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I. Introduction 

In May 1963, G. A. Bird submitted a research note of two pages to the Physics of Fluids 

journal on the investigation of a rigid sphere gas reaching translational equilibrium using a 

Monte Carlo type method (and the Silliac digital computer)
1
. In the note, he demonstrated the 

method was sufficiently economical in its computing time and storage requirements. Indeed, 

his method turned out to be a significant step towards developing a probabilistic mesoscopic 

simulation method, which was at that time a drastic departure from the then-dominant 

deterministic microscopic molecular dynamics (MD), which explicitly computes the 

simultaneous equations of all the molecules. 

Since then, the method, now called DSMC (direct simulation Monte Carlo)
2,3

, has been 

developed into a primary workhorse to computationally solve the Boltzmann or equivalent 

kinetic equations, and is routinely being applied to various flow problems of scientific and 

technological interest, including rarefied hypersonic gas flows
4,5

, micro- and nano-scale 

gases
6,7

 , and hydrodynamic flows
8,9

. 

However, as is common when new computational models are increasingly applied to real 

world (application) problems, verification and validation of the new models become critical 

practical issues
10

. The failure to adequately perform verification can lead to incorrect 

assessment of the validity of the computational model, and can result in computational errors 

being calibrated into the supposedly-accurate physical model.  

The verification and validation issues
10 

have been studied very actively in recent years, in 

particular, in the computational fluid dynamics (CFD) community, which works to develop 

various numerical methods for partial differential equations governing the macroscopic 

motion of fluids
10-12

. For verification of computational algorithm—concerning mainly the 

accuracy of the computational solution to the given mathematical model of the system—

several well-known methods have been developed to evaluate computational errors. These 
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include the order of accuracy test using an exact solution, convergence test, discretization 

error quantification, and code-to-code comparison.  

Among these methods, the order of accuracy test is the most rigorous, and several 

methods have been developed to obtain exact solutions for the test. The traditional methods 

are based on analytical solutions in a closed function using only elementary and special 

functions and approximate solutions like infinite series solutions. A more recent method is 

the so-called method of manufactured solutions in which the exact solutions are obtained to 

the modified governing equations made up of original equations and source terms. 

For the verification of solutions, the main focus is the estimation of various 

computational errors that inevitably occur when solving a mathematical model 

computationally. The sources of computational errors can be categorized into discretization 

of computational domain and boundary, iterative routine, and round-off. To estimate 

discretization error, there are several methods available, like recovery methods based on 

mesh refinement and residual (and truncation) error-based methods. 

On the other hand, it is not clear how to apply these verification methods to the DSMC 

method, since the DSMC method is not based on any partial differential equations. The 

DSMC method directly simulates the molecular behavior of gases by decomposing the 

motion of the particles into two steps—deterministic movement and stochastic collision via 

Monte Carlo—with the assumption of one simulated particle representing a large number of 

real particles. Therefore, a considerable portion of the aforementioned verification methods 

developed for partial differential equations in the CFD community may not be applicable to 

the DSMC method. A similar challenge may be present in other pure simulation methods, 

like MD
13

. 

One vital difference between the DSMC method and the CFD method is the stochastic 

nature of the algorithm. The DSMC method inherits the statistical features of the probabilistic 
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methods, such as random fluctuation and statistical uncertainty. Moreover, a probability 

sampling process is needed to filter out the statistical uncertainty. As a result, computational 

errors in the DSMC method can be categorized into three types; decomposition (or 

discretization), statistical, and round-off errors. The three types of error and associated 

computational parameters of the DSMC method are depicted in Fig. 1.  

