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Abstract 

 

A second-order Boltzmann-based continuum model for simulation of 

dusty gas flows in non-equilibrium using a discontinuous Galerkin method 

                                                         Omid Ejtehadi 

                                                         Department of Mechanical and Aerospace Engineering 

                                                        Graduate School, Gyeongsang National University 

                                                        Supervised by Prof. Rho Shin Myong 

 

With the progressive improvements in computer science and advents of computers with 

gigantic computational capabilities, computational fluid dynamics (CFD) has become an 

inseparable part of fluid dynamics. The promising CFD outcomes has motivated investigations 

of more complicated physical phenomena observed in fluid dynamics. Multiphase flows and 

non-equilibrium thermo-fluids are two challenging fields that need extra care than what is 

taken in conventional CFD. In the present thesis, both of these exciting topics are partially 

covered. The initial motivation was providing a cost-effective solution for Lunar landing 

problem (which technically is impingement and interaction of an under-expanded jet on a dusty 

bed in near-vacuum condition). Due to presence of various Knudsen and Mach regimes for gas 

phase as well as different Stokes regime for the dust phase, the problem can be challenging. 

Molecular methods for both non-equilibrium and particulate flows have shown tremendous 

potentials. Therefore, these methods are a natural primary candidate for these types of 

problems. However, the huge computational costs of these methods as well as the recent 

promising capabilities that the continuum-based methods in prediction of non-equilibrium 

(rarefied and micro/nanoscale) and multiphase flows has shown motivates analyses such as the 

one has been made in this thesis. For this purpose second-order Boltzmann-based constitutive 

relations derived by the method of moments and gas kinetic theory are applied to handle the 

non-equilibrium effects in the gas phase. The multiphase aspect is handled by considerably 

low cost Eulerian-Eulerian model compared to the Lagrangian counterpart. Even though the 

dust phase can also be treated in a similar way to the gas phase using kinetic theory (leading 
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to Eulerian-granular type models), the current thesis only focuses on the simpler models for 

the dust phase.  

Discontinuous Galerkin (DG) method has been applied as the numerical discretization 

method due to the distinguished features. Application of DG allows to treat the numerically 

problematic source terms of the two-fluid model in a novel way. Moreover, the high-order 

solutions and the so-called h-adaptivity is desirable in most of the studied problems in the 

current work.  

Various benchmark problems with applications in different areas of multiphase flows with 

the purpose of verification and validation of developed numerical tool are investigated and 

results are discussed. The results in most of the cases show a good agreement with experimental 

results or previous numerical studies.  Finally, a new strategy for prediction of impact of the 

jet on the Lunar surface has been put forward which is shown to be able to provide competitive 

solutions in comparison with the high-cost Lagrangian methods.  
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Abstract in Korean 

 

A second-order Boltzmann-based continuum model for simulation of 

dusty gas flows in non-equilibrium using a discontinuous Galerkin                                                          

                                                                                 오미드 에즈태하디 

                                                                                 경상대학교 공과대학 

                                                                                 기계항공공학부 항공우주공학 전공 

                                                                                 지도교수: 명 노 신  

 

컴퓨터 전산 능력의 진보와 막대한 계산 성능을 갖춘 컴퓨터의 등장으로 전산 유체 

역학(CFD)은 이미 유체 역학의 매우 중요한 부분이 되고 있다. CFD의 유익한 결과물은 

유체역학에서 관찰되는 보다 복잡한 물리 현상을 탐구하는데 있어 많은 동기를 

부여하고 있다. 다상 유동과 비평형 열유체는 기존의 CFD에서 다룬 것보다 보다 더 

세심한 주의가 요구되는 중요한 문제들이다. 본 논문에서는 이러한 흥미로운 두가지 

주제에 관하여 다루고 있다. 동기 부여의 시작점은 달 착륙 문제와 관련하여 비용 

측면에서 효율적인 해석 기법을 제공하고자 하는 것이다. (기술적으로 거의 진공 상태에 

있는 달 표면의 먼지와 과소팽창 제트 기류의 충돌 및 상호 작용 문제) 가스 상태에 대한 

다양한 Knudsen 조건 및 Mach 영역과 먼지의 상태에 대한 다양한 Stokes 조건에 의해 

매우 도전적인 문제가 된다. 비평형 및 입자 유동에 대한 분자 운동 기법은 엄청난 

잠재력을 보여주었다. 따라서 분자 운동 기법은 이러한 유형의 문제에 있어 매우 

유리하다. 그러나 막대한 전산 자원 뿐만 아니라, 비평형 (희박 및 마이크로 나노 스케일) 
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및 다상 유동의 연속체 기반 기법의 가능성으로 인해 이 논문에서 제시된 것과 같은 

시뮬레이션 기법이 장점을 갖게 되었다. 모멘트 기법과 기체 동역학 이론에 의해 유도된 

2 차 Boltzmann 기반의 구성 방정식을 기체 상태의 비평형 효과를 분석하는데 

적용하였다. 다상 특성은 Lagrangian 모델에 비해 상당한 저비용의 Eulerian-Eulerian 

모델로 처리하였다. 비록 먼지 상태는 기체의 상태(Eulerian-Granular 유형 모델로 

유도)와 유사한 방식으로 처리 될 수도 있지만, 본 논문은 먼지의 상태에 대한 간단한 

모델에 초점을 맞추었다.  

또한 수치적 이산 방법으로 DG(Discontinuous Galerkin) 기법을 적용하였다. DG 

기법 적용을 통해 Two-Fluid 모델의 Source 항에 관련된 수치 문제를 극복하였다. 한편 

고차원 해법 그리고 소위 “h-adaptivity”는 이미 연구 되어진 대부분의 문제에 있어 

바람직하다.  

개발된 수치 도구의 검증 및 유효성을 확인하기 위해 다상 유동의 여러 벤치마킹 

문제를 해석하고 그 결과를 분석하였다. 대부분의 경우, 결과는 실험과 또는 이전의 

수치적인 연구 결과와 잘 일치하는 것을 확인하였다. 결론적으로 높은 비용의 

Lagrangian 기법과 비교하여 경쟁력 있는 답을 제공할 수 있고 달표면에 대한 제트 충돌 

예측에 적용이 가능한 새로운 전략을 제시하였다. 
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Chapter 1. Introduction  

1.1 Motivation 

The wide range of fluid dynamics applications in which dusty gas plays a significant 

role (from natural geophysical phenomena to industrial processes) has motivated various 

researchers to investigate the dynamics of dusty gas flows, known significantly different 

from the pure gas counterparts [1]. Furthermore, in applications where non-equilibrium 

effects are significant, the conventional computational fluid dynamics (CFD) models based 

on the first-order Navier-Stokes-Fourier constitutive laws fail to provide a correct 

prediction of the flow; therefore, development of the higher-order models beyond the first-

order linear laws based on kinetic theory of gases is necessary [2-4]. 

An interesting case where the effects of rarefaction and presence of dust particles are of 

equal importance is the interaction of the descent engine plume of a lunar lander with 

loosely packed regolith of the Moon. In the early Moon explorations programs such as 

Survoyers I and III, the existence of a granular medium near the Moon’s surface has been 

reported and was further confirmed by observations gathered from Apollo program. 

Moreover, the observations gathered from the Apollo missions confirmed the importance 

of dust particles during landing due to the continuous interaction of the descent module 

engine on the lunar surface in distances just a few meters above the surface [5]. Achieving 

a tool by which a detailed prediction and interpretation of the effect of descent engine 

plume impingement and consequently erosion of dust and large debris into the flow field 

is necessary. On the other hand, the recent planetary investigations which include soft 

landing of various explorers by major space organizations, i.e., NASA, ESA, JAXA, CNSA, 

and ISRO make the plume-dust interaction problem a critical issue. Examples of such 

programs include: the Indian Space Research Organization (ISRO) plan for the first lunar 
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landing in 2018, the Chang’E-4 lunar lander of China National Space Administration 

(CNSA) by the end of 2018, and NASA’s InSight (Interior Exploration using Seismic 

Investigations, Geodesy and Heat Transport) Mars lander in November of 2018. A list of 

future Moon and Mars missions with a soft landing is provided in Appendix A.  

One of the most challenging issues (maybe the most significant challenge) in the Lunar 

missions is reported by the astronauts who walked on the Moon to be electrically charged 

dust particles [6]. Gaier [7] categorized the dust effects into nine groups: vision obscuration, 

false instrument readings, dust coating and contamination, loss of traction, clogging of 

mechanisms, abrasion, thermal control problems, seal failures, and inhalation and irritation. 

Thus, understanding the physical nature of the interaction of plume and dusty surface in 

details is a crucial step in the design phase of Lunar/Martian missions.  

It must be noted that providing the experimental setup in which a rocket engine is fired 

into a dusty bed (with many unknown characteristics) while the vacuum condition and low 

gravity is maintained if not impossible is a daunting task. This fact makes computational 

fluid dynamics a valuable tool for prediction of this type of flow regimes. The conventional 

method for simulation of rarefied multiphase flows formed in the descent phase of the 

lander is direct simulation Monte Carlo (DSMC) method or a hybrid (CFD-DSMC) method 

as in [8-10] which are proved to provide accurate results for highly non-equilibrium flows. 

As the DSMC method is applied in a Lagrangian formulation, the dust phase can be handled 

with minor modifications to the general algorithm. However, the multiscale nature of the 

problem in which various Knudsen and Mach regimes coexist makes the application of 

DSMC method computationally inefficient, in particular, in case of simulation of the whole 

transient phase of the flow. Furthermore, this approach may not be appropriate for a case 

where particles are present in the continuum solver domain. One example of this condition 

is when simulation of liquid hydrocarbon fuels is studied. In this case, the incomplete 
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combustion due to insufficient mixing of oxidizer and fuel lead to carbon soot formation. 

Therefore, the flow can be two-phase inside the nozzle where DSMC solvers are extremely 

inefficient due to characteristics of the flow. Another case which may be problematic for 

hybrid solvers is simulation of flow very close to the Moon surface and before the engine 

shut down where the chances of presence of the eroded particles in the continuum region 

is high.   

These considerations motivated developing a unified multiphase solver, which can 

cover a wide range of Knudsen and Mach regimes. For this purpose, a two-fluid model is 

adapted to take into account the multiphase effects. Conservation laws along with the 

Boltzmann-based constitutive models are solved for both phases. For the gas phase, in 

order to handle the rarefaction effects, the second-order Boltzmann-based model (also 

known as NCCR) is applied [2, 3]. The solver is first verified and validated for zero-order 

Euler and first-order Navier-Stokes-Fourier equations in single phase and multiphase 

problems. Then, the problem of jet impingement on a surface in the presence of dust 

particles is simulated. Effects of parameters such as the exit to ambient pressure ratio, 

rarefaction degree, and dust particulate loading are investigated in detail. 

The developed method can be used in other areas where dust particles are present in 

non-equilibrium gas condition as well. An example can be an estimation of the effect of 

micro-dust in heat transfer properties of micro/nano channels such as in computers cheap-

sets or hard disk drives. Another application is the simulation of supersonic impactors ( also 

known as pressure impactors) which are used in the classification of nanoparticles and their 

working principle is based on rarefaction effects [11-14].  

1.2  Background 

While the purpose of this thesis is to provide a general framework for handling different 

categories of flows in which dust particles are present in a non-equilibrium (as well as 
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equilibrium) gas, we focus on the lunar landing problem as the starting motivation of this 

work. In this section, some of the notable works on analysis of the problem of lunar landing 

are reviewed.  

As the problem is multi-physics, it can be investigated from various viewpoints. The 

first challenge for simulation of the Lunar landing problem is providing a proper model 

capable of handling the rarefied condition on the lunar surface. Next comes selection of a 

model to simulate the multiphase nature of the flow successfully. Finally, selection of an 

erosion model which can best predict the rate of eroded particles is the other issue to be 

taken into account. Moreover, the existence of different types of flow regimes which have 

remarkably diverse nature such as boundary layers, shock waves, continuous plume core, 

expansion to vacuum and interaction of these fields with each other are some of the other 

complexities of the problem. These challenging problems can be each investigated as a 

separate topic in details. However, to provide a systematic study of the previous relevant 

works which are mainly related to the Lunar landing, the literature review is divided into 

three main categories. The first category contains works regarding simulation of plume and 

plume impingement. Next, some of the essential works regarding erosion prediction are 

outlined, and in the end, some of the works which directly deal with simulation of lunar 

landing or impingement of a jet on a dusty surface are reviewed.  

1.2.1 Review of important works regarding ‘plume and plume 

impingement simulation’ 

Simulation of plume and plume impingement on a surface is the primary interest in 

various applications in aerospace industry which spans from thrust vectoring systems and 

vertical and/or short take-off and landing (V/STOL) aircrafts to launching systems and 

lunar landing modules.  
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The complexity associated with the interaction of shock and expansion waves, the 

presence of strong shear layers and co-existence of subsonic and supersonic regions makes 

the jet impingement problem a challenging one. The problem has been investigated from 

various points of view and with various techniques. Therefore a general review of the all 

previous works would include a variety of topics. Here, we focus only on a few of the 

works which can be direcly related to the topic of this thesis.  

It is worth to notice that the structure of the impinging jet into a surface in vacuum 

condition is substantially different from when non-zero but small ambient pressure exists. 

In the latter, a shock wave lies near the jet boundary and extends towards the axis as a 

normal shock wave in a Mach-disk configuration. The aforementioned shock wave is 

emerged due to coalescence of compression waves produced as the result of the interactions 

of the expansion waves from the nozzle lip with the under-expanded jet boundary. For a 

same exit plane jet properties, the jet flow interior to the shock is not affected by the 

ambient pressure, and hence it is identical with the case when the ambient pressure is equal 

to zero [15].  

