix form: 
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1 1 1

(1) (2) ( )

1 1 1

( ) ( ) 0

( ) ( ) 0

( )

( , ,..., )

( ) ( ) ( )

h h

h h

N T

h h

d
F u S u

dt

d
F u S u

dt

d
L

dt

U U U

L F u S u

  

  

   

   





  

U
M KU Θ Θ

U
M KU M Θ M Θ

U
U

U

U M KU M Θ M Θ

  (104) 

Here, M and K are the mass and stiffness matrixes, and Θ and Θʹ are the vectors that 

incorporate the contributions of the boundary and source terms, respectively. The 

matrixes are defined as follows: 

1 1 1 2 1

2 1 2 2 2

1 2

( ) ( )d    1  

( ) ( )d ( ) ( )d ... ( ) ( )d
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i j n 

     

     
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x x Ω x x Ω x x Ω



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


, 
(105) 

Owing to the orthogonal property of the basis functions, 
0

ijC i j
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The choice of orthogonal basis functions greatly simplifies the contribution of the high 

order moments of the polynomial approximate solution to the source-term related vector 

Θʹ in equation (30). Once the basis functions (Legendre polynomials), ( )
n

 x , are 

multiplied by the transformation Jacobian ( (1 ) / 2J b   ), the integration in the interval 

[-1 1] will vanish for all the terms except the first term, due to the orthogonal property of 

the basis functions and a coincidental relation 
1
( ) 1 x ; that is, 

1
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( ) d 2
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x Ω

x Ω
Θ

x Ω

 . 
(109) 

Note that, in this novel method, the source term treatment is greatly simplified, the 

same as the first-order (P
0
) case. In other words, the contribution of the cell average 

solutions is dominant in the source terms in the DG framework, although the left-hand 

side of equations (64) and (25) is calculated by the high order polynomial approximation. 

4.2.10 Linear approximation for solving constitutive equations 

The solution of these equations will provide viscous stress, excess stress, and heat flux, 

which are essential in defining the numerical viscous flux on cell interfaces. The non-

conserved variables can be approximated and called as first-order Boltzmann-based 

equations by using Newtonian law for defining shear, bulk viscosity and Fourier law of 

heat conduction as follows,  
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 
 2

0 0 02 , 2 . , lnb T           Π u u Q  
(110) 

The readers are referred to [7, 184, 185] for more details regarding an extension of 

approximation of constitution equations to second-order Boltzmann-based in continuum 

framework.  

4.3 Finite volume (FV) method applied on carrier phase 

In this section, FV method adopted flux function, and viscosity assumption is briefly 

explained since some of the numerical simulations are conducted by commercial software. 

The computational domain is divided using a finite set of control volumes to approximate 

the conservation equations of mass, momentum, and energy, utilizing the finite volume 

method (FVM). The FVM is a robust and efficient method for solving a hyperbolic 

system of equations [186]. The flux on a cell surface was determined by the advection 

upstream splitting method plus (AUSM+). The AUSM+ scheme shows excellent 

capabilities for resolving discontinuities and providing entropy-satisfying and positivity-

preserving solutions. The density-based approach in the ANSYS FLUENT (version 17.2) 

CFD code was employed. The viscosity for the ideal gas assumption was calculated using 

Sutherland’s law to take into account the dependency on temperature. 

4.4 Discrete phase model (DPM) applied on dust particle in 

the Lagrangian framework 

4.4.1 Survey on applications and limitations 

The following options are available while applying by the discrete phase trajectory 

which gives the users the capability to simulate a wide range of problems including 

particle separation and classification, aerosol dispersion, spray drying, liquid fuel 

combustion, coal combustion, and bubble stirring of liquids. 
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i. For both steady and unsteady flows, the formulation of Lagrangian is included with 

the discrete phase inertia, hydrodynamic drag, and the force gravity. 

ii. Estimation of the influence of turbulence on the dispersion of particles owing to the 

existence of turbulent eddies in the carrier phase. 

iii. Calculation of energy exchange of the discrete phase 

iv. Applying vaporization and boiling of liquid droplets 

v. Coupling option to take into consideration the effect of particles on the continuous 

phase 

vi. Breaking up/coalescence of the droplet 

The trajectory model similar to any methods is subjected to some drawbacks which 

limit the application of this approach. Some of those disadvantages are listed below: 

i. Since the dispersed phase is sufficiently dilute, the continuous phase can be 

considered free from the effects of particle-particle interactions as well as volume 

fraction. These issues convey an idea that the volume fraction of the discrete phase 

must appear at low magnitudes usually less than 10-12%. 

ii. The governing physics of the explained steady-particle Lagrangian DPM is suited for 

flows in which the initial conditions, as well as exit conditions, are well-defined. 

These circumstances imply that the Lagrangian model has poor functionality once the 

particles are suspended for an unspecified period in the carrier phase. Such 

phenomena can be found in solid suspension through closed systems including mixing 

vessels or fluidized bed.   

4.4.2 Calculation of particle trajectory 

In the current study, the trajectory and the behavior of the scattered particles in 

continuous phase are modeled in a Lagrangian framework using the discrete phase model 

(DPM) by integrating the force balance over each particle. In this model, the assumption 

of neglecting particle-particle interaction is valid, since the volume fraction of the 
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dispersed phase compared to the continuous phase is significantly low (less than 10%). 

The DPM can be expressed in a way that makes a simulation of the heat and momentum 

exchange feasible, by conducting two-way coupling with the Eulerian frame of gas. The 

force balance equation can be written in the x-direction for simplicity, as follows: 

( )
( )

p x p

D p x

p

du g
F u u F

dt


   

 


  

(111) 

In the ordinary differential equation, the source term 𝐹𝑥 can be any additional force, 

which acts on the particle. Furthermore, 𝐹𝐷 is the drag force per unit mass and can be 

expressed as 

2

18

24

D
D

p p

C Re
F

d





  

(112) 

Here 𝑢, 𝜌, 𝜇, and d, are velocity, density, viscosity, and diameter, respectively. The 

subscript p represents the property of the particle. g is the gravitational acceleration, and 

Re is the relative Reynolds number defined as 

p pd u u
Re






  (113) 

where the drag coefficient CD is given by  

32
1 2D

aa
C a

Re Re
    

(114) 

Here 𝑎1, 𝑎2 and 𝑎3 represent constant coefficients for smooth spherical particles [187, 

188]. 

4.4.3 Dispersal and continuous phases coupling  

The solver follows the exchange of conserved variables such as mass, momentum, and 

heat by the particle stream as the trajectory of the particles is calculated. The variables 

mentioned above can be accommodated in the calculation of the subsequent gas phase. 
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Moreover, this phenomenon implies that not only the continuous phase impacts the 

discrete phase but also the particle’s trajectories can affect the gas phase as well. 

Therefore, two-way coupling computation is terminated after solving alternatively the 

discrete phase and gas phase once the solutions in both phases become stabilized, and no 

further alteration observed.   

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5. Numerical experiments on inviscid 

flows including Euler-type systems of equation 

In this chapter, we present the results for some of the well-known benchmark 

problems in one- and two-dimensional space. To verify the code and estimate the order of 

accuracy of the numerical scheme, we first solve a smooth problem with analytical 

solutions. We then investigate the widely studied Sod’s shock tube problem in dusty gas 

flows with special emphasis on the complex wave behaviors therein. Finally, we solve 
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two two-dimensional multiphase flows—explosion and compression corner problems—

to highlight the effects of the dispersed phase (solid dust) on the multi-dimensional dusty 

gas flow.  In all test cases, the ratio of the specific heats of air (γ) and the ratio of the 

specific heats of the two phases (cm/cv) are set equal to 1.4 and 1.0, respectively.  Unless 

otherwise mentioned, the following values are used for particle properties: 

diameter, d=10 µm; 

mass density, ρs=2,500 kg/m
3
; 

specific heat, cm=718 J/kg-K. 

5.1 One-dimensional dusty gas flows 

5.1.1 Verification study in the single-phase case (1-D) 

The propagation of a smooth sine wave (known as the entropy waves problem) was 

considered for verification of the code. The periodic boundary conditions were applied at 

both sides of the domain. For the following initial condition, 

( ,0) 1,

( ,0) 1.0 0.2sin( ) ,

( ,0) 1,

u x

x x

p x

 




 
 

  (115) 

the corresponding exact solutions can be written as 
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Roe flux function 

 

 

HLL flux function 

 

 

Rusanov (LLF) flux function 

Fig. 24. Comparison of various numerical fluxes for the smooth solution of Euler equation; 

(left) profile, (right) Euclidean norm of density [18] 
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In order to measure the order of accuracy of the DG method for various flux functions, 

the density distribution of the solution was obtained for different orders of accuracy (P
χ
, 

with χ indicating the polynomial order) and the results are shown in Fig. 24. It can be 

seen that numerical deviation from the analytical solution is large in the first-order 

piecewise constant case (P
0
); however, the application of more sophisticated numerical 

fluxes such as Roe and HLL can improve the accuracy of the piecewise constant solution.  

In order to evaluate the performance of the numerical scheme in more detail, the 

numerical errors and the order of accuracy were calculated based on the density solution. 

The results were found to be consistent with the observations of Qiu et al. [189]. 

Moreover, it was confirmed that all numerical fluxes lead to the expected order of 

accuracy of P+1.  It is worth noting that each flux function shows different behavior in 

performance for different orders of a polynomial function, and thus drawing a general 

conclusion is not possible. 

5.1.2 Sod shock tube problem in dusty gas flows 

Fig. 25 depicts the shock tube problem in single phase (pure gas) and multiphase 

(dusty gas).  The evolution of various types of waves and discontinuities from the initial 

Riemann data can provide the essence of dusty gas flows; as, for example, the supersonic 

flows formed by the interaction of rocket plume and lunar dust. Moreover, the shock tube 

problem is ideal for examining the feasibility and validity of the new numerical methods, 

since it is free from boundary effects or other numerical complexities. The scheme tested 

in the one-dimension problem can also be extended to the multi-dimensional situation 

afterward. 
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Fig. 25. Schematic of the shock tube problem in dusty gas (pure gas versus dusty gas) 

(computational domain length: 100L) 

In order to obtain solutions without spurious oscillations, the positivity-preserving 

scheme was used in conjunction with the monotonicity-preserving limiter. It should be 

emphasized again that no extra effort is necessary for handling the source terms, thanks 

to the special feature associated with the orthogonal basis functions introduced in the new 

DG scheme, as explained in subsection 4.2.9. That is, the present DG method is immune 

to the artifact that may arise from splitting the source terms, or the complexity incurred 

by application of the fractional step approach [86, 190] or the random choice method 

[114] to cope with the source terms. 

Table 10. The initial condition for the Sod’s shock tube problem  

Non-dimensional variable Driver section Driven section 

Pressure 10.0 1.0 

Gas density 10.0 1.0 

Particle concentration 0.00001 1.0 

Gas velocity 0.0 0.0 

Dust velocity 0.0 0.0 

 

The results of the dusty shock tube problem with the initial condition summarized in 

Table 10 are presented in Fig. 26. It can be seen that the numerical solutions of the pure 

gas are in good agreement with the analytical solutions of the shock tube problem. In the 
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figures, the term ‘dusty gas’ implies the carrier gas phase. This problem has been 

previously investigated by Saito [80], Saito et al. [81], and Pelanti and LeVeque [85]. 

Comparison with these previous results can be used as verification of the present 

computational model of two-fluid dusty gas.  The multiphase solutions demonstrate the 

profound effects of the inertia of the dust particles on the flow properties. The gradual 

response of the dust particles to the diaphragm rupture was observed, especially in the 

velocity and temperature profiles. Interestingly, the strength of the right-running shock 

wave front was found to be much smaller than that of pure gas, which is due to the 

absorption of momentum and heat from the gas molecules by the dust particles. In 

addition, the deceleration of the shock wave front was observed from the velocity profile, 

inducing compression waves behind the shock wave. This phenomenon was identified in 

the pressure profiles as well.  

5.1.3 Composite wave structures in the Sod problem of dusty gas flows 

In contrast to a single-phase flow, dusty gas flows can show some striking wave 

structures, which have no counterpart in classical theory. The physical explanation of 

these phenomena in dusty gas flows has rarely been addressed in the literature. In this 

section, we provide a detailed discussion on the underlying physics forming these 

abnormal waves. 

Various wave structures that are formed in the shock tube problem of dusty gases are 

schematically illustrated using the x-t diagram in Fig. 27 (a) describes the case in which 

the contact discontinuity of gas and the boundary path of a particle are located at the 

same position, while Fig. 27 (b) describes the case in which the boundary path of a 

particle is located at a distance from the contact discontinuity of gas. When a shock wave 

impinges on a cloud of particles in dusty gas flows, it will be reflected as an expansion or 

shock wave, depending on the ratio of the specific heats of the solid particle and gas, and 
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the particulate loading of the mixture [72]. In this diagram, the case of reflected 

rarefaction waves was not considered, since the properties of the test case of the mixture 

corresponding to the case of shock wave reflection. Since solid particles with non-

negligible inertia cannot follow the abrupt changes of flow, a relaxation zone attached to 

the shock wave forms and the shock wave front decelerates until a new equilibrium 

condition is reached. The size of the relaxation zone is affected by the diameter of the 

solid particle, density, and heat capacity. As mentioned before, a finite time is required 

for the particles to fully attain the speed of the gas. During this period, reflected 

compression waves are generated from the boundary path of the particle, eventually 

forming a weak left-running shock wave, as illustrated in Fig. 27 (a). 

For better clarification, we investigated in detail how the evolution of those waves is 

affected by the concentration of dust particles. We identified three abnormal behaviors 

based on the density profile: 1) the tale of the left-running rarefaction waves; 2) the 

region before the contact discontinuity, and 3) the tale of the right-running shock wave.  

It is well known that, after the diaphragm ruptures, a right-running compression wave and 

left-running rarefaction waves will start to propagate in the background medium. On the 

other hand, dust particles with different density ratios on each side of the diaphragm will 

lead to the existence of an extra contact discontinuity (in solid phase) compared to the 

case of pure gas. We refer to this discontinuity as the dust contact discontinuity (DCD). 

The first composite wave structure, marked as number (1) in Fig. 28, was observed at the 

tail of the rarefaction waves in the density profile. This exotic structure should be 

distinguished from the numerical artifacts that may be found in high order methods when 

they are not appropriately treated. Due to the presence of dust particles, the rarefaction 

waves weaken, and their propagation speed decreases as well. Therefore, gas will 

accumulate in  
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t=5 t=10 

Fig. 26. Solutions of the Sod’s shock tube problem in dusty gas for two different time steps 

(P1 solution) [18] 
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(a) 

 

(b) 

Fig. 27. Schematic of various wave structures in the 1-D dusty gas flow: (a) The gas contact 

discontinuity and boundary particle path is initially located at the same position, (b) The 

particle boundary path is located at a distance from the gas phase contact discontinuity [18] 

 

The region close to the tail of the rarefaction waves and the reflected compression waves 

generated from the boundary path of the dust particle will form a weak shock wave 

attached to the tail of the left-running rarefaction waves, as observed in Fig. 28 (a).  
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This weak shock wave is directly related to the presence of the DCD, and it will be 

strengthened when the dust concentration increases. It will be shown in a later figure that, 

when there is no DCD, i.e., when both the high and low-pressure sections are filled with 

the same dust concentration, this composite wave structure will disappear. In passing, it 

should be mentioned that this type of composite waves is different from the generic 

compound waves observed in magneto-hydrodynamics, due to the non-convexity and the 

non-strict hyperbolicity [191], and the present waves should be called composite waves 

or pseudo-compound waves, rather than compound waves. 

In another region, marked number (2) in Fig. 28, the presence of dust induces an 

increase in pressure (and a decrease in velocity) in the middle region, leading to higher 

density compared to the case of pure gas. It turns out that this increase in density is 

dependent on dust concentration, as well as the location of the DCD.  

A second composite wave structure, marked number (3) in Fig. 28, was observed at the 

tail of the shock wave. It consists of a right-running shock wave followed by a relaxation 

zone. When there is no particle, the shock wave is steep and strong as expected. When 

particles are present, however, the shock wave weakens substantially, and the relaxation 

zone forms instead, due to the coupling effects between the two phases. We can see that a 

higher particle concentration leads to a larger relaxation zone and a reduction in the 

propagation speed of the shock wave. It will be shown in the next figure that the location 

of the DCD changes the position where the shock wave forms, but does not affect the size 

of the relaxation zone. 
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(a) (b) 

  

(c) (d) 

 
 

Pseudo compound wave made up 

of  RW-RS 

 
 

CD attached to RZ 

                                                                                      

 
 

RZ attached to SW 

 

Fig. 28. Effects of initial dust concentration on the Sod’s shock tube in the dusty gas (P
1
 solution) 

(RW: rarefaction wave, RS: reflected shock, CD: contact discontinuity, RZ: relaxation zone, SW: shock 

wave ) [18] 
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(a) (b) 

  
(c) (d) 

 
 

 
 

 
 

Pseudo compound wave made up of  

RW-RS 
CD attached/detached to/from RZ RZ attached to SW 

Fig. 29. Effects of location of the initial dust contact discontinuity (DCD) on the Sod’s shock tube in the dusty gas 

at t=30 (P
1
 solution) 

(RW: rarefaction wave, RS: reflected shock, CD: contact discontinuity, RZ: relaxation zone, SW: shock wave) [18] 
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In order to investigate how the DCD would affect wave patterns in the dusty gas flows, 

additional cases were simulated by varying the position of the DCD (from x=40 to x=60) 

while maintaining the same dust concentration, as shown in Fig. 29. The other profiles in 

this figure correspond to the pure gas and the dusty gas case of the previous figure. In all 

cases, the dust concentration is assigned with the same value (α0ρ0=0.1). In the region 

marked number (1), the weak discontinuity in density, pressure, and temperature profiles 

discussed in Fig. 28 vanishes when there is no DCD. When the DCD is shifted towards 

the right end of the tube (x=60), the discontinuity is detached from the rarefaction waves 

and is shifted to the right as well.  

In the region marked number (2), the shifted DCD seems to produce yet another 

contact discontinuity (around x=70) attached to the relaxation zone. When putting 

together with adjacent waves, there seems to be a new composite wave structure, 

consisting of three waves—a contact discontinuity, the relaxation zone, and a shock wave. 

On the other hand, as can be seen in region number (3), the strength of the right-running 

shock wave and the size of the relaxation zone remain the same for all dusty gas cases, 

though the position of the waves is shifted as expected. 

5.2 Two-dimensional dusty gas flows 

5.2.1 Verification study in the single-phase case (2-D) 

In order to examine the order of the accuracy of the developed method, the 

propagation of a smooth sine wave in a two-dimensional domain was considered. The 

periodic boundary conditions were applied at all sides of the square domain, as shown in 

Fig. 30(a). For the following initial condition, 
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the corresponding exact solutions can be written as 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 30 Analysis of the order of the accuracy of the two-dimensional code for a smooth sine 

function problem [18] 
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The error norms for density solutions up to fourth-order accuracy (P
3
) are calculated and 

summarized in Fig. 30 (b-d) Table 11. It can be seen that the desired order of accuracy is 

achieved. For fine grids, the actual order is shown to be higher than the nominal order of 

accuracy.  

Table 11 Accuracy analysis for 2D entropy waves [18]. 

P
1
  

ΔX Nx L1 error L2 error L∞ error L1 order L2 order L∞ order 

1.25 8 1.47E-03 1.72E-03 3.09E-03 - - - 

0.625 16 4.33E-04 4.84E-04 8.65E-04 1.764 1.829 1.835 

0.3125 32 1.16E-04 1.29E-04 2.30E-04 1.896 1.912 1.914 

0.15625 64 3.01E-05 3.31E-05 5.92E-05 1.951 1.955 1.956 

0.078125 128 7.64E-06 8.40E-06 1.50E-05 1.979 1.980 1.980 

P
2
 

ΔX Nx L1 error L2 error L∞ error L1 order L2 order L∞ order 

1.25 8 1.47E-03 1.72E-03 3.09E-03 - - - 

0.625 16 4.33E-04 4.84E-04 8.65E-04 1.764 1.830 1.835 

0.3125 32 9.60E-05 1.06E-04 1.92E-04 2.174 2.197 2.172 

0.15625 64 6.77E-06 7.44E-06 1.38E-05 3.827 3.825 3.801 

0.078125 128 3.55E-07 3.91E-07 7.06E-07 4.251 4.249 4.286 

P
3
 

ΔX Nx L1 error L2 error L∞ error L1 order L2 order L∞ order 

1.25 8 1.43E-03 1.59E-03 2.90E-03 - - - 

0.625 16 3.69E-04 4.03E-04 7.30E-04 1.959 1.980 1.990 

0.3125 32 5.90E-05 6.50E-05 1.09E-04 2.643 2.633 2.744 

0.15625 64 4.47E-06 4.91E-06 7.75E-06 3.725 3.728 3.813 

0.078125 128 3.06E-07 3.37E-07 5.68E-07 3.866 3.863 3.771 

 

5.2.2 2-D compression corner problem in dusty gas flow  

As the second two-dimensional benchmark problem, we investigated the compression 

corner problem for both the single and multi-phase applications. This problem is far more 

complicated due to the presences of boundary effects and the intrinsic complexity of the 

flow. The incident shock Mach number Ms, the wall inclination angel θw, and the initial 

condition of driven and driver sections define the governing physics of the shock-wave 

diffraction. The schematic of the compression corner problem is illustrated in Fig. 31. 
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Fig. 31. Schematic of the pure gas (left) and dusty gas (right) 2-D compression corner 

problems (computational domain size: 5L×4L)  

 

As a validation study, we compared our numerical solutions with the experimental 

results obtained by [113] for the case of a single Mach reflection (SMR). The initial 

condition is for both the single-phase and multiphase cases are provided in Table 12. 

 

 

 

 

 

 

 

 

Table 12.The initial condition for the single Mach reflection problem 

Non-dimensional variable Driver section Driven section 

Pressure 4.64 1.0 

Gas density 2.71 1.4 

Particle concentration 0.1 0.1 

Gas velocity (x-direction) 1.51 0.0 

Gas velocity (y-direction) 0.0 0.0 

Dust velocity (x and y -directions) 0.0 0.0 
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Experimental image [113] P
0 
soloution  

  

P
1 
solution P

2 
solution 

A 

 

  

  

  
 

B 

C 

Ben-Dor et al. [106] 
Present result (P

1
 solution) 

Fig. 32. Validation of pure gas case (Isopycnics for single Mach reflection: Ms=2.03 and θw=27°) and 

verification of dusty gas case (A-constant flow Mach number contours, B-constant gaseous phase 

density contours, and C-constant dust phase spatial density) [18] 
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The incident shock Mach number is set to 2.03, and the corner wedge angel is given by 

27°. Numerical solutions, up to the third order of accuracy, were in good agreement with 

experimental data, as shown in Fig. 32. We confine our validation to a single-phase SMR 

case since no experimental data are available in the case of dusty gas flows. The 

comparison shows that the solutions up to third order accuracy (P2) are in good 

agreement with the experimental data. Also, we verified the dusty gas results with the 

solutions of [106] for two particle diameters (1 µm and 5µm) in the case of SMR.  The 

comparison of Mach contours, as well as isopycnic surfaces of gas and dust densities, 

indicates a good agreement. 

Furthermore, a very strong shock wave case studied by Woodward and Colella [192] 

was investigated. The problem, a strong Mach 10 shock impinging on a wall inclined at 

30°, was known to lead to a complicated double Mach reflection (DMR). The initial 

conditions for both the single-phase and multiphase cases are summarized in Table 13. 

In Fig. 33 (a), a study on grid independency was done for solutions with the second 

order of accuracy (P
1
). A grid resolution with h=1/100 was found to provide almost 

identical results with h=1/120, and hence the grid with h=1/100 was used throughout. The 

density and Mach contours at non-dimensional time t=200, as shown in Fig. 33 (b) and 

(c),  indicated that the present DG scheme successfully resolves all the important flow 

Table 13.The initial condition for the double Mach reflection problem 

Non-dimensional variable Driver section Driven section 

Pressure 116.5 1.0 

Gas density 8.0 1.4 

Particle concentration 0.1 0.1 

Gas velocity (x-direction) 8.25 0.0 

Gas velocity (y-direction) 0.0 0.0 

Dust velocity (x and y -directions) 0.0 0.0 
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features: slip lines, Mach stem, secondary Mach stem, reflected shock wave, and the 

formation of supersonic flow in the delta region. A weak jetting effect reported in Ben-

Dor et al. [106] was also observed.  

 
(a) Grid independency study: Pressure distribution along the reflecting wedge surface  

 
(b) Density contour 

 
(c) Mach contour 

Fig. 33. Verification study: Double Mach reflection (pure gas P
1
 solution) [18] 
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The effects of polynomial order on numerical solutions were analyzed in Fig. 34. It 

can be seen that the first-order solution with h=1/100 cannot resolve the expected flow 

feature properly. However, higher order solutions can provide a satisfactory resolution to 

accurately explain the important physical features of the flow. It can also be seen that 

there is no drastic change in solutions when increasing the polynomial order from one (P1) 

to two (P2). It should be mentioned that the application of the positivity preserving 

scheme is necessary to prevent numerical instabilities in this high Mach number flow. 

In order to understand the effects of dust particles on the time evolution of the flow, 

the single-phase and multiphase solutions (pure gas, dusty gas, and dust concentration) 

are summarized in Fig. 35 for two different time steps. One of the main features of the 

dusty gas flows is that the transition region in the shock waves is much thicker than that 

of the pure gas. In the multiphase flow, as the shock front is decelerated due to interaction 

with particles, a longer time is required for the shock front to reach the same location 

when there is no particle in the flow field. It is also evident that the presence of the 

particles can lead to attenuation of the incident shock wave. It should be mentioned that 

both the positivity and monotonicity preserving limiters were applied in the simulation of 

multiphase flows to prevent the numerical breakdown. 

  



 

116 

 

 
(a) Pure gas (P

0
) 

 
 (b) Pure gas (P

1
)  

 
 (c) Pure gas (P

2
)  

Fig. 34. Effects of polynomial orders on the density contours [18] 
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Pure gas (t=1) 

 
Pure gas (t=2) 

 
Dusty gas (t=1) 

 
Dusty gas (t=2) 

 
Dust (t=1) 

 
Dust (t=2) 

Fig. 35. Time evolution of density contours in the compression corner (double Mach reflection) 

problem (P
1
 solution) [18] 

The effects of dust particles on the structure of the DMR were also investigated, as 

summarized in Fig. 36. The convex shape of the Mach stem in the pure gas simulation is 

due to the front of the curled slipstream reaching the Mach stem [193]. The presence of 

particles, however, decelerates the velocity of the slipstream front and does not allow the 

slipstream to catch up with the Mach stem, as shown in Fig. 36 (b) of the multiphase case 

with a particulate loading β=0.1 and a particle diameter 10 µm. As a result, the Mach 

stem forms almost perpendicular to the reflecting wall surface in the dusty gas case. The 

secondary reflected shock wave and slipstream are severely distorted so that they are not 

identified. Moreover, the secondary triple point configuration, in which the secondary 

reflected shock wave, Mach stem, and slipstream coincide undergoes a significant change 

so that such a point is almost indistinguishable. 
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(a) Pure gas 

  
(b) Dusty gas: β=0.1, d=10.0 µm 

  
(c) Dusty gas: β=0.5, d=0.5 µm 

Fig. 36. Change of the DMR structure in the presence of dust particles (P
1
 solution) [18] 

Another dusty gas case with a particulate loading β=0.5 and a particle diameter 0.5 µm 

were considered. Such a setting leads to a greater number of particles in the domain 

compared to the previous case. It can be seen in Fig. 36 (c) that, unlike the previous case 

in which only the secondary triple point is subject to major change, both the primary and 
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secondary triple points are affected by dust particles. Note also that the incident shock 

front is significantly decelerated in this case with high dust concentration. 

Finally, a more detailed parametric study on the effects of particulate loading and particle 

diameter size was summarized in Fig. 37. Isopycnic surfaces, that is, surfaces with a 

constant density of gas phase in the dusty gas indicate that the particulate loading will 

substantially affect the configuration of the triple points. This change is more significant 

in the case of larger dust particles. Moreover, when the particulate loading increases, the 

incident shock front greatly decelerates, especially in the case of smaller dust particles. 

Furthermore, it can be seen that the height of the Mach stem shortens in dusty gas flows. 

Due to the increased momentum and thermal interactions, the height of the Mach stem 

shortens more in the case of a smaller dust particle. Also, it can be observed that the 

particle diameter affects the curvature and slope of the secondary and primary reflected 

shock waves. The larger the particle diameter is, the less is the curvature of the secondary 

reflected wave. Also, the primarily reflected shock gets more aligned with the secondary 

reflected shock as the diameter increases. In the case of large particles and high mass 

loadings, the reflected shocks are completely distorted. Furthermore, it can be seen that 

the slipstreams are affected by the increase of particulate loading. The slipstreams are 

found highly distorted in case of smaller particles. In summary, it can be inferred that the 

increase of particle diameter and mass loading would lead to blurrier flow patterns of 

reflected waves and slipstreams. The surfaces of the constant density of solid phase in the 

dusty gas, shown in Fig. 37 (b), imply that smaller particles can follow the gas phase 

closely, but larger particles cannot follow the gas phase so that the structure of isopycnic 

surfaces becomes drastically different from that of the corresponding gas.  
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β=0.1, d=1.0 µm β=0.5, d=1.0 µm β=1.0, d=1.0 µm 

   
β=0.1, d=5.0 µm β=0.5, d=5.0 µm β=1.0, d=5.0 µm 

   
β=0.1, d=10.0 µm β=0.5, d=10.0 µm β=1.0 , d=10.0 µm 

(a) Gas phase 

   
β=0.1, d=1.0 µm β=0.5, d=1.0 µm β=1.0, d=1.0 µm 

  
 

β=0.1, d=5.0 µm β=0.5, d=5.0 µm β=1.0, d=5.0 µm 

   
β=0.1, d=10.0 µm β=0.5, d=10.0 µm β=1.0 , d=10.0 µm 

(b) Solid phase 

Fig. 37. Parametric study on particulate loading and particle diameter in the double Mach reflection 

problem (P
1
 solution) [18] 
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5.2.3 The pattern of waves in shock-vortex interaction in Schardin’s 

problem 

As an extension study on two-dimensional dusty gas flows, and as it was shown in the 

previous section, one can investigate the influence of particle grains on complicated wave 

patterns after the passage of shock incident from the wedge tip under the certain 

condition which leads to the occurrence of two counter-rotating vortices. Shardin’s 

problem is an important benchmark problem for studying shock-vortex interaction. In this 

work, we consider the dusty gas Shardin’s problem for studying the shock-vortex 

interaction in a dusty medium. To this end, a modal discontinuous Galerkin method is 

developed for solving the two-fluid model of the dusty gases. The simulation results 

reveal that some dynamics of the shock-vortex interaction in a dusty medium is different 

from that of the pure gas counterpart.   

 Verification of single-phase solver over time evolution 5.2.3.1

The interaction of shock and vortex–two fundamental fluid mechanics phenomena–has 

been a topic of interest for decades. The interaction is important due to various 

technological and environmental applications. Some of the well-known applications 

include noise generation in supersonic jets, shock-enhanced mixing (especially in non-

premixed supersonic combustion), strake-wing configurations, and compressors 

operating near their stability limits [194-198]. 

Fig. 38 depicts the schematic of the various types of discontinuities and other 

compressible flow features that are observed in the Shardin’s problem. As the result of 

the impingement and subsequent reflection and deflection of the planar shock on the 

wedge, structures such as Mach stem, slip lines, Mach triple points, vortices and 

vortexlets would emerge. In the following subsections, after validating the developed 
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solver, we will investigate the effects of the presence of dust particles on the behavior of 

these structures. 

 

Fig. 38 Schematic of the compressible flow features observed in Shardin’s problem 

 

The developed solver has been extensively verified and validated in various problems 

for both pure gas and dusty gas models in [18, 199]. In Fig. 39, and Fig. 40 the numerical 

Schlieren photos of the pure gas model are compared with the experimental results of 

[200] for different time steps. The basic flow structures including the two splits shock 

after impingement on the vortex (one in and the other against the direction of vortex 

circulation) and the V-shaped decelerated deflected shock are well captured in the 

numerical solutions.  
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a) 𝑡 = 28𝜇𝑠 

  

b) 𝑡 = 53𝜇𝑠 

  

c) 𝑡 = 102𝜇𝑠 
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d) 𝑡 = 130𝜇𝑠 

  

f) 𝑡 = 172𝜇𝑠 
Fig. 39 Density contours: Left) experimental data adopted from [200]  right) present numerical 

simulation. Time evolution of incident shock impinges to the prism 

 

More precise wave patterns are depicted in Fig. 41 right after the prisom. The only 

feature which is not resolved in the numerical solutions is the vortexlets string emerging 

in the slip layer of the main vortex due to Kelvin–Helmholtz instability. This feature may 

be captured if a much finer grid or higher order polynomials are applied as it is shown in 

Fig. 42 where superfine grid is employed. However, as the main purpose of the current 

work is to investigate the effects of the presence of dust particles, the investigation of 

such details is deferred to future works.  
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t=91 μs t=108 μs t=128 μs 

   

t=138 μs t=151 μs t=178 μs 
 

 Fig. 40 Comparison of the numerical Schlieren photos (bottom) with experimental results of 

[200] (top)  
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a) t= 89 𝜇𝑠 b) t= 95 𝜇𝑠 

  
c) t= 101 𝜇𝑠 d) t= 107 𝜇𝑠 

  
e) t= 130 𝜇𝑠 f) t= 172 𝜇𝑠 

Fig. 41 Time evolution numerical simulation for shock-vortex interaction 
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Fig. 42 Capturing vortexlets by using superfine grid 

 

 Schardin’s problem in the presence of particle-laden flow 5.2.3.2

The importance and complexity of the problem have motivated various experimental 

and numerical works. When shocks and vortices form in a dusty environment, the dust-

gas interaction can significantly affect the dynamics of the flow. However, the interaction 

of shocks and vortices in a dusty environment has rarely been investigated in the past. In 

this work, the so-called Shardin’s problem in the presence of dust particles (which 

hereafter will be referred to as the dusty gas Shardin’s problem) is considered with a 

focus on the effect of particulate phase on the shock-vortex interaction. 

It is well-known that particles inside a vortex will follow a pattern from the vortex 

core and concentrate on the edges of the vortex. Moreover, in dusty gas flows, presence 

of relaxation regions and complex mechanisms of wave patterns including pseudo-

compound wave (a reflected shock attached to the rarefaction wave) as well as composite 

wave (a contact discontinuity attached to the relaxation zone) can be observed.  In the 

Shardin’s problem, a traveling shock wave passes by a compression corner forming 

different types of Mach reflections depending upon the shock Mach number and wall 

inclination angle. When the shock front passes the wedge, two counter-rotating vortexes 

will be created behind the triangular prism and will interact with the shock wave.  
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Different scenarios for defining the dusty gas Shardin’s problem can be considered. 

The dust can be initialized uniformly in both side of the diaphragm, or it can be present 

only on the right-hand side of the membrane. It is also possible that the domain is 

initialized with dust just after the compression corner where the vortex starts to form. The 

initialization may affect the evolution of flow structures. In this work, however, we select 

the case where the whole domain is initialized with uniform distribution of dust grains. 

   
t=89 μs t=107 μs t=130 μs 

Fig. 43 Time evolution of numerical shadowgraphs; pure gas (top half) compared with dusty gas 

(bottom half) (d=10 μm, β=10) 

 

Fig. 43 demonstrates the effects of the presence of particles on the flow. In the test case, 

glass beads with a diameter of 10 μm and a density of 2,500 kg/m
3
 are distributed 

uniformly in the whole domain. The particulate loading (β) is set equal to 10.  It can be 

seen that all the basic structures observed in the pure gas case are also present in the 

dusty gas case; however, all the discontinuities are either decelerated or accelerated when 

dust particles are added. More specifically, the left running discontinuities, i.e., reflected 

shock wave and rarefaction waves are accelerated, and all the other right-running 

discontinuities including slip lines, incident, and accelerated shocks are decelerated 

compared with the case of pure gas. Some discrepancies between the case of pure gas and 

dusty gas in the vicinity of the vortex become obvious as the particles are transferred 

from the vortex core towards the vortex edges.  
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t=89 μs t=95 μs 

  
t=101 μs t=107 μs 

 
t=130 μs 

Fig. 44 Comparison of gas density contour lines overlaid on dust phase contours for 

pure gas (top half) and dusty gas (bottom half) 

 

 



 

130 

 

Accumulation of dust particles and the formation of a particle-free region in the center 

of the vortex over time evolution are demonstrated in Fig. 44. It can be seen that the dust 

particles are converted towards the edges of the vortex and form a low-density region in 

the core of the vortex. The accumulation of the particles diminishes the slip layer and slip 

line. Moreover, it can be observed that the waves not only are decelerated but also 

attenuated.   
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Chapter 6. Numerical experiments on viscous 

flows including conservation law equations along 

with first-order constitutive relations  

In this chapter, simulation results for a few problems where the first-order Boltzmann-

based constitutive relations (NSF) govern the flow are presented. In the investigated 

problems, the viscous effects find importance and application of zeroth-order Boltzmann-

based constitutive relations (Euler) is not sufficient for prediction of this category of 

problems. 

6.1 Axisymmetric under-expanded jet flow 

Supersonic jets issuing from underexpanded nozzles are observed in various practical 

engineering applications ranging from plumes of aircraft and rockets to supersonic 

combustors. On the other hand, this type of flows is a suitable benchmark problem for 

studying the complex wave patterns due to the interaction of shock waves with particles 

[18]. An essential parameter pertinent to the problem of the underexpanded jet is the 

prediction of the location of the Mach disk. From a physics point of view, understanding 

this feature is key in the fundamentals of gas dynamics. Moreover, this property is 

essential in predicting the structure of the plume of the nozzle (an important system 

design requirement). Therefore, such studies can be crucial in various engineering 

applications based on the concept of jet under-expansion. Examples include jet 

propulsions, natural gas pipeline blowdowns, and radio jets. This parameter has long 

been investigated experimentally [201-206] and numerically [207-210]. A comprehensive 

review regarding the Mach disk position, diameter, and apparition of free underexpanded 

jets in the quiescent medium can be found in the paper by Franquet et al. [211]. The 
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schematic of the problem defined as a supersonic jet expanding from a high-pressure 

chamber into a low-pressure ambient is illustrated in Fig. 45. 

 

Fig. 45 Schematic of the under-expanded jet of particle-laden gas 

(computational domain size: 5D×10D) 

In some applications such as in solid propellant rocket boosters, injection of powder fuel 

into the combustion chamber or volcanic eruptions, the presence of particles can 

subsequently change the dynamics of the flow. Even though the gas-only flow of the 

underexpanded jets has been studied from different perspectives in an abundant number 

of works, the particle-laden underexpanded jets are addressed only in a limited number of 

researches. Sommerfeld [212] studied the effect of particle diameter and ambient pressure 

on the structure of the underexpanded jets with the use of a discrete particle methods and 

a piecewise linear method. In another work, Sommerfeld [213] applied Lagrangian 

formulation on structured grids to investigate supersonic two-phase gas-particle flows. 

Hayashi et al. [214] applied a Eulerian formulation to investigate the dynamics between a 

gas phase and a solid phase in terms of the size and loading ratio of solid particles. Ishii 

et al. [115] comprehensively investigated the underexpanded supersonic free-jet flows 

and supersonic flows around a truncated cylinder of gas-particle mixtures using a 

Eulerian-Lagrangian framework. In the numerical dusty gas flows studies mentioned 
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above, a downstream movement of the Mach disk location was predicted which is in 

contradiction with the early experimental results of [201, 215]  and more recent 

experiment of [117]. In the latter, a combined experimental and numerical study was 

conducted by which a correlation for the inlet velocity of the gas phase was established. 

The current work aims to expand upon the counter-intuitive trend (downstream vs. 

upstream movement of the Mach disk) by using a high-order accurate numerical 

approach, i.e., discontinuous Galerkin method. Previous studies only considered the 

effect of variation of particles diameter on the behavior of the underexpanded jets. 

However, the parameter that explains the interaction of the dust and gas phase is the 

Stokes number. We hypothesize that besides particle diameter all the other parameters 

present in the Stokes number relation, including dust particle microscopic density, gas 

viscosity and reference values of velocity and characteristic length would affect the 

movement of the Mach stem. To the best knowledge of the authors, this is the first time 

that details of such phenomena are being investigated. Here, after verification and 

validation of the numerical method and demonstration of the counter-intuitive behavior 

for different particle diameters, we analyze the role of the Stokes number independently 

for various particulate loadings. 

Before numerical investigations, the validity of numerical solutions is examined. The 

numerical tool has been extensively validated for the inviscid gas flows in [18]. For the 

purpose of validation of the viscous solver in the problem of underexpanded jet, the 

location of Mach disk in the absence of particles (in a pure gas) for different pressure 

ratios ( ∞) is first studied for validation of the pure gas solver. This parameter has 

been experimentally studied by various researchers in the past [117, 202, 203, 216]. 

Recently, Franquet et al. [211] presented an extensive review of experimental works 

dealing with free under-expanded jets. The comparison of the Mach disk location with 
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experimental results is shown in Fig. 46. Generally, the results are in good agreement 

with experimental data of Avduevskii et al. [203] for mid-range pressure ratios. In the 

case of pressure ratios of 2 and 100, our predictions are more close to the experimental 

results of Lewis and Carlson [216]. 

It can be seen that when first-order polynomials (P
0
) are applied to the location of the 

Mach disk is slightly underestimated compared to the second order solution (P
1
). 

 

 

Fig. 46 Comparison of prediction of Mach-disc location depending on the pressure ratio for 

the pure gas flow with previous experimental results 

In Fig. 47, a comparison of the Mach contour with schlieren image of an experimental 

test case reported in [117] where 
𝑝0

𝑝∞
= 29.8 is provided, which demonstrates a good 

qualitative agreement in terms of prediction of the geometrical shape of the jet with 

experimental results. Moreover, a qualitative validation for the case of dusty gas can be 
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found in [18]. Further, for all the simulations, the second order (P
1
) polynomials were 

applied. 

 
Fig. 47 Comparison of the Mach contour with schlieren image of an experimental test case 

reported in [117] where p0/p∞=29.8 

 

6.2 Axisymmetric particle-laden under-expanded jet  

One of the few experimental studies on the interaction of particles with shock waves is 

the case of under-expanded supersonic jets of gas and particle. In this subsection, we 

investigate the problem of supersonic jets of particle-laden gas [117]. In order to 

implement the axisymmetric formulation in the present computational framework, the 

source terms in the system of governing equations should be modified. The axisymmetric 

equations can be easily derived by following previous studies [85, 115, 117]. The 

problem is defined as a supersonic jet which is expanded from a high-pressure chamber 

into a low-pressure chamber, as illustrated in Fig. 45. 

A comparison of dusty gas solutions with experiments of Sommerfeld [117] is shown 

in Fig. 48. Here, particle properties are set equal to the values of diameter 45 µm and 
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mass density 2500 kg/m
3
. In this problem, one of the critical flow features is the upstream 

movement of Mach disk as a consequence of the interaction of gas phase with particles. 

As reported in [117], when the particle loading increases, the Mach disk gets closer to the 

nozzle exit and the wave patterns observed in the downstream of the Mach disk becomes 

more pronounced. The phenomena of movement of Mach disk has also been reported in 

[201] and [215]. As can be seen in Fig. 48 (b), even though an exact match with 

experimental results are not achieved, a close agreement in the qualitative trend of 

upstream movement of the Mach disk is found. There were, nonetheless, some 

differences between the numerical solutions and the experimental shadowgraphs; for 

example, the curvature of the Mach disk and the width of the jet boundary. While 

experiments show that the Mach disk tends to straighten as the particle loading increases, 

the numerical simulation cannot predict this feature. Also, the width of the jet boundary is 

over-predicted in the numerical solutions compared to experimental results. Such 

deviations may arise from the difference in considering the effect of a nozzle. In the 

present investigation, for the sake of simplicity, the computationthe  is set up to simulate 

expansion of a circular jet from a hole into ambient condition without considering a 

nozzle. Apparently, further in-depth investigation will be necessary for capturing all the 

detailed features observed in experiments. 
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Fig. 48  Shadowgraphs of the under-expanded gas-particle [117] (top) and  density contours 

of pure gas solution (right) with dusty gas (left) jet for different particle loadings (bottom): a) 

β= 0.0; b) β= 0.11 ; c) β= 0.24; d) β= 0.35; e) β= 0.64; f) β= 1.07 (P0 = 0.31MPa, P0/P∞ = 

29.8, d = 45µm) (P
1
 solution) 
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The crucial parameter in fluid-particle flows to characterize the response rate of the 

particles to changes in fluid motion or to evaluate the kinetic equilibrium of the particles 

with the carrier gas is the Stokes number, defined as 

V

ref

St
t




  
(119) 

Here tref is a reference time defined as characteristic length (often nozzle diameter in the 

literature) divided by the characteristic speed and, V  is the momentum (velocity) 

response time of the particles given by 
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(120) 

1St  implies that the response time of the particles is much less than the characteristic 

time of the flow. In this case, the particles have enough time to equilibrate with the 

carrier phase leading to nearly equal velocities. These types of flow can be accurately 

simulated with a one-way coupled model. On the other extreme, when 1St , the 

response time of the particles is much more than that of the carrier phase. Consequently, 

particle velocity is little affected by the fluid velocity change. A two-way coupling 

algorithm should thus take into account the back-influence of the particle phase on the 

carrier fluid. 

6.2.1 The counter-intuitive trend in the movement of the Mach disk 

  While all the previous experimental results indicate an upstream movement of the Mach 

disk, in some of the numerical reports, the trend contradicts the experiments. This 

counter-intuitive behavior is observed for small-diameter particles. Here, the effect of 

particle diameter on the movement of the Mach disk is studied for two different particle 

diameters, i.e.,     and    . Glass beads with the macroscopic 

density of 2500 kg/m
3
 are simulated. The characteristic length (in the Stokes relation) is 
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set equal to 0.01 and air with the viscosity of  ×   
 at 273.15 K is 

selected as the carrier phase. The corresponding Stokes numbers are 0.27 and 2776 for 1- 

and 100-micron particles, respectively. As shown in Fig. 49 for smaller particles the 

Mach disk shows a downstream movement while for larger particles the movement of the 

Mach disk is upstream-wise compared to the pure gas case. It is interesting to note that 

the experimental results of [117] indicate an upstream motion for particles with a 

diameter of 45 μm. 

 

 
 

Fig. 49 Effects of addition of dust particles with different diameters on Mach disk location 
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6.2.2 Effects of Stokes number with a characteristic length 

 According to equation (119) and (120), the Stokes number can be assigned by 

variation of different parameters including particle diameter, the density of the particle 

phase, the viscosity of the carrier phase or characteristic time of the flow. Here Stokes 

number is artificially assigned by multiplying a constant coefficient to the source terms 

so that only coupling effects are investigated. It has been demonstrated through 

experiments of Sommerfeld [117] that the Mach disk location moves towards the jet exit 

plane by the increase of the particulate loadings. However, in  Fig. 49 a counter-intuitive 

behavior is observed in case of low Stokes number flows. Fig. 50 demonstrates more 

detailed analysis of the role of Stokes and particulate loading (𝛽, defined as the mass of 

particles per unit volume of the carrier phase) on the location of the Mach disk. Here the 

Mach contours of the dusty gas flow are compared with the pure gas case. The Mach disk 

displacement trend changes from an upstream movement to a downstream movement 

when the Stokes number decreases. This transition can be observed around the Stokes 

number of 1. It should be noted that the particulate loading has an effective role in the 

Stokes number at which this transition occurs. The higher the particulate loading, the 

more is the Mach disk displacement (either upstream or downstream). In the case of 

𝛽 = 1.07, upstream to downstream transition is observed even for higher Stokes number 

(St = 2.77). For all the simulated test cases in Fig. 50, the streamlines of the particles 

overlaid on density contours of the dust phase are plotted in Fig. 51. As it can be seen 

from the figure, the streamlines depict an identical qualitative trend for similar Stokes 

number. In low Stokes number flows, dust particles can follow the gas streamlines 

closely; However, in higher Stokes number flows, the dust particles show a more 

independent movement, as shown in Fig. 51. This figure can partially justify the counter-

intuitive Mach disk location displacement. For the case of St = 2776.1 and 𝛽 = 1.07, as 



 

141 

 

the particles do not follow the gas phase streamline closely, a high concentration region 

near the jet exit can be observed. Therefore, there is a noticeable change of local 

particulate loading in the radial direction, leading to the formation of curved Mach disk 

as evident in Fig. 50. 
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Fig. 50 Effect of variation of particulate loading and Stokes number on Mach contours in the 

under-expanded jet problem(p0/p∞ =29.8) 
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Fig. 51 Effect of variation of particulate loading and Stokes number on density contours and 

particles streamlines the under-expanded jet problem(p0/p∞ =29.8) 
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6.2.3 Non-equilibrium effects at the exit plane 

Even though numerical results confirm the downstream movement of the Mach disk, 

there is no experimental result which confirms this trend. Sommerfeld [117] showed that 

the numerical solution gives a 25% over-prediction in particle velocity compared to the 

experimental measurements. This is partly due to consideration of rarefaction and 

compressibility effects in drag correlations. On the other hand, Sommerfeld [117] 

suggested that a reduced gas velocity equal to the equilibrium sound speed of the gas-

particle mixture should be assigned at the inlet to make the simulation results closer to 

the experiments. Presence of dust particles decelerate the gas front, delay the gas phase 

expansion leading to lower exit jet velocities. While this is the actual condition in a dusty 

gas underexpanded jet, in our calculations we assumed that the gas obtains sonic speed at 

the exit. Therefore, the influence of particles inside the nozzle (before the jet exit plane) 

is neglected. According to [117], the ratio of the equilibrium sound speed of the gas-

particle mixture to the sound speed of the pure gas is given by 

*
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(121) 

where 𝑢∗ and 𝑎∗ are the velocity and speed of sound at the exit plane. 𝛾𝑒  is the specific 

heat ratio of the gas-particle mixture equivalent gas. A series of simulation has been 

conducted in order to evaluate the level of the agreement of each approach with 

experimental results. The results are summarized in Table 14. As can be observed in the 

table, 10 to 50% over-prediction (with a direct relationship to particulate loading) is 

observed. However, when the equivalent mixture speed is applied at the exit plane, the 

maximum deviation of the results compared to experiments is 14% for the case of 

𝛽 = 1.08. In Fig. 52, the Mach contours of dusty gas flow are compared with the pure gas 

contours. Here the equivalent mixture speed is assigned on the exit plane. As 
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demonstrated in the figure, even when small particle diameters are added to the flow, the 

Mach disk movement is only towards upstream. 

 

 

Fig. 52 Effects of addition of dust particles with different diameters on Mach disk location 

 

Table 14 Comparison of the Mach disk location prediction 

with experimental results (𝒅 = 𝟐𝟔𝝁𝒎, 𝑺𝒕 = 𝟏𝟖𝟕. 𝟗) 

𝜷 Xm/D Experimental 

Numerical 

(Sonic speed at exit 

plane) 

Numerical 

(Equivalent speed at 

exit plane) 

0.0 3.8 3.73 3.73 

0.26 3.54 3.845 3.45 

0.38 3.15 3.815 3.33 

0.66 2.8 3.755 3.094 

1.08 2.5 3.695 2.85 
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Chapter 7. A numerical experiment on near-field 

plume-surface interaction and regolith erosion in 

the descending phase of the lunar landing  

7.1 Survey on the Lunar landing problem 

Moon has a tremendously different environment compared to that of the earth. The 

extremely weak gravity on the Moon cannot hold an atmosphere. Therefore, only the 

heavy gas particles that rarely collide with one another would form an exosphere (100 

molecules per cubic centimeter compared to 100 billion molecules per cubic centimeter 

on Earth’s atmosphere at sea level). In such a rarefied atmosphere where the Sunlight 

would not be blocked, and heat cannot be trapped, temperature variations are also 

significant (i.e., 123 Celsius in the daytime and -233 Celsius at night).  As explained 

before, during the final stages of a soft landing on the Moon, when the Lunar Lander 

approaches the dusty surface of the Moon, the interaction of engine plume and Lunar 

regolith cause a surface erosion and consequently dispersion of particles into the flow-

field. This interaction would lead to some severe consequences, including the pilot’s 

vision reduction, damage to the descent module or previously established sites on the 

Moon, false instrument readings, to name a few. Apart from the rarefied condition and 

presence of dust particles there exists a number of other complexities (e.g., mixed 

subsonic-supersonic regimes, shock-expansion interaction, shear layers) which make the 

simulation of descent phase an exciting subject from CFD point of view. In this section, 

we first introduce the prevailing physics observed in a Lunar landing problem, then our 

methodology for the simulation will be outlined, and finally, some simulation results will 

be presented.  
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7.2 Prevailing physics 

In Fig. 53 the schematic of the problem (descent phase of Lunar Lander) is illustrated. 

To explain the physical phenomena that govern the flow, some of the regions of the 

domain with essential features are marked by numbers on the figure. Region 1 shows the 

formation of the expansion fan at the lip of the nozzle. Region 2 marks the continuum 

flow exhausting from the descent engine characterized by high Mach and low Knudsen 

numbers. Number 3 defines the surface through which continuum assumption breaks 

down. Due to the presence of a surface opposing the exiting jet, a strong stand-off bowl-

shaped shock (number 4) forms and gradually weakens by deviation from the axis. The 

location of this shock wave will largely depend upon the external ambient pressure or exit 

to ambient pressure ratio. Right after the normal shock and exactly underneath the nozzle, 

the flow re-compresses to a near-continuum condition in the stagnation region marked by 

number 5. The virtual diverging channel formed by the stand-off shock and the Lunar 

surface expands the flow in the radial direction. The flow after reaching to the sonic 

speed at the sonic line (number 6) gains supersonic speeds and expands further into the 

near vacuum condition. In a region in the proximity of the sonic line, a supersonic 

boundary layer forms causing dynamic pressure, which is the source of viscous erosion to 

maximize. Hence peak of the mass flux of the eroded particles can be observed at 

somewhere near this point. The entrained particles then gain supersonic velocities and 

can travel significant distances away from the landing site as negligible drag force of 

rarefied atmosphere cannot impede the debris particles seriously.  
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Fig. 53 The prevailing physics in the descent phase of a Moon landing 

7.3 Verification and validation of the numerical method for 

the carrier gas phase 

Due to the lack of experimental results for the proposed lunar lander, the Apollo 11 

nozzle was considered to verify the numerical simulation. The internal flow inside the 

nozzle was simulated by assuming the working gas to be a polyatomic water vapor 

(which is a good representation of the actual exhaust gas), and the solutions at the nozzle 

exit were compared with the results of the DPLR code developed at the NASA Ames 

research center [217]. As shown in Fig. 54, the velocity, density, and temperature profiles 

were found to be in good qualitative agreement, except for some deviations in 

temperature due to the different type of gas.  

The impingement of the rocket motor plume on the lunar surface in a hovering altitude 

of 5m was also investigated. Surprisingly, the solutions of the current work (NSF) were 

found to be in good agreement with the DSMC solutions of Morris [217], including 

pressure contours as low as 20 Pa, as depicted in Fig. 55. An internal shock, formed 
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inside the nozzle, is reflected from the axis of symmetry and interacts with the stand-off 

shock near the lunar surface. These discontinuities are well resolved by the present CFD 

method and the hybrid CFD-DSMC method [217] in which the gas flow near the nozzle 

is solved by a CFD approach. 

 

 
(a) Present results 

 
(b) Continuum-based CFD code results (DPLR)[217] 

 

Fig. 54. Verification of numerical solutions for the gas phase at the nozzle exit 
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Fig. 55. Verification of numerical solutions (pressure): present work (left); DSMC [217] 

(right) 

 

 In order to elaborate on the validity of the present findings, a non-equilibrium 

quantifier based on a combination of the Knudsen (Kn) and Mach (M) numbers was 

introduced to evaluate the degree of deviation that might be present in the first-order NSF 

constitutive laws. As noted first by Tsien in 1946 [218, 219] ‘the order of magnitude of 

the additional second-order heat flux or stresses is Kn·M,’ rather than Kn alone, and 

therefore the degree of non-equilibrium in the moving gases should be the ratio of the 

viscous force to the pressure, since the viscous force is a direct consequence of the 

thermal non-equilibrium [218, 219]. In this context, it should be mentioned that the 

Knudsen number is a pure thermodynamic quantity without any reference to the average 

velocity of gas molecules. A non-equilibrium quantifier to incorporate the average 

velocity of gas molecules, Nδ, is then expressed as Nδ=KnM(2γ/π)
0.5

. Since the quantifier 

Nδ in the moving gases represents the relative magnitude of off-diagonal terms in the 

second-order rank tensor of the stress, the value Nδ =1.0 means that the magnitude of the 
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off-diagonal terms (viscous stress) is comparable to the diagonal term (hydrostatic 

pressure), implying a high degree of non-equilibrium. 

The contours of the local non-equilibrium quantifier in a dynamic flow field are 

plotted along with the local Knudsen and Mach numbers in Fig. 56(a)-(c). Seven 

representative locations in the computational domain are marked with numbers to classify 

flow regimes according to the degree of non-equilibrium depicted in Fig. 56(d). Among 

the marks shown in Fig. 56(d), regions 1 to 3 fall very close to the equilibrium regime, 

and region 4 belongs to a state near equilibrium. Regions 5 and 6 belong to a state 

slightly deviated from equilibrium, while region 7 belongs to a regime considerably 

deviated from equilibrium.  

However, none of these regions approach a highly non-equilibrium state, since Nδ 

values rarely exceed 0.1, as shown in Fig. 56(c),(d). Moreover, due to the presence of the 

lunar surface in front of the gas expansion, even these maximum non-equilibrium states 

are formed only in very narrow region 7 and in regions far from standoff shocks, making 

most of the near-field regions near- or slightly deviated from equilibrium. This 

observation explains the physical reason behind the good agreement of the NSF solutions 

with the DSMC solutions in the present flow problem. 

7.4 Implementation of erosion models using a User Defined 

Function (UDF) 

  To simulate the eroded particles that are injected into the flow field, the DPM module 

was used. The erosion mass flux as a function of axial direction was calculated by 

implementing an erosion model via the UDF feature of the FLUENT code. To compute 

the mass flow rate of injected particles via equation (56), the shear stress on the regolith 

surface should be estimated. The DEFINE_DPM_INJECTION_INIT function [188] is 
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applied to initialize a particle’s injection properties, including location, diameter, and 

velocity. The above macro is called at the beginning of each step in which particles are 

injected. The computed quantities, such as the particle mass flow rate, need to be post-

processed to interpret the computational results. For this purpose, a memory storage 

command C_UDMI was applied. 

Once the steady state solution of the carrier gas phase is computed, the erosion model 

UDF outlined above is called in the case of a one-way algorithm. The equation of motion 

of particles is then integrated based on the local time step. Next, particles are tracked, and 

their final location is determined. On the other hand, when the two-way coupled 

algorithm is employed, the source terms of the Eulerian phase should be updated to take 

into account the coupling effects. The loop is terminated after meeting the convergence 

criteria for the steady-state solution. The algorithm of the solution is illustrated in Fig. 57. 
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(a) 

 

(b) 

 

(c) (d) 
 

Fig. 56. Flow classification based on Kn, M and Nδ for the Apollo nozzle flow problem 
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Fig. 57 Solution algorithm in steady flow demonstrating the step at which the erosion model 

UDF is called 
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7.5 Results and discussion: plume impingement, regolith 

erosion, and particle dispersal 

7.5.1 Nozzle plume impingement on the lunar surface 

Before investigating the complicated multiple nozzle/plume flow field, a single 

equivalent nozzle with the same mass flow rate and thrust was considered. The on-design 

operating condition of the descent engine of the proposed lunar lander was considered to 

study the near-field plume-surface interaction. The nozzle throat and exit diameters were 

11.35 mm and 80.26 mm, respectively. The lander was assumed to hover at an altitude of 

1m in all simulations. The axisymmetric boundary condition was applied to the nozzle 

axis to take 3D effects into account. Due to the geometrical symmetry of the nozzle, only 

half of the domain was solved. The computational domain assumed 60 and 30 times the 

nozzle exit diameter in the axial and radial directions, respectively. The working gas was 

assumed to be a polyatomic water vapor (which is a good representation of the actual 

exhaust gas). The boundary conditions and prescribed values are summarized in  Table 

15. 

Table 15. Boundary conditions in the axisymmetric simulation  

Pressure inlet 

Chamber pressure 1378.946 (kPa) 

Chamber temperature 876.33 (K) 

Pressure outlet Ambient pressure 5 (Pa) 

 

 

As illustrated in Fig. 58, the gas flow emanates from the nozzle exit and expands into 

the low-pressure atmosphere, forming an under-expanded jet plume. According to the 

definition of slip lines [220], the pressure across the jet boundary must be maintained 
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constant. Therefore, the pressure of the jet boundary along its entire region must be close 

to the ambient pressure. As the gas is further expanded into the vacuum, the exit pressure 

becomes higher than the back pressure. Hence, the expansion waves are reflected from 

the jet boundary to adjust the exit pressure with the ambient pressure. As a free boundary, 

the jet boundary can vary in size and direction. The incident expansion waves after 

reflection from the free boundary convert to compression waves and later form a shock 

wave. This phenomenon is in contrast to reflection from a solid boundary, where the 

expansion waves reflect as expansion waves. 

 
(a) 
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(b) 

Fig. 58. Solutions of axisymmetric nozzle plume and surface interaction: a) Mach number, 

b) pressure 
 

When the plume impinges on the surface, a bowl-shaped stand-off shock is formed 

which turns the flow radially outward. Moreover, the flow stagnates exactly underneath 

the nozzle axis so that the stagnation condition with maximum pressure is found at the 

intersection point of the nozzle axis and the surface. As the radial distance from the 

stagnation point increases, the static pressure on the surface decreases. The bowl-shaped 

shock and the impingement surface resemble a diverging nozzle in which the flow is 

accelerated from zero velocity at the stagnation point to supersonic velocities while the 

density continually decreases.  

As was done for the Apollo nozzle case, seven representative locations in the 

computational domain, marked with numbers in Fig. 59, were considered to evaluate the 

degree of non-equilibrium in the moving gases. As shown in Fig. 59(a) illustration of the 

degree of non-equilibrium, region 5 falls very close to the equilibrium regime, and 

regions 1, 2, 3, 6, 7 belong to a state slightly deviated from equilibrium. On the other 

hand, region 4 inside a triangle defined by the jet boundary, the weak central wave, and 

the standoff shock belongs to a regime considerably deviated from equilibrium. 
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Nonetheless, the regime with the maximum Nδ value of 0.33 (<<1.0) may be still 

considered within the NSF framework. 

 

 

 

 

 

 

 

 

 

 

(b) 

 

(c) 
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(d) 

(a) 
 

Fig. 59. Flow classification based on Kn, M and Nδ for a single nozzle jet case 
 

As the next step, the complicated plume flow-field of multiple (five) nozzles was 

investigated. Due to the symmetric geometry of the five-nozzle configuration, a quarter 

of the physical domain was simulated as depicted in Fig. 60. In this three-dimensional 

simulation, not only the plume-surface/plume-plume interaction but also pressure 

distribution and thermal influences on the components of the lunar lander, including legs, 

were investigated. 

 To obtain a better understanding of the plume-plume interactions, the Mach number 

and pressure on two cross-sections A and B (one along the three aligned engines and the 

other one rotated 45
◦
 compared to the first one) are plotted in Fig. 61. In Fig. 61(a), (c), 

(e), the Mach number contours on these cross-sections besides the 3D Mach iso-surface 

for certain Mach numbers are plotted. As can be seen, the Mach number is higher in 

section A-A compared to section B-B, due to interactions with the landfall legs which 

also lead to alteration of the plume shape―hindering the gas propagation. Similarly, Fig. 

61(b), (d), (f) shows the pressure contours on two cross-sections besides the 3D pressure 

iso-surface. 
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(a) 
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(b) 

Fig. 60. Schematic of the computational domain for the five-nozzle configuration and 

symmetry planes 
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(a) Upper view of 3D iso-surface for certain 

Mach numbers 

(b) Upper view of 3D iso-surface for certain 

pressure values 

  

(c)  Mach number contours at A-A slice (d) Pressure iso-surface and contours at A-A 

slice 

 
 

(e)  Mach number contours at B-B slice (f) Pressure iso-surface and contours at B-B 

slice 

 

Fig. 61. 3D solutions of local Mach number and pressure 

 

 

 

 

  Mach number and temperature contours are also illustrated in Fig. 62. The essential 

features of the under-expanded jet impingement on a surface, including exhaust gas 

expansion, jet boundary, regular shock reflection, and standoff shock, are visible. For 

further illustration, two cross sections were selected, A-A, slightly below the nozzle exit, 

and B-B, moderately above the standoff shock. As shown in the A-A section, a regular 

shock reflection exists downstream of the nozzle exit. In contrast, the reflected shock has 
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been eliminated in the B-B section. Compared to the axisymmetric engine (single nozzle 

engine), the plume expands further into the ambient region. Interestingly, no significant 

change in shock standoff distance was observed. Owing to strong plume-plume 

interaction, the Mach number for the five-engine configuration is significantly lower 

compared to the equivalent single nozzle case. Fig. 62(b) shows a substantial temperature 

increase―approximately one-third of the chamber initial temperature―right after the 

shock reflection region. 

In the current work, it was possible to estimate the thermal influences and the effects 

of the aerodynamic force on the module components. Such analysis may have an 

essential role in the proper design of the lander configuration and the selection of 

materials for module components. The configuration of the proposed lunar lander 

consists of an octagonal body, four bumpers, four landfall legs, and eight connectors.  

Fig. 63 shows the pressure contours on a cross section passing the three aligned 

nozzles and on the body surface of the explorer. From Fig. 63(a), three spots can be 

identified as a stagnation point; one at the intersection of the nozzle axis and the lunar 

surface, and the other two at the bottom of the landfall legs. At these points, the static 

pressure is much higher than the surrounding region. Moreover, the landfall legs create 

an obstacle and result in higher pressure distribution on the bottom surface of the bumper. 

The lower surface of the bumper connectors also experiences higher pressure, since it is 

directly exposed to the reflected gas flow from the lunar surface. The bottom of the 

module at four regions, marked by dash-dot circles, also experienced higher pressure 

compared to other areas on the explorer body, due to the presence of the four landfall legs, 

as shown in Fig. 63(b). 
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(a) Mach number contours 

 
(b) Temperature contours 

Fig. 62. Mach number and temperature contours on a cross section along three aligned 

nozzles in the five-nozzle configuration 
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(a) Cross-section through three aligned nozzle and 3D view of the landfall leg 
 

 

(b) Perspective view of the lunar module 

 

Fig. 63. Pressure distribution on lunar lander components 
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(a) Perspective of the lunar module 

 
(b) Different 3D views of the landfall leg 

Fig. 64. Heat flux distribution on lunar lander module components 
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The reflected gas plume from the lunar surface causes high pressure on not only 

exposed surfaces but also high temperature through convection. As shown in Fig. 64, the 

heat flux distribution follows a trend similar to that of the pressure distribution. The 

maximum heat flux was observed on the four corners of the hexagonal body that face the 

bumpers. 

The significant effect of plume-plume interaction in multi-nozzle configuration 

compared to a single nozzle can be seen in Figs. 65 and 66. Regions 1, 2, 3, 4 and 7 on 

both the A-A and B-B slices fall very close to the equilibrium regime, and region 8 

belongs to a near equilibrium state. On the other hand, regions 5 and 6 belong to a state 

slightly deviated from equilibrium. Nonetheless, most of the regions near the nozzles are 

either in equilibrium or near equilibrium. In fact, the maximum Nδ value of 0.06 in Fig. 

66(d) is far smaller than the Nδ value of 0.33 in Fig. 59(d) of the single nozzle case, 

implying multi-nozzle configuration leads to a reduction in the degree of non-

equilibrium. 

 

 

 

 

 

 

 

 

 

 

 



 

168 

 

 

 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Fig. 65. Flow classification based on Kn, M and Nδ for five nozzles in operation at A-A slice 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Fig. 66. Flow classification based on Kn, M and Nδ for five nozzles in operation at the B-B 

slice 
 

At this stage, it may be instructive to investigate the degree of non-equilibrium in the 

dynamic flow field in more detail, in particular, based on a non-equilibrium measure 

derived from the Rayleigh-Onsager dissipation function. Until now, the local Nδ, M and 

Kn numbers have been computed to estimate the degree of non-equilibrium. The analysis 

based on these numbers revealed that most of the flow fields in the Apollo and five-

nozzle configurations are either in equilibrium or near equilibrium. This observation can 

be justified in the case of a low hover altitude with increasing ground effect and plume-

plume interaction. In the case of low hover altitude, the plume-surface interaction 

generates a strong standing shock near the lunar surface, and the initial high-speed flow 

from the nozzle is highly compressed along the core of the plume and is further 

decelerated to zero velocity at the stagnation point. As a result, the near-field flows are 

dominated by low speed (low M) near the surface and high pressure (low Kn) in the core 

of the plume, forming flow-fields in a continuum or near continuum. In the case of 

plume-plume interactions, because of momentum and energy exchange, the velocity and 

temperature are accordingly substantially decreased, and the local Nδ, M and Kn numbers 

become much lower than the single-nozzle configuration, and a wider area of the flow 

field is in near equilibrium. 

  Nonetheless, there is still room to refine the present analysis of the degree of non-

equilibrium in the moving gases. It should be noted that the effect of heat flux is 

completely omitted in the local Nδ, M and Kn numbers, though heat flux will definitely 

play a physical role in thermal non-equilibrium. A better non-equilibrium measure can 

thus be derived based on the Rayleigh-Onsager dissipation function, which is a vital 

component in the theory of irreversible thermodynamics and is directly related to entropy 
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production in non-equilibrium processes. A measure based on the energy dissipation 

arising from molecular collisions was introduced in [12] and can be expressed as follows: 

2 ˆ ˆˆ ˆ ˆ:Π Π+Q QR   , (122) 

where Π̂ Π
N
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p T


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1 1

Ec Pr /rT T
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, 2Ec=( -1) ( / )rM T T  .    

Note that the measure R̂ is basically a combination of the global parameters Nδ, ε, and 

the local conserved properties p, T, and the local non-conserved viscous shear stress Π  

and heat flux Q. And the second term in (122), a combination of ε, T and Q, represents 

the thermal and heat flux effects in the entropy production in non-equilibrium processes, 

overcoming the limitation of the simple measure Nδ. 

 Fig. 67 shows the local non-equilibrium measure R̂ in regions where the flow 

experiences sudden changes and the degree of non-equilibrium is higher than other parts 

of the computational domain. Moreover, a comparison of Fig. 67(a) (the Apollo lander 

nozzle) and Fig. 67(b) (the proposed lunar lander nozzle) reveals that a more substantial 

portion of the domain considerably deviates from equilibrium in the proposed lunar 

lander case. In fact, the non-equilibrium measure R̂ is approximately ten times higher 

than the Apollo lander case in almost every region of the domain.  

On the other hand, a comparison of Fig. 67(b) (the single nozzle configuration) and 

Fig. 67(c), (d) (the five-nozzle configuration) indicates that a greater portion of the 

domain in the five-nozzle configuration is either in equilibrium or near equilibrium. 

Therefore, based on the present in-depth analysis, it can be said that even the first-order 

constitutive relationships, namely the NSF equations, in conjunction with the physical 

conservation laws, can provide a fairly reasonable prediction of the near-field interaction 

of the plume (in particular, multiple plumes) and the lunar surface in meter scale low 

altitude hover. 
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(a) Apollo nozzle (b) Single nozzle for proposed design 

  

(c) Five-nozzle configuration at A-A slice  (d) Five-nozzle configuration at B-B slice 

 

Fig. 67. Distribution of the non-equilibrium measure R̂ based on the entropy production for 

different nozzles 
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7.5.2 Simulation of erosion on the lunar surface 

To simulate the surface erosion phenomena and the consequent entrainment of regolith 

grains, particles were injected from the surface based on the eroded mass flux via DPM. 

The present simulation methodology was first verified by using the DSMC solution for 

ammonia gas of Morris et al. [50]. An axisymmetric jet with uniform properties 

impinging on a dusty surface was simulated. A constant wall temperature of 1000K was 

imposed on the lunar surface. A schematic of the problem and boundary conditions is 

illustrated in Fig. 68(a). 

The cohesive stress and the fraction angle were assumed to be 100Pa and 30
◦
, 

respectively. It was noted in [50] that shear stress could be computed by assuming either 

a laminar or turbulent boundary layer if the roughness of the surface is small compared to 

the boundary layer thickness. On the other hand, if the roughness is high enough, the 

shear stress can be estimated by the local dynamic pressure at a distance slightly above 

the boundary layer. This is the most conservative way to obtain shear stress and leads to a 

much higher value than the shear stress in the laminar/turbulent boundary layer [221]. 

  Weak (one-way) coupling between the dust and carrier gas phases was considered. 

The simulated particle diameter and particle density were assumed to be 30μm and 3000 

kg/m
3
, respectively. The simulations were performed for hover altitudes of 5m and 10m. 

A schematic of the particle injection based on the erosion rate is illustrated in Fig. 68(b). 

It is worth noting that the application of the UDF is necessary to simulate the non-

uniform mass flow rate that the erosion model provides. The eroded particles were then 

injected into the flow field as a stream from each surface element. 
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(a) 

 
(b) 

 

Fig. 68. Schematic of a) flow field and b) particle influx from the lunar surface representing 

eroded particles 
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A comparison of the computed shear stress and erosion rate with the DSMC solution 

of Morris et al. [50] is illustrated in Fig. 69. The simulation results were found to be in 

qualitative agreement with each other for both the shear stress and mass flux of particles. 

As shown in Fig. 69(b), the mass flow rate of the particles increases radially and reaches 

a maximum after a certain distance (about 2m) from the jet axis where the dynamic 

pressure is at its peak. The deviation observed in the shear stress is due to the difference 

in treatment; the local dynamic pressure was calculated at 5cm above the boundary layer 

in the DSMC solution [50], while it was calculated at 5cm above the surface in the 

present study, leading to a lower local velocity and dynamic pressure. 

 

The streamlines of expanded gas from the nozzle along with the trajectories of eroded 

particles from the surface are overlaid on the radial gas velocity in Fig. 70. It can be 

noticed that the motions of grains in the present problem depend largely on the local flow 

condition. The reason is that when the velocity equilibration length―the distance 

required for particle velocity to reach that of the carrier gas―is much smaller than the 

characteristic length (𝜆𝑣 ≪ 𝐿) [222], a particle has enough time to conform to the local 

carrier phase motion.  

Moreover, in  

 

Table 16, the maximum particle velocity and the maximum inclined angle of the lofted 

particles for a hovering altitude of 5m are compared with the DSMC solution [50]. The 

present results were found to be in qualitative agreement with the DSMC solutions, 

including the general pattern of trajectories and the inclined angle of eroded particles. 

Some deviations can be attributed to the different treatment of the local dynamic pressure 

in the erosion model; 5cm above the boundary layer in the DSMC solutions versus 5cm 

above the surface in the present study. 
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(a) Shear stress 

 
(b) Particle mass flux 

 

Fig. 69. Comparison of erosion modeling parameters with DSMC [50] for different hover 

altitudes 

 

 

 
(a) Streamlines of exhaust gas from nozzle overlaid upon the radial gas velocity 
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(b) Trajectories of eroded particle overlaid upon the radial gas velocity 

 
(c) Injected particles in DSMC solution [50] 

 

Fig. 70. Dust grains overlaid upon radial velocity (𝑫𝒑 = 𝟑𝟎𝝁𝒎, 𝒉 = 𝟓𝒎) 

 

 

Table 16. Comparison of maximum surface shear stress, maximum particle velocity and 

maximum particle inclined angle from the surface at a 10m radial distance from the nozzle 

axis (𝑫𝒑 = 𝟑𝟎𝝁𝒎, 𝒉𝒐𝒗𝒆𝒓 𝒂𝒍𝒕𝒊𝒕𝒖𝒅𝒆 = 𝟓𝒎) 

 
Max. shear stress 

(Pa) 

Max. particle velocity 

(m/s)  

Max. particle inclined 

angle  

DPLR [50] 2995 1700 2.8
◦ 

Present 

work 
2000 1640 2.0

◦ 

 

To obtain better insight regarding the role of the critical parameter an in Roberts’ 

theory―the fraction of velocity that the particles gain from the carrier phase―a 

sensitivity analysis based on the equations (56)-(59) was conducted. In Fig. 71, the 

parameter a for a given threshold shear stress is plotted for varying particle diameter, 

hover altitude, Mach number of flow, and the number density of particles. For very small 

particle diameters, the value of parameter a becomes close to one, which implies the 

velocities for dust and carrier phase are identical. On the other hand, as the diameter of 
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the grains increases, the particles move more slowly than the gas phase due to the larger 

drag force.  

  
(a) (b) 

  
(c) (d) 

 

Fig. 71. Parametric study on the fraction velocity in the Roberts erosion model 

 

A series of simulations were also conducted to investigate the effect of hover altitude 

and particle diameter on surface erosion. From Table 17, it can be shown that the 

maximum particle velocity decreases with increasing particle diameter. This trend 

remains the same irrespective of hover altitudes and coupling models. Moreover, the 

maximum velocity of particles in the strongly-coupled two-way case phase is predicted to 

be lower than that in the loosely-coupled one-way case. 
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Interestingly, a counter-intuitive trend was found for the maximum inclined angle; the 

initial decrease was followed by an increase with increasing particle diameter. Apparently, 

the maximum inclined angle is highly dependent on the Stokes number. When the Stokes 

number was smaller than 1, the trend decreased, but it increased when the Stokes number 

was larger than 1. 

Table 17. Comparison of maximum particle velocity and maximum particle inclined angle 

from the surface at a 10m radial distance from nozzle axis in terms of different hover altitudes 

and particle diameters 

Hover 

altitu

de 

(𝒎) 

Particle 

diameter 

(𝝁𝒎) 

Coefficient 

𝒂 

Max. velocity 

(𝒎/𝒔) 

Max. inclined 

angle Stokes 

number One-

way 

Two-

way 

One-

way 

Two-

way 

5 

1 0.998 2500 2390 1.4
◦ 

2.28
◦ 

0.07577 

10 0.86 2350 1460 1.2
◦ 

2.13
◦ 

0.7577 

30 0.54 1640 1050 2.0
◦
 3.14

◦ 
2.2732 

50 0.39 1170 800 2.75
◦ 

3.86
◦ 

3.7887 

10 

1 0.999 1870 1720 0.47
◦ 

0.57
◦ 

0.07577 

10 0.92 1780 1625 0.41
◦ 

0.53
◦ 

0.7577 

30 0.66 1280 1170 1.02
◦ 

1.24
◦ 

2.2732 

50 0.51 930 860 1.7
◦ 

1.93
◦ 

3.7887 

 

 

7.5.3 Dispersal simulation of the eroded particles from the induced 

crater 

Small craters can be formed in the lunar surface either by natural processes, like the 

impact of an object or by the impingement of the rocket motor plume on the surface. 

Predicting the trajectories of eroded particles in such circumstances can be useful for the 

engineering design of a lunar lander. Fig. 72(a) shows a schematic of the lunar lander 
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module hovering above a small crater induced by plume-surface interaction. The crater 

dimension in the present simulation was chosen based on the experimental results 

reported in [223]. 

Particles with two different diameters, 100 𝜇𝑚, and 1𝜇𝑚, which correspond to St=757 

and St=0.0757, respectively, were injected from the surface. As shown in Fig. 72(b), (d), 

particles with a high Stokes number move with a higher inclined angle, surrounding the 

lander module, and with a much higher possibility that the eroded particles will strike the 

lander components. On the other hand, as shown in Fig. 72(c), (e), particles with a low 

Stokes number move with lower inclined angle, so may not strike the module. 

Consequently, with increasing particle diameter or Stokes number, more careful 

consideration will be required to protect the module components from particle impact. 

 

 
(a) Schematic of the lunar lander module and induced crater 
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(b) Injected particles with 

diameter 𝟏𝟎𝟎𝝁𝒎 and 𝑺𝒕 = 𝟕𝟓𝟕  

 

(c) Injected particles with diameter 𝟏𝝁𝒎 and 

𝑺𝒕 = 𝟎. 𝟎𝟕𝟓𝟕  

  
(d) Impingement of particles to the bumper 

(𝟏𝟎𝟎𝝁𝒎) 
(e) No impingement of particles to the bumper 

(𝟏𝝁𝒎) 

 
Fig. 72. Particle injection from an induced crater underneath of the jet for particle diameters 

(𝟏𝟎𝟎𝝁𝒎, 𝟏𝝁𝒎)  

 

 

 

 

Chapter 8. Application of near-vacuum (near-

continuum state) conditions in semiconductor 

fabrication industries 

The process of producing the integrated circuits that are used in everyday electrical 

and electronic devices is called semiconductor device fabrication. The integrated circuit 

is composed of two critical parts: a tiny and very fragile silicon chip (die) and a package 

which is designed to afford protection to the internal silicon chip and to provide users 

with a practical way of handling the component. The process of semiconductor 

fabrication consists of multiple-step sequence including photolithographic and chemical 

reaction steps during which electronic circuits are gradually formed on a wafer composed 

of pure semiconducting material. Semiconducting material that is used mostly is Silicon; 
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however, depend upon the application different compound semiconductors can be 

employed.  

It is estimated that the whole manufacturing mechanism takes six to eight weeks from 

beginning to packed chips ready for shipment. The process is performed under highly 

accurate procedures and is conducted by highly specialized facilities called foundries or 

fabs. In the case of more sophisticated semiconductor devices, such as modern 14, 10, 7 

nm nodes, the fabrication process may last up to 15 weeks; Where, all the steps in 

producing such devices are completely automated and took place in a hermetically sealed, 

surrounded by nitrogen environment to improve the products (number of working 

microchips versus the number of microchips made in a wafer) with FOUPs. Furthermore, 

the transportation of wafers from a machine to another one is conducted by automated 

material handling systems.   

 

8.1 Applications and field of use 

Semiconductors are made up of materials that have electrical conductivity between 

conductors such as most metals and nonconductors or insulators such as ceramics. Based 

on materials and the mixture content, it is possible to estimate the magnitude of 

electricity conducted by the semiconductor. They can play an insulator role in low 

temperatures and conversely as a conductor in high temperatures. 

These materials are the bases of modern-day electronics such as radio, computers, and 

mobile phones. The semiconductor material is applied in the manufacturing of electrical 

components and used in electronic devices such as transistors and diodes. These materials 

can be divided into two major classes known as intrinsic semiconductors and extrinsic 

semiconductors. An intrinsic semiconductor material, which is a single element not 

mixed with anything else, is very pure and characterized with poor conductivity. On the 
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other hand, the extrinsic semiconductor material is contaminated by small amounts of 

impurities through a process called doping, which causes changes in the conductivity of 

this material. The process of contamination generates two groups of semiconductors, 

which are known as the negative charge conductor called as n-type and the p-type, which 

is a positive charge conductor.  

The conductivity of semiconductors can be altered by temperature changes as well as 

the impurity content. Such properties may be helpful in producing devices with certain 

electrical features by combining various semiconductors, which provides electrical signal 

control. It is challenging to imagine a world without electronics if semiconductor 

materials were not explored. Although the vacuum tubes can be used as an alternative for 

them, employing semiconductors has made electronics faster, reliable, and a lot smaller 

in size. Also, they have provided the opportunity of manufacturing different electrical 

devices with distinguished capabilities which can be used for various purpose. For 

instance, temperature sensors used in air conditioners are made with semiconductors. The 

temperature is precisely controlled in rice cookers because of the semiconductors. 

Personal computers operation which is handled by CPUs also consists of 

the semiconductors. Several digital consumer products in everyday life, such as mobile 

phones, smartphones, digital cameras, televisions, washing machines, refrigerators, 

LED bulbs, and OLED displays also employ semiconductors. 

8.2 Processes of fabricating semiconductors 

In the manufacturing of the semiconductor devices, the various steps of the process are 

divided into four general groups, including deposition, removal, patterning, and 

modification of electrical properties. 

A deposition is called to a process in which the materials are transferred, grown, or 

coated onto a surface known as substrate/wafer. This process can be conducted by 

https://www.hitachi-hightech.com/global/products/device/semiconductor/words.html#Semiconductor
https://www.hitachi-hightech.com/global/products/device/semiconductor/words.html#Semiconductor
https://www.hitachi-hightech.com/global/products/device/semiconductor/words.html#Semiconductor
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available technologies such as physical vapor deposition (PVD), chemical vapor 

deposition (CVD), electrochemical deposition (ECD), and molecular beam epitaxy 

(PVD). Moreover, recently, the industries tend to use a new technique known as atomic 

layer deposition (ALD). Indeed, a better definition of deposition is the formation of the 

oxide layer by thermal oxidation. For instance, local oxidation of silicon (LOCOS) is a 

process in which a thin layer of silicon dioxide is grown on a silicon wafer. 

In the removal process, the surface of the wafer has been cleaned from any materials 

the following examples are falling into this category: etch processes (either wet or dry) 

and chemical-mechanical planarization (CMP).  

The interest shape and formation of the deposited materials are defined in the 

patterning process, which is generally referred to as lithography. As an example can be 

given in conventional lithography where a chemical coated wafer known as photoresist is 

passed through a stepper machine. In this step, the stepper machine moves a mask from 

the exposing selected surface of the wafer below to short wavelength light. Then, the 

exposed regions are washed away by using a developer solution. If still, some photoresist 

is remaining, plasma ashing removes the rest.  

Modification of electrical properties has comprised of doping transistor sources and 

drains in which the process is conducted via diffusion furnaces and ion implantation. This 

process is extended to the reduction of a material’s dielectric constant in low-k insulators 

by being exposed to ultraviolet light in UV processing. The modification of electrical 

properties is constantly obtained by oxidation by which it is possible to produce 

semiconductor-insulator junctions. A clear example would be local oxidation of silicon in 

order to manufacture metal oxide field effect transistors.    
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8.3 Organic light emitting dude (OLED) 

An OLED is a solid-state device or electronic device that typically made up of organic 

thin films sandwiched between two thin film conductive electrodes. The emission of 

bright light appears once the electrical current is applied. Owing to use of carbon-based 

designer molecule, an OLED emits light when an electric current pass through it. This 

phenomenon is known as electro phosphorescence. 

The dimension of such thin layered system is estimated less than 500 nm or about 200 

times smaller than a human hair. Generating self-luminous displays by OLED technology 

is free of using backlighting results in more energy efficient. These features not only 

make the displays thin and compact but also, they are capable of providing low power 

requirement for displays, i.e., only 2-10 volts.  

OLED technology benefits from using substances that emit red, green, blue, or white 

light. OLED materials just by applying the substances above and without any other 

source of illumination, they present bright, clear video and images that are visible at 

almost any angle. It is observed that one can control the brightness of an OLED by 

applying certain amount of power to the system. Therefore, one way to handle the 

brightness and the color of light is to enhance the organic material.  

An OLED consists of the following parts: 

Substrate (clear plastic, glass, foil)-The substrate is a place where organic materials are 

deposited on it. 

Anode(transparent)- when current flows through the device, it removes electrons (adds 

electron holes). 

Organic layers- These layers are composed of organic plastic molecules that transport 

holes from the anode. A conducting polymer is used in OLEDs known as polyaniline. 
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Emissive layer- It is made of organic plastic molecules (different ones from the 

conducting layer) that transport electrons from the cathode; this is where light is made. 

The polymer that is used in the emissive layer is polyfluorene. 

Cathode (may or may not be transparent depending on the type of OLED) -The cathode 

injects electrons when current flows through the device. 

8.4 Applying organic materials into the substrate 

The major part of manufacturing OLEDs is applying the organic layers to the substrate. 

This technique can be conducted through three methods: 

8.4.1 Vacuum deposition or vacuum thermal evaporation (VTE): 

In a vacuum chamber, the evaporated organic molecules are allowed to condense as 

thin films onto cooled substrates. This process is suffered from high cost and inefficiency. 

8.4.2 Organic vapor phase deposition (OVPD) 

In low pressure, hot-walled reactor chamber, a carrier gas transports evaporated 

organic molecules onto cooled substrates, where they condense into thin films. The 

advantage of using a carrier gas is that it increases efficiency and provides low-cost 

OLED manufacturing. In the OVPD process, an inert carrier gas is employed in order to 

precisely transfer films of organic material onto a cooled substrate in a hot-walled, low 

pressure chamber. It should be mentioned that the organic materials are stored in external, 

separate, thermal-controlled cells. When evaporated from these heated cells, the materials 

are entrained and transported by an inert carrier gas such as nitrogen. This process can be 

controlled by using a gas flow rate, pressure, and temperature. The materials deposit 

down onto the cooled substrate from a manifold located 

only several centimeters above the substrate.  
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Higher deposition rates: compared to the conventional processes, i.e., VTE, OVPD 

benefits from high deposition rates, which could be several times higher than the rate in 

counterpart. The reason is that the deposition rate in the OVPD process is primarily 

controlled by the flow of the carrier gas. 

Higher materials utilization: In the OVPD process, since the organic materials do not 

deposit on the heated surfaces of the chamber, materials' utilization is much higher 

compared to VTE, where the materials are deposited everywhere.  

Better device performance: The OVPD process can provide satisfactory film thickness 

control and uniformly over larger areas compared to the VTE. By using three variable 

process control, OVPD offers more precise deposition rates and doping control at very 

low levels. Consequently, sharper or graded layer interfaces can be more effortlessly 

obtained. Furthermore, it provides co-deposition of multiple materials in one chamber 

without the cross-contamination problems which has been observed in VTE systems. 

Shadow mask patterning: OVPD offers higher shadow mask-to-substrate distance 

control than is possible with VTE up-deposition. Because the mask is above, instead of 

below the substrate, its thickness can be dictated by the desired pattern shape rather than 

the need for rigidity. Hence, rigorous reproducible pixel profiles can be achieved. 

Larger substrate sizes: Since the Aixtron AG-proprietary showerhead can be modeled 

to maintain a constant source-to-substrate distance, OVPD may be more readily scaled to 

larger substrate sizes.  

8.4.3  Inkjet printing 

With inkjet technology, OLEDs are sprayed onto substrates just the same as the 

process of spraying the ink onto paper during printing. Inkjet technology significantly 

declines the cost of OLED manufacturing and allows OLEDs to be printed onto very 

large dims for large displays like 80-inch TV screens or electronic billboards. 
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8.5 Vacuum deposition processes 

Vacuum deposition is a process of surface engineering treatment where layers of 

materials are deposited onto a substrate.  The thin layers on the surface could be included 

as metal coatings (e.g., copper, nickel) and nonmental coatings (e.g., ceramic matrix 

composites of carbon/carbon).  

Vapor deposition is called to a technology that put materials into a vapor state by 

condensation, chemical reaction, or conversion. A well-known technique which is called 

physical vapor deposition (PVD) is one of the subsets of vapor deposition technology. In 

this process, the vapor phase is generated by condensation from a liquid or solid source. 

On the other hand, the process is known as chemical vapor deposition (CVD) when the 

vapor phase is produced by chemical reaction. The above-mentioned technologies are 

typically carried out in a vacuum condition with or without the use of plasma (i.e., 

extracted particle by ionized gas), which provide kinetic energy to the surface instead of 

adding thermal energy. It also allows for processing temperature decrement.  

8.5.1 Advantages of the vacuum environment 

The vacuum condition provides the following desirable features: 

i. Long mean free path for collision by reducing the particle density 

ii. Reducing the particle density of contaminants (undesirable atoms and molecules) 

iii. Serving low-pressure condition 

iv. Handling gas and vapor composition 

v. Handling the mass flow into the processing chamber 

In the vapor deposition technology, the energy, as well as material, are added onto the 

surface. By doing so, the bulk of the object is relatively kept cool without any changes. 
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Consequently, surface features are generally refined free from significant alteration to the 

underlying microstructure of the substrate.  

8.5.2 Different types of vacuum deposition 

The main subsets of the vacuum deposition are as follows: 

 Physical vapor deposition (PVD)  8.5.2.1

The important characteristic of this method is that deposition of coating layers onto a 

surface is not restricted to a certain area, but it will cover the entire object. The whole 

hard deposition processes of PVD is combined in: 

i. A method for coating the metal 

ii. An active gas including nitrogen, oxygen, or methane 

iii. A dense and hard coating is the result of plasma bombardment of the substrate 

The PVD technology can be classified into four different methods such as ion plating, 

ion implantation, sputtering, and laser surface alloying. The consequence of each method 

would vary in metals and plasma. It is worth mentioning that no chemical reaction occurs 

during the process, and the gasified material condenses on the surface to produce the 

desired thin film.  

 Chemical vapor deposition (CVD) 8.5.2.2

The deposition of material takes place on substrate in such a way that a chemical 

reactant gas mixture, which contains carrier gas and vapor material, interacts with the 

surface. Like it, a vapor is delivered by what is known as a precursor. It can be formed as 

a gas, liquid, or solid. Under normal pressure and temperature, the gas form can be 

transferred to the chamber. However, the solids and liquids are fed to the chamber under 

high temperature and low-pressure condition.  

It is possible to accelerate or assist the decomposition of the gas mixture on the surface 

via the use of heat, plasma, or other methods. The processes in chemical vapor deposition 
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are comprised of sputtering, ion plating, plasma-enhanced, low-pressure CVD, laser-

enhanced CVD, active, reactive evaporation, ion beam, laser evaporation, and other 

variations. The major difference in the processes mentioned above arises from the 

initiated chemical reactions and also the classification of operating pressure. 

i. High vacuum (below 10
-6

 Pa) 

ii. Low-pressure at sub-atmospheric pressures 

iii. Atmospheric pressure 

 The following steps take place in the CVD process, once the energy is transferred to 

the substrate in order to assist the progress of coating reaction with the carrier gas. 

i. Generation of the reactive gas mixture 

ii. Transportation of the mass the reactant gas through a boundary layer to the 

substrate 

iii. Adhesion of the reactants on the substrate  

iv. Deposit formation owing to reaction of the absorbents 

The deposition reactor chamber must be free from any contamination such as dust and 

moisture. Moreover, it must be clean and leak tight. In addition to the chamber’s concern, 

the substrate itself requires pretreatment including mechanical and/or chemical cleaning 

(e.g., ultrasonic cleaning and/or vapor degreasing) followed in some test cases by vapor 

honing (to enhance adsorption). 

The most common applications of the CVD technology can be found in electronics 

optical, optoelectrical, photovoltaic, and chemical industries.  

8.6 Numerical analysis of simulating simplified geometry 

Simulation of the coating process in OLED deposition is challenging due to the 

variation in length scale, pressure changes, and a high number of degrees of freedom. The 
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numerical simulations of OLED deposition in CVD process under near-vacuum/vacuum 

condition were mostly conducted by the DSMC method. Since in the above-mentioned 

technology the process is dealing with heavy molecules (e.g., Sio2, Alq3) the degree of 

freedom (f) plays an important role in DSMC calculations. In this work, we tend to 

initiate a new approach where the gas mixture in the condition of near-vacuum/vacuum is 

going to be solved by a continuum-based equation solver.  

 

8.6.1 Physical properties of gas species 

Due to the lack of experimental information, the physical properties of the gas species, 

particularly in the case of heavy molecules employed in the CVD process, can be 

calculated from kinetic theory. The density 𝜌𝑖 of a gas species i which considered as ideal 

gas can be defined as  

i i
i

p m

RT
    

(123) 

where m and R are molecular mass for each gas species and the universal gas constant, 

respectively. Calculation of transport properties, including thermal conductivity and 

dynamic viscosity are highly temperature dependence and free from pressure effects in 

CVD. These parameters can be estimated via kinetic theory for less common gases while 

experimental data are available for well-known gases such as Ar, N2, and He. To this end, 

some assumptions on the intermolecular potential energy function 𝜑(𝑟) are required. The 

Lennard-Jones potential was proposed as an accurate intermolecular potential energy 

function as well as commonly used for non-polar molecules in which the potential energy 

of interaction between two non-bonding atoms or molecules based on their distance of 

separation is described: 
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12 6( ) 4 [( ) ( ) ]r
r r

 
     

(124) 

where 𝜎 the collision diameter of the molecules, r is the distance between the molecules, 

and the maximum energy of attraction is defined by 𝜀. Using the Lennard-Jones potential, 

the gas species i is classified by three factors including the mole mass mi, the collision 

diameter 𝜎𝑖 , and the maximum energy of attraction usually shown as ( 𝜀/𝑘 )i with 

dimension in kelvin. In this formula, k represents the Boltzmann’s constant. The value of 

these parameters for some gases which are used in the CVD process is provided in 

Appendix D.   

As it is mentioned in [224] a reduced temperature is defined by T* as  

*

( / )
i

i

T
T

k
   

(125) 

Moreover, a temperature dependence integral function Ω𝜇(𝑇∗) is provided where the 

polynomials calculation of Ω𝜇 can be found in Appendix D. Therefore, it is possible to 

determine the dynamic viscosity and thermal conductivity of the gas species as follows: 
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  (126) 

15 5
[ 1.32( )]

4 2

pi i

i

i

C mR

m R
      (127) 

 

Physical properties of some of CVD gases are tabulated in Table 18 by which the 

preliminary numerical simulation can be conducted. 

Table 18 Physical properties for some CVD gases at T=294 (K) 

 

Molecular 

weight 

(m) 

[kg/kmol] 

Specific 

heat 

ratio 

(𝛾) 

Bulk 

viscosity  

ratio (fb) 

Prandtl 

number 

(Pr) 

Viscosity 

index (s) 

Gas 

constant (R) 

[J/(kg.K)] 

Heat 

capacity 

(cp) 

[J/(kg.K)] 

Viscosity 

coefficient 

[kg/(m.s)] 

Thermal 

conductivity  

(k) 

[w/(m.K)] 

Ar 39.948 1.667 0 0.667 0.81 208.24 521.93 2.25E-05 1.76E-02 

N2 28.0134 1.4 0.8 0.7368 0.74 296.91 1041.716 1.74E-05 2.62E-02 

SiF4 104.0791 1.128 N/A 0.8758 N/A 79.886 703.9742 1.58E-05 1.52E-02 

WF6 297.83 1.0753 N/A 0.9195 N/A 27.917 398.818 1.71E-05 9.19E-03 
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8.6.2 Physical properties of the gas mixture 

The characteristics of the gas mixture, including thermodynamic properties, are 

essential to be estimated. One of the key features of the thermodynamic properties, which 

must be defined, is the ratio of the heat capacity know as Gamma (γ). To determine the 

Gamma, two methods are suggested as follows: 

The first approach is taking care of Gamma calculation by knowing the exact value of 

the degree of freedom. As it is shown for the ideal gas, the relation between heat capacity 

ratio and degree of freedom can be written as  

1
1

f
     

(128) 

      Thus, based on the above formulation for a monoatomic gas, with three degrees of 

freedom γ=1.666. While for a diatomic gas, with five degrees of freedom γ=1.4. 

The Gamma of a mixture where a chemical reaction takes place (e.g., CVD process) 

can be defined as the second approach by calculating the equivalent heat capacity in 

constant pressure and the gas constant. 

Consider a homogeneous mixture of gases where reactants and products associated 

with several moles to balance the equation. Suppose the number of moles of products is 

ni where i indicates each product. The summation of the product moles is 𝑛 = ∑ 𝑛𝑖𝑖 . 

Therefore, the mole fraction of each constituent can be written as 𝑦𝑖 = 𝑛𝑖/𝑛. Hence, the 

equivalent heat capacity in constant pressure can be defined by either 

,

1
ip m i p

i

C n c
n

    (129) 

 

Or 

, ip m i p

i

C y c   
(130) 

Where cpi is the heat capacity for each product. 
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The Gamma of the mixture is determined in terms of the gas constant and equivalent 

heat capacity as follows: 

,

1

1

mp

R

C

 



  

(131) 

Calculation of the viscosity has been extended by the kinetic theory of Chapman and 

Enskog for low-pressure multicomponent gas-mixtures, but since they are quite 

complicated and rarely used, here, we just describe the simplified rigorous theoretical 

expression including Wilke’s method [225] which is tabulated in Table 19. The empirical 

relation of thermal conductivity in the low-pressure condition is defined in the form of 

the theoretical relation that has been proposed for mixture viscosity by Wassiljewa 

equation [226]. The formulations are summarized in Table 19. The other features of gas-

mixture that should be defined is bulk viscosity, particularly since the constituents are not 

monoatomic gases. In such circumstances, mechanical pressure differs from 

thermodynamic pressure as it is shown below: 

2
( )

3
mech thermp p div    V   

(132) 

In the current study, three-dimensional simplified test cases are adopted to produce a 

preliminary solution for OLED deposition. In order to validate the three-dimensional DG 

inhouse code, a lid-driven cavity problem was investigated. In the next step, cylindrical 

Couette flow along with slip and temperature jump boundary condition was studied by 

taking advantage of ANSYS FLUENT. Lastly, flow on a simplified rotating substrate 

which was exposed to a flow came from inlet boundary was investigated to check the 

uniformity of flow on the substrate by adopting three-dimensional DG inhouse code and 

ANSYS FLUENT.   
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Table 19 Defining thermodynamic properties and transport coefficients of gas-mixture in low-

pressure condition [227]  

 Mixture properties Remarks 

H
ea

t 
ca

p
ac

it
y
 

o
f 

m
ix

tu
re
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i

C y c  
 yi the mole fraction of i, 

 Cpi heat capacity of i component 
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 R the gas constant, 
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 𝜇𝑖 the viscosity of pure i, 

 Mi the molecular weight 

 yi the mole fraction of i, 

 𝜙 is the interaction 

parameter for gas-

mixture viscosity 

T
h
er

m
al

 c
o
n
d
u
ct

iv
it

y
 

o
f 

th
e 

m
ix

tu
re

 

1

1

n
i i

m n
i

j ij

j

y

y A











 

0.5 0.25 2

0.5

[1 ( / ) ( / ) ]

[8(1 / )]

i j

i

j

tr tr i j

ij

i j

tr ji

tr j i

M M
A

M M

M

M

  

 

 








 

 𝜅𝑖 thermal conductivity 

of pure i, 

 Aii=1, 

 𝜅𝑡𝑟 monatomic value of 

the thermal 

conductivity, 

 ε numerical constant 

near unity 

B
u
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ty
 

2

3
b m      second coefficient of viscosity (𝜆) [105]. 

8.6.3 Three-dimensional lid-driven cavity flow 

The schematic of the lid-driven cavity and adopted boundary conditions are provided 

in Fig. 73. All the simulations were conducted by Mach=0.16 and temperature as T=237 

k, and the characteristic length is fixed to one. Kn number and Re number were changed 

based on the initial operating pressure. 
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Fig. 73 Schematic of adopted boundary conditions in lid-driven cavity problem 

 

The results were validated by comparing with experimental data provided by [228]and 

showed good agreement. As it is observed in Fig. 74, by decreasing the Re number (Kn 

increment) the streamline, as well as v velocity, tend to be symmetry. This phenomenon 

can be found in the contours of Mach, pressure, and temperature, which are depicted in 

Fig. 75. 
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Re=100, Kn=2.022E-3 Re=400, Kn=5.054E-4 Re=1000, Kn=2.022E-4 

Fig. 74 Streamline, U and V velocity in lid driven cavity for different Reynolds and Knudsen numbers at 

Mach=0.16   
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Re=100, Kn=2.022E-3 Re=400, Kn=5.054E-4 Re=1000, Kn=2.022E-4 

Fig. 75 Contours of U velocity, Mach, pressure, and temperature in lid-driven cavity for different 

Reynolds and Knudsen numbers at Mach=0.16   

 

 

8.6.4 Three-dimensional cylindrical Couette flow 

We conducted a simulation for cylindrical Couette flow where two concentric 

cylinders are considered in such a way that the inner is rotating and the outer one is 

stationary. In this problem, the Kn number is defined by the ratio of the mean free path to 

a characteristic length where the latter is the distance between two cylinders. It is worth 
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mentioning that since the Kn is high, there is a need for applying different boundary, 

including slip wall and temperature jump. To this end, two different slip wall boundary 

conditions are summarized below. It should be mentioned that in the current study, 

Maxwell boundary condition is applied to the numerical simulations. 

 Langmuir condition 8.6.4.1

In the Langmuir slip conditions, a gas molecule that gets adsorb is known as 

“adsorbate,” and the surface is called as “adsorbent” [229]. This process of adsorption is 

described through Langmuir adsorption isotherm [219], where the fraction of adsorbate 

on the adsorbent is related to the function of gas pressure at a constant temperature.  

 

Fig. 76 Langmuir adsorption 

The Fig. 76 above shows the sketch of Langmuir adsorption isotherm model, where M, 

V, and MV are the free gas molecules, vacant surface site (adsorbate) and the occupied 

surface site (adsorbate). This process can be written through the chemical reaction of gas-

surface interaction as: 

M V MV   
(133) 

Where the site of occupied surface (MV) is proportional to the fraction ( ) which is 

given as, 
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(134) 

Where values of these constants are taken from previous literature [229, 230] based on 

the gas type, the role of   is very similar to the slip coefficient ( ) of the Maxwell 

model.  

Using the Langmuir adsorption isotherm, we can re-write the velocity slip and 

temperature slip conditions as,  

 

 

1 ,

1 .

s W g

s W gT T T

  

  

u u u 

 
 

(135) 

Where the subscripts g and w  are the value adjacent to the wall and value at the wall, 

respectively. In the case of cylindrical Couette flow, we have the modified form of 

Langmuir conditions of [231],  
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Here r  is the radius of reference position given by,  

 2 1 .i
o i o i

o

r
r r r r r

r

  
     

   
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This value of the radius of reference is derived analytically using the equation (136).  

 Maxwell/Smoluchowski conditions 8.6.4.2

According to Maxwell/Smoluchowski conditions, gas molecules are considered to 

approach or recede the solid surface. Their overall effect can be seen on the viscous drag 

as it is the difference of the tangential momentum of the approaching stream and that of 



 

202 

 

the receding stream. Additionally, Maxwell introduced the tangential momentum 

accommodation coefficient ( u ) to obtain slip velocity. Using the mean molecular 

velocity and mean free path  , we can have the Maxwell velocity slip boundary 

condition as [9], 

2
.u

s w W

u

 
    

 
u u Π

 

 
 

(138) 

Here WΠ  refers to the tangential (or wall) shear stress.  

Similarly, Smoluchowski presented temperature jump condition. Thus the temperature 

jump condition is determined by introducing a thermal accommodation coefficient ( T ). 

By introducing the internal energy of gas and that of surface and the heat conduction 

equation, we can have the temperature jump condition as [9]:   

 

2 2
.

1 Pr

T
s w W

T

T T
 

     
 

Q
  

 
 

(139

) 

Where WQ  refers to the tangential heat flux.  

  For this test case, the adopted initial conditions are provided by [232] where 

Mach=0.99, wall temperature on inner cylinder T_inner=303 k, wall temperature on outer 

cylinder T_outer=311 k, velocity accommodation coefficient is equal to 0.927 and 

temperature accommodation coefficient is considered as 0.99. The schematic of two 

concentric cylinders and the boundary conditions are shown if Fig. 77.  
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Fig. 77 Schematic of two concentric cylinders and boundary conditions in cylindrical 

Couette flow problem 

 

As it is depicted in Fig. 78, the results with first order slip are in accordance with 

experimental data, particularly when Kn=0.0426. However, as Kn increases, which 

implies that flow falls into the transition regime, the numerical results deviate from 

experiments. Moreover, a comparison of normalized variables, including velocity, 

pressure, temperature, density for different Kn number is illustrated in Fig. 79. The 

results, particularly velocity and temperature profiles, reveal the deviation of no-slip wall 

from slip wall boundary condition as well as alteration of temperature after implementing 

temperature jump on the wall condition. 
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Fig. 78 Density ratio versus position. Comparison between experimental data and numerical results 

 

 

  

  

Fig. 79 Normalized variables versus position. Comparison of numerical results between no-slip and slip 

along with temperature jump 

 

8.6.5 Three-dimensional proposed simplified geometry simulation 

In this section, we are focusing on a problem in which the main concern is the 

distribution of flow on the surface. For this purpose, a simplified geometry is employed, 

where two concentric cylinders, one as a rotating substrate and the other one is a 

stationary wall.  The substrate is continuously exposed to a flow coming from the inlet 



 

205 

 

boundary, which is supposed to be a gas mixture carrying organic vapor by precursor gas. 

The schematic of the initial condition and geometry is illustrated in Fig. 80. 

 

 
(a) (b) 

Fig. 80 Schematic of the initial condition, boundary conditions, and geometry 

As it is shown in Fig. 81, the velocity and pressure distributions on the substrate are 

uniform. It is revealed that as the pressure in the chamber decreases, which leads to the 

increment of Kn number, the morphology of the surface is enhanced. Another factor that 

boosts the uniform growth of organic film on the surface is the rotating velocity of the 

substrate. Indeed, the high rotating velocity of the substrate along with the low velocity of 

inlet gas mixture has a significant effect on organic material coating onto the substrate.  

  

(a) (b) 
Fig. 81 Uniform velocity and pressure distribution on the substrate  

 

 



 

206 

 

 

 

Chapter 9. Conclusion and future works 

9.1 Concluding remarks 

In the current dissertation, the Eulerian-Eulerian and Eulerian-Lagrangian approaches 

were employed to investigate dusty gas flows in a continuum and near-continuum 

conditions. The research was substantiated by providing a solution to the near-field of 

plume-surface interaction in the problem of Lunar landing. To grasp more on the physics 

of multiphase flow, discontinuous Galerkin method was applied to solve the conservation 

laws in the two-fluid model framework. Application of DG made the treatment of source 

terms in the two-fluid model equation possible.  Various benchmark problems for zeroth-

order, first-order models were undertaken with numerical experiments, and these results 

were discussed in detail.  

9.1.1 Conclusions regarding the inviscid flows  

In the case of zeroth-order constitutive equations (Euler equations), the complex wave 

patterns which are rarely investigated in the literature were extensively analyzed. The 

complex physical phenomena were explained carefully. In particular, it was shown that, 

when a dust contact discontinuity is present in the dusty gas flow, a pseudo-compound 

wave, as well as a composite wave, can form. Further, the new DG scheme not only 

meets the demands of high order accuracy (at least second-order) of simulating dusty gas 

flows, but it can also handle the tricky source terms of coupling effects between the two 

phases, without resorting to the complicated operator splitting method commonly 

employed in the conventional method. In fact, in the study of multiphase flow, 
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developing a robust DG solver for dusty gas flows has recently been considered a 

challenging topic which deserves attention.  

It turned out that the orthogonality of the basis functions, the backbone of the DG 

method, again played a critical role in the novel treatment of the high order moments of 

the polynomial approximations to the source-term. Based on the new DG scheme, various 

benchmark problems with different physical features in one- and two-dimensional space 

were studied. In order to elaborate the complex wave patterns in gas-particle flows, the 

wave propagation mechanisms in the one-dimensional shock tube problem of the dusty 

gas were first investigated in detail. Several abnormal waves in dusty gas flows—most of 

them not previously identified—were highlighted and a physical explanation on the 

origin of such abnormal waves was given. 

Also, the new unstructured DG scheme was applied to two different types of problems 

with and without the presence of boundary effects.  The results in both cases were shown 

to be in accordance with the previous data. The new scheme was then applied to 

investigate the compression corner problem for both the single and multi-phase 

applications. Both single and double Mach reflection problems were solved, and the 

higher order solutions (up to a polynomial order of two) were successfully obtained. 

Furthermore, a detailed parametric study on particulate loading and particle diameter 

size was conducted. Isopycnic surfaces indicated that the particulate loading substantially 

affects the structure of the double Mach reflection, including the configuration of triple 

points. The main reason for this change is the amplification of the relaxation region, that 

is, the main element of the abnormal waves in dusty gas flows. In all cases, it was found 

that the secondary triple point was much more affected by the dust particles. Moreover, 

the convex Mach stem formed in the pure gas flow changed into a perpendicular Mach 

stem in the dusty gas flows. It was found that the particle diameter and mass loading 
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affect the slope and curvature of the reflected waves as well. While an increase in particle 

diameter causes the secondary reflected wave to align along the primary wave, the 

increase in mass loading leads to an increase of the intersection angle of these two waves. 

It was also found that as the particle diameter and mass loading increases, the structure of 

the DMR becomes blurrier. 

Lastly, The Shardin’s problem was considered in order to investigate the effects of the 

presence of dust particles on the flow in the shock-vortex interaction. It was observed that 

the fundamental structures observed in the pure gas are also observed in the dusty gas 

with a time lag. Formation of a dust free region in the core of vortex and a concentrated 

region on the edge of the vortex was also demonstrated. More detailed parametric studies 

on solid phase parameters and investigation of transient evolution of the flow may be 

required for further understanding of these complicated physical phenomena. 

9.1.2 Conclusions regarding the viscous flow 

Based on axisymmetric formulation, the problem of the particle-laden free under-

expanded jet was investigated for the purpose of validating the numerical simulation in 

capturing multiphase interactions. Even though a slight over-estimation of Mach disk 

location and jet boundary width was found in the numerical solutions, the important 

feature of upstream movement of the Mach disk was shown to be in good agreement with 

experimental results. 

The contradictory patterns of location of the Mach disk when solid particles are added 

into the underexpanded jet predicted in previous works was the main motivation of the 

current paper. Unlike the previous works which focus only on the diameter of the 

particles, we proposed that all the parameters which are present in the correlation of the 

Stokes number can affect the Mach disk location. Among these parameters, the effect of 

variation of particle diameter and the characteristic length were investigated after the 
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numerical tool was validated. After demonstrating the counter-intuitive trend of the Mach 

disk location for different particle diameters, the effect of variation of the Stokes number 

independently by assigning various characteristic lengths is investigated. It was shown 

that the Stokes number is the main parameter which controls the mechanism of Mach 

disk location. For low Stokes, number flows, there is a downstream movement, while for 

high Stokes number flows, there is an upstream movement. The transition in the trend of 

Mach disk location takes place around Stokes number of 1 where the response time of the 

particles is in the same order of the characteristic time of the flow at the nozzle exit plane. 

It was shown that the effect (either upstream or downstream movement) is amplified 

when the particulate loading is increased. 

Moreover, the deviation of the numerical results from experiments which can be 

modified by assigning a reduced (equilibrium speed) velocity at the exit plane of the jet 

was investigated. In a realistic test case (or an experimental setup) the gas and particles 

interact before exiting into the ambient; Therefore, the exit gas velocity is less than that 

of the pure gas which can substantially affect the structure of the jet. It was also shown 

that this consideration would lead to Mach disk locations predictions much more close to 

the experimental results. 

9.1.3 Conclusions regarding the near-filed plume-surface interaction 

and regolith erosion  

The impingement of a rocket plume on the lunar surface can cause significant dust 

dispersal when the lunar lander approaches a landing site. The present study investigated 

the near-field plume impingement on the dusty surface of the Moon for a proposed lunar 

lander configuration, using the physical conservation laws, with first-order NSF 

constitutive relations in the Eulerian framework for the gas phase, and the particle-based 

DPM in the Lagrangian framework for the solid phase. The effects of the plume-surface 
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interaction on the lunar lander components were analyzed to provide a more efficient 

method of obtaining predictive results for engineering design, compared to the 

computationally expensive DSMC method. Also, by evaluating a non-equilibrium 

quantifier and a measure directly related to entropy production in non-equilibrium 

processes, it was shown that most regions in the near-field interaction of the plume (and 

in particular, multiple plumes) and the lunar surface at low altitude hover were either in 

equilibrium or near equilibrium. 

  Simulations of a complicated lunar lander configuration with five nozzles, four 

bumpers, four landfall legs, and eight connectors were also conducted. The results 

revealed regions with high pressure and hot spots on the landfall legs, the connectors as 

well as the bottom of the module, which may impose further design restrictions. 

To simulate the surface erosion phenomena and consequent entrainment of regolith 

grains, particles were injected from the surface with an erosion rate calculated using the 

Roberts’ model based on excess shear stress. The role of the critical parameter in the 

Roberts’ theory―the fraction of velocity that the particles gain from the carrier 

phase―was investigated for different particle diameters, hover altitude, Mach number of 

flow, and number density of particles. The simulation results indicated that the maximum 

particle velocity decreases with increasing particle diameter, irrespective of hover 

altitudes, and coupling models.  

Interestingly, the maximum inclined angle exhibited different behaviors depending on 

the Stokes number of the flow. For a bed covered with small particles, the corresponding 

Stokes number is less than 1, and the inclined angle decreased with increasing particle 

diameter. However, for larger particle diameters with a Stokes number higher than 1, the 

inclined angle increased with increasing particle diameter. 
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To investigate the effect of a small crater from which the particles may be entrained 

into the flow field with higher inclined angle, a case with the lunar lander hovering above 

a small crater was simulated. The trajectory of grains revealed that the possibility that 

eroded particles would strike lander components grew with increasing particle diameter. 

Hence, extra consideration should be taken to protect module components from particle 

impact in the presence of a crater with larger size particles. 

The present work focused on near-field plume-surface interactions and regolith 

erosion and dispersal defined by low altitude hover, and the use of a first-order NSF 

model based on the assumption of not-far-from-equilibrium. However, second-order (or 

higher) gas kinetic models or DSMC may be necessary to provide a more accurate and 

far-field description of this multi-physics multi-scale problem. We hope to report the 

investigation of this challenging problem in future work using second-order Boltzmann-

based constitutive relations. 

9.2 Future works 

There are various directions through which this work can be extended. From a 

modeling point of view extension of the second-order Boltzmann-based constitutive 

equation for the dust, the phase is an interesting subject. Also a classification of dusty gas 

flow regimes based on solid phase Knudsen number or a similar parameter like Nδ, which 

shows the range of validity of the existing models is not available in the literature. The Nδ 

parameter for the gas itself is not well-defined, and the existing ranges are based on 

insufficient numerical observations. The refining of the Knudsen regimes based on this 

parameter can be achieved by applying more comprehensive comparisons of classical 

models with DSMC or NCCR solutions. 

From the numerical point of view, a comparison of the previously developed methods for 

handling the source terms with the current approach or using the current idea in 
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combination with other methods, for example, with splitting. In Euler-type problems, the 

non-strictly hyperbolic equations of dust can be converted to strictly hyperbolic by 

adding a pressure-like term to both sides of the equations. This simple idea has been 

applied to shallow water equations in the simulation of atmospheric aircraft icing 

problems and can be equivalently applied in two-fluid equations of dusty gas. In some of 

the test cases of this work, it was observed that the convergence of the method improves 

extensively when source terms are present. This feature combined with the idea explained 

before (adding a term in both sides of the equation) might be useful as a new acceleration 

method for a specific class of problems.  

There are a variety of problems which were discussed very briefly in this thesis, and 

more extensive investigation of physical features in those problems can be followed in 

the future. For example, it was observed that in the one-dimensional problem of dusty gas 

shock tube, a wave is reflected into the high-pressure side. The type of reflected wave 

depends on the specific heats of the solid particle and gas as well as the particulate 

loading of the mixture. Reflection of the shock wave was investigated in this work. 

However, the reflection of the rarefaction wave was not investigated, which can be a 

topic of future studies. There are various benchmark problems which can be used in the 

dusty gas framework to provide more fundamental knowledge on the complex behavior 

of the dusty gas flows. 

A number of unsolved issues in the problem of under-expanded jets which has been 

extensively investigated either experimentally or numerically still exists. These can be 

poorly managed Mach disk diameter and curvature, the effect of viscous forces on the 

transition to turbulence as well as interactions with hydrodynamic instabilities [211]. 

With the efficient and high-order numerical tool developed in this work, not only those 

issues can be investigated but also more areas where either rarefaction or presence of dust 
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play a role can be further investigated. Effect of the addition of particles on under-

expanded jets which has applications in volcanic eruptions is one of the other directions 

which can be followed. Asymmetric under-expanded jet can be investigated within the 

three-dimensional formulation framework. The effect of rarefaction and dust has never 

been investigated on the structure of these 3D configuration types of flows.  

Investigation of dusty gas microflows, pressure impactors are the other directions which 

can be followed.  

More detailed investigations on the Lunar landing problem including parametric studies 

and inclusion of more accurate erosion models in another direction. Even though in the 

current study by applying Lagrangian framework the solid phase was modeled separately 

for different particle diameter, one can take advantage of Lagrangian modeling by 

providing a simulation regarding eroded particles via conducting particle size distribution. 

Comparison of the method with Lagrangian counterpart can also provide more details on 

the strength and weaknesses of the currently developed tool.  

Moreover, multiphase turbulent flows can be called an almost new topic in fluid 

dynamics. The current tool with the incorporation of turbulence models (or approaches) 

can be used in this area as well. In this case, one of the most interesting problems at hand 

is the aircraft atmospheric icing. Here, instead of solid particles, liquid droplets or 

bubbles need to be modeled, and further necessary modifications to simulate the ice 

formation after collection of droplets on the surface need to be taken into account.  

There are other classes of two-fluid models with interphase tracking, and the 

developed code can be further extended to be applied to problems in which interphase 

shape and location is important.  

Manufacturing techniques in a vacuum and near-vacuum conditions in the 

semiconductor industry for the production of OLED panels have become extremely 
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important in the last few decades. Such industries are required to optimize the geometry 

of the setup to obtain better deposition on the substrates frequently. Therefore, simulation 

of the problem above can be conducted either by NSF along with slip and temperature 

jump boundary conditions or by non-equilibrium simulations employing the second-order 

Boltzmann-based continuum solver developed by Aerospace Computational Modeling 

Laboratory. 
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 Derivation of conservation laws from Appendix A.

the Boltzmann transport equation 

The Boltzmann transport equation (BTE) for monatomic, diatomic and linear 

polyatomic particles known as Boltzmann-Curtiss equation in the absence of external 

body forces can be written as [233-235],  

   1, , ,
j

f t C f f
t I 

  
   

  
v v r  

(140) 

In the above equation j, I, and θ are the magnitude of the angular momentum, moment 

of inertia, and azimuthal angle. We derive the conservation laws for the Boltzmann-

Curtis, which is an extended version of the Boltzmann equation. The third term in the 

above relation (and in the rest of the derivation process accordingly) will vanish for the 

case of monatomic gases. 

Before deriving the conservation equations, statistical mechanics definitions of some 

macroscopic parameters which are necessary for the derivation process are provided in 

the table below.  

Table 20 Statistical definition of macroscopic parameters 

Macroscopic quantity  Statistical definition 

Number density  , ,n f t r v   

Density  , ,mf t  r v  

Momentum  , ,m f t u v r v  

Energy 
 21

, ,
2

rotE mc H f t
 

  
 

r v  

Stress tensor  , ,m f tP cc r v  
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Shear stress tensor    
2

, ,m f tΠ cc r v  

Excess normal stress 
   

1
Tr , ,

3

p
m f t

n

 
   

 
cc r v  

Heat flux vector 
 21 ˆ , ,

2
rotmc H mh f t

 
   

 
Q c r v  

Differentiating the above statistical definitions introduced above with time and 

combining with BTE will give the conservation equations and constitutive relations. It 

should be noticed that the t, r, and v are independent variables, whereas peculiar velocity 

is not independent of space and time. Moreover, molecular, average, and peculiar 

(random) velocities are related by v=u+c. By defining the material time derivative as 

.
D

Dt t


  


u , equation (140) can be written as, 

 1,
Df f j f

C f f
Dt I 

 
  

 
c

x
. 

(141) 

For the derivation of the mass conservation, the Boltzmann-Curtiss equation is 

multiplied by m and integrated over velocity space to yield 

 1,
f j f

m m f m mC f f
t I 

 
   

 
v . 

(142) 

As mass is a collision invariant of BTE the right-hand-side term will be zero: 

0
f j f

m m f m
t I 

 
   

 
v . 

(143) 

The above relation can be further simplified as 

. 0
j f

mf m f m
t I 

 
  

 
v . 

(144) 

Curtiss stated that f does not depend on the azimuthal angle and it only depends 

weakly on the position of gas molecules. With the use of a statistical definition of density 

and momentum in Table 20, we can get the mass conservation equation:   
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 . 0
t





 


u . 

(145) 

The above equation is the same as the mass conservation form in continuum theory. 

With a similar approach, it can be shown that the Boltzmann equation fulfills the 

requirement of the momentum conservation law. This is achieved by differentiation of 

statistical definition of momentum and use of Boltzmann-Curtiss equation as follows 

 1,
f j f

m m f m m C f f
t I 

 
   

 
v vv v v . 

(146) 

The other collision invariant of the BTE is the momentum. Therefore, 

0
f j f

m m f m
t I 

 
   

 
v vv v . 

(147) 

Curtiss’s assumption implies that 

0
f

m m f
t


  


v vv . 

(148) 

By substituting the molecular velocity in terms of thermal and macroscopic velocities 

in the second term, and use of statistical definitions of viscous stress tensor and excess 

normal stress we get 
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In the above relation, P is the stress tensor, which is decomposable into hydrostatic 

pressure, excess trace part, and traceless part. Finally, the momentum equation can be 

expressed as, 

   . . 0p
t
 


    


u uu I Π I . 

(150) 

Accordingly, with the help of the statistical definition of the internal energy density of 

the fluid and consequent substitution and differentiation as has been done for the 

derivation of mass and momentum conservation equations, we can derive the energy 

conservation law or the first law of thermodynamics.  
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1 1 1

2 2 2
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The third collisional invariant of the Boltzmann equation is the energy, therefore,  

2 2 21 1 1
0

2 2 2
rot rot rot

f j f
mc H mc H f mc H

t I 
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(152) 

The above equation can be further simplified as follows 
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  

  
     

  

   

  
     

  

 

v v

v v

v v

v v

v v

v
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By substituting the molecular velocity in terms of thermal and macroscopic velocities: 

 

      

2 21 1
.

2 2

. . . 0

rot

rot

mc H f m c f
t

m f H f

  
   

  

     

c u

c u c u c u

 

 

2 2 21 1 1
. .

2 2 2

. . . . . 0

rot

rot rot

mc H f m c f mc f
t

m f m f H f H f

  
   

  

      

c u

cc u u c u c u

 

 

2 2

2

1 1
.

2 2

1
. . . 0

2

rot rot

rot

mc H f mc H cf
t

mc H f m f

    
     

    

 
     

 
u cc u

 

(154) 

Finally, we can write the energy conservation as  

 . : 0E E
t
 


      

u Q P u  
(155) 

Alternatively, the above equation can be written as 

   . . . 0E E p
t
 


           

u Π I u Q  
(156) 
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 Derivation of constitutive relations Appendix B.

from the Boltzmann transport equation 

It was shown in Chapter 3 that the moment equations can be obtained by 

differentiating the statistical definition of the variable with respect to time and combining 

it with Boltzmann (Boltzmann-Curtiss for diatomic and linear polyatomic) transport 

equation which yields the general moment h
(n)

  as follows [234-236], 

 

 

( ) ( )

( )

. .

. .

nn n

n n

h f h f h f
t

j
f h

t I 

 
     

 

  
     

  

u u c

u c Λ

 
(157) 

By defining ( )n
Ψ  as the flux of ( )nh f  (high-order moments), Z

(n)
 kinematic term 

due to hydrodynamic streaming effect and ( )n
Λ  the dissipation term to account for 

energy dissipation in the irreversible process as  

( ) ( )

( ) ( )

( ) ( )

1

.

[ , ]

n n

n n

n n

ch f

D j
f h

Dt I

h C f f





 
   

 



Ψ

Z c

Λ

 
(158) 

Moreover, after denoting ( ) /nh f  as ( )ˆ nh  the general evolution can be written as 

( ) ( ) ( ) ( )ˆ .n n n nD
h

D
   Ψ Z Λ  

(159) 

The constitutive equation for viscous stress tensor  
(2)

= m fΠ cc  can be derived by 

taking  
(2)(1)h = m cc  as follows 

( ) ( ) ( ).
D

D




   
   

 

Π
Ψ Z Λ  

(160) 

The kinematic term can be expanded as follows 
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 

   

    

( ) (1)

(1) (1) (1)

(2) (1) (1)

(2) (2) (1) (1)

(2) (2)

.

.

.

.

2 2 2 .

D j
f h

Dt I

D j
f h f h f h

Dt I

D j
f m f h f h

Dt I

D D j
f m f m f h f h

Dt Dt I

D
p

Dt









  
   

 


   




   




    



 
       

 

Z c

c

cc c

cc cc c

u
J Δ u u

 
(161) 

In the above equation m fJ c  is the diffusion flux, which can be neglected for 

single species flows. The final equation of constitutive equation for shear stress then 

reduces to  

    
(2) (2)( ) ( ). 2 2 .

D
p

D




  
       

 

Π
Ψ Δ u u Λ  

(162) 

The excess normal stress  2 / 3 /mC p n f    balance equation can be achieved 

by setting / 3 /(2) 2h = mc p n , with n as number density in the general evolution equation,  

(2) (2) (2) (2)ˆ .
D

h
D

   Ψ Z Λ  
(163) 

Equivalently,  

( ) ( ) ( ).
D

D




   
   

 

Δ
Ψ Z Λ  

(164) 

Again, the kinematic term can be expanded as  
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 

( ) (2)

(2) (2) (2)

2 2 2

.

.

1 1 1
.

3 3 3

2
2 : .

3

D j
f h

Dt I

D j
f h f h f h

Dt I

D p p j p
f mC f mC f mC

Dt n n I n

p







 

  
   

 


   



     
           

     

       

Z c

c

c

Π I u u

 
(165) 

 

Therefore, the excess normal stress constitutive relation can be written as 

 ( ) ( )2
. 2 : .

3

D
p

D
  



  
        

 

Δ
Ψ Π I u u Λ  

(166) 

The heat flux  2 ˆ/ 2 rotmC H mh f  Q c  balance equation can be achieved by 

setting  2 ˆ/ 2(3)

roth = mC H mh  c , with Hrot and ĥ  as rotational Hamiltonian of the 

molecule and the enthalpy density per unit mass, in the general evolution equation,  

(3) (3) (3) (3)ˆ .
D

h
D

   Ψ Z Λ . 
(167) 

Similar to derivation previous in previous parameters the kinematic term can be 

expanded as 

( ) ( ) ( ). Q Q QD

D




 
   

 

Q
Ψ Z Λ . 

(168) 

Expanding the kinematic term yields 
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   

( ) (3)

(3) (3) (3)

2 2

2

( )

.

.

1 1늿 .
2 2

1 ˆ
2

: . .

Q

rot rot

rot

P

p p

D j
f h

Dt I

D j
f h f h f h

Dt I

D
f mC H mh f mC H mh

Dt

j
f mC H mh

I

d
p C T C T

dt









 
   

 


   



   
         

   

  
   

  

             

Z c

c

c

u
u Π I Π Q u

 
(169) 

Finally, the constitutive equation for heat flux can be written as 

   ( ) ( )

( )

. : .

.

Q P

p

Q

p

D d
p C T

D dt

C T

 


 
        

 

    

Q u
Ψ u Π I

Π Q u Λ

 
(170) 

 

 

 Applied basis functions and Appendix C.

integration process of the source term vector for 

triangular elements  

In this appendix, the applied basis functions and the analytical integration, which 

shows that only the first term of Θ vector has non-zero value is provided.  

1

2

( ) d
Cell Area/2

( ) d 0

0
( ) d

k

k

k

k

k

n k

J

J

J













 
   
   
     
   
   

  
  







x Ω

x Ω
Θ

x Ω

 
(171) 

The vector of basis functions, which is used in order to achieve a third order (P
2
) 

solution, is as follows:  
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(172) 

The transformation Jacobian is (1-b)/2; therefore,  

1 1
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 Thermodynamic properties and Appendix D.

estimation of essential factors by Lennard-Jones 

parameters for usually used gases in the CVD 

process 

 

 

Table 21 Heat capacity estimation for usually used gases in CVD adopted from reference [224] 

Gas 

2

0 1 2pc a a T a T    [J/(kg.K)] 

𝑎0 𝑎1 𝑎2 

Ar 5.20 x 10
2
 0.00 x 10

0
 0.00 x 10

0
 

AsH3 2.45 x 10
2
 1.08 x 10

0
 4.24 x 10

-4
 

Ga(CH3)3 3.36 x 10
2
 2.54 x 10

0
 -9.27 x 10

-4
 

H2 1.44 x 10
4
 -2.61 x 10

-1
 8.67 x 10

-4
 

HF 1.48 x 10
3
 -1.20 x 10

-1
 1.47 x 10

-4
 

N2 1.03 x 10
3
 4.58 x 10

-3
 1.34 x 10

-4
 

SiF4 4.73 x 10
2
 9.73 x 10

-1
 -4.55 x 10

-4
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SiH2 9.02 x 10
2
 9.32 x 10

-1
 -2.07 x 10

-4
 

SiH4 4.74 x 10
2
 3.26 x 10

0
 -1.08 x 10

-3
 

Si2H4 5.83 x 10
2
 2.24 x 10

0
 -9.97 x 10

-4
 

Si2H6 3.44 x 10
2
 3.57 x 10

0
 -1.55 x 10

-3
 

Si3H8 3.71 x 10
2
 3.44 x 10

0
 -1.55 x 10

-3
 

WF6 3.25 x 10
2
 4.69 x 10

-1
 -2.94 x 10

-4
 

 

 

 

 

 

 

Table 22 Lennard-Jones parameters for usually used gases in CVD adopted from reference 

[224] 

Gas 

Molecular weight 

(m) [kg/mole] 

Collision diameter 

(𝜎) [𝐴̇𝑛𝑔] 

The maximum 

energy of attraction 

(𝜀/𝑘) [K] 

Ar 39.944 3.542 93.3 

AsH3 77.95 4.145 259.8 

Ga(CH3)3 114.83 5.68 398 

H2 2.016 2.827 59.7 

HF 20.01 3.138 330 

N2 28.02 3.798 71.4 

SiF4 104.09 4.88 171.9 

SiH2 30.10 3.803 133.1 

SiH4 32.12 4.084 207.6 

Si2H4 60.21 4.601 312.6 

Si2H6 62.23 4.828 301.3 

Si3H8 92.33 5.562 331.2 
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WF6 297.84 5.21 338 

 

Table 23 Integral function estimation for usually used gases in CVD adopted from reference 

[224] 

T* interval 
* * 2 * 3

0 1 2 3( ) ( )a a T a T a T        

𝑎0 𝑎1 𝑎2 𝑎3 
*0.3 1T    4.0384 x 10

0
 -5.2953 x 10

0
 4.0846 x 10

0
 -1.2414 x 10

0
 

*1 3T   2.7015 x 10
0
 -1.6152 x 10

0
 5.6831 x 10

-1
 -7.1633 x 10

-2
 

*3 10T   1.3824 x 10
0
 -1.6174 x 10

-1
 1.7603 x 10

-2
 -7.1058 x 10

-4
 

*10 30T   9.8307 x 10
-1

 -1.9520 x 10
-2

 4.4911 x 10
-4

 -3.8432 x 10
-6
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