 

 
 
 

Fig. 1. Types of computational errors in the DSMC simulation 

 

The decomposition error arises mainly from the finiteness of time step size, cell size, and 

number of particles within a cell, in the computational domain, and a boundary treatment of 

an inherently approximate nature. The statistical error is generated due to the stochastic 

nature of the DSMC method. The statistical error associated with the sampling procedure can 

be further categorized as type I (an incorrect rejection of samples belonging to the steady 

state—premature stopping of sampling) and type II (an incorrect acceptance of samples not 

belonging to the steady state—premature initiation of sampling). Lastly, machine error, the 

so-called round-off-error, is inevitable in any computational method. 
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In this paper, we aim to review previous studies on this challenging subject and present a 

perspective on convergence analysis of the DSMC method and solution verification. During 

this process, a verification method of the DSMC method based on the physical laws of 

conservation is studied in depth. In particular, a convergence history plot on all three types of 

computational errors—decomposition, statistical, and round-off—for three measures (mass, 

momentum, and energy) is presented for two benchmark problems, boundary-driven Couette 

flow and boundary-free shock structure. 

II.  Convergence of DSMC to the Boltzmann kinetic equation 

The DSMC method directly simulates the motion and interaction of statistically 

representative particles, as opposed to real particles in MD, rendering it a mesoscale method. 

In this context, a question was naturally raised in the 1970’s and 80’s about how the DSMC 

method is related to the Boltzmann kinetic equation; specifically, whether the DSMC solution 

can be proven mathematically to converge to the solution of the Boltzmann kinetic equation 

of a gas undergoing binary collisions between gas particles. 

In a series of papers
14,15

, Nanbu proved that his Monte Carlo method, even though 

computationally very expensive, will converge to the solution of the Boltzmann kinetic 

equation.  He also showed that, among all the available Monte Carlo methods, including the 

DSMC method, his method is the only one for which the convergence to the Boltzmann 

kinetic equation can be mathematically proved. 

Babovsky and Illner
16 

developed a method to prove the convergence of Nanbu’s method 

under certain conditions. Wagner
17

 applied the method to the DSMC method and proved 

theoretically that the DSMC solution will converge to the solution of the Boltzmann kinetic 

equation, if the computational parameters are chosen properly (and when no wall surface 

boundary condition is involved in the simulation). In passing, it must be noted that the 
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Boltzmann kinetic theory has not been fully worked out to modify the collision term that 

should correctly reflect the molecular collision with the wall surface atoms. 

III. Convergence analysis for verification of the DSMC method 

CFD methods based on deterministic partial differential equations can naturally report 

the run-time residual, to examine stability and error behaviors. On the other hand, there is less 

interest in checking instability in the DSMC method, since it never exhibits instability during 

simulation. Nonetheless, measuring and reporting the amount of computational errors at 

every simulation step remains crucial in the DSMC method as well. The convergence history 

plot should be able to describe the contribution of various error sources during the simulation. 

Several benchmark flow problems were proposed for the convergence analysis of the 

DSMC method in the past. They are the Fourier flow driven by temperature difference, the 

Couette flow driven by wall velocity shear, the boundary-free shock structure, and external 

flow past a circular cylinder, as illustrated in Fig. 2.  
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Fig. 2. The schematic of the benchmark problems: (a) the Fourier flow driven by temperature 

difference, (b) the Couette flow driven by wall velocity shear, (c) the boundary-free shock 

structure, and (d) external flow past a circular cylinder. 

Many studies have been conducted to investigate the effects of computational parameters 

and the quantification of computational errors associated with them. Meiburg
18

 compared the 

MD and the DSMC methods with respect to the capability of simulating vorticity after 

solving flows around simple geometries. He showed that the time-step size and the number of 

particles per cell in the DSMC method need to be examined more carefully in order to yield 

accurate results. Alexander et al.
19

 investigated the dependence of the transport coefficients 

on the cell size in the DSMC method in order to analyze the role of cell-size on 

decomposition error. They found that the error comes from the collision pair selection 

division where particle partners are selected from any place throughout the collision cell.  

Garcia and Wagner
20

 investigated the effects of time-step size on the accuracy of the 

transport coefficient (viscosity, thermal conductivity, and self-diffusion). They found that the 

time-step size error is closely connected to re-collision phenomena. They also demonstrated 

the second-order accuracy of time-step size truncation error in the DSMC algorithm. 