Some experimental works have been reported for the jet impingement problem. Most 

of these experimental studies [16-21] are limited to surface pressure measurement with the 

variation of pressure ratio, flat plate inclination angle, and nozzle-plate distance. The range 

of pressure ratio in these problems is also limited to lower pressure ratios. However, Nakai 

et al. [20] performed experiments with a much more broad range of pressure ratios, nozzle-

plate distances, and plate angles. It was found that the distance from the nozzle lip to the 

point where the jet shock first impinges on the plate is the critical parameter in changing 

the flow pattern. Another compelling case is impinging jets with high Reynolds number 

where the problem of sound-producing oscillations [22] arises. These oscillations lead to 

“lift loss” phenomena during the landing of V/STOL airframes [23]. The lift lost 
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phenomena is experienced as a suck-down force by the airframe due to the entrainment 

flow associated with the lifting jets which induce low surface pressures. Powell [22] 

provide a formulation in order to explain the feedback loop of the self-sustained oscillations 

in terms of tone frequency. Recent experimental works have contributed mainly to achieve 

a basic understanding of the governing physics of the problem via schlieren visualizations 

[24-28].  

Khasawneh et al. [29] provided analytical relations for highly rarefied (in the collision-

less limit) jets impinging on a flat surface. These results were compared with DSMC 

solutions for the purpose of verification. Later, Cai [30] generalized these solutions for the 

case of inclined plates. Cai et al. [31] also provided analytical relations for studying 

rarefication effects on jet impingement loads. In their work, surface load formulas are 

compared with DSMC solutions from continuum to collision-less flow regimes to check 

the validity of solution in the case of low Knudsen number flows. 

The problem has been investigated using numerical tools as well. Most of the works in 

which rarefaction effects are taken into account has utilized DSMC method [32-37]. Wu et 

al. [38] provided DSMC solutions for under-expanded jets with Kn number corresponding 

to a range from the transition to the near-continuum regime. Gimelshein et al. [33] 

presented simulation results for two-phase plume flow from a small aluminized propellant 

side thruster interacting with rarefied atmosphere using DSMC method. A decoupled 

CFD/DSMC [39] methodology was used to study the plume flow field characteristics of 

the plume in the descent phase and its interaction with the ascent stage vehicle as well as 

plume heating influence on the descent module. Tosh et al. [40] numerically analyzed the 

impingement of hypersonic rocket exhaust plume on the surface in the rarefied Lunar 

environment. A hybrid continuum-rarefied flow simulation method (with the first-order 
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accuracy in space) was applied, and the simulation results were shown to be in good 

agreement with available experiments.  

1.2.2 Review of important works regarding ‘erosion modeling’ 

One of the most valuable efforts in the estimation of erosion due to impinging jets in 

rarefied condition is the works of Roberts [41, 42]. The model is based on the first principle 

assumption that the erosion occurs only when the gas-phase shear stress is larger than the 

soil shear strength. Roberts’ erosion model has limitations such as considering erosion a 

merely shear process, not including the fundamentally different Lunar condition and, 

failure of correct prediction of erosion rate below a critical hover altitude. Hutton [43] 

compared the scaled cold gas jet experimental results of Land and Clark [44] with Roberts’ 

theory and concluded that erosion depths could be accurate within a factor of two and four, 

43 and 87 percent of the time, respectively. Later on, Metzger and his colleagues [45, 46] 

modified the theory by scrutinizing the assumptions made by Roberts. The previously 

unrecognized diffusion-driven mechanism was incorporated into the new model. More 

fundamental investigations are necessary in order to provide advanced models which can 

take into account the complex phenomenological processes of surface erosion. However, 

depending on the simulation purpose, the existing models are capable of explaining large-

scale phenomena to an acceptable level. Morris et al. [10, 47, 48] examined the Roberts 

erosion model extensively and showed that despite various reality-inconsistent 

assumptions, Roberts’ theory is a capable tool which can be a sufficient model depending 

upon the purpose of simulation.   

1.2.3 Review of important works regarding ‘rarefied multiphase flow’ 

There are few works in which the interaction of plume impingement and presence of 

particles due to either erosion or other sources (for example soot formation in solid 

propellants rockets) are considered numerically. Burt and Boyd [49] extended the DSMC 
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approach proposed by Gallis et al. [50] for simulating the transport of spherical particles 

in a rarefied gas flow in such a way that two-way coupling effect was taken into account. 

In a similar work but with a different approach Gimelshein et al. [33] developed a two-way 

combined continuum-DSMC algorithm and applied the method to two-phase plume flow 

from a small aluminized propellant side thruster interacting with the rarefied atmosphere. 

Liu et al. [51] developed a numerical approach by adopting discrete element method (DEM) 

for simulation of single dust particle ejection. These particles are then overlayed in the flow 

field obtained by DSMC and gas kinetic BGK method. However, due to deterministic 

nature of the DEM method, this approach can be computationally very costly. He et al. [8] 

applied the DSMC method to the problem of Lunar landing. In their work molecule–

molecule, molecule–particle and particle–particle collisions were all taken into account. 

Morris et al. [9, 47] applied loosely coupled CFD/DSMC method to simulate the problem. 

The DPLR (NASA's continuum flow solver [52]) is applied for calculation of the nozzle 

core flow. The DSMC method is applied for calculation of the rarefied region and solid 

phase. Promising results were achieved, and the work was later extended to three-

dimensional problems as well [10, 48]. 

1.2.4 Other important works regarding the Lunar landing problem 

There exists a number of other works which contributed significantly to understanding 

of the governing physics of the problem of Lunar landing. Analytical works pioneered by 

Roberts et al.  [41, 42, 53] has made a big impact in formulation and understanding of the 

problem. Roberts [41] analyzed the problem by suggesting formulation describing the 

action of hypersonic jet on a granular bed in vacuum whose axis is normal to the surface. 

Roddy et al. [54] took into account the effect of pore gases on the penetration of the jet on 

the densly and loosely packed dusty bed in both air and vacuum conditions. Scott and Ko 

[55] considered isothermal transient gas flow of Surveyor spacecraft engine in soil (porous 
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medium) numerically. Lane et al. [56] applied CFD and DSMC to produce an input for a 

trajectory simulation of lunar dust particles influxed during the decend and ascent phases. 

As mentioned earlier, due to complexity and importnace of the Lunar landing problem 

there exist variety of other works in which the problem has been investigated from a 

different perspective or approaches other than numerical modeling (i.e, experimental 

investigations) has been applied. However, comprehensive review of all the related works 

is out of scope of the present thesis and only most relevant references are reviewed.  

1.3 Outline 

This thesis can be divided into two parts. The first part including the first five chapters 

discusses the theory. In the next four chapters, the results achieved during this research are 

provided and discussed.  

In Chapter 2, the fundamentals of multiphase are briefly introduced. Chapter 3 discusses 

the fundamentals of the kinetic theory of gases. A modified version of the method of 

moments, which is the preferred method for derivation of the constitutive models is also 

introduced in details. In Chapter 4, the mathematical modeling of particle-gas flows as well 

as discussions for erosion modeling are provided and in Chapter 5 discontinuous Galerkin 

method as the numerical approach for solving the mathematical models is outlined.  

Chapters 6, 7, and, 8 are devoted to providing the results achieved by zeroth-order 

(Euler), first-order (Navier-Stokes-Fourier) and second-order (NCCR) Boltzmann-based 

constitutive equations. Finally, in Chapter 9 conclusions are made, and the possible 

directions for future works are briefly pointed out.  
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Chapter 2. Multiphase Flows 

In the context of fluid mechanics, the terms multiphase flow and multicomponent flow 

implies on any fluid flow consisting of more than one phase/component or have some level 

of phase separation at a scale well above the molecular level. The terms component and 

phase refer to a chemical species and a state of the matter, respectively. Multiphase flows 

are vastly observed in different geophysical flow conditions and technological applications. 

Biological flows like blood as well as most of the liquids we deal with on a daily basis such 

as milk and paints are examples of liquid bases containing suspensions. Preparation of 

coffee in a percolator needs steam and hot water to pass through coffee beans and is another 

example of multiphase flows which we may encounter on a daily basis. In this chapter, 

various types of multiphase flow are introduced. We then focus on gas-particle flows and 

the fundamental definitions that are necessary for the next chapters will be provided.    

2.1 A general categorization of multiphase flows 

Multiphase flows can be categorized into four general categories based on the 

combination of the states that are present in the flow.  

2.1.1 Gas-liquid or liquid-liquid flows 

A classification of this type of multiphase flows is based upon the superficial velocities 

of gas and liquid phases as shown in Fig. 1 for vertical flow in a pipe.  It should be noted 

that other physical parameters such as densities, viscosities, and surface tension can also 

affect the flow regimes which are not taken into account in this classification. In a more 

general categorization based on the level of diffusion of the phases, gas-liquid or liquid-

liquid flows can be classified as dispersed flows (such as the motion of gas bubbles in a 

liquid or liquid droplets in gas flow), mixed or transitional flows and separated (also known 
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as free surface or stratified) flows. Examples include ocean waves, blood flow, liquid 

propellant rockets and internal combustion engines, to name a few.  

 

Fig. 1 Flow patterns (right) and flow pattern map (left) for vertical pipe flow of air and 

water. Reprinted from [57] with permission. 

2.1.2 Gas-solid flows 

This class of flows is identified by the presence of solid particles (particulate phase) in 

a gas (career) phase. Most of the applications in this category fall into the following sub-

categories:  

- gas-particle flows or particle-laden flows (sandstorms, volcanoes) 

- pneumatic transport (pneumatic conveyers) 

- fluidized beds 

The gas-solid flow is considered a granular flow when the particle-particle or wall-

particle interactions are more dominant compared to the interstitial forces. Moreover, if the 

particles become motionless the viscous force on the particle surface is the primary 

parameter to govern the physics, and the problem is known as flow through a porous 

medium. 
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2.1.3 Liquid-solid flows 

Liquid-solid flows are identified by the transport of solid particles in liquids. Following 

categories fall into the liquid-solid flows: Slurry flows, which are defined as a thin sloppy 

fluid mixture of a pulverized solid in a liquid with a broad range of application in industry 

and sediment transport which includes the transport of solid matter (sediments) as a result 

of gravity force and/or movement of the fluid in which the sediment is entrained. Examples 

include natural phenomena of sediment transport in rivers and sea, soil erosion due to rain 

and storms or slurry transportation, fluidized beds and waterjet cutting in industrial 

processes.  

2.1.4 Three-phase flows 

As the name implies, these type of flows are identified by simultaneous presence of 

three phases. Mostly they can be distinguished as a combination of two of the above 

categories. Examples include: bubbles in a slurry flow and simultaneous presence of 

droplets and particles in gaseous flows. 

2.2 Gas particulate flows 

Among the various categories of the multiphase flows, the gas-solid group makes up a 

significant portion of applications. A class of multi-phase flows, composed of compressible 

gases carrying a substantial amount of small particles like dust or droplets, has emerged as 

an exciting topic in recent years. The interest is largely driven by the increasing need to 

understand technological processes (e.g., explosions in coal mines [58], the separation of 

particulate matter from fluids [59], and the interaction of rocket plumes and lunar dust [60]) 

and natural geophysical phenomena (e.g., volcanic eruptions [61], cosmic explosions [62], 

and star formation [63]), as summarized in Fig. 2. 
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Fig. 2 Various applications of dusty gas flows 

The dynamics of dusty gas flows is known to be significantly different from those of 

pure gas flows. This difference is mainly caused by the mass, momentum and heat 

exchange that occurs between the two phases. In dusty gas flows with shock waves, such 

as coal mine explosions or the interaction of the lunar lander’s rocket plume with the dusty 

surface of the moon during the descent phase, there is a transition region where the velocity 

of the shock wave continuously changes due to the inertia and the heat capacity of the 

particles. Moreover, the mass exchange effects as a result of phase change or chemical 

reactions are essential in many applications [64]. Such complexities have motivated 

various theoretical [65, 66] and experimental [67, 68] studies. However, most of these 

studies have mainly focused on the one-dimensional shock tube problem in order to obtain 

a comprehensive physical understanding of the dusty gas flows, and consequently the 

development of proper mathematical models. 

From a theoretical point of view, there are two prevailing approaches for predicting the 

dispersed flows: the trajectory (discrete or Lagrangian) and two-fluid (Eulerian-Eulerian) 

models [69].  In the trajectory model, the dispersed phase is described in the Lagrangian 

framework, while in the two-fluid model the dispersed phase is treated as a continuum. In 
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the present study, the two-fluid model is preferred over the trajectory model, since it is not 

only applicable to a wide spectrum of particulate loading in multi-phase regimes but also 

incur a less computational cost, compared to the Lagrangian counterpart. The model is, 

however, not efficient when the distribution of particle size is the main interest since a 

separate set of equations should be solved for each diameter size. 

While most of the theoretical research has been limited to the one-dimensional 

numerical problem [70-74], many recent studies have focused on developing multi-

dimensional numerical tools with the capability of handling unstructured grids. Saito [75], 

[76] developed a two-dimensional numerical tool to solve the two systems of conservation 

laws using the finite volume method. Igra et al. [77] investigated shock wave reflection 

from a wedge in a dusty gas flow by using a second-order accurate scheme in a finite 

difference framework based on the generalized Riemann problem and dimensional splitting. 

Moreover, they conducted an extensive parametric study on particle size and mass loading 

in two different time steps. In another attempt, Igra et al. [78] extensively studied shock 

wave reflection from a wedge placed in various suspensions by using a finite volume 

method of a two-fluid model. 

On the other hand, Volkov et al. [79] solved the viscous two-phase gas-particle flow 

over a blunt body using an Eulerian-Lagrangian approach and investigated the effects of 

inter-particle collisions and two-way coupling. Pelanti and LeVeque [80] developed the 

fractional step method in the finite volume framework and applied the method to the one-

dimensional shock tube and two-dimensional volcanic eruption problems. Gurris et al. [81] 

solved the two-fluid model of dusty gas flows with a high-resolution finite element method 

along with a TVD type limiter, and Douglas-Rachford splitting method to handle the source 

terms. Recently, Carcano et al. [82] solved the problem of jet decomposition in both two 

and three dimensions using a second-order accurate semi-implicit finite volume method. 
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In another work, Carcano et al. [83] extensively investigated the grain-size distribution on 

the dynamics of under-expanded volcanic jets.  Vié et al. [84] analyzed the capability of 

the Eulerian moment method for solving two-way coupled particle-laden turbulent flow 

systems. 

2.3 Fundamental definitions of gas-particle flows 

Before describing the details of the model, some necessary multiphase flow parameters 

are defined. The level of interaction of phases is assessed by the volume fraction of the 

dispersed phase (αs) and the mass loading (β). Small values of αs and β implies that the 

carrier phase is not affected by the dispersed phase and the one-way coupling is satisfactory. 

In cases where the masses of both phases are comparable, to take both phases into account, 

the two-way coupling is necessary. For larger αs, the particle-particle interactions such as 

collision, agglomeration, and break-up may not be ignored, requiring a four-way coupling. 

The other important parameter to quantify how the phases can equilibrate is the Stokes 

number, defined as the ratio of the aerodynamic response time of the particle (τs) to some 

characteristic time of the carrier phase (tref). Useful discussions regarding basic multiphase 

parameters can be found in [1]. 

2.3.1 The volume fraction 

In our considered multiphase gas-solid system, the solid phase is defined as small 

separate grains in such a way that the volume of each particle is small compared to the 

overall volume of the solid material. The volume fraction of solid (dispersed) phase is then 

defined as, 

0

lim s
s

V V

V

V



 . 

(1) 

Here Vs and V are the volumes occupied by the solid and the total volume, respectively. 

The limiting volume, V0 is the volume in which flow properties do not vary significantly 
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from point to point. Equivalently, the volume fraction of the gas (continuous) phase can be 

defined as: 

0

lim
g

g
V V

V

V



 , 

(2) 

where Vg is the volume of the gas phase in the total volume which is referred to as the void 

fraction in some literature. The sum of the volume fractions must be unity (axiom of 

continuity).  

1s g   . 
(3) 

2.3.2 Particle spacing 

Another parameter which plays a vital role in characterizing the mechanics of a 

dispersed phase flow is the particle (or droplet) spacing and is the defined as the average 

distance between the dispersed phase elements. This parameter can be used to determine if 

a particle can be treated as an isolated system or not. The relation between particle spacing 

and volume fraction is as follows 

1

3

6 s

l

d





 
  
 

. (4) 

Here d is the particle diameter. For l >> d, the particles can be treated as isolated and 

when l ~ 1 the interaction between particles cannot be neglected.  

2.3.3 Response times 

The momentum (velocity) and thermal response times (τV and τT) are essential 

parameters in establishing non-dimensionalize parameters to characterize the flow. These 

parameters are an indicator of how the particles react towards the velocity and temperature 

changes in the flow and are defined as 
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2

V
18

s

g

d





 

2

T
12

s m

g

c d





 
(5) 

where ρs and cm are solid phase bulk density and specific heat of the particle material.  μg 

and κg represent gas viscosity and thermal conductivity, respectively.  

2.3.4 Concentration and loading 

The ratio of the mass of the dispersed phase to that of the continuous phase in the 

multiphase mixture is defined as dispersed phase mass concentration or as the particle mass 

ratio. It should be noted that in some literature the volume fraction of the dispersed phase 

is considered as concentration.  

s s s

g g g

C
  

  
  . 

(6) 

Another parameter important to the definition of the particulate flows is loading, which can 

be defined as the ratio of particulate mass flux to that of the continuous phase. The terms 

loading, mass loading, and particulate loading have also been used to denote the 

concentration. 

s

g

m
z

m
 . 

(7) 

2.3.5 Stokes number 

A crucial parameter in fluid-particle flows to characterize the response rate of the 

particles to changes in fluid motion or, to evaluate the kinetic equilibrium of the particles 

with the career gas, is the Stokes number, defined as 

V

ref

St
t


 . 

(8) 

1St  implies that the response time of the particles is much less than the characteristic 

time of the flow. In this case, the particles have enough time to equilibrate with the career 
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phase leading to nearly equal velocities. These types of flows can be safely simulated with 

a one-way coupled model. On the other extreme, when 1St , the response time of the 

particles is much more than that of the career phase. Consequently, particle velocity is little 

affected by the fluid velocity change. A two-way coupling algorithm should thus take into 

account the back-influence of the particle phase on the career fluid.  

With the same methodology, a thermal Stokes number can be defined as the ratio of the 

thermal response time to the characteristic time of the flow to provide an understanding 

about the response rate of the particles towards temporal changes in the flow.  

In Table 1, an estimate on relaxation times and Stokes number for particle diameters 

used in the present thesis simulations is given for two different characteristics time scale 

of the flow based on two different reference Mach numbers. 

Table 1 Parameters characterizing the phase interaction for different characteristics 

velocities and particle diameters 

Mref 

[-] 

d 

[m] 

L 

[m] 

tref 

[s] 

τv 

[s] 

τT 

[s] 

St 

[-] 

1.0 

5.00E-07 1.29E-03 3.89E-06 2.02E-06 1.55E-06 0.52 

1.00E-06 2.58E-03 7.79E-06 8.09E-06 6.21E-06 1.04 

5.00E-06 1.29E-02 3.89E-05 2.02E-04 1.55E-04 5.20 

1.00E-05 2.58E-02 7.79E-05 8.09E-04 6.21E-04 10.39 

4.50E-05 1.16E-01 3.50E-04 1.64E-02 1.26E-02 46.77 

3.0 

5.00E-07 1.29E-03 1.30E-06 2.02E-06 1.55E-06 1.56 

1.00E-06 2.58E-03 2.60E-06 8.09E-06 6.21E-06 3.12 

5.00E-06 1.29E-02 1.30E-05 2.02E-04 1.55E-04 15.59 

1.00E-05 2.58E-02 2.60E-05 8.09E-04 6.21E-04 31.18 

4.50E-05 1.16E-01 1.17E-04 1.64E-02 1.26E-02 140.3 

μ=1.716×10-5 [Pa.s], κ=2.41×10-2 [W/(m.K)], ρs=2500 [Kg/m3], Cm= 718.0 [J/(kg·K)] 
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Chapter 3. Kinetic theory of gases 

The historical development of the kinetic theory of gases dates back to 50 BCE when a 

Roman philosopher, Titus Lucretius Carus, proposed the composition of static macroscopic 

bodies from a small scale of rapidly moving atoms which are all bouncing off each other 

[85]. Many famous physicists contributed to the topic. However, Ludwig Boltzmann works 

regarding generalizing Maxwell’s achievement and formulation of the Maxwell-

Boltzmann distribution as well as a statement of logarithmic connection between entropy 

and entropy generation was a turning point in the field.  In the course of a long time, the 

research field was slowly developing until when the need for aerodynamic requirements to 

handle high altitude vehicles and vacuum technology in the fifties put an urge on the speed 

of development. Today, the field is well established and is being actively followed by many 

research groups worldwide.  

3.1 Degree of non-equilibrium 

In this section, relations for number density of molecules n, mean molecular spacing δ, 

molecular diameter d, molecular mean free path λ, mean collision time τc, and average 

molecular velocity  v  for diluted gases are defined. The number of molecules of a mole of 

gas is constant and equal to Avogadro's number 6.02252×1023. Also, the volume occupied 

by one mole of a gas at a given temperature and pressure is constant and not a function of 

the gas composition. This definition leads to the perfect gas relation given as follows, 

B
p nk T . 

(9) 

In the above equation, p is the gas pressure, T is the temperature, n is the number density 

of the gas, and kB is the Boltzmann constant. The ideal gas law is valid for dilute gases for 

all pressures (higher than saturation pressure and less than critical point pressure). As a 

result, for the most applications, we can obtain the number density of molecules at a given 
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temperature and pressure using this equation. At atmospheric pressure and zero degree 

Celsius, the number density is equal to 2.69×1025. If we assume that all molecules are 

uniformly distributed, the mean molecular spacing can be obtained as follows: 

1/3n   
(10) 

Under the standard conditions, the mean molecular spacing is equal to 3.3×10-9 m. 

The mean molecular spacing of the typical gases based on the viscosity coefficient and 

Chapman-Ensgok theory is assumed to be from the order of 10-10 with the hard sphere 

assumption [86]. Table 2 shows the thermo-physical properties of some common gases.  

Table 2 Thermos-physical properties of some common gases in atmospheric conditions 

 
Density 

[kg/m3] 

Thermal 

conductivity 

[W/(mK)] 

(×10-5 ) 

Thermal 

diffusion 

[m2s] 

Specific 

heat 

[J/KgK] 

Mean 

free path 

[m] 

(×10-8) 

Argon 1.783 2.29 0.0177 515 6.44 

Air 1.293 1.85 0.0261 1004.5 6.11 

Nitrogen 1.251 1.8 0.026 1038.3 6.04 

Carbone 

dioxide 
1.965 1.5 0.0166 845.7 4.02 

Oxygen 1.429 2.07 0.0267 916.9 6.05 

Helium 0.179 2.99 0.15 5233.5 1.77 
 

The comparison of the mean molecular spacing and typical molecular diameter d will 

characterize the concept of dilute gas as δ/d>>1. For dilute gases, intermittent binary 

collisions are more common than multiple simultaneous collisions. On the other hand, in 

dense gases and liquids, it is the multiple collisions which complicate the modeling of inter-

molecular collisions in these fluids. The assumption of the dilute gas along with the random 

behavior of molecules and the principles of energy equipartition leads to the derivation of 

the theory of the molecular kinetic energy of gases and the formulation of the Boltzmann 
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transport equation from the Liouville's equation. The assumptions and simplification of 

this derivation are given in references [87-89]. 

The transfer of momentum and energy in a fluid and convergence into a thermodynamic 

equilibrium state is made via intermolecular collisions. As a result, time and length scales 

regarding inter-molecular collisions are essential parameters. The distance traveled by 

molecules between two collisions is known as the molecular mean free path. For a simple 

gas with hard-sphere molecules, mean free path in the thermodynamic equilibrium is 

defined using the following equation, 

2

1

2 d n



 . 

(11) 

For example, λ for air in standard conditions is equal to 5.6×10-10.  

The mean thermal velocity of a gas is obtained from the following equation 

3
3

p
c RT


  . 

(12) 

Here, R is the gas constant. For air in standard conditions, this number is 486 m/s. Given 

the time scale of inter-molecular collisions, and by comparing the ratio of the molecular 

mean free path to average molecular velocity a characteristic time can be achieved. This 

timescale should be compared with a characteristic time scale of the investigated problem 

to ensure the thermodynamic equilibrium assumption holds true. 

3.1.1 Conventional classification of non-equilibrium regimes 

To measure the degree of non-equilibrium, the Knudsen number (Kn) is defined as the 

ratio of the mean free path of the gas molecules (i.e., statistically averaged distance over 

the billions and billions of molecules) to the characteristic length of the geometry 

( Kn / L  ). The Knudsen number is related to the Reynolds and Mach numbers 

according to the following relation: 
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Kn
2 Re

M

L

 
  . 

(13) 

When the Knudsen number is sufficiently large, the gas rarefaction is the main 

parameter to evaluate these systems [90]. Flow regimes are also classified on the basis of 

the Knudsen number into: continuum (Kn ≤ 0.01), slip flow (0.01 < Kn < 0.1), transition 

flow (0.1 < Kn < 10) and free molecular (Kn ≥ 10).  This classification is the most common 

method of characterizing of non-equilibrium regimes; however, this categorization is based 

on empirical information, and therefore the boundaries between different flow regimes may 

depend upon the geometry of the problem at hand.  

3.1.2  Refining the conventional classification of non-equilibrium 

regimes 

By taking a close look at the Boltzmann equation, the Knudsen number can be perceived 

as the ratio of the convective term to collision terms. This rationale can, however, be 

questionable by the fact that microscale gas flows with high Knudsen number can be solved 

accurately by the linear Navier-Stokes-Fourier theory with slip boundary conditions while 

the same linear theory does not produce accurate results in the case of hypersonic rarefied 

gas flows even with low Knudsen numbers [91]. It should be noted that, in the macroscopic 

world, three terms are responsible for the description of the motion of the gases in the 

conservation law of momentum: convective, pressure, and viscous terms.  Thus, two non-

dimensional parameters (rather than Knudsen number alone) are necessary to classify the 

regimes fully. Even though this point was noted more than 70 years ago by Tsien [92], the 

common (but inaccurate) practice in various research papers is to take only the Kn number 

as the non-equilibrium quantifier. In Fig. 3(a), the classification of flow regimes based on 

Kn number on M-Re diagram is plotted. As discussed above four regions are defined and 

illustrated.  Fig. 3(b), shows the classification based on Tsien’s parameter ( / ReM ). 
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Tsien [92] defined a Kn-type parameter using the thickness of the boundary layer instead 

of a typical body dimension and showed that
/ Re Re 1

/
/ Re Re 1

M

M
 


 


.   

As can be seen, for Re 1 , the thickness of the boundary layer is almost the same as 

the body length and Tsien’s parameter is equivalent to the classical Knudsen number. The 

range of 0.01 / 10   is defined as slip regime and higher /   values are 

corresponding to free-molecular regime. The realm of fluid dynamics is shown in Fig. 3(a), 

from free molecular (where the collision between molecules and the collision of molecules 

with the wall are of equal importance) to slip regime and equilibrium condition. Macrossan 

[93] by comparing the DSMC and Navier-Stokes solutions showed that Tsien’s parameter 

is a better parameter to categorize the flow regimes. 

  

 

Fig. 3 The realms of fluid flow regimes according to different parameters 
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Another categorization of the fluids was put forward by Arkilic et al. [94] by defining 

nine independent flow regimes based on the Mach and Reynolds numbers (and their 

correlation with Kn). Table 3 provides useful information to estimate the basic 

understanding of the physics which govern the fluid motion in each regime. However, exact 

ranges for these regimes were not quantified in [94]. 

Table 3 Classification of different flow regimes based on a combination of the order of 

magnitude of Reynolds number and Mach number. Reprinted from [94] with permission.  

 

An alternative parameter proposed by [95] is a composite parameter proportional to the 

ratio of viscous stress to pressure in the flow.  

2

Kn
Re

uL M
N M

p p



     

(14) 

This parameter is shown in Fig. 3 (c) in the plane of M-Re. Other parameters such as 

breakdown parameter of  Bird [96] and Cheng’s parameter [97] have also been used which 

are consistent with N . Each of these parameters as they consider the effect of convective, 

pressure and viscous terms altogether are suitable to be used to measure the degree of non-

equilibrium. When these parameters are used, the limits to categorize the regimes should 

also be defined. In Fig. 4, the ranges of N  limits are defined in such a way they are 

consistent with flow regimes of [94]. 
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Fig. 4 Definition of the ranges of the Nδ parameter overlaid with the classification of [94]. 

3.2 Singlet probability distribution function and macroscopic 

properties 

Consider a dilute and non-dense gas which is composed of similar molecules. The 

hypothesis of dilution states that in a given volume of gas, the volume of existing molecules 

or the volume in which intermolecular forces are in effect is insignificant compared to the 

volume of gas. Achieving a mathematical relation for all molecules is then essential to 

describe the gas behavior. Maxwell used a velocity distribution function to describe the 

probability of having a specific speed at a specific location and time for the molecules. It 

seems that a complex velocity distribution function is required to determine the velocity of 

all involved molecules. However, for dilute gas, due to the randomness of molecular 

behavior, a velocity distribution function for molecules can be used. Let r be the Cartesian 

coordinates of the physical space and v  the molecular velocity which can be stated in terms 

of the stream (macroscopic) velocity u and thermal (peculiar) velocity c. The number of 

molecules dN in the six-dimensional volume element dV = dvdr is expressed as dN = 
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f(t,r,v)drdv. In this case, f, which is a function of the seven variables r, v, and t, is called 

the single-particle probability distribution function of gas.  

Each macroscopic quantity can be obtained using the velocity distribution function. For 

example, if ψ is a microscopic quantity of a molecule, the corresponding macroscopic 

average can be obtained by the following equation: 

( , , ) ( , , ) .f t f t d  
  

  

    r v r v v  
(15) 

Therefore, macroscopic variables such as gas density ρ, flow velocity u, temperature T, 

pressure p, internal energy E, stress tensor Π, heat flux vector Q in position r and time t 

according to the moments of the velocity distribution function f for a monatomic gas are as 

follows, 

Number density: 

( , , ) ( , , ) .n f t f t d

  

  

    r v r v v  
(16) 

where the ...  symbol represents integration over velocity space v. 

Density: 

( , , ) ( , , ) .mf t mf t d nm
  

  

    r v r v v  
(17) 

Velocity and momentum vectors: 

1
( , , ) ( , , ) .f t f t d

n

  

  

    u v r v v r v v  
(18) 

( , , ) ( , , ) .m f t m f t d
  

  

    u v r v v r v v

  
(19) 

Temperature and pressure: 

2 21 1
( , , ) ( , , )

3 3
RT m f t m f t d

  

  

    c r v c r v v . 
(20) 



 

27 

 

2 21 1
( , , ) ( , , ) .

3 3
p f t f t d RT

  

  

    v r v v r v v  
(21) 

Total energy: 

2 21 1 3
( , , ) ( , , ) .

2 2 2
e m f t m f t d RT

  

  

    v r v v r v v  
(22) 

Pressure tensor (indicates transport of momentum by thermal velocity): 

( , , ) ( , , ) .m f t m f t d

  

  

    P cc r v cc r v v  
(23) 

Viscous stress tensor: 

   
2 2

( , , ) ( , , ) ,m f t m f t d

  

  

    Π cc r v cc r v v  
(24) 

where, […]2 denotes the traceless part of the tensor.  

2 21 1
( , , ) ( , , ) .

2 2
mc f t mc f t d

  

  

    Q c r v c r v v  
(25) 

3.3 Boltzmann transport equation (BTE) 

The master equation to describe the gas flow at the molecular level is the Boltzmann 

transport equation (BTE).  The behavior of the probability distribution function can be 

defined via BTE as  

 2. ( , , ) , ,vF f t C f f
t

 
    

 
v r v  

(26) 

in which F is the external force on unit mass and C[f, f2] is called the collision integral 

(operator); / , /v       r v .  

Boltzmann's transport equation illustrates the changes in the probability distribution 

function along a molecular pathway due to intermolecular collisions and under the presence 

of external force F. In fact, instead of considering the individual position and momenta of 

each particle in the fluid the probability distribution for the position and momentum of a 
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typical particle is considered. The principal assumptions in the derivation of Boltzmann 

equation are: 

- dilute gas assumption: considering only binary collisions; 

- molecular chaos assumption: uncorrelated position and velocity of each molecule; 

- negligible influence of the external forces on the rate of collision. 

In the absence of an intermolecular collision, collisionless Boltzmann equation can be 

written as: 

. ( , , ) 0 .vF f t
t

 
    

 
v r v  

(27) 

However, the particles collide with each other and probability distribution function 

changes due to collisions. Hence, C [f, f2] is not invariant to time reversal. The recognition 

of the necessity of the collision integral is Boltzmann’s lasting contribution to the kinetic 

theory of gases. The Stosszahl ansatz proposed by Boltzmann suggests a form for this 

collision integral: 

2
* *

0 0
( , , ) ( , , ) ( , , ) ( , , ), . j ij i ji jj id d dbbg f t f fC f t f t tf






         v r v r v r v r v  
(28) 

In the above relation
ij i jg  v v  is the relative speed, b is the impact parameter of 

two-body collision between particles i and j and ϕ is the azimuthal angle of scattering. 

Some of the fundamental structural properties of the Boltzmann transport equation 

include: 

- conservation of mass, momentum, and energy; 

- the decay of entropy functional; 

- Galilean invariance. 

3.3.1  H theorem 

By introducing the celebrated functional H as follows,  
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lnH f fd  v , 
(29) 

Boltzmann was able to show that the solution of Boltzmann transport equation is unique. 

In other words, he stated that if probability distribution function f satisfies BTE, then H is 

a non-increasing function in time: 

0.
dH

dt
  

(30) 

This statement is equivalent to the second law of thermodynamics if H is identified by 

the following relation: 

.
B

s
H

k
   

(31) 

where s is the entropy per unit volume.  Hence, according to H theorem, the entropy never 

decreases. This theorem is the formal manifestation of irreversibility which any kinetic 

theory model must exhibit to confirm the correct description of the irreversible system.   

3.3.2 Collision invariants  

For a collisional invariant quantity ψ, the following relation must hold true: 

* * 0.i j i j        
(32) 

  The above relation states that the change of energy of the microscopic property ψ in a 

collision between two classes of molecules is zero. Classical physics state that microscopic 

mass, momentum, energy and any linear combination of these properties are the collisional 

invariants of the Boltzmann transport equation. 

3.4 Theory and simulation methods 

Various approaches have been introduced during the time to be applied for describing 

the gas behavior in different classes of problems. In this section, we briefly introduce some 

of the famous (and widely used/accepted) methods which deal with non-equilibrium gas 
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dynamics. It is clear that the existence of a plethora of methods and their subdivisions 

makes the introduction of all the available tools in detail a daunting task and is out of the 

scope of this work. Table 4 summarizes some of the mathematical/computational models 

from different perspectives. Two general categories include pure simulation and PDE-

based approaches. Methods based on the level of physical phenomenology that is modeled 

can be classified as microscopic, mesoscopic and macroscopic. In what follows, each of 

the examples of this table is shortly introduced.  

Table 4 Classification of the widely used methods based on simulation perspective and their 

range of validity in Knudsen regime 

 

 

3.4.1 Pure (or semi-simulation) methods 

3.4.1.1 Molecular dynamics (MD) 

One of the most formidable tools which have been used in the simulation of gas kinetic 

problems is the molecular dynamics (MD) method [98]. MD is a computational method for 

studying the physical movements of atoms and molecules by numerically solving the 
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classical equation of motion of a group of atoms or molecules. The method was first 

developed in the mid-50s [99] and found its way into different fields including theoretical 

physics, material science, biochemistry, and biophysics. Even though the method is capable 

in various aspects, the design constraints such as number of particles, time step and time 

duration of the physical phenomena which is being simulated can make realistic MD 

simulations last from several CPU-days to CPU-years.  

An MD simulation usually consists of the following steps: Position and velocities of the 

particles are first initialized. The interatomic forces are computed based on potential 

functions. Atoms are next moved according to the equation of motion, and molecular 

geometries are restored. The desired macroscopic properties including, pressure, 

temperature, and energy are next calculated. The molecular positions and velocities are 

updated and time is advanced until the desired simulation time is reached.  

3.4.1.2 Direct simulation Monte Carlo (DSMC)  

DSMC is a numerical tool to solve the Boltzmann equation based on direct statistical 

simulation of the molecular processes described by the kinetic theory [100]. It is considered 

as a particle method in which particle represents a large bulk of real gas molecules. In fact, 

DSMC simulates particle behavior in a manner consistent with what is described by the 

Boltzmann equation. The primary principle of DSMC is to decouple the motion and 

collision of particles during one time-step. The implementation of DSMC needs breaking 

down the computational domain into a collection of grid cells. The cells are divided into 

subcells in each direction. The subcells are then utilized to facilitate the selection of 

collision pairs. After fulfilling all molecular movements in the domain, the collisions 

between molecules are simulated in each cell separately. Momentum/thermal 

accommodation coefficients represent a measure of the equilibrium of momentum and 

thermal energy of the reflected molecules with those of the wall. Full momentum 
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accommodation coefficient means that tangential momentum of reflected molecules is 

equal to the tangential momentum of the wall. Similarly, full thermal accommodation 

means that energy flux of reflected molecules is equal to the energy flux corresponding to 

the wall temperature. Accurate DSMC solution requires some constraints on the cell size, 

time step, and number of particles. The random selection of the particles from a cell for 

binary collisions requires that the cell size be a small fraction of the gas mean free path. 

The decoupling between the particles movement and collisions is correct if the time step is 

a small fraction of the mean collision time. Number of particles per cell should be high 

enough, around 20, to ensure that a realistic collision rate in each cell is maintained [100]. 

The following procedure is used to solve a stationary problem with DSMC. In the entire 

computational domain, an arbitrary initial state of gas particles is specified, and the desired 

boundary conditions are imposed at time zero. Particles movement and binary collisions 

are performed separately. After achieving steady flow condition, sampling of molecular 

properties within each cell is fulfilled during sufficient time period to avoid statistical 

scattering. All thermodynamic parameters such as temperature, velocity, density, and 

pressure are then determined from this time-averaged data. More details on DSMC 

algorithm are given in references [100, 101]. 

3.4.1.3 Unified gas-kinetic scheme (UGKS) 

Gas kinetics scheme proposed by Kun Xu [102] is based on direct modeling of physical 

law in a control volume with limited cell resolution and should be distinguished from the 

direct discretization of the kinetic equations. It can be considered as a dynamic hybrid 

method. The method is capable of capturing multiple scale flow physics by using an 

explicit time evolution solution of the kinetic equation for the flux evaluation. Here, the 

assumption of time steps smaller than the mean collision time is not necessary as the 

transport and collisions steps are not split, and the method is still usable in the limit of 
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continuum flow regime. The main feature of the UGKS includes the use of the integral 

solution of the kinetic model in the flux evaluation across the cell interface. 

3.4.1.4 Lattice Boltzmann method (LBM) 

Contrary to conventional numerical methods which are based on the discretization of 

continuous macroscopic equations, and also contrary to molecular dynamics methods 

based on complex atomic molecular collisions, the lattice Boltzmann method (LBM) is 

based on both the mesoscopic kinetic equations and the microscopic models. In this method, 

the fluid is considered as a set of fundamental particles of a fluid element in a virtual space, 

which is influenced by a set of simplified laws. Although the theory looks far from reality, 

it has been shown that the method is capable in a specific class of applications.  

The leading theory behind LBM is the creation of simplistic kinetic models that combine 

both mesoscopic and microscopic processes. Therefore, the macroscopic properties of 

LBM follow the desired macroscopic hydrodynamic laws. The basis of using these simple 

kinematic methods for macroscopic fluid flows is that: 1. the macroscopic dynamics of a 

fluid is the result of a collection of the behavior of many microscopic particles in the system, 

and 2. macroscopic dynamics does not take into account the details contained in the laws 

of microscopic physics. More details on merits and disadvantages of the method can be 

found in [103-108]. 

3.4.2 PDE-based approach 

3.4.2.1 Classical theory (NSF) 

It should be noted that the classical system of equations of fluid dynamics can be directly 

derived from Boltzmann’s equation as the first order contribution in a Chapman–Enskog 

expansion [86] or in other words conservation laws along with constitutive relations 

approximated by the linear assumption of Navier and Fourier. However, the classical 

theory precedes the kinetic theory. The classical models such as Euler and Navier-Stokes 
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equations are derived by applying Newton’s second law of motion to each infinitesimal 

volume element of fluid. However, the closure models (such as the equation of state and 

constitutive relations) in this theory is not based on the laws governing molecular 

interactions. The models are primarily dependent on phenomenological or 

experimental/empirical data in this regard. These (mainly linear) relations are known to 

fail to provide a correct prediction in extreme physical processes associated with non-

equilibrium (such as rarefaction and micro/nano-scales). In equilibrium condition, these 

relations are the most widely accepted methods and have been successfully applied to a 

vast spectrum of applications.  

3.4.2.2 Direct integration of Boltzmann equation  

The Boltzmann transport equation is a first-order nonlinear integrodifferential equation 

in space-time. The scale of the order of the mean free path and appearance of phase space 

makes this equation different from many other mathematical equations. Due to the 

complexity of the collision integral in BTE, providing analytical or numerical solutions for 

this equation are scarce but available [109, 110]. 

Methods of direct integration have been first introduced in [111, 112] for simple 

geometries. These numerical schemes were non-universal, however. More universal 

algorithms in order to provide conservative schemes were later proposed [113]. 

Approaches which combined both numerical and analytical features to estimate the 

collision integrals were also developed [114, 115]. The general procedure in these methods 

is a division of phase space into a regular network of cells on which the values of 

distribution function in the nodes of phase space are stored. The collision integrals are then 

evaluated using the Monte Carlo or the regular quadrature formulae. To evaluate the 

inverse collision integrals, an interpolation in velocity space (in the same velocity lattice 

of nodes) is performed. More details on direct numerical integrations can be found in [110].  
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3.4.2.3 Chapman-Enskog and Burnette 

This class of models is based on an asymptotic expansion of velocity distribution 

function in the Knudsen number (or sometimes mean collision time). In general, it is 

assumed that the velocity distribution function is expressed in terms of the following power 

series 

(0) 2

1 2(1 (Kn) (Kn) ...)f f a a    , 
(33) 

In which the coefficients a are only functions of macroscopic quantities, and Kn is the 

Knudsen number of the flow. The cut-off of this series to close the equations should be in 

a way so that the high-order moments can be calculated with the cut-off speed distribution 

function. The Chapman-Enskog zero-order expansion is the same as Maxwell's equilibrium 

distribution function.  

3/2
2

(0) exp
2 2B B

m m
f

k T k T

   
    
   

c
 

(34) 

In Maxwell expansion, the terms Π and Q are zero, and the result is Euler equations. 

These equations are achieved with the assumption of zero Knudsen number; therefore, they 

can be used (are valid) in the case of zero viscosity and heat transfer coefficient. The 

expansion of the first order expansion of the relation (33) is as follows: 

 (0) 2(1 0.4 1 )f f   QC C ΠCC  
(35) 

 
1/2

/ 2 /Bk T mC c  
(36) 

 
1/2

2 /Bk T m T
p


  Q  

(37) 

The range of validity of this set of relations is restricted to a set of limited problems. 

Higher order expansions lead to Burnett and super-Burnett equations which are ill-posed 

and unstable in transient flow problems. Moreover, they are not consistent with entropy 

inequality (second law of thermodynamics). 
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3.4.2.4 Method of moments 

A popular method (alternative to the Chapman-Enskog expansion) for approaching the 

Boltzmann equation is the method of moments proposed by Grad [116] for the first time in 

the 1940s. The unknown in the Boltzmann equation as shown before is the velocity 

distribution function f. However, in practical applications of fluid dynamics physicists are 

interested in the functions of this distribution function f, from which macroscopic 

properties can be extracted. The method of moments is a general statistical approximation 

to identify these parameters based on their corresponding moments (weighted averages).  

As the evolution equations for the moments of a given order will contain high-order 

moment terms, closure models are inherent to all moment methods. These models are 

schemes which introduce approximations for truncation of the moment hierarchy via a 

representation of higher order moments in terms of lower order moments.   

3.5 Extended moment equations 

3.5.1 Conservation laws from Boltzmann equation 

Thanks to the collisional invariant property of the microscopic properties of mass, 

momentum, and energy, the exact conservation laws can be derived from the Boltzmann 

equation without introducing any assumptions. To this end, microscopic properties 

corresponding collisional invariants ( 21
, ,

2
m m m
 

  
 

c c  ) are multiplied in BTE and then 

integrated over the velocity space. After a series of mathematical manipulations which are 

summarized in Appendix B, and with keeping in mind that ψ depends only on particle 

position and time, the following conservation laws for monatomic gases can be achieved, 

 
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0.
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 

 

 
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(38) 
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As can be seen, these are the customary conservation laws which can be found in almost 

every fluid dynamics books. These balance equations are field equations for macroscopic 

variables. However, the set of equation (38) is not closed unless non-conserved variables 

are defined. On the other hand, these equations do not have contributions from collision 

integral as explained earlier. Due to the presence of non-conserved variables such as Π and 

Q (whose molecular definitions do not yield a collisional invariant), evolution equations 

for these variables should be derived which will be the aim of the next sub-section. 

3.5.2 Boltzmann-based constitutive relationships 

A similar approach to what has been used to derive conservation laws from Boltzmann 

equation can be applied for the derivation of evolution equation of non-conserved variables.  

To yield the general evolution equation for a non-conserved variable, BTE is multiplied 

by ψ = h(n) and integrated over velocity space, i.e.,  

     ( )

2. ,
n nn f

h h f h C f f
t


  


v  

(39) 

Here, unlike what happens in the derivation of conservation laws, the collision integral 

term, denoted by    2,
n

h C f f , is not zero. Using the relation between molecular, stream 

and peculiar velocities and following mathematical operations we have, 

   ( ) ( ) ( ) ( ). .
nn n n nf d

h f h h f h
t dt


     


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(40) 

         ( ) ( ) ( ) ( ). .
nn n n nd

h f f h h f f h
t dt


       
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(41) 
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

  
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(42) 
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(45) 

With the use of material derivative notation, equation (45) can be simplified as: 

   ( ) ( ) ( ). . .
n nn n nD

h f h f h f f h
Dt t

 
        

 
u c u c Λ  

(46) 

The above equation can be written in a way consistent with the form of other 

conservation laws, 

   
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( ) ( ). . .
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n nn nD h f
h f h f f h
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
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 
u c u c Λ  

(47) 

The above relation with the introduction of Ψ(n), Z(n), and Λ(n) as the flux of ( )nh f , i.e., 

kinematic terms due to hydrodynamic streaming effect, and dissipation term due to energy 

loss associated with irreversibility can be rearranged as,  

( ) ( ) ( ) ( )ˆ .n n n nD
h

Dt
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(48) 

Here,  
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With the molecular definitions of stress tensor and heat flux vector 
 
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the following relations can be written as,  
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Here, Ψ and Λ represent kinematic high order terms and dissipation terms defined as: 

 

 
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(51) 

   
2( )

2, .m C f f  Λ cc  
(52) 

These constitutive equations are not present in Grad’s work as his 13-moment closure was 

already in place which explains how Eu’s closure is different from Grad’s closure. Explicit 

derivation of these equations was first provided by Eu [117]. 

It can be seen that these equations contain higher-order moments and the set of evolution 

equations is open. Proper closure methods to provide an acceptable method from both 

mathematics and physics point of view is necessary.  

Grad introduced Hermite polynomial expansions. The collision integral with the 

assumption of Maxwellian molecule was then greatly simplified. However, the Maxwellian 

molecule assumption violates the generality of Grad’s theory.  

The following derivation was motivated by the fact that the calortropy production 

(physically known as the seat of energy dissipation) is originating from molecular 

collisions (therefore collision integral in BTE) which gives rise to the dissipative evolution 

of nonconserved macroscopic fluxes (moments). The balance equation for the calortropy 

(nonequilibrium entropy) can be written as 
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ˆ ( , ) ln ( , , ) 1 ( , , ) .c

Bt k f t f t      r v r v r  
(53) 

Here, fc is the non-equilibrium canonical distribution function and can be called the 

thermodynamics branch of the Boltzmann equation.  

Differentiating the local calortropy density with time and combining it with the Boltzmann 

transport equation the following equation is achieved,  
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(54) 

  2ln , .c

c Bk f C f f     
(55) 

After assuming cf f   and defining the relative velocity 12 2g  v v  : 
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(56) 

In the conventional approach of Grad, the dissipation term is worked out first. However, a 

thermodynamically consistent form of the dissipation term ( )n
Λ  can be obtained if the 

calortropy production term c  is first unraveled and a direct relation between c  and ( )n
Λ  

can be found.  

Another critical step is in the derivation of the modified moment method of Eu is the 

introduction of an exponential form for fc as follows,  
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(58) 

where N and nd are the normalization factor and number density, respectively. The first 

term in left hand side of equation (57) is the equilibrium part leading to the Maxwellian 

distribution function. The second term accounts for non-equilibrium effects. X(n) represents 
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the unknown macroscopic quantities and is associated with conjugate variables to the 

molecular expressions for moment, h(n.) 

The polynomial Hermite expansion used in Grad’s theory may yield negative values in 

high non-equilibrium conditions which is the inherent limitation of the method. We note 

that the upper limit of the summation operator in Eu’s theory is infinite on the contrary to 

all other previous methods in which a finite estimation had been made. This issue is a 

critical difference which sets the Eu’s theory in a better position compared to previous 

counterparts. 

In summary, the exponential form is advantageous as: 

- it is consistent with the additive property of the calortropy and calortropy production from 

a physics point of view 

- it assures the non-negativity of the distribution function regardless of the level of 

approximation from the mathematics point of view 

With denoting the term 
( ) ( )
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n n

n

X h N




 
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 
  as x, and dropping the superscript c for the 

sake of simplicity, the distribution function can be written as,  
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(59) 

A set of notations and dimensionless variables are further defined: 
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the calortropy production can be expressed as,  
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alternatively, we can write,  
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(63) 

This form of the mathematical equation is suitable for so-called cumulant expansion, i.e.,  
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(65) 

With the insertion of the definition of the distribution function (59) into calortropy 

production, the relation between the dissipation term and calortropy production manifests, 
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Calculation of the first reduced collision integral κ1 in terms of X(n) yields the explicit form 

of the dissipation term. Defining ( ) ( ) ( )*n n nh h h    and reminding  
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It can alternatively be arranged as,  
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where ( )

12

nlR  are the scalar coefficients made up of collision bracket integrals of ( )nh  and 

( )

2

lh  for an isotropic system of dilute gases. After comparing (65) , (66), and (68), the 

following dissipation term can be derived as follows, 
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The unknown conjugate variables X(n) are achieved by generalizing the equilibrium Gibbs 

ensemble theory to nonequilibrium processes detailed in [117] as follows,  
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Therefore, the moment equation of non-conserved variables for general type of molecules 

can be written as 
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(74) 

The concept of balanced closure [4] implies that the kinematic high order term in the 

left-hand side, ( )Ψ , and the dissipation term in the right-hand side, 

 (2 ) ( ) ( ) ( )

12 2 1 2, ,l l

l

R X q  


   should be treated in a balanced manner, i.e., same order of 

approximation should be applied to both terms.  

The variation of constitutive relations via balanced closure will be provided in Chapter 

4. The extension of these equations to a more general case of diatomic and linear polytropic 

molecules will be discussed in the next sub-section. 

3.5.3 Extension to diatomic and polyatomic 

When modeling of diatomic and polyatomic gases is of interest, the concept of bulk 

viscosity becomes essential. In such gases, in addition to translational mode, rotational 

modes are also in effect. It is well known that the bulk viscosity of the gas flow which is 

associated with the relaxation of internal, rotational and vibrational, modes of molecules 

becomes zero for monatomic gases. However, for polyatomic gases, this parameter plays 

a significant role. In what follows, the incorporation of the rotational contribution of bulk 
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viscosity in the mathematical model via considering Boltzmann-Curtiss equation is 

explained.  

  3.4.3.2 Boltzmann-Curtiss equation  

The Boltzmann-Curtiss transport (kinetic) equation extends the Boltzmann transport 

equation to take into account the effect of molecular rotation by adding extra terms in this 

regard. The equation for a diatomic molecule and in the absence of external forces reads as 

follows,  

 , , 0
j

f t
t I 

  
   

  
v v r  

(75) 

In the above equation j, I, and θ are the magnitude of the angular momentum, moment 

of inertia and azimuthal angle.  

3.5.3.1 Conservation laws from Boltzmann-Curtiss equation 

Similar to what has been done in section (3.4.1) microscopic properties corresponding 

to collisional invariants ( 21
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(76) 

Here ∆ is the excess stress vector defined as,  
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The statistical definition of ∆ reads as,  
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3.5.3.2 Boltzmann-Curtiss-based constitutive relationships 

The essential steps in the process of extension of the derivation of Boltzmann-based 

constitutive relationships to Boltzmann-Curtiss-based relations is summarized in this 

section.  
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The molecular definitions of stress tensor, excess normal stress, and heat flux vector for 

diatomic molecules are defined as, 
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Here, Hrot and ĥ  denote rotational Hamiltonian of the molecule and enthalpy density, 

respectively. 
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B roth k T E
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  . 
(87) 

where the relation between average rotational energy density
rotE and Hrot reads as, 

( , , )rot rotE H f t  r v . 
(88) 

Finally, the constitutive relation for stress tensor, excess normal stress, and heat flux can 

be written as,  
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Chapter 4. Mathematical modeling of multiphase 

gas-particles flows 

 

4.1 A general categorization of models for multiphase flows 

Mathematical models for the description of dusty gas flows (generalizable to other 

multiphase classes) can be divided into two general categories by the assumptions made in 

modeling the dispersed phase: Lagrangian (where particles are considered as discrete phase) 

and Eulerian (where particles are considered as continuous phase) frameworks. In the 

Lagrangian framework (alternatively known as trajectory, non-continuum or Eulerian-

Lagrangian model), each individual particle is tracked throughout space based upon 

Newton’s equation of motions. The Eulerian framework (also referred to as continuum or 

Eulerian-Eulerian model), the particles are considered as a continuum, and a set of partial 

differential equations in a given coordinate system are solved to characterize the flow. A 

third category (or a sub-category of Eulerian models) can be devoted to mixture models, 

where both phases are defined by solving the continuum-based equation of a single fluid 

with modified properties. In the above categorization we assume that the gas phase is 

always characterized by an Eulerian approach; however, we need to bear in mind that the 

application of the Lagrangian framework in resolving the gas phase not only is feasible but 

also can be a more efficient strategy in specific cases.  

Each category can be divided into some subcategories. The most popular models of the 

Lagrangian family include discrete particle model (DPM) and discrete element method 

(DEM). While DPM can produce fast computations compared to DEM, it is known to be 

appropriate only for modeling dilute particle flow (with particle volume fractions of less 

than 0.1). On the other hand, DEM can provide accurate solutions for a broader range of 
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flow regimes based upon particle concentration. The high computational demands in the 

aforementioned methods motivated the development of models such as the dense discrete 

phase model (DDPM) and multiphase particle-in-cell (MP-PIC) method in which the 

particle–particle, and particle–wall collisions are presented by a force function rather than 

being explicitly tracked. The Eulerian family in comparison with the Lagrangian 

counterpart, is more diverse, however. While two-fluid and mixture models are capable 

candidates for the solution of dispersed flows, volume of fluid (VOF) method, 

homogeneous equilibrium model (HEM) and two-fluid VOF method have shown desirable 

features in resolving separated flows or in conditions where the tracking and locating the 

fluid-fluid interface is of importance. This categorization is summarized in Table 5. 

Table 5 Popular mathematical models for simulation of particulate flows 

 

4.2 Model selection 

 The selection of a proper model is based on the investigated features of the flow under 

study and the capability of the model to resolve the features of interest. In fact, every 

computational model or scheme has its pros and cons which make the method suitable for 

a specific application. From a more general point of view, it is known that the Eulerian-

Eulerian approaches demand less computational cost, while the Eulerian-Lagrangian (or 

Lagrangian-Lagrangian) methods provide solutions with better accuracy. The choice of 

computationally less expensive approach may allow more detailed investigation of the 
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whole transient phase of the flow. While the same may apply to the Lagrangian models, it 

may demand relatively more considerable computational cost. A comparison between the 

two general categories of models of simulating multiphase flows which summarizes the 

merits and drawbacks of each model is provided in Table 6. 

Table 6 Eulerian versus Lagrangian 

Model Strength Shortcoming 

Eulerian 

●  Easy incorporation of particle 

diffusion effects 

●  Simple extendibility to multi-

dimensional flows 

●  A wide range of validity 

 ●  Numerical instabilities 

 ●  Numerical diffusion 

 ●  Large storage requirements 

for multiple particle sizes 

 ● Additional modeling for 

inter-particle interaction 

Lagrangian 

●  Embodying the "natural" solution 

schemes for each phase 

●  No numerical diffusion of the 

particulate phase 

●  No excessive storage 

requirements for multiple particle 

sizes 

●  Need for empirical 

diffusion velocity or more 

expensive Monte Carlo methods 

●  Complexity for coupling 

with Eulerian phase 

●  Computationally 

expensive in high particulate 

loadings 

 

As the table indicates, each model should be applied based on its merit and according 

to the specific requirement of the simulation. The selection of model can be based upon the 

regime defined by the particulate loading of the flow which is demonstrated in the Fig. 5.  
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Fig. 5 Classification of multiphase flows and the coupling effects based on particulate 

loading. Reprinted from [118] with permission. 

The particulate flows (including dusty gas flows) can be categorized into dispersed and 

dense. For particulate loadings higher than 10-3, the regime is categorized as dense, where 

high-frequency particle-particle collisions and contacts influence the flow structure. 

Particulate loading of 10-1 marks the boundary of collision dominated and contact 

dominated flows. The other extreme, i.e., particulate loadings of less than 10-3 corresponds 

to the dispersed flow regime. When the particulate loading is less than 10-6 (or 10-4 in some 

literature), the flow is called sparse, and only a one-way coupled modeling can provide 

satisfactory solutions. In Table 7, the suitable mathematical model based on the loading 

level is illustrated.  
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Table 7 Selection of the most efficient model based on the type of multiphase problem 

 

In the problem of Lunar landing which has been the central motif of this dissertation, a 

wide range of particulate loadings may exist. Moreover, the Eulerian models can provide 

acceptable results in a wide range of applications— especially when the volume fraction 

of the two phases is comparable or when the interaction of the phases signifies the 

hydrodynamics of the flow as shown in Table 7. In Fig. 6, categorization of flow regimes 

based on the volume fraction of particles, number density, and particle diameter is provided. 

Moreover, the regime of interest (marked by a circle) is determined based on the 

approximate values of the aforementioned parameters in a typical Lunar landing obtained 

from previously published results for Apollo descent engine. Thus, the two-fluid Eulerian 

model can be considered as a suitable/efficient tool and has been applied as the modeling 

approach of this dissertation. In the Lunar landing problem as well as the other investigated 

problems in this dissertation, the interface shape and location is not essential. Thus 

dispersed Eulerian models are sufficient for the purposes has been followed during this 

research.  



 

53 

 

 

Fig. 6 The range of encountered regimes in the Lunar landing problem overlaid on the 

classification of the particulate flows based on number density and particles volume fraction 

It is worth to note that both dusty gas flows and gas-droplet flows are a sub-division of 

gas-particle flows. They are distinguished by the fact that mass transfer does not occur in 

the former but occurs in the latter. Thus the above discussions are extendable to gas-droplet 

flows as well.  

The rest of this chapter is devoted to the introduction of the generic form of the two-

fluid model which is the focus of current work. Furthermore, variants of the models for 

different types of problems are discussed, and constitutive relations of non-conserved 

variables which are the primary source of the deviation of models are introduced.  
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4.3 Balanced laws (for the generic two-fluid model) 

The two-fluid model is formulated by considering two separate sets of conservation 

equations which govern the balance of mass, momentum, and energy for each phase of the 

two-phase system.  The interaction of the two phases is then taken into account via source 

terms, i.e., by momentum and heat transfer exchange between the gas and particles. Other 

interfacial effects including lift and gravity can be neglected since they are small compared 

to drag and heat transfer. In cases where the interface tracking is of interest, solving an 

additional face tracking model is necessary. However, in most of the dispersed solid-gas 

multiphase flows, the evolution and growth of interface if not unimportant, it is of 

secondary importance. In this section, the conventional assumptions made for computation 

of dusty gas flows are introduced. Then the general form of the conservation laws is 

provided, and the constitutive equations necessary to close the equations (the essence of 

the present work) are introduced in the subsequent subsections. Finally, we provide the 

normalized form of these equations and briefly explain the significance and role of the non-

dimensional parameters that appear in the mathematical model.  

4.3.1 Assumptions of two-fluid dusty gas model 

A number of assumptions, conventional in the pioneering and previous literature are 

introduced in order to simplify the computations. These assumptions might be further 

refined for specific purpose applications in order to resolve the governing physical 

phenomena which are significant in that specific problem. These general assumptions in 

the majority of the works which considered dusty gas flows are as follows  

– the gas phase is considered as compressible which follows the perfect-gas law; 

– the solid phase is considered as incompressible;  

– the particles have a constant density (constant microscopic density); 

– the thermal and Brownian motion of particles are neglected; 
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– the number density of the particles should be large enough not to violate the continuum 

assumption; 

– particles are assumed to be uniform sized spheres with a constant diameter; 

– the inter-particle collisions are neglected (and thus no pressure term in the solid phase 

conservation law); 

– specific heat of the particles material is constant, and the temperature is uniform within each 

particle; 

– the particles are considered as inert; 

– the gravitational and buoyant forces are negligible; 

– the volume occupied by the solid phase is negligible compared to that of gas; 

– the gas is considered as inviscid. Therefore, viscous and heat-conduction effects are solely 

considered between the gas and particles;  

– the turbulence effects of gas and particles are neglected 

– the effect of particles’ wake is neglected. 

While some of the assumptions introduced above are consequent of fundamental 

characteristics of the model which cannot be ignored, there is room for modifying some of 

the other assumptions which have been used in the previous literature in order to provide 

solutions closer to reality specific to the problem under investigation.  For example, the 

effect of gravity (which finds importance in problems such as volcanic eruptions) can be 

quickly taken into account by additional source terms without disturbing any fundamental 

assumptions [82, 119, 120]. The models for inter-particle collisions has been also proposed 

[121-123]. The viscous effects in the gas phase can also be considered. Kinetic theory 

approaches have also been considered for continuum modeling of the dispersed phase [124].  
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4.3.2 Conservation laws 

In this section, a simplified but general two-fluid model of dusty gas flows will be 

explained briefly. In what follows, the carrier phase (gas) and the dispersed phase (solid 

dust) are indicated by the subscripts g and s.  

Under the conditions above, the conservation law can be written as follows: 

For the gas phase, 

t g g  U F S , (90) 
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moreover, for the solid phase, 

t s s   U F S , (92) 

,
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, (93) 

Here the U, F, and S are the vectors of conservative variables, fluxes, and source terms, 

respectively. The variables t, α, ρ, u, E, p, T, Π, and Q represent time, volume fraction, 

density, velocity vector, total energy, pressure, temperature, stress tensor and heat flux 

vector. Further, D and Q show interphase drag and heat flux, respectively. The dust density 

ρs is assumed to be constant.  

4.3.3 Three-dimensional conservation laws with axial symmetry 

The above system of equations were written in a general form and can be easily re-

written for one to three-dimensional flows. However, a particular case is the three-



 

57 

 

dimensional flows with axial symmetry. A two-dimensional formulation in the two space 

variables (x, r) can be achieved by rewriting the equations in cylindrical coordinates (x, r, 

θ). Axisymmetric flow equations for the inviscid gas phase are provided in here as they are 

the governing equation in most of the cases of this thesis. Extension of this system of 

equation for viscous flows and as well as for the dust phase is trivial.   

1 2( ) ( ) ( )g g g g g
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In the above relation, x and r are the axial and radial directions; u and v are the 

corresponding velocities. F and G are the inviscid flux in axial and radial directions. S1 and 

S2 are source terms responsible for phase interactions and axisymmetric geometry.  

4.4 Constitutive relations 

A set of closure relationships are required to complete the mathematical model 

introduced in the previous section. These constitutive relations are introduced in this 

section. Application of different constitutive relations for the non-conserved variables 

leads to variants of the generic model which will also be discussed here.   
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4.4.1 Volume fraction closure 

This closure is an indication that the phases are treated as interpenetrating continua, 

defined as  

0 1, 0 1,

1.

g s

g s

 

 

   

 
 

(96) 

4.4.2 Equation of state 

The equation of state expresses the gas pressure in terms of other gas properties: 

g gp RT , 
(97) 

where R is the gas constant.  

The equation of state for the solid phase is not needed since it is treated as incompressible. 

The total specific energy of the gas and particulate phases are defined as 

21

2
g v g gE c T  u , 

(98) 

21

2
s m p sE c T  u , 

(99) 

where cv and cm are the specific heat capacity of the gas at constant volume and the specific 

heat of the particle material. 

4.4.3 Drag forces on spherical particles 

According to Miura and Glass [70], the drag force that solid particles exert on the gas 

phase can be expressed as, 

,

3
,

4

s g

g s D g sD C
d

 
 u u

  
(100) 

in which d is the particle diameter and CD is the drag coefficient computed as a function of 

the Reynolds number based on the particle diameter and relative velocity of the particle to 
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the gas (i.e. Re
g g s

d

g

d






u u
 ). Based on experimental studies of Morsi and Alexander 

[125], drag coefficient on a particle can be defined as a function of Reynolds number as 

follows 

1 2
0 2Re Re

D

p p

a a
C a   .  

(101) 

  where 0a , 1a  and 2a  are empirical coefficients which differ for different Reynolds 

numbers. 

The other expression for DC , which is widely used is provided by Durst et al. [126] 

0.68724
(1 0.15Re )

Re
D p

p

C   . 
(102) 

A better estimate is the following well-established semi-empirical correlation [119], 
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(103) 

Other drag coefficient models are also evaluated in the literature [127] including the 

early models by Newton, Stokes and Oseen defined as 

Newton  0.44DC    51000 Re 2 4.10d    

Stokes  
24
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d
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(104) 

Later, a variety of other models with an improved range of validity were proposed, such 

as: 

Klychko [128]  
 
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1
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Gilbert [129]   
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0.48 28 ReDC
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 Models, which consider the Mach number (compressibility) effects, have also been 

proposed by Henderson [131].   
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where,  

2
S M


 . 

(107) 

Knudsen number dependent drag coefficients are also available in the literature [132], 

  0.68724 / Re (1 0.25Re )DC A    where  1/ 1 Kn 3.83 1.28exp( 1/ Kn)A       . 

Some studies on the application of proper drag models in dusty gas flows are available 

in the literature. An example of such studies can be found in [76]. The comparison of 

models indicates that all models tested can produce similar results, except for Stokes and 
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Oseen which are only valid for very small Reynolds numbers (Re<1). Moreover, the 

variation of the numerical results is minimal. Therefore, a wise selection suggests a model 

with less complexity. Regarding the Mach number effects, as mentioned in [133], the 

application of incompressible drag coefficients for Mach numbers in the early supersonic 

regime is sufficient. Therefore, despite the fact that most of the flow problems under 

investigation in this work are compressible flows simple piecewise functions such as the 

one provided in (103) is used. This selection is mainly for keeping consistent with previous 

studies [75, 80, 81] as well as considering the computational efficiency. We note that the 

drag coefficients are algebraic equations that can be easily plugged into the numerical code 

without interfering the generality of the method. When an intermediate solution for the 

problem under study is achieved, the effects of drag model can be further investigated.  

The heat transfer, which is proportional to temperature difference, can be expressed as 

a function of the Nusselt number [134], 

g

, 2

6Nu
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p g
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
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(109) 

Here μg and κg  represent the viscosity and thermal conductivity of the gas, respectively. 

Other relations for Nu number can be found in [135-137]. 

4.4.4 Non-conserved variable of the gas phase 

The primary challenge in modeling the of the majority of the particulate-gas flows is 

the establishment of an accurate hydrodynamic description of particulate phase [138]. 

However, in the Lunar landing problem this is not the case, i.e., the establishment of the 

accurate model is as important as or even more critical than modeling of the dust phase. As 

explained in Chapter 3, the conservation laws can be directly extracted from the Boltzmann 
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equation. With the same approach detailed in subsection 3.5, a set of equations for the non-

conservative variables can be derived. The zeroth and first-order approximation of high 

order terms in this relation would recover the Euler and Navier-Stokes classical 

relationships. However, by a second order approximation (equipped with the concept of 

balanced closure) a non-linear coupled constitutive relationship (NCCR) can be achieved. 

When the viscous effects become significant, the validity of classical relationships are 

questionable, and application of second-order Boltzmann-based relationships are necessary. 

These relations are introduced in this section.  

The constitutive relations from zero-order to second order based on the balanced closure 

of Myong [4] are provided in the Table 8. 

Table 8 Summery of zeroth to second order Boltzmann-based constitutive relationships 
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The bulk viscosity, shear viscosity, and second coefficient viscosity are related 

according to the following relation, 

2 .
3b     (110) 

Here, a distinction should be made regarding Navier-Fourier (NF) and Navier-Stokes-

Fourier (NSF) terms. In the latter, the Stokes hypothesis ( 0b  ) implies 2
3

   . 

4.4.5  Non-conserved variables of the solid phase 

The majority of the previous works which considered dusty gas flows by two-fluid model, 

have applied Euler-type relations (Πs=0 and Qs=0) [64, 66, 70, 71, 78, 80, 133, 139-143] 

capable of describing the hydrodynamics behavior of the particle phase adequately. As the 

collision term scales with the square of particle phase volume fraction, the pressure and 

stress tensor of solid phase tends to zero in dilute limit which makes the pressureless gas 

assumption valid in this regime. However, this leads to a shortcoming of the two fluid 

model due to appearance of delta-shocks and advent of intense particle segregation. 

Moreover, when the role of particle-particle collisions in the description of the solid phase 

is not negligible, the closures models for the solid stress tensor would play a significant 

role in the modeling. The closure models are the chief factor that makes the two-fluid 

models differ from each other significantly [138]. According to Castellanos et al. [144], 

four different granular regimes can be defined as depicted in Fig. 7. These are plastic, 

inertial, fluidized, and entrained regimes which are characterized by the tightly packed 

granular bed, inter-particle collisions, interstitial effects, and large mean free paths, 

respectively. The latter, also known as rapid granular flow, is of central importance when 

the simulation of erosion and consequent entrainment of the particles into flow field due to 

impingement of descent engine plume of a Lunar lander is of interest. Prior to simulation, 

the existing regimes should be distinguished to select the proper mathematical model. A 
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rough but sensible estimate of the regimes can be done by defining three regions in nozzle 

proximity as shown in Fig. 8. The particulate loading and the Stokes number can be used 

to characterize the flow. Region 1, just beneath the nozzle, is the onset of erosion. Here the 

gas flow after experiencing the powerful stand-off shock wave would stagnate due to a 

confrontation with the surface. In this area, the gas static pressure is maximum, and the gas 

velocity is minimum. In the second region, the fictitious passage formed by the stand-off 

shock and the surface acts as a converging-diverging passage accelerating the gas to reach 

supersonic velocities. The maximum erosion happens in this area. In region 3, both the 

particles and gas molecules expand further into Moon semi-vacuum atmosphere and 

undergo free traveling with high velocities. The data range of the simulation results by 

previous studies indicates that the granular flows in the limits of suspensions and early 

fluidized bed may appear depending on the erosion rate.  

 

Fig. 7 A typical phase diagram determining the transition between granular flow regimes as 

a function of particle diameter. Reprinted from [144] with permission. 
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Fig. 8 Graphical categorization of different regions with various specifications. Regions 1-3 

are quantified in the Table 9. 

 

Table 9 summarizes the characteristics of different regions of Fig. 8. 

Table 9 Range of important parameters in different regions of  Fig. 8 

 Region 1 Region 2 Region 3 

ug Very low High High 

us 0 Low High 

ρg O (10-3) O (10-4) ≥ O (10-4) 

ρs Constant Constant Constant 

αs Very low High Intermediate 

αg ≈1 Low Intermediate 

β ≈0 Intermediate High 

St ≪ 1 < 1 ≈ 1 
 

 

Three approaches to define the solid stress tensor (solid viscosity, more specifically) are 

available. In the early models of [145-147], experiments are used to define the dependence 
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of solid phase pressure on the particle volume fraction and also an empirical constant is 

used to define viscosity. These models are known as constant viscosity models (CVM). The 

other class of models, by the analogy from the gas phase, defined a particle turbulent 

viscosity. These models are however restricted to dilute dusty gas flows as the effect of 

particle-particle collision is not included. Moreover, some has tried to develop relations 

based on kinetic theory of the gases and considering a similar analogy with rarefied gas 

flows, leading to the so-called kinetic theory of granular flows (KTGF), class of closure 

models for kinetic-collisional stresses [124, 148-151]. Such an approach can provide a link 

between the microscopic and macroscopic descriptions of the granular flow. These models 

have been mostly applied in fluidized beds and moving beds, however, they can be used 

(with a reasonable level of approximation) in various other applications when the particle-

particle interactions (through binary and frictional contacts) modeling is crucial. One must 

keep in mind that the granular flow of particles is significantly different from the molecular 

gas flows. The main differences are due to 1. elastic collisions in gases versus elastic-

plastic deformation and surface friction in particles and, 2. conservation of kinetic energy 

in an isothermal system for gases versus inexistence of an equilibrium state in granular 

systems without external energy sources [138]. Schneiderbauer et al. [151] demonstrated 

that the model could provide substantial improvement compared to the DEM simulations.  

Two-fluid models based on KTGF has shown desirable capability in providing the particle 

pressure, viscosity and other transport coefficients; besides, less ad hoc adjustments are 

required,  compared to the previously discussed models. However, the method has 

limitations as well [150] and is under development. An alternative model for the models 

above is the application of higher-order constitutive relations which can be derived with a 

similar approach applied for the gas phase, detailed in Chapter 3 of this thesis. The KTGF 

models are known to provide promising results when the volume fraction of particles s , 
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is less than 40% (where the assumption of binary collisions holds true). Had the solid 

volume fraction been higher, the solid phase would undergo multiple particle-particle 

frictional contacts leading to failure of kinetic theory in explaining the physics of dense 

granular media.  

As the basics of the kinetic theory have been discussed in detail in Chapter 3, we refuse 

to repeat those discussions. However, the procedure and the final constitutive relations are 

briefly provided for completeness.  

In what follows the procedure to formulate the KTGF constitutive relations is 

summarized. The  time evolution of the granular temperature can be given by KTGF as, 

     
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where β and γs are the momentum exchange coefficient and the dissipation of kinetic energy 

due to inelastic particle collisions, respectively. Moreover,  
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(113) 

In KTGF, to achieve explicit expressions for the above variables, the distribution function 

is expanded about the equilibrium distribution function to second order (via the Chapman-

Enskog expansion) to yield the following expansion  

,s s sp P I Π  
(114) 

.s s sT  Q  
(115) 
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The unknown parameters in the above relations, viz., κs, λs, μs, and ps, can be calculated 

if the collision integral of the Boltzmann equation for the solid particles are known. A 

simple BGK model will not provide desirable results for particle phase as it does not 

contain the description of particle-particle interactions. Thus, after introducing a joint 

probability function (2)

sf  in terms of solid distribution function fs and pair distribution 

function g (which itself is dependant upon the distance 12 2 1r  r r  and the solid fraction), 

the collision integral of the solid phase can be estimated resulting in explicit expressions 

for pressure, shear viscosity, and thermal conductivity: 
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(118) 

s s s sp T   
(119) 

The above expressions are derived for sufficiently low particle density ( 1g  ) and can 

be applied to the limit of dilute flow. The assumption of 1g  is not valid for high densities. 

According to Chapman and Cowling [86], the shear viscosity and thermal conductivity of 

standard Enskog theory (SET) can be defined as  
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with 1 2 1.016c c  , the relations (120) and (121) can be simplified to,  

1 4
0.7614

5

SET

s s s s

s

b b
b

    
 

 
   

 
,
 (122) 



 

69 

 

1 4
0.7614

5

SET

s s s s

s

b b
b

    
 

 
   

 
. 

(123) 

In most expressions in literature including [124], 1 2 1.016c c  which gives the slightly 

different coefficient 0.771, compared to 0.7614.  

Moreover, the pressure of a dense system is given by [152] 

 1SET SET

s sp p y  .
 (124) 

where ySET is the excess compressibility of the elastic hard-sphere system given by 

4SET

s sy b    .
 (125) 

The generic form of ySET can be written as a function of αs 
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 (126) 

The comparison of the parameters in the above equation provided in [153-155] with MD 

simulations of [156, 157] is provided in reference [138] and is illustrated in Fig. 9 for 

completeness. It can be seen that the expressions of [154, 155] provide a better agreement 

with MD data compared to that of the [153]. 
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Fig. 9 Comparison of the expressions from equation (126) with data from MD simulations.  

Adapted from [138] with permission. 

An analogous and synchronous numerical scheme will be used to solve the 

mathematical model equations for both phases, which will be introduced in next chapter.  

4.5 Dimensionless form of the governing equations 

The following dimensionless variables and parameters are used to derive the non-

dimensional governing system of equations. Here the dimensionless parameters are 

superscripted by *, and the subscript ref denotes the reference values, 

* * * * * *

* * * *

* *

, , , , , ,

, , , ,

, .

ref ref ref ref ref

ref ref ref ref
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




 
 

 

     

   

 

x u
x u

  
(127) 

In the above relations, x and cp are the spatial coordinates and the specific heat capacity at 

constant pressure, respectively. We then define the references and non-dimensional 

parameters as follows: 
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After applying these to equations (90) and (93), the following non-dimensional system of 

equations can be derived:  
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Here the superscript * has been omitted for the sake of simplicity. The reference values for 

the length, pressure, temperature, and velocity are defined for each test case depending 

upon the problem of under investigation.  

4.5.1 The physical interpretation of non-dimensional parameters 

The non-dimensional parameters defined above will become handy in the identification 

of the physical regimes and recognition of physical features which are essential in each 

investigated problem. These parameters are tabulated in Table 10.  

The Reynolds number represents the ratio of inertial forces to viscous forces. High 

Reynolds number implies the dominance of inertial forces. Therefore, the viscous effects 

are negligible, and inviscid Euler equations can adequately model this flow regime. The 

other extreme, i.e., Re 1 , includes a class of flow regimes called Stokes or creeping flow 

that can be modeled by Stokes equation (linearized Navier-Stokes).  

The Mach number is the ratio of fluid velocity to the speed of sound in the medium and 

can be used to characterize the compressibility effects. M=0.3 is the limit of incompressible 

flow where the variation of density is negligible. For higher Mach numbers density 

variation should be taken into account.  

The Prandtl number is the ratio of momentum dissipation to thermal conduction. Pr 1 

implies on the dominance of momentum diffusivity and Pr 1represents the dominance 

of thermal diffusivity.  

The Eckert number characterizing the heat dissipation in high speed flows for which 

dominance of viscous effects is considerable, is defined as the ratio of kinetic energy to 

enthalpy (or heat dissipation to advective transport). When 1Ec , viscous dissipation, 

pressure changes and body forces in the energy equation are negligible. 
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The Peclet number, defined as the ratio of adjective transport rate to diffusive transport 

rate. When Pe , the heat diffusion can be neglected due to the small time scale of the 

advection compared to the large time scale of the thermal diffusion.  

The Nusselt number represents the ratio of convective to conductive heat transfer. 

1Nu   is known as slug flow. When Nu is large, conductive heat transfer (diffusion) is 

negligible. 

Stokes number can be applied to characterize the response rate of the particles to 

changes in fluid motion. When 1St , particles can follow the career phase (one-way 

coupling) and when 1St , particles are little affected by career phase (two-way coupling). 

Froude number compares flow inertia to the external field. The external field in the most 

application is the gravitational forces. Fr  corresponds to a high-velocity flow in 

which gravitational force cannot affect the fluid motion.  

Table 10 Non-dimensional parameters and their physical interpretation 

Non-dimensional number Definition Mathematical equation 
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Inertial forces 
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4.6 Erosion Modeling 

The last important challenge in the proposed strategy for simulation of multiphase effects 

in lunar descent is surface erosion and consequent particle influx into the flow field. A 

practical erosion model must provide information regarding location and time at which 

erosion starts as well as the rate and direction at which particles are lofted from the surface 

and in-fluxed into the computational domain. Due to the erosion of surface, craters might 

be formed and change the initial shape of the surface. This phenomenon might change the 

final solution. However, the effect is not intense. In this work, it is assumed the effect of 

surface variation are negligible similar to what has been assumed in [48]. In case such 

effects are of interest the strategy of the simulation may be modified by applying Eulerian 

multiphase models in which the interface between solid and gas phases is modeled by 

solving another equation as in volume of fluid or level set models. The more accurate 

approach (considering microscopic scales) can be the application of Lagrangian models; 

however, it should be noted that the computational cost would become much larger 

compared to the Eulerian counterpart. In this section, first, the erosion mechanisms are put 

forward. Next, some of the popular erosion models which have been applied in solving the 

Lunar landing problem are introduced, the limitation of each model is discussed, and the 

applied model is described. 

4.6.1  Stationary particle on the sediment bed 

The immobile particle on a sediment bed can experience several forces including shear, 

pressure, interparticle and body forces. In case the moments produced by aerodynamic 

forces about point P exceed the momentum imposed by gravitational and interparticle 

forces, the particle may be mobilized. A schematic of the forces acting on an immobile 

particle are provided in Fig. 10. 
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Fig. 10 The various forces acting on particles on a sediment bed under the action of an external flow. 

Reprinted from [158] with permission. 

 

4.6.2 Forces on an entrained particle 

  The motion of a lofted particle can be affected by various forces including the 

aerodynamic drag dF , aerodynamic lift lF , the gravity force
gF , the Magnus force due to the 

rotation mF , and the electric force EF . The effect of buoyancy upon the particle is negligible 

due to large density ratio defined as the ratio of particle density to air density. The 

gravitational force only acts on the vertical direction and is set equal to -mg, with m as 

particle mass, and g is the acceleration of gravity. 

Fig. 11 depicts the physical mechanism by which aerodynamic drag is generated. Once 

the particle travels relative to the surrounding fluid, it will experience a force opposed to 

the relative velocity by the fluid. This force is the well-known drag which is caused by the 

pressure difference in front of the particle and the wake behind it, as well as the viscous 

effects in which the momentum is transferred from fluid to the particle via molecular 
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movements. The integration of total momentum flux (or total stress) over the particle 

surface is equal to the exerted force.  

di i ij j

S S

F pn dS n dS     
(130) 

The momentum transfer to the particle by the pressure forces (the first right-hand side 

term of the equation (130) is independent of fluid viscosity. However, the second term is 

associated with fluid viscosity and is known as the frictional drag. 

 

Fig. 11 The physical mechanism of a) aerodynamic drag force, b) aerodynamic lift force and 

c) Magnus force on a spinning particle. Reprinted from [159] with permission. 

 

Due to the difficulty in measuring of p and σij distribution over the particle surface, 

equation (130) is not appropriate for aerodynamic drag expression. As an alternative, it is 

shown that the drag force is proportional to particle-to-fluid relative velocity r
u ; 

1

2
D rC A U d rF u   

(131) 

In the above relation, the aerodynamic drag coefficient is indicated by DC . The particle 

cross-section in direction of flow is denoted by A and for spherical particles, is equal to 
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πd2/4. rU  is the magnitude of ur. Moreover, 
piu  and iu are the ith particle velocity and fluid 

velocity components, respectively, and the ith component of  ur  is as follows, 

ri pi iu u u  . 
(132) 

Thus, rU  can be defined by 

2 2 2 1/2

1 2 3( )r r r rU u u u   . 
(133) 

As the aerodynamic drag coefficient is a function of particle Reynolds number

Re /p rU d  , the magnitude of the drag force is dependant upon the flow pattern.  This 

function, (Re )D pC , has been widely investigated by various experimental works for 

different flow patterns. Fig. 12 illustrates a summary on dependance of drag coefficient on 

Reynolds number and flow pattersn. 

 

Fig. 12 Aerodynamic drag coefficient for different flow regime in terms of Reynolds number. 

Reprinted from [159] with permission. 

The Reynolds regimes shown in Fig. 12 can be characterized as follows:  
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Re 1p
(known as Stokes region) corresponds to high viscous effects and negligible fluid 

inertia. The pressure and viscous stresses on the particle surface in this region were first 

determined analytically to be 24 / ReD pC   [160] for Reynolds numbers smaller than 10. 

When 3 510 Re 3 10p   , the drag coefficient is close to 0.5 and relatively independent of 

Reynolds number. Moreover, viscous drag is negligible compared to pressure-induced drag.  

Finally, for 5Re 3 10p   , a significant decrement of drag coefficient from about 0.5 to 

approximately  0.1 can be seen owing to the variation of pressure distribution over the 

particle surface, and a transition of the laminar boundary layer to turbulent boundary layer 

on the particle can be observed. In section 4.4.3, various relations for drag coefficients were 

provided.  

The Bernoulli equation explains the aerodynamic lift mechanism shown in Fig. 11(b). 

This equation states that the total head produced by velocity head, pressure head and 

gravity head along the streamline, is constant and can be derived from motion equations 

for inviscid barotropic flow in a steady-state condition.  

21

2

p
u gh const


   .  

(134) 

u and h are the velocity of flow along the streamline and the height of streamline 

corresponding to reference level, respectively. The aerodynamic lift phenomenon is the 

result of pressure gradient caused by shear in the flow. This pressure gradient is normal to 

the shear and in the direction of decreasing velocity. In other words, the faster-flow region 

over the upper surface induces lower pressure compared to the lower surface which is 

exposed to lower velocity and higher pressure. The aerodynamic lift can be expressed by 

21
( )

2
l lC A U d F . 

(135) 
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In the above equation, lC  corresponds to lift coefficient and is correlated to drag 

coefficient, 0.85l DC C  given by Chepil [161] and the gradient of 
2

U  u  is denoted as 

2U . Here, the shape of the particles plays a substantial role in defining Fl. For instance, 

a spherical particle only when is placed in a strong shear flow can experience lift force, 

whereas in the case of a non-spherical particle, considerable lift force may take place even 

in the uniform flows due to the velocity gradient that geometry imposes, and hence the 

distribution of pressure on the surface. 

As shown in Fig. 11(c), for a spinning particle a force perpendicular to both direction of 

motion and rotation is generated which is know as Magnus force. In order to explain 

Magnus force in terms of the Bernoulli equation, the viscous effects in relation to particle 

should be taken into account. The flow at the upper surface of the rotating particle (side A) 

undergoes pressure reduction due to an increase of the velocity which itself is a result of 

the same direction in rotation of particle and fluid motion (in the presence of viscous forces). 

It is trivial that the opposite side experiences contrary conditions. The Magnus force is 

proportional to Re p
, and the ratio of circumferential speed to the magnitude of relative 

velocity, /s rU [162]. In works of [163, 164] regarding the motion of sands grains in the 

atmosphere, the following relation has been applied,   

 

 

3

3

, for low Re numbers
8

, for high Re numbers
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 

 
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m p r

m p r

F Ω u

F Ω u

  
(136) 

In the above equations,
pΩ  stands for angular particle velocity and mC  is a coefficient 

that accounts for the Magnus force dependency on Re p
 and /s rU . 

In the case of charged soil particles, the motion of windblown particles generates an 

Electric field near the surface [165]. These particles may experience an electric force e
F  
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with the strength as large as the gravity force. According to Zheng et al. [165], only the 

vertical component can define the electric field, and the horizontal component can be 

neglected. Accordingly, the electric force for a particle of mass m  and the particle specific 

charge eC  (charge per unit mass) can be written as 

e emCF E .  
(137) 

In summary, the equation of particle motion for a particle of mass m  with velocity 
s

u  

can be expressed by the forces detailed above: 

d
m

dt
    s

d l g m e

u
F F F F F .  

(138) 

By using the definition of the forces we have  
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(139) 

In the case of a particle with the spherical shape, 3 / 6sm d  and 2 / 4A d , the 

above equation can be written in the following form: 

 23 3 3

4 4 4

d l m
r e

s s s

d C C C
U U g C

dt d

  

  
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r p r

u
u Ω u E . 

(140) 

 

4.6.3 Modes of particle motion 

Various modes of motion may occur during wind erosion for different particle sizes, some 

of which may also be applicable in the Lunar landing problem. Bagnold [166] classified 

the particle motion based on experimental observations into three categories: Suspension, 

saltation, and creep which are schematically demonstrated in Fig. 13.  
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Fig. 13 Suspension, saltation, and creep of grains during wind erosion. Reprinted from [159] with 

permission. 

Suspension 

The dust particles are suspended in air due to small terminal velocity which by definition 

is the relative velocity of the particle to fluid at which the particle acceleration is negligible. 

The turbulence in the atmospheric boundary layer disperses the dust particles away from 

the surface, and the airborne grains can travel up to thousands of kilometers by means of 

the atmospheric circulation. Since the residence time of dust particle is proportional to 

terminal velocity, the suspension can be divided into long-term and short-term suspension. 

For the very fine particle (less than 20 m ) they can be suspended for several days which 

refers to a long-term suspension. The short-term suspension is covered by the particles with 

a diameter between 20  and 70 m  that remain suspended for typically several hours. The 

particles in the Lunar atmosphere would mostly experience long-terms suspensions due to 

lower gravitational forces (compared to the eath) and less resistance from the semi-vacuum 

condition of the Moon.  
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Saltation 

The bouncing off action of the particles across the surface during erosion phenomena is 

called saltation.  The particles are initially lofted off from the surface with the steep vertical 

ascent then traveled horizontally and eventually struck to the surface with the small impact 

angle. It is observed that the ascent angles are about 55  and the striking angles are around 

10 . 

Creep 

Particles with a diameter larger than 1000 m  are heavy to be entrained into flowfield 

under normal atmospheric condition. However, they can roll on the surface by wind or the 

impact of the saltation particles. This phenomenon is known as creep. 

4.6.4 Phenomenology of soil erosion on the Lunar surface 

The soil erosion is a complex phenomenon which has been studied via various 

theoretical, computational and experimental investigations from different viewpoints. The 

unique properties of lunar environment and regolith make the issue even more complicated. 

Replicating the lunar environment for conducting experiments is almost impossible. 

Therefore experimental investigations are not sufficiently reliable. Theoretical and 

numerical studies are still in the development stage, and even with the significant effort 

which has been put in previous research studies [41, 42, 45, 46, 53, 60, 167, 168], a 

comprehensive model which can explain physics of the erosion even terrestrially is not 

available to date.  These observations make one of the most critical shortcomings of solving 

the problem of Lunar landing from a theoretical point of view. Before selecting erosion 

model, it is beneficial to know about the erosion mechanisms.  

Four possible erosion mechanism to form craters have been identified by Metzger et al. 

[60] which are summarized as follows:  
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4.6.4.1 Viscous erosion (VE) 

 Viscous erosion takes place when the shear stress on the surface overcomes the critical 

cohesive strength of the soil and causes the solid particles to creep along the surface. The 

rolled particles elevate the possibility of particle-particle collision; accordingly, these 

collisions can lead to scattering of the particles into the flow field.   

4.6.4.2 Diffused gas eruption (DGE) 

 The diffused gas eruption occurs when the gas penetrates into a porous media and 

loosens the porous soil such that the soil layer could be fluidized. Therefore, it can be 

erupted at any location and cause the solid particles to be suspended along with it. 

4.6.4.3 Bearing capacity failure (BCF) 

 When the pressure becomes higher than bearing capacity of the soil, a narrow cup shape 

is created which has unstable circumstances and can easily collapse under the gravity force. 

Consequently, many solid particles would entrain to flow field. 

4.6.4.4 Diffusion-driven flow (DDF) 

The drag force of fluid jet through the pore spaces of the soil reacts against the grains 

posing a distributed body force in the bulk of the soil which can shear the material.  

The dominant erosion mechanism on the lunar surface is viscous erosion. Due to the 

existence of a semi-vacuum, the soil layers are tightly packed therefore DGE, and DDF 

mechanisms are not in effect during the Lunar surface erosion. Besides, bearing capacity 

failure mechanism is negligible because of high packing density and bearing capacity of 

the Lunar regolith. However, some simulations results [36], which may represent the 

existence of this mechanism make this assumption subject to further investigations.  

Viscous erosion is associated with:  

- aerodynamic entrainment in which aerodynamic forces are dominant compared to 

gravitational forces;  

- saltation bombardment in which high-energy particles dislodge other particles by colliding; 
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- aggregate disintegration in which particles get together due to thermal cycling and cohesion, