
__________________________________________________________________________________________ 

Presented as Paper 2017-2346 at the 21st AIAA International Space Planes and Hypersonic Systems and 

Technology Conference, Xiamen, China, 6-9 March 2017. 

*Research Associate, College of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China, 310027; 

Senior Member, AIAA; jzhongzh@zju.edu.cn. 

†Associate Professor, College of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China, 310027; 

Senior Member, AIAA; wwzhao@zju.edu.cn (Corresponding Author). 

‡ Ph.D. candidate, College of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China, 310027; 

yuanzhenyu318@zju.edu.cn. 

§Professor, College of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China, 310027; 

chenwfnudt@zju.edu.cn. 

¶Professor, Department of Aerospace and Software Engineering and ACTRC & ReCAPT, Gyeongsang National 

University, Jinju, Gyeongnam 52828, South Korea; Associate Fellow, AIAA; myong@gnu.ac.kr. 
 

Numerical Investigation of Rarefied Hypersonic Flows 

over Flying Configurations 

Using a Nonlinear Constitutive Model 

 

Zhongzheng Jiang,* Wenwen Zhao,
†
 Zhenyu Yuan,

‡
 and Weifang Chen§ 

College of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China, 310027 

and 

R.S. Myong
¶
 

Department of Aerospace and Software Engineering and ACTRC & ReCAPT, Gyeongsang National University, 

Jinju, Gyeongnam 52828, South Korea 

 

The linear Navier-Stokes-Fourier (NSF) constitutive relations are derived on 

the assumption of the small deviation from local thermodynamic equilibrium, and 

consequently they may fail in describing flows removed far from local equilibrium, 

like rarefied hypersonic flows. In this paper, a nonlinear constitutive model of 

diatomic gases named as nonlinear coupled constitutive relations (NCCR) is 

presented. The model conceptually starts from Eu’s generalized hydrodynamics and 

is developed for simulating rarefied hypersonic gas flows with a goal of recovering 

NSF’s solutions in near-continuum regime and more accurate in transition regime. 

To enhance stable computation, an undecomposed algorithm is further developed 



for the nonlinear constitutive model within finite volume framework. An analysis is 

carried out to compare the algorithm with Myong’s original decomposed algorithm. 

Local non-equilibrium flow regions are also investigated for rarefied hypersonic 

flows over a cone tip, a hollow cylinder-flare and a HTV-type flying vehicle. The 

convergent solutions of NCCR model are compared with NSF, DSMC calculations 

and experimental data. It is demonstrated from results of general flow-field and 

surface properties that the NCCR model is as computationally efficient as the NSF 

model in continuum regime, and, at the same time, more accurate in comparison 

with DSMC and experimental data than NSF in non-equilibrium flows. 

 

Nomenclature 

C  = peculiar velocity ( /m s ) 

 k
   = macroscopic variables 

 k
h   = molecular expressions for macroscopic variables 

f   = phase density 

Bk  = Boltzmann constant 

   = normalization factor in Eu’s phase density 

d   = molecular diameter 

refd   = reference molecular diameter 

c   = NCCR constant  
1 4 1 22B r r rmk T d    

m   = molecular mass 

E  = total energy per unit mass ( /J kg ) 

ˆˆ ˆ, , c c cF G H  = convective flux vector 

ˆˆ ˆ, ,v v vF G H  = viscous flux vector 



, ,  
A B C  = inviscid approximate Jacobian matrixes 

x , y , z , t , x , y , z , t , x , y , z , t  = metrics 

     , ,  A B C   = spectral radiuses for the inviscid Jacobian matrixes. 

Q̂  = vector of flow variables in physical domain 

J  = Jacobian coordinate 

BLGKn  = the body-length global (BLG) Knudsen number 

L  = characteristic length ( m ) 

0L  = reference length ( m ) 

l  = mean free path of gas molecules ( m ) 

Ma  = Mach number 

Re  = Reynolds number 

N   = ratio of Mach number to Reynolds number 

Pr  = Prandtl number 

p  = pressure (
2/N m ) 

p  = free-stream pressure (
2/N m ) 

T  = temperature ( K ) 

T  = free-stream temperature ( K ) 

refT   = reference temperature ( K ) 

wT   = wall temperature 

   = attack angle 

U  = free-stream velocity ( /m s ) 

iu  = velocity components ( /m s ) 

  = density (
3/kg m ) 

  = free-stream density (
3/kg m ) 

ref  = reference density (
3/kg m ) 

  = viscosity (
2( ) /N s m ) 



ref  = reference viscosity (
2( ) /N s m ) 

b   = bulk viscosity (
2( ) /N s m ) 

  = thermal conductivity ( / ( )J m s K  ) 

bf   = ratio of the bulk viscosity to the shear viscosity 

VHSs  = VHS temperature exponent 

R  = gas constant ( / ( )J kg K ) 

  = specific heat ratio 

pc   = constant-pressure specific heat ( / ( )J kg K ) 

pC   = pressure coefficient 

fC   = skin friction coefficient 

hC   = heat transfer rate 

Π  = shear stress tensor (
2/N m ) 

   = excess normal stress (
2/N m ) 

Q   = heat flux (
2w/ m ) 

   = higher-order moments 

  = first-order cumulant of cumulant expansion for dissipation terms 

 q   =  nonlinear dissipation factor 

R̂   = dimensionless Rayleigh-Onsager dissipation function 

  2
A  =  traceless symmetric part of the second-rank tensor A , equal to   2 3TA A Tr  I A   

I   = identity matrix 

 

I． Introduction 

Gaseous flows in near space—defined as the airspace between 20 to 100 kilometres high above sea 

level—have been investigated intensively in recent years. In near space, the physical properties of gas including 

the density and pressure vary as a function of altitude rather dramatically. Re-entry vehicles such as HTV 



(Hypersonic Technology Vehicle), space shuttle or Apollo capsule, experience different flow features from 

continuum to transition regimes when passing through near space during the course of their flight trajectory. The 

local flow fields around hypersonic vehicles at high altitudes contain typical rarefied non-equilibrium 

characteristics, like the shock waves around the sharp leading edge, Knudsen layer near the solid surface, as well 

as the gaseous expansion region in the near-wake of vehicles. The reproduction of such non-equilibrium 

phenomena in ground-based facilities or flight tests is extremely challenging and expensive and thus numerical 

simulation should be considered an efficient choice for the design of such vehicles. However, as the rarefied 

non-equilibrium effects are strengthened, the validity of the linear laws of Navier-Stokes-Fourier (NSF) based on 

near-equilibrium becomes questionable. Hence a more refined theoretical tool beyond the classical theory of 

linear constitutive relations needs to be developed. 

In the past, much effort has been placed on obtaining the physical solutions of the challenging flow 

problems beyond the capability of the linear NSF equations. Among them, the direct simulation Monte Carlo 

(DSMC) method [1] is considered most powerful in solving the Boltzmann (or equivalent) equations by counting 

the collisions of representative molecules with collision frequencies and scattering velocity distributions. Other 

well-known methods also include the linearized methods of Boltzmann equation [2], Boltzmann model equations 

(BGK, ES-BGK and Shakhov models) [3-5], discrete velocity methods (DVM) [6], unified gas-kinetic 

scheme(UGKS) [7], Burnett-type equations [8-10], Grad’s moment equations [11], regularized 13 moment 

equations [12] etc. For prediction of aerodynamic characteristics of re-entry vehicles, it is recommended that any 

new methods should meet three standards: (1) recovering the Navier-Stokes-Fourier solution in continuum 

regime and extendable to the transition regime; (2) acceptable computational efficiency with reasonable cost; (3) 

capable of handling complex configurations. However, either huge computational cost or numerical instability 

when handling complex geometries makes most of the aforementioned methods less popular in engineering 



application. 

A set of generalized hydrodynamic equations proposed by Eu [13] in 1980 provides an alternative solution 

procedure to the Boltzmann equation. However, the Eu’s 13 moment equations also have difficulty in handling 

multi-dimensional problems. In order to provide a practical high-order fluid dynamic model with computational 

efficiency comparable to that of the NSF model, Myong in 1999 developed an efficient computational model on 

the basis of Eu’s generalized equations [14, 15]. The model, named as the nonlinear coupled constitutive 

relations (NCCR), takes a form of nonlinear algebraic system and can be implemented easily in the conservation 

laws. This second-order NCCR model derived from the kinetic Boltzmann equation via the so-called balanced 

closure was validated in the force-driven Poiseuille flow through the deterministic microscopic molecular 

dynamics (MD) method [16].  

Myong employed a decomposed  computational algorithm to numerically solve the implicit algebraic 

nonlinear model, which was applied successfully in one-dimensional shock wave structure and 

multi-dimensional flows [14, 17]. Nonetheless, there is still a room for improving the iterative numerical method 

from decomposed to undecomposed in order to enhance the numerical stability and accuracy, in particular, for 

three-dimensional complicated flow problems in case of finite volume framework [18, 19]. In present work, we 

attempt to utilize a hybrid algorithm which combined fixed-point and Newton’s iterations for computing 

non-conserved variables in implicit NCCR model in conjunction with modern CFD schemes to solve the 

conservation laws for conserved variables within finite volume framework. The hybrid method is then applied to 

solve several hypersonic flows over flying configurations. A brief introduction of the nonlinear constitutive 

model and the numerical method is given in Section II and III. Section IV will discuss the general flow-field and 

surface properties computed by the new model and present a detailed comparison with the linear NSF, DSMC 

and experimental results. It will be demonstrated that the present computational model is as efficient as the NSF 



model in continuum regime, and, at the same time, more accurate in comparison with DSMC and experimental 

data than NSF in non-equilibrium flows considered. 

 

II. A Nonlinear Constitutive Model of Diatomic Gases 

In order to solve the far-from-equilibrium flow problems, Eu [20, 21] developed the generalized 

hydrodynamic equations (GHE) compatible with the second laws of thermodynamics. Different from 

Chapman-Enskog expansion with Knudsen number as a small parameter, GHE was derived from the kinetic 

Boltzmann-Curtiss equation by introducing a non-equilibrium canonical distribution function in exponential 

form and the cumulant-expansion method for modelling the collision term. The Eu’s non-equilibrium canonical 

distribution function is defined as 
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In (1), C  denotes the peculiar velocity and   is the normalization factor. kX  are the functions of 

macroscopic variables, occupying the status similar to the coefficients of Maxwell-Grad moment method. T , 

Bk , m  and rotH  represent the temperature, Boltzmann constant, molecular mass and rotational Hamiltonian 

of molecule, respectively.  k
h  denotes the molecular expressions for macroscopic variables. For the conserved 

or non-conserved variables, like the mass density  , momentum density u , energy density e , or the shear 

stress Π , excess normal stress  , heat flux Q , their corresponding molecular expressions can be defined 

respectively as 
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where v , p , n  and ĥ  represent the particle velocity, pressure, number density of molecules and the 

enthalpy density per unit mass respectively. The square bracket symbol  
 2

A  in (2) represents the 



traceless symmetric part of the second-rank tensor A . The shear stress Π , the excess normal stress   

and the pressure p  constitute the stress tensor P  through the following relation 

   ,p   P I Π  

where I  denotes the unit second-rank tensor. 

The aforementioned macroscopic variables  k
  can be computed by integrating the product of 

their molecular expressions  k
h  and the distribution function over the whole velocity space 

    
.

k k
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Differentiating the variables (3) with time and employing the Boltzmann-Curtiss equation, a set of evolution 

equations for the macroscopic variables can be derived as 

 

    
/

,

k

k

k k

d
Z

dt

 
        (4) 

where  k
 , k  and kZ  denote the flux of high-order moments, the dissipation term and the kinematic term 

respectively. Using Eu’s non-equilibrium canonical distribution function to close the dissipation term, a set of 

evolution equations of non-conserved variables for a diatomic gas (GHE) can be finally obtained as 
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In equations (5), '  is equal to (5 3 ) / 2 . 3,4,5,6 , pc ,  , b  and   represent the flux of high-order 

moments, the constant-pressure specific heat, and the coefficients of the gas viscosity, the bulk viscosity, the heat 

conduction respectively. The nonlinear dissipation factor    sinhq     with 

 
1 21 4 22 : 2B bmk T dp T          Π Π Q Q  

affects the relaxation times of non-conserved variables as a non-equilibrium coefficient in the evolution 

equations (5). In order to close aforementioned evolution equations, Eu [21, 22] proposed a simple closure based 



on a heuristic consideration 

 
3 4 5 6 0.        

 Moreover, Myong [23] proposed another closure explanation, called as ‘balanced closure’, from a keen 

observation that the number of places for closing the moment equations is two, rather than one, as misleadingly 

described by the previous theory based on the Maxwellian molecule assumption. The order of approximations in 

handling two terms—kinematic (movement) and dissipation (collision) terms—must be the same accordingly, 

for instance, second-order for both terms, thus achieving a balance between the kinematic and collision term 

approximation, namely, the second-order closure for the kinematic terms,  

4 5 6 3 : 0          u  

while maintaining the same second-order closure for  q  . 

In the case of the steady-state flow problems, the time terms of non-conserved variables in GHE may play a 

negligible role in the numerical computation. Thus the substantial time derivative terms  D DtΠ , 

 D Dt  and  D DtQ  in the left hand side of GHE (5) in constitutive equation level can be ignored 

by an adiabatic approximation assumption introduced by Eu [21]. The transport of conserved variables and the 

non-conserved variables varies on two different time scales. The non-conserved variables change much faster 

than the conserved variables and thus reach a steady state very quickly than the latter. Therefore, on the time 

scale of conserved variables, the time terms for non-conserved variables can be neglected as a 

physically-motivated approximation. Note that the derivative term of non-conserved variables 

 ( ) ( )p       Ι Π Π Ι  is removed by Myong in order to establish an algebraic (rather than partial 

differential) system which can be solved by iterative methods. The term Q u  is also omitted for the sake of 

simplicity [15, 17]. In our recent work [24, 25], the insignificant effect from this term has been confirmed in 

one-dimensional steady shock wave structures. 



Finally, a nonlinear algebraic system of the second-order nonlinear model, namely the nonlinear coupled 

constitutive relations (NCCR), is developed. The NCCR model of diatomic gases can be summarized as 
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Note that the linear Navier-Stokes-Fourier constitutive relations, derived from the first-order Chapman-Enskog 

expansion, can be naturally recovered from the second-order model in vanishing Knudsen and Mach numbers, 
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It is worthwhile mentioning that the bulk viscosity is set zero in the linear theory according to the Stokes’ 

hypothesis. After introducing the definition of NSF relations (7) into the NCCR model (6) and 

non-dimensionalizing with proper flow parameters [18], we can obtain another very compact form of the NCCR 

model as 
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where 
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In equation (8), the constant c  is defined as  
1 4

1 22B ref ref refmk T d  . 

 



III. Numerical Methods to Solve the Conservation Laws and Constitutive Relations 

A. Governing equation of conservation laws and temporal-spatial discretization 

The three-dimensional dimensionless governing equations of conserved variables for a diatomic gas in 

conservative form in curvilinear coordinate system  , , ,     can be expressed as: 
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In formulas (10), x , y , z , t , x , y , z , t , x , y , z , t  denote the metrics.  , u , v , w , E  represent the 

density, the three coordinate components of velocity vector, and total energy per unit mass respectively. J  is 

the Jacobian coordinate transformation and U ,V ,W  are contravariant velocities, expressed as 
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The linear Navier-Stokes-Fourier constitutive relations can be rewritten in an index form as (with the Stokes’ 

hypothesis 0b  ) 
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  (11) 

The linear constitutive relations (11) in conjunction with conservation laws (9) and (10) yield the well-known NS 

equations. In contrast, the dimensionless nonlinear coupled constitutive relations are written as 
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  (12) 

where  2 2 2 2ˆˆ ˆˆ 2 .ij b iR f Q       Together with conservation laws (9) and (10), the nonlinear relations (12) 

yield so-called NCCR equations.  

The NCCR equations with the conservation laws in partial differential form and the constitutive relations in 

algebraic form, are attempted to be solved numerically within the finite volume framework. For computing the 

inviscid flux of hyperbolic conservational system, AUSMPW+ scheme was proposed by Kim [26] through 

introducing the pressure-based weight function to remove the oscillations of AUSM+ and overcome carbuncle 

phenomena of AUSMD. This flux splitting scheme is extensively used in hypersonic flows due to its efficiency, 

robustness and strong capability in capturing the shock. Therefore, the AUSMPW+ is also employed in 

computing the convective flux of NCCR equations. The AUSMPW+ scheme can be summarized as 

    1 2 1 2
3 16 3 16

.L L R R L L R RF c M M P P
 

   

 
     P P   (13) 

For the detail of each parameter in (13), see the literature [26]. Note that the magnitude of the viscosity is 

significant in simulating rarefied flows. High-resolution Van Albada limiter with less dissipation is utilized 



together with Van Leer’s MUSCL (Monotonic Upstream-Centred Scheme for Conservation Laws) approach to 

reconstruct the left and right values of the interface, which can be summarized as 
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where 
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In above formula,   is a small quantity in case of denominator’s division by zero. The parameter k  in 

(14) determines the spatial accuracy of the interpolation. For instance, 1k    denotes a second-order upwind 

difference scheme while 1k   results in a purely central scheme. In this paper, 1k    is adopted for 

capturing the discontinuous flows. The spatial derivatives of viscous flux are discretized by the second-order 

central difference scheme. For the temporal discretization, the implicit Lower-Upper Symmetric Gauss-Seidel 

(LU-SGS) scheme is adopted to get an efficient steady convergence. The governing equation (9) by the 

first-order implicit temporal discretization can be rewritten as 

   ,nt D D D Q t  
       
 
Ι A B C RHS   (15) 

where D , D , D  are differential operators and A , B , C  are inviscid Jacobian matrixes. RHS  

represents the residual. Finally, the LUSGS time-marching form can be derived by LU splitting as 

 ,Q  -1
LD U RHS   (16) 

where 

 

     

1 1 1

1 1 1

1
,

,

.

i j k

i j k

t
  

  

  

  

  

 
     

   

   

D Ι A B C

L D A B C

U D A B C

  



Here 


A , 


B , 


C  are approximate Jacobian matrixes and   A ,   B ,   C  are spectral radiuses for 

the inviscid Jacobian matrixes. In general, explicit temporal discretization of viscous term in (9) would lead to 

computational instability in viscosity-predominated region, such as boundary layer. In this work, we try to 

approximately discretize the viscous term in implicit way by utilizing the viscous spectral radiuses to modify the 

eigenvalues for approximate Jacobian matrixes. For instance, in case of   direction, 

 AA A k I     (17) 

Note that the Jacobian matrixes for NCCR viscous terms are extremely complex to deduce the viscous spectral 

radiuses directly. The NSF’s viscous spectral radiuses 
2

2 ReAk Ma      are utilized for NCCR 

equations. Overall, the computational results show that this approximation meets the requirement of efficiency 

and stability for NCCR equations. 

 

B. Undecomposed algorithm and an analysis on complicated algebraic constitutive relation 

The only difference between NS and NCCR equations is the treatment of non-conserved variables 

appearing in conservation laws; viscous stresses and heat flux. They can be computed explicitly from the 

first-order derivative of conserved variable in NSF relations (11) but implicitly in NCCR model (12). The 

implicitness of ˆ
ij , ̂ , ˆ

iQ  (output) for given thermodynamic forces (input) in NCCR model (12) is spawned by 

the presence of the exponential term,    sinhq    . Therefore, an additional iterative process is required 

to numerically solve the NCCR model, which can be written as a general form of nonlinear implicit-type 

algebraic equations: 
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  (18) 



where 
if  can be defined as a function of nine independent variables  ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , , , ,xx yy xy xz yz x y zQ Q Q      , 

mapping a 9-dimensional space 
9
 into the real line . A more compact vector form of the nonlinear 

equation systems (18) can be rewritten as: 

   0,F x   (19) 

where  1 2 9, , ,
t

f f fF  and  ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ= , , , , , , , ,
t

xx yy xy xz yz x y zQ Q Q     x . 

Owing to the highly nonlinear terms in (18), Myong proposed a decomposed algorithm [15, 17, 27] based 

on the concept of the splitting of the flow into two distinct components, as shown in Figure 1. The decomposed 

algorithm was adopted to solve a decomposed nonlinear algebraic system [28] rather than directly solve the 

complete system (18) of NCCR model. That is, in the case of a three-dimensional problem, the stress tensor and 

heat flux vector components  , , , ,xx xy xz xQ     on a surface in the three-dimensional finite volume induced 

by thermodynamics forces  , , ,x x x xu v w T  can be approximated as the sum of two decomposed solvers: one on 

 ,0,0,x xu T  describing the compression and expansion flows, and another on  0, ,0,0xv  and  0,0, ,0xw  

describing shear flows. 

In our recent undecomposed work, two numerical approximation methods, the fixed-point iteration 

 Gx x  and Newton’s method      
1

J


 G x x x F x  , are considered for solving aforementioned 

complete systems of nonlinear algebraic equations (19). In fixed-point iteration, the first challenge is to construct 

an available convergent iterative expression for the NCCR model. The evolution equations (12) for NCCR’s 

non-conserved variables (shear stress, bulk stresses and heat flux) can be rewritten in a simple form 

  2ˆ ˆq cR R F , recalling the Rayleigh-Onsager dissipation function, in the sense that it conserves the whole 

information of non-conserved variables by one scalar formulation  
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and improves the computation efficiency by reducing the amount of iterative scalar equations. R̂  serves as an 

intermediate variable in the iteration  1

1
ˆ ˆsinhn n nR cF R c

  . The fixed-point iterative formulation is stable, 

but can merely cover most domains rather than the whole range in ˆ
xu -only and ˆ

xv -only testing problems.  

On the other hand, the Newton’s method—although it is generally expected to have quadratic 

convergence—is extremely sensitive to the starting value and invertibility of matrix  
1

J


x . Owing to NCCR 

model’s complex mathematical properties and subject to single method’s iterative limitation, it is hard to obtain 

convergence for all flow regimes incorporating a wide range of thermodynamic forces (local gradients of flow 

parameters) by a single method. But, interestingly, it was found that the combination of these two iterative 

methods’ convergent regions could cover the whole range of thermodynamic forces for the NCCR model. 

Therefore, an undecomposed hybrid algorithm with combination of fixed-point and Newton’s iterations is 

proposed for completely solving the NCCR model on the basis of their convergent conditions. In our hybrid 

solver, we switch to use one of the two iterative methods in the computation of the flow region when the other 

one fails to yield convergent solution. 

The distinction between the decomposed and the undecomposed algorithm is from their solution systems 

(reduced or complete) of NCCR model and the specific solution methods (splitting or non-splitting). In order to 

compare our undecomposed solution and Myong’s previous decomposed works [14, 15, 17], the nonlinear 

constitutive curves of diatomic gases in one-dimensional compression-expansion ( ˆ
xu -only) and shear ( ˆ

xv -only) 

problems are analysed. In these two simple flow problems, we try to demonstrate the variation of each stress 

component with the derivative of velocities û  and v̂  in x-coordinate direction. Figure 2 shows variations of 

components of the normal stress ˆ
xx , ˆ

yy , ˆ
zz  and the excess normal stress ̂  with ˆ

x
u , while Figure 3 

demonstrates their relations with ˆ
xv . Note that the normal stresses ˆ

yy  and ˆ
zz  cannot be computed directly 

in two solvers (one for ˆ
xu -only and another for ˆ

xv -only problems) of the decomposed algorithm. Therefore, the 



decomposed solutions of ˆ
yy  and ˆ

zz  originate from two simple relations, ˆ ˆ ˆ= 2yy zz xx     for ˆ
xu –

only and ˆ ˆ ˆ= 2xx zz yy     for ˆ
xv -only. To some extent, ˆ

xu  and ˆ
xv  can be regarded as the level of 

departure from the local equilibrium state. All the figures for the NCCR model demonstrate strong nonlinearity 

in comparison with the linear NSF constitutive relations. The NCCR model yields very different asymptotic 

behaver when ˆ ˆ, ,x xu v    , but recovers smoothly to the linear NSF solutions in the local equilibrium 

ˆ ˆ= =0x xu v , which implies inclusive of the conventional NSF model. Furthermore, it can be seen that 

undecomposed solutions yield excellent agreement with decomposed solutions of normal stresses ˆ
xx , ˆ

yy , 

ˆ
zz , shear stress ˆ

xy  and excess normal stress ̂ .  

In order to evaluate the improvement of the undecomposed method in solving the NCCR model in 

comparison with the decomposed method, a (ideal) combined compression-expansion-shear flow is considered 

for examining the ˆ
xu – and ˆ

xv –induced undecomposed effects. (Note that in real compressible flow problems 

non-zero ˆ
xu  will always be accompanied by non-zero ˆ

xT .)  Figure 4 demonstrates the difference between the 

undecomposed and decomposed solutions of ˆ
xx , ˆ

xy , ̂  in the ˆ
xu - ˆ

xv -only problem. The undecomposed 

algorithm computes the non-conserve variables strictly under the complete mathematical constraint of the 

nonlinear constitutive model (NCCR). On the other hand, the decomposed algorithm splits the fully coupled 

problems into several non-interfering subset cases. By doing so, it can achieve better computational convergence 

in these one-dimensional numerical issues, since the mathematical well-posedness and numerical convergence of 

subset cases can be easily proven. 

In the treatment of a three-dimensional problem in case of decomposed algorithm, the stress and heat flux 

components  ˆˆˆ ˆ ˆ, , , ,xx xy xz xQ     on a plane in the three-dimensional physical control volume induced by 

thermodynamic forces  ˆˆ ˆ ˆ, , ,x x x xu v w T  are computed by a linear summation of two subset solvers: (1) one on

 ˆˆ ,0,0,x xu T , and (2) another on  ˆ0, ,0,0xv  or  ˆ0,0, ,0xw . Therefore, in the ideal ˆ
xu - ˆ

xv -only problem, the 



decomposed solution process, by definition, will neglect the interplay effect induced simultaneously by ˆ
xu  and 

ˆ
xv , as shown in Figure 5 of the stress ˆ

yy  and ˆ
zz . Furthermore, a three-dimensional compression-expansion 

problem ( ˆ
xu - ˆ

yv - ˆ
zw -only) are also computed to evaluate the differences between the undecomposed and 

decomposed solutions, which are summarized in Figure 6. It remains, however, to be seen that these differences 

arose from the interplay effect of velocity gradients will produce a meaningful impact on the final solutions of 

flow field, which are determined not only by the constitutive relations but also by conservation laws. 

Finally, the computational cost of two algorithms for ˆ
xu -only, ˆ

xv -only and ˆ
xu - ˆ

xv -only problems with 

non-equilibrium level is shown in Figure 7. The number of iteration in the vertical axis denotes the extra 

computational consumption in calculation of viscous flux term at every time-marching step and the horizontal 

axis represents the level of departure from equilibrium. Note that linear NSF stress and heat flux are computed 

explicitly from  ˆˆ ˆ ˆ, , ,x x x xu v w T . The computational cost for NSF solver can be assumed to be unity as a criterion 

for NCCR solvers. As is depicted in Figure 7, the computation cost of present undecomposed algorithm is 

generally lower than that of decomposed algorithm, except for the ˆ
xv -only problem at far-from-equilibrium 

regime. 

IV. Results and Discussion 

The nonlinear constitutive model of diatomic gases has been successfully applied to the computation of 

shock wave structure [22, 24, 25], micro-Couette flow [29], etc. In this paper, the model is further extended to 

stable and efficient computation of high-speed flows past three-dimensional flying configurations, in particular, 

within finite volume framework, by utilizing a new undecomposed hybrid algorithm on the constitutive 

equations. 

A. Hypersonic flow past a blunted cone tip 

The first case studied is a 
025  half angle cone with a blunted nose of 6.35 mm in radius. Since the wake 



region behind the cone is not of main interest, the configuration is assumed to be infinitely long but be truncated 

to have its first 5 cm length from the leading edge. Note that there is no angle attack in this flow and the cone tip 

is axisymmetric. Structured grid of 0.58 million is used in all computations, as shown in Figure 8. The working 

gas is assumed to be pure nitrogen and the free-stream conditions are chosen from the Run 31 of CUBRC 

experiments [30] with 2764.5 /U m s  , 144.4T K  , 21.907p Pa  , 11.3Ma  . An isothermal temperature 

condition with =297.2wT K  and an accommodation coefficient of unity at the wall are assumed. The gas 

viscosity is computed by using the inverse power laws 
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 (20) 

Other physical properties of nitrogen used in computations are summarized in Table 1 

Figure 9-11 respectively demonstrate the DSMC, NSF and NCCR solutions of velocity and density along 

the lines normal to the cone at stagnation point, X= 1.14 and X= 3.14 cm. The DSMC data used in comparison 

are obtained from Boyd’s code (MONACO) and more details on the DSMC computation are described in [31]. 

The flow along the stagnation line passing through a normal shock wave is strongly non-equilibrium and the 

linear NSF and DSMC solutions are therefore expected to be different to a large extent. In fact, as depicted in 

Figure 9, the NSF results are significantly different from the DSMC results for the shock thickness and strength 

in local region of cone tip. On the other hand, the NCCR results yield excellent agreement with the DSMC 

results.  

Similar comparisons between DSMC and NCCR solutions are shown for velocity and density at X= 1.14 

and X= 3.14 cm in Figure 10-11. At these locations, the effect of non-equilibrium of oblique shock wave is not as 

strong as that of the stagnation line, and consequently the NSF model with a slip boundary performs reasonably 

well. As shown in the figures, both NSF and NCCR results are very close to the DSMC results in most regions, 

except for NSF solutions in the oblique shock region. The discrepancies of NSF in velocity profiles are also 



highlighted in Figure 10-11(a). In general, the NCCR model performs better than the NSF model in predicting 

nonequilibrium flows. 

 

B. Complex flow past a hollow cylinder-flare  

To further validate the present computational model before applying to the complex flow problem of real 

vehicles in near-space regime, we consider a complex flow past a hollow cylinder-flare. In this case, the data of 

winds tunnel experiments made in the CUBRC LENS facility [32] are available. The case has also been 

extensively studied in literatures [31, 33, 34] containing a large amount of DSMC and NS data. 

The configuration of a hollow cylinder in conjunction with a 30o conical flare is depicted in Figure 12. It is 

worthwhile mentioning that the sharp leading edge separates the free-stream and only the external flow of the 

configuration is taken into account in the calculation, since the internal flow does not interact with the external 

flow. The working gas is assumed pure nitrogen. The inputs including the free-stream conditions are listed as 
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           (21) 

Notice that the free-stream condition is non-equilibrium in CUBRC Run 14 as the translational, rotational and 

vibrational temperatures are at different time scales. However, since the NCCR model at present does not include 

vibrational non-equilibrium effects, no vibrational energy exchange for a diatomic gas is considered in our 

simulation. According to Myong [15], the excess normal stress associated with the bulk viscosity of a diatomic 

gas could be introduced to describe the rotational non-equilibrium effect in some flow regimes where the 

rotational relaxation is faster than the hydrodynamic scale. Here we focus mainly on in what range of flow 

regime the NCCR model without this additional physical effect can handle the high-temperature high-speed 



flows.  

From the gradient-length-local Knudsen contours in Figure 13, continuum breakdown occurs inside oblique 

shock wave above the flare and the region between sharp leading edge and the separation region. The separation 

and re-attachment region can be observed clearly in Figure 14. The Mach number contour predicted by NCCR 

model demonstrates its capability of simulating this hypersonic flow fairly well. Since the separation point is 

x/L=0.5, flow fields along the lines normal to the cylinder body at x/L=0.5 and 1 are studied in detail. Figure 15 

shows the comparisons for density and velocity properties of DSMC, NSF and NCCR along these two lines. 

Notice that there is no comparison for temperature in this study now that the present NCCR model has not taken 

the vibrational non-equilibrium effect into account. The DSMC and NSF results from the literature [31] and the 

DSMC results computed by a parallel optimized code named MONACO are used for comparison. As shown in 

the left of Figure 15, the NCCR results are in better agreement with the DSMC results than NSF results along the 

line normal to the cylinder at x/L=0.5, which is considered to be far removed from local thermodynamic 

equilibrium based on continuum breakdown parameter GLLKn . In the right profiles of Figure 15, the NCCR 

results are only in qualitative agreement with DSMC results, but capture excellently a small discontinuity around 

the shock region which is not captured by NSF. Boyd et al.[31] pointed out that the DSMC provides correct 

solution before the separation point, but the accuracy at the conjunction of the cylinder and flare(x/L=1) is 

questionable. The deviation between NCCR and DSMC results makes it difficult to judge the performance and a 

further study is needed to clarify this issue. 

In Figure 16, numerical results are compared with the experimental data for non-dimensionless heat flux 

coefficient, defined as 30.5q wC q U  , along the body surface. The NCCR solutions are found to be in 

excellent agreement with the experimental data, especially in the separation and re-attachment points (about 

x/L=0.6 and 1.4). On the other hand, the DSMC over-predicts the size of the separation and re-attachment region, 



while the NSF and under-predicts it. 

 

C. Slip flow past a HTV-type vehicle 

Lastly, the hypersonic rarefied flows around 3D real flying configuration in near-equilibrium or 

far-from-equilibrium flow regime are investigated to evaluate the performance of the NCCR model. High-speed 

flow fields (Mach number 25 and 20) past a lifting body (a HTV-type vehicle) at the altitude of 50 and 90 

kilometres are computed. Figure 17 shows the basic configuration of the HTV-type vehicle. Two angles of attack 

(
020  and 

00  ) are considered. Isothermal walls with a constant wall temperature 1000K are assumed. The 

viscosity of air is computed by the inverse power laws (20) and the other properties of air used in computations 

are given in Table 2.  

The Maxwell-Smoluchowski slip boundary conditions with full tangential momentum and thermal 

accommodation coefficients are employed at the solid surface. The linear NSF with slip conditions is known to 

be capable of simulating this flow regime around the 2-meters-long HTV-type vehicle at altitudes of 50 and 90 

kilometres, which may be defined as continuum and slip flow regimes, respectively, according to the 

body-length global (BLG) Knudsen number [35] 

 
BLG

l
Kn

L

 .  (22) 

Here l  is the free-stream mean free path and L  is the characteristic body length.  

However, a non-negligible local rarefaction effect can be found especially in sharp leading edge, shock 

wave region or wake leeward region of hypersonic vehicles, which are far from local-equilibrium and out of the 

capability of NSF model based on near-local-equilibrium. Therefore, we adopt the second-order nonlinear model 

(NCCR) to simulate these flows, in hope of achieving a significant improvement in two aspects: recovering the 

NSF solution in continuum regime and remedying for the NSF solution in continuum breakdown regions. 



Firstly, a grid independence study is carried out for the NCCR model with three sets of grids. The detailed 

information of these grids is given in Table 3. Refined grids 2 and 3 yield almost the same solution, while coarse 

grid 1 shows obvious deviation in Mach profile, as illustrated in Figure 18.  By taking efficiency into 

consideration, we selected refined grid 2 for further investigation.  

Next, as a step toward evaluating the potential of the second-order NCCR model in engineering application, 

non-equilibrium regions of sharp leading edge, as well as surface aerothermal and aerodynamic properties 

including pressure, friction and heating transfer rate of the vehicle, are investigated. The pressure, skin friction 

coefficient and heat transfer rate in Figure 26-27 are defined, respectively, as 

 
2 2 3

,   ,   .
0.5 0.5 0.5

p f h

p p q
C C C

U U U



  


     


     (23) 

Figure 19 shows the details of pressure contour and streamline pattern around the sharp leading edge on 

symmetrical plane, from which a strong shock wave structure and a weak re-attachment region can be observed 

clearly. In order to compare the locations of the shock wave structure around the edge predicted by NSF and 

NCCR model, macro-variable distributions from three important positions ( 0.1X Rb , 0.5X Rb , 

1.0X Rb ) along the y direction on the symmetrical plane are examined. As shown in Figure 20, both NSF and 

NCCR can capture the steep shock structure accurately and its location is predicted exactly the same, which 

implies that the NCCR model shows excellent performance in continuum regime as the linear NSF model does. 

Figure 21 yields distribution profiles of another case at 90 kilometres high. It is worth mentioning that some 

significant discrepancies occur in these profiles between the near-local-equilibrium NSF results and the 

far-from-equilibrium NCCR results; e.g., the pressure values predicted by NSF are much higher than that by 

NCCR. In addition, it can be seen from pressure fields of Figure 22 that the shock wave becomes weaker in 

comparison with that of Figure 19, due to the lower density at 90 kilometres. That is, rarefaction effect becomes 

important and accounts for the substantial discrepancies in these profiles. A global impression and a local 



impression of the Mach solutions by NSF and NCCR model are given for these two cases in Figure 23 and 

Figure 24 respectively. The flow structures remain almost the same at 50 km but demonstrate slight difference at 

90 km, from which there exists a weaker solution of shock wave structure by NCCR than by NSF. As is also 

shown in Figure 24, the shock layer predicted by NCCR is thicker than that by NSF at 90km while their 

solutions of the flow distribution are the same in the shock layer at 50km, implying a strong rarefaction effect at 

90km and a week one at 50km for this vehicle configuration. 

Finally, Figure 25 shows the comparison of the after-body flows at different altitudes predicted by NS and 

NCCR. NCCR solution of after-body flow is consistent with NSF at 50 km, while the rarefied non-equilibrium 

effect at 90 km starts to kick in and causes significant discrepancy between two models. Moreover, 

non-negligible differences in the profiles of surface property between NS and NCCR model are also found. A 

slight difference is shown in skin friction and heat transfer coefficient profiles in Figure 26. The pressure, skin 

friction coefficients and heat transfer rate predicted by NCCR are much lower than those by NSF in Figure 27. 

NSF may overestimate the aerodynamic and aerothermal properties in rarefied hypersonic flows with a strong 

non-equilibrium effect. 

 

V. Conclusions 

The present study focuses on the development of computational NCCR model of diatomic gases for 

three-dimensional flows in rarefied hypersonic applications within finite volume framework. A new hybrid 

algorithm, which takes advantage of two conventional iterative methods—fixed-point and Newton’s iterations, is 

developed for efficient computation of NCCR model. Also, modification of the iterative numerical method from 

decomposed to undecomposed in the present finite volume framework was found to enhance the numerical 

stability, in particular, for three-dimensional complicated flow problems. 



Numerical experiments have been carried out on three-dimensional flow cases, including pure nitrogen gas 

flow past a blunted cone tip, complex flow past the hollow cylinder-flare, and slip flows past a HTV-type 

lifting-body flying configuration at 50 and 90 kilometres. Overall, the NCCR model can recover the NSF 

solution in continuum regime and yields better agreement with the DSMC and experiment data than NSF in local 

non-equilibrium regions. We also found that the discrepancies of flow field and surface properties between NSF 

and NCCR solutions increase as the flow becomes more rarefied in high-speed regime. On the whole, it can be 

concluded from the study of three rarefied hypersonic flows that the NCCR model is as computationally efficient 

as the NSF model in continuum regime, and, at the same time, more accurate in comparison with DSMC and 

experimental data than NSF in non-equilibrium flows. 
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Table 1. Physical gas properties of pure nitrogen gas 

  Pr  (J kg K)R   c  
bf  (K)refT  (Pa s)ref   

VHSs  

1.4 0.72 296.7 1.02029 0.8 273 51.656 10  0.74 

 

Table 2. Physical gas properties of air 

  Pr  (J kg K)R   c  
bf  (K)refT  (Pa s)ref   

VHSs  

1.4 0.72 287.1 1.01445 0.8 273.15 51.71608 10  0.77 

 

Table 3. Grid independence study 

 Grid points in normal, flow and circumferential directions Grid spacing nearest to the solid wall 

Mesh 1 60 120 140   -55 10  

Mesh 2 130 150 160   -55 10  

Mesh 3 180 170 200   -51 10  

 

 

Figure 1. Splitting of the flow into two distinct components (compression-expansion and shear flows) [27] 
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Figure 2. Constitutive relations in the ˆ
xu -only problem for a diatomic gas 
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Figure 3. Constitutive relations in the ˆ
xv -only problem for a diatomic gas 
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Figure 4. Nonlinear constitutive relations relative to the Navier-Stokes relations in the ˆ
xu - ˆ

xv -only problem for a 

diatomic gas 
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Figure 5. Nonlinear constitutive relations ˆ
yy  (left) and ˆ

zz  (right) with ˆ
xu  computed by undecomposed 

solver relative to the Navier-Stokes relations in the ˆ
xu - ˆ

xv -only problem for a diatomic gas 

 

 

Figure 6. The nonlinear relations between ˆ
xx  and ˆ

xu  computed by decomposed and undecomposed solver in 

the multi-dimensional compression and expansion problem for a diatomic gas 
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Figure 7. Number of iterations for the calculation of non-conservative variables for a diatomic gas 

 

 

Figure 8. Structured grid of the 
025  blunted cone’s symmetrical plane 

 

 

(a) Velocity 

 

(b) Density 

Figure 9. Profiles along the line normal to the stagnation point 

 



 

(a) Velocity 

 

(b) Density 

Figure 10. Profiles along the line normal to the cone at X= 1.14 cm 

 

 

(a) Velocity 

 

(b) Density 

Figure 11. Profiles along the line normal to the cone at X= 3.14 cm 

 

 

Figure 12. Schematic of hollow cylinder-flare configuration (units in millimeters)[36] 

 



 

Figure 13. Gradient length local Knudsen contour 

 

Figure 14. Mach number contour 

 

  

Figure 15. Density and velocity profiles along the line normal to the cylinder at x/L=0.5(left) and x/L=1(right) 

 

 

Figure 16. Comparison of surface heat flux non-dimensionalized coefficient 

 



 

 

Figure 17. Schematic of the HTV-type vehicle 

 

 

Figure 18. Mach number distributions from three different grid resolutions along the stagnation line 

 ( 25Ma  , 20o  , 50kmH  , 1000KwT  ) 

 



 

Figure 19. Local contour of pressure and streamline pattern around the sharp leading edge of the HTV-type 

vehicle computed by NCCR model ( 25Ma  , 20o  , 50kmH  , 1000KwT  , symmetrical plane 0Z  ) 

 

  

Figure 20. Windward and leeward distributions of Mach number and pressure along y direction on the 

symmetrical plane ( 25Ma  , , 50kmH  , 1000KwT  , symmetrical plane 0Z  ) 

 

  

Figure 21. Windward and leeward distributions of Mach number and pressure along y direction on the 

symmetrical plane ( 20Ma  , 0o  , 90kmH  , 1000KwT  , symmetrical plane 0Z  ) 

20o 



 

  

Figure 22. Local contour of pressure and streamline pattern around the sharp leading edge of the HTV-type 

vehicle computed by NSF and NCCR model ( 20Ma  , 0o  , 90kmH  , 1000KwT  , symmetrical plane 

0Z  ) 

 

  

(a) 25Ma  , 20o  , 50kmH  , 1000KwT   



  

(b) 20Ma  , 0o  , 90kmH  , 1000KwT   

Figure 23 Global contour of Mach pattern around the HTV-type vehicle computed by NSF and NCCR model at 

50kmH   and 90kmH   

 

 

(a) 25Ma  , 20o  , 50kmH  , 1000KwT   

 

(b) 20Ma  , 0o  , 90kmH  , 1000KwT   

Figure 24 Local contour of Mach pattern on the plane of X=1.98m computed by NSF and NCCR model 

 



 

(a) 25Ma  , 20o  , 50kmH  , 1000KwT   

 

(b) 20Ma  , 0o  , 90kmH  , 1000KwT   

Figure 25. Comparison of contour lines of after-body flow of Mach number on symmetrical plane 0Z   

between NS and NCCR 

 

 

   

Figure 26. Comparison of surface friction, heating and pressure coefficients ( 25Ma  , 20o  , 50kmH  , 

1000KwT  , symmetrical plane 0Z  ) 

 

   

Figure 27. Comparison of surface friction, heating and pressure coefficients ( 20Ma  , 0o  , 90kmH  , 

1000KwT  , symmetrical plane 0Z  ) 