Hadjiconstantinou
21 

derived an explicit expression for describing the influence of time-step 

size on the decomposition error. Gallis et al.
22 

showed that the DSMC solutions agreed well 

with the continuum solutions of Chapman–Enskog (CE) and the moment-hierarchy (MH) 

method at small and finite Knudsen numbers. Bird
23

 estimated the steady state convergence 

on the basis of the variation in the total number of simulated particles (i.e., the Boltzmann 

collisional invariant on the mass) throughout the simulation domain. Bird et al.
24

 and Gallis et 

al.
25

 investigated the accuracy and convergence of the sophisticated DSMC algorithm—

developed with the aim of increasing computational efficiency—by comparing the solutions 

with the exact solution of the Boltzmann equation for one-dimensional Fourier-Couette flow. 

It was shown that the sophisticated DSMC algorithm can predict transport properties and 
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Sonine polynomial coefficients with good agreement with their corresponding infinite-

approximation Chapman–Enskog theoretical values. They also characterized the convergence 

of the new algorithm in a three-dimensional implementation.  

Burt and Boyd
26

 introduced convergence criterion based on the variation of particle 

fluxes on the boundaries at two successive time-steps in order to study weak transient 

behavior in small regions of relatively low density or recirculating flows. Karchani and 

Myong
27

 presented the first convergence analysis of all computational errors in the DSMC 

method. They quantified the errors of the DSMC method using a measure based on the strict 

conservation of mass, momentum and energy. Unlike previous methods that targeted only 

one type of error, the method was shown to be able to take all three computational errors into 

account. Taheri et al.
28 

provided an analysis of the convergence behavior of the simplified 

Bernoulli-Trial (SBT) collision scheme in the DSMC framework using a similar approach 

which has been applied by Gallis et al.
22,29

. Akhlaghi et al.
30

 investigated the Fourier heat 

transfer problem at the early slip regime and found that, in addition to collision frequency and 

collision separation distance, the level of repeated collisions plays a critical role in the 

accuracy of the heat flux prediction in the DSMC method. 

IV.  Convergence analysis based on the physical laws of 

conservation 

A. Physical laws of conservation 

The physical conservation laws can be written in the integral form: 
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where S  represents the surface bounding around the control volume V with unit normal 

vector n. There are two different sets of macroscopic variables in the conservation laws; the 

conserved variables  , , E  u  and the non-conserved variables ( , ),Π Q   where   is the 

density, u is the average bulk velocity vector, E is the total energy density, and ,Π Q  

represent the shear stress tensor and the heat flux vector, respectively. 

It can be proved that the physical conservation laws (4.1) are the exact consequence of the 

Boltzmann kinetic equation. Only after some approximations like the linear Navier and 

Fourier (or the first-order Chapman-Enskog in kinetic theory terms) constitutive relations are 

introduced to the shear stress and the heat flux in (4.1), they become approximate, thereby 

valid only at not-far-from-thermal-equilibrium. 

In fact, the conservation laws (4.1) can be derived directly from the following Boltzmann 

kinetic equation of the distribution function f, 

                                               
2[ , ],

f
f C f f

t


  


v                                                 (4.2) 

where v is the particle velocity and the term 
2[ , ]C f f  represents the Boltzmann collision 

integral of the binary interaction among the particles. For the conservation law of momentum, 

differentiating the statistical definition of the momentum with time and combining with the 

Boltzmann kinetic equation yield
27

 

  2[ , ] .
f

m f m m f m C f f
t t

 
    

 
v v v v v  

Then the first term on the right-hand side becomes ( v u +c ) 

   .m f m f m f      v v vv uu cc  

Here the symbols c and  denote the particle velocity and the integral in velocity space, 

respectively. After the decomposition of stress P into the hydrostatic pressure p and the 

viscous shear stress Π  ( 
(2)

 denoting the traceless symmetric part of the tensor),  
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(2) where Tr( ) / 3 ,  [ ] ,m f p p m f m f    P cc I Π cc Π cc  

and, using the collisional invariance of the momentum, 
2[ , ] 0m C f f v , we obtain 

 
( )

0,p
t





   



u
uu I Π  

which is nothing but the second equation of the conservation laws (4.1). Owing to this exact 

equivalence, the physical conservation laws (4.1) can be utilized to verify numerical solutions 

of the Boltzmann kinetic equation and the DSMC method. 

B. Convergence history of boundary-driven Couette flow problem 

The Couette flow is defined as the flow confined between two infinite, parallel, flat plates 

at / 2x H   driven by the shear motion of one or both of the plates in opposite directions 

with constant velocity, while the temperature of the walls remains constant. The fluid is 

assumed to be steady state without any external forces and to move in the y-direction only, as 

shown in Fig. 2(b). Therefore, this shear-driven flow problem is an excellent benchmark case 

for studying the accuracy of the DSMC method, including the effects of the solid wall 

boundary condition. In this flow problem, the conservation laws (4.1) are greatly reduced: 

still exact to the original Boltzmann kinetic equation, 
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where 
1,2,3,4C  are integration constants representing conservative values, since they remain 

constant throughout the simulation domain. The errors associated with the conservation laws 

can then be defined as follows
27

: 



11 
 

      

error

error

error

error

error         Round-off error

x momentum xx xx

y momentum xy xy

z momentum xz xz

energy xy x xy x

EOS

p P

v Q v Q

p RT







    
 

  

  

      
 

  

 (4.4) 

where the symbol   denotes reference values of conservative values  and they can be 

calculated based on the average values of the macroscopic properties in the whole domain. 

Flows studied in current work are steady state and, hence, the microscopic properties are just 

sampled once at each time step. All macroscopic properties—both conserved and non-

conserved—can be computed in a DSMC simulation on the fly using the sampled 

microscopic information. Then, the reference value can be computed at a reference location 

in the domain (e.g., center of the channel in the present flow problem). Finally, the error 

values are determined in each sample cell and the L2 error norms are computed at each time 

step. 

In Fig. 3, the complete convergence history of the DSMC solution based on the physical 

laws of conservation (4.4) is plotted
27

. It should be mentioned that, to the best knowledge of 

the authors, no attempt has been made in the past to apply a verification strategy based on 

conservation laws developed in CFD to the simulation methods like DSMC and produce very 

instructive convergence results like Fig. 3 of all conserved variables. Two diffuse walls 

having constant temperature (293 K) are moving in opposite directions with constant velocity 

corresponding to Mach number 1 (relative Mach number two). A representative monatomic 

gas (molecular diameter 104 10 meter and molecular mass 266.64 10 kg) was assumed. 

The Knudsen number based on the gap between walls was set to be 1.0. The values of 

0.01 ,  1/ 32 ,t x        810SN   were used for time-step, cell-size, and the number of 

sample steps, respectively, for four different numbers of particles per cell (40, 80, 160, 320).   
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The convergence behavior of the conservation laws of x,y-momentum and energy is 

composed of two separate phases. In the first phase, the statistical error is dominant and the 

total error decreases quickly with increasing sample size. This phase continues until the 

number of sample steps reaches certain values, when the contribution of the statistical error to 

total error becomes negligible. Furthermore, the rate of this decrease is inversely proportional 

to the square root of the sample steps (1/ sN ).  

The second phase starts when the combination of decomposition and boundary condition 

errors becomes prominent, in comparison with the statistical error. The decomposition and 

boundary condition errors do not decrease with increasing sample size, since these errors do 

not depend on sample steps. The decomposition error can be changed by adjusting the 

physical parameters, like time-step size. Owing to the presence of these errors, the total error 

converges to a finite constant value, even when a large number of samples, or particles, is 

used. In other words, more particles can result in a faster convergence rate for the statistical 

part, but this would not change the decomposition and boundary condition errors. 

On the other hand, the statistical error in the z-momentum equation does not converge to 

any constant value; it still declines, even after more than 10
8
 samples. A possible explanation 

for this behavior is that the z-spatial coordinate does not contribute to locating the particles in 

the cells and selecting the collision pairs in the present 1D-Coutte flow problem. Therefore, 

the convergence rate of the z-momentum error will follow the statistical error pattern and 

flatten after reaching the limit of round-off error. Lastly, the round-off error may be observed 

by examining error values for the equation of state. The values show the maximum limit of 

accuracy of the current simulation, and that it is not changed by increasing sample steps or 

number of particles.  
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Fig. 3. The convergence history for conservation laws and the equation of state for different 

numbers of particles in the Couette flow problem. The vertical axis shows the order of 

magnitude of the normalized error based on the two-norm L. Reproduced with permission 

from Comput. Fluids 115, 98 (2015). Copyright 2015 Elsevier.
27

 

C. Decomposition errors in the boundary-free shock structure problem 

The stationary shock wave structure is a pure one-dimensional compressive gas flow 

defined as a very thin (order of mean free path) stationary gas flow region between the 

supersonic upstream and subsonic downstream, as shown in Fig. 2(c). Due to absence of the 

boundary condition, it allows to study the inherent behavior of a simulation method free from 

the contamination caused by the boundary condition. In this problem, the conservation laws 

(4.1) are reduced as follows: still exact to the original Boltzmann kinetic equation, 
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where 
1,2,3,4,5C  are again integration constants. Then, the errors associated with the 

conservation laws may be defined at each sample cell in the simulation domain as
27
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In the present shock structure problem containing stiff shock regions, it is not clear how 

to select a reference location in the domain to obtain the reference value. To resolve this 

problem, the reference values are evaluated first in each sample cell and then averaged in the 

whole computation domain. 

Time-step size, cell size, and number of particles are critical computational parameters 

which affect the decomposition errors in the DSMC method. In order to investigate 

decomposition errors, the shock structure problem of a hard sphere with upstream Mach 

numbers of 2.0 and 10.0 is considered. Cell size, number of particles per cell, and the number 

of sample steps ( 1/16 ,x    8160, 10 )SN N   are used for three different time-step sizes 

/ 1.0,  0.1,  0.01t    . 

The time-step size, t , is the most important computational parameter, since it plays an 

essential role in decoupling the movement and collision steps in the DSMC method. The 
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measured errors based on deviations from conservation laws are shown in Figs. 4 and 5. The 

normalized errors associated with conservation laws were shown to remain mostly constant 

throughout the domain and to decrease with the decreasing time-step size. However, notable 

hikes were found at the shock transition region at the center for conservation laws of mass, x-

momentum, and energy. These hikes were amplified with increasing time-step size, in 

particular, for the large value / 1.0t    . Furthermore, the largest normalized errors are 

found in the x-momentum conservation and remain noticeable even for small time-step sizes 

as low as / 0.01t    .  

The hikes in the x-momentum error may be related to there being insufficient collisions 

between particles to maintain local equilibrium in the stiff shock region, since the 

macroscopic properties vary in the scale of the local mean free path. In addition, the high 

degree of non-equilibrium and the reduced local mean collision time inside the shock region 

may ultimately cause higher x-momentum error. Hence, in order to reduce the decomposition 

error in this region, proper cell-size and, in particular, small time-step size may be required. 

When the effect of Mach number on the decomposition error is examined from Figs. 4 

and 5, the normalized errors are shown to increase as the free-stream Mach number increases. 

The range of error hikes also increases, coinciding with the well-known shock physics, that is, 

that the shock thickness grows with increasing Mach number.  Interestingly, a noticeable 

increase in errors in the downstream is observed for conservation laws of y,z-momentum in 

the case of M=10 in Figs. 5(c) and 5(d). A possible explanation is that the errors are enhanced 

in the downstream of the stronger shocks with much lower velocity compared to the upstream. 
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Fig. 4. The effect of time-step size on the percentage of normalized errors in the shock 

structure problem (Mach 2): (a) mass, (b) x-momentum, (c) y-momentum, (d) z-momentum, 

(e) energy conservation law and (f) equation of state. (Hard Sphere, 𝛥𝑡 = 0.01𝜏∞, 𝛥𝑥 =
1/16𝜆∞, 𝑁 = 160, 𝑁𝑆 = 108) 
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Fig. 5. The effect of time-step size on the percentage of normalized errors in the shock 

structure problem (Mach 10): (a) mass, (b) x-momentum, (c) y-momentum, (d) z-momentum, 

(e) energy conservation equations and (f) equation of state. (Hard Sphere, 𝛥𝑡 = 0.01𝜏∞, 𝛥𝑥 =
1/16𝜆∞, 𝑁 = 160, 𝑁𝑆 = 108) 

 

X/

|E
N

o
rm

a
li
z
e

d
|

-20 0 20
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

| MASS | t/t
0
= 1.0

| MASS | t/t
0
= 0.10

| MASS | t/t
0
= 0.01

X/
-20 0 20

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

| XMOM | t/t
0
= 1.0

| XMOM | t/t
0
= 0.10

| XMOM | t/t
0
= 0.01

X/

|E
N

o
rm

a
li
z
e

d
|

-20 0 20
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

| YMOM | t/t
0
= 1.0

| YMOM | t/t
0
= 0.10

| YMOM | t/t
0
= 0.01

X/
-20 0 20

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

| ZMOM | t/t
0
= 1.0

| ZMOM | t/t
0
= 0.10

| ZMOM | t/t
0
= 0.01

X/

|E
N

o
rm

a
li
z
e

d
|

-20 0 20
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

| ENERGY | t/t
0
= 1.0

| ENERGY | t/t
0
= 0.10

| ENERGY | t/t
0
= 0.01

X/
-20 0 20

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

| EOS | t/t
0
= 1.0

| EOS | t/t
0
= 0.10

| EOS | t/t
0
= 0.01

(b) (a) 

(c) (d) 

(f) (e) 



18 
 

In order to investigate the effect of Mach number in more detail, the shock structure 

profiles of temperature are plotted in Fig. 6. It can be seen that the shock profile of higher 

Mach number (M=10) is more sensitive to the time-step than that of lower Mach number 

(M=2). The simulation solutions with larger time-step sizes are shown to yield overly 

smoothed shock profiles, in particular, near the downstream, probably due to excessive 

numerical viscosity rather than to actual physical viscosity caused by the larger time-step. 

Interestingly, a local extremum is observed in the beginning of the region downstream from 

the solutions of Mach number 10, obtained by fine time-steps ( / 0.1,  0.01t    ). All these 

properties contribute to the increase in errors for higher Mach number flows. 

 

  
Fig. 6. Temperature profiles across the shock structure for different Mach numbers and time-

step sizes: M=2 (left), M=10 (right). 
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case, the error is much greater in the momentum conservation laws than in the other laws for 

most of x . However, the change in errors is not as drastic as the previous case, implying the 

reduced role of cell size on the decomposition error, at least, in the range considered in the 

present study.  

Figs. 11 and 12 indicate that the error in the momentum conservation law is in general 

much greater than that of the other laws. And the error in the momentum conservation laws 

decreases very slowly with the increasing number of particles. On the other hand, the errors 

in mass and energy conservation laws decrease rapidly and then flatten off, implying the 

number of particles play an important role in the error, and the existence of an asymptotic 

value, respectively. Finally, all these properties remain essentially the same for both Mach 

numbers (2 and 10). 

 

 

Fig. 7. The percentage of the relative errors in the DSMC solution of shock structure problem 

for different time-step sizes (Mach 2). 
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Fig. 8. The percentage of the relative errors in the DSMC solution of shock structure problem 

for different time-step sizes (Mach 10). 

 

 

Fig. 9. The percentage of the relative errors in the DSMC solution of shock structure problem 
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for different cell sizes (Mach 2). 

 

 

Fig. 10. The percentage of the relative errors in the DSMC solution of shock structure 

problem for different cell sizes (Mach 10). 
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Fig. 11. The percentage of the relative errors in the DSMC solution of shock structure 

problem for different numbers of particles per cell (Mach 2). 

 

 

Fig. 12. The percentage of the relative errors in the DSMC solution of shock structure 

problem for different numbers of particles per cell (Mach 10). 
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V. Statistical error analysis 

Among the three computational errors, the statistical error is unique to the DSMC 

method, which is built upon the stochastic Monte Carlo algorithm. The standard deviation 

and bias are major components of the statistical errors arising from random fluctuation and 

statistical uncertainty. There are additional sources in the statistical errors when the mean 

values of stochastic variables are evaluated by a sampling procedure during the simulation. 

They can be categorized as type I, caused by an incorrect rejection of samples belonging to 

the steady state (premature stopping), and type II, caused by an incorrect acceptance of 

samples not belonging to the steady state (premature initiation). 

A. Type I incorrect rejection error: premature stopping of sampling 

Garcia
31

 studied the thermodynamic fluctuations in a dilute gas under a constant heat 

flux in the DSMC framework and qualitatively compared the results with the previous 

fluctuating hydrodynamics calculation for liquids. Fallavollita et al.
32

 numerically 

investigated the dependence of the DSMC statistical error on the sample size for the case of 

independent realization in steady flow problems. However, they did not provide answers 

regarding the differences introduced by more complex geometries in the simulated gas, a root 

mean square (rms) error specific to a particular cell as opposed to a single measure for an 

entire simulation, and the effect of varying cell size. 

Chen and Boyd
33

 analyzed the statistical error associated with the DSMC method by 

employing an rms error as an indicator of the level of the statistical fluctuations to estimate 

the minimum number of particles and a maximum number of sampling steps for efficient 

computational simulations. The error was defined based on the reference solution obtained by 

the largest number of particles and the longest time-averaging. They also proposed a range of 
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an appropriate number of particles for minimum statistical error for a fixed computational 

cost. 

Rjasanow et al.
34

 obtained theoretical error bounds and showed that the order of 

convergence with respect to the particle number n was n−1. They also presented ideas 

regarding the reduction of the number of particles in stochastic particle methods. 

Hadjiconstantinou et al.
35

 examined the dependence of the statistical error due to finite 

sampling in the presence of thermal fluctuations on flow parameters such as Mach number, 

Knudsen number, and number of particles. They also obtained expressions for the magnitude 

of statistical errors due to thermal fluctuations or typical flow parameters of interest such as 

velocity, density temperature, and pressure. 

Cave et al.
36

 investigated an unsteady sampling routine for a general parallel DSMC 

method developed for the simulation of time-dependent flow problems in the near continuum 

range. They developed a post-processing procedure to improve the statistical scatter in the 

results while minimizing both memory and simulation time. Sun et al.
37

 proposed two 

techniques (a direct sampling approach and a transformation to improve the acceptance rate 

in the acceptance-rejection method) to speed up the sampling processes in the DSMC 

algorithm. 

Plotnikov and Shkarupa
38

 considered the Fourier flow driven by temperature difference 

and constructed asymptotic confidence intervals for the statistical errors of the estimates for 

the three basic macro-parameters of the gas flow—density, velocity, and temperature, with 

the help of the central limit theorem for Markov process. Plotnikov and Shkarupa
39

 also 

proved that the inter-dependence of the estimates at adjacent time-steps has a significant 

effect on the statistical error value. The concept of sparse samples (application of different 

time-steps for collision simulation and information sampling) was also introduced. The 

optimal relations between the sampling steps, the number of sampling cells and the sample 
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size were suggested in a way that the so-called external error (the error of the DSMC method 

related to the quality and size of information sampled during the simulation) does not violate 

the prescribed value. Plotnikov and Shkarupa
40

 also addressed the issue of selecting the 

computational parameters of the DSMC method and provided practical recommendations for 

evaluating the quantities involved in the expressions simultaneously with the calculation of 

the flow macro-parameters. In another work, Plotnikov and Shkarupa
41

 compared three 

statistical error evaluation approaches and found that they all provided reasonable results for 

the density and velocity and temperature estimates. 

B. Type II incorrect acceptance error: premature initiation of sampling 

As shown in the previous subsection, the type I (incorrect rejection) error was 

investigated comprehensively in many previous works; for example, Hadjiconstantinou et 

al.’s approach
35

 based on the equilibrium statistical mechanics, and Plotnikov and Shkarupa’s 

approach
38-41

 based on the central limit theorem for the Markov processes. On the other hand, 

very few studies have been conducted on the type II (incorrect acceptance) error, in spite of 

its essential role in the effective and uninterrupted use of the DSMC method in complicated 

problems. 

Bird
3,23

 developed the first automatic method for estimating steady state convergence 

based on the variation in the total number of simulated particles in the simulation domain. 

However, the method could not handle a flow with a constant number of particles, or highly 

unsteady regions, like recirculating flow. Burt and Boyd
26

 developed a method that can 

resolve the insensitivity of Bird’s method to weak transient behavior in local regions of 

relatively low density. The method was based on the variation in particle fluxes on the 

boundaries at two successive time-steps. The method was, however, found to suffer from an 

inability to deal with problems allowing scatter-induced fluctuations in the location of high 

gradient regions such as shock-boundary layer interaction. 
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Recently, Karchani et al.
42

 revisited the type II error and investigated in detail the effects 

of the incorrect inclusion of samples using the phase portraits of the sampling estimators and 

distribution of samples. The higher order phase portraits were found to provide the best 

illustration of the transition phase. Further, based on the observation that the Boltzmann 

collisional invariants are continuously changing in the unsteady phase, fully-automatic global 

and local steady state detection methods based on a probabilistic automatic reset sampling 

(PARS) were developed. The steady state method is based on a relative standard variation of 

collisional invariants, enabling it to be more sensitive to the momentum and energy variations 

during the unsteady phase. The method was shown to successfully handle the flows that are 

still evolving after the total number of particles had already reached an asymptotic value. 

VI.  Concluding remarks and outlook 

The difficulty in studying the verification of solutions of the stochastic DSMC method 

lies in the unique features of the method: the pure simulation method is not based on any 

partial differential equations, and the stochastic Monte Carlo process is ubiquitously involved 

in the simulation. Another difficulty in developing a rigorous theory of the error estimation is 

the high degree of sampling data dependence, which is directly related to the high disparity in 

collision rates in the simulation domain. 

Nonetheless, as shown in the present review, there has been substantial progress in the 

study of verification methods for the DSMC method in the last three decades, recently 

boosted by the rapid advance of computing power and software. Also, as the DSMC method 

is applied more and more frequently to challenging real-world problems of technical and 

industrial interest, verification studies of the method are expected to be increasingly 

important in the future. 
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To maximize the full potential of the DSMC method, pioneered by the late G. A. Bird, 

further research on some unsolved topics should be actively pursued. For example, improving 

the estimation of computational errors, and finding reference solutions, remain essential to 

the verification of the solutions and algorithms of the DSMC method. In the same context, 

developing error estimators for coarse cells and solution adaptations based on automated 

error estimation may be key to the effective application of the DSMC method to real-world 

problems. Further, the effects of various boundary conditions on the accuracy and 

convergence behavior of the DSMC method are also essential, as is the case with the CFD 

method, where the boundary condition has a direct impact on the accuracy of CFD. This 

problem will become more complicated when coupled with uncertainty residing in the 

treatment of collisions of gas molecules with solid wall atoms. Lastly, uncertainty 

quantification of model parameters introduced in the DSMC method will remain an important 

issue, in particular, in hypersonic flows with chemical reactions where large variability of 

reaction rates and wall catalysis may be present in the model.  
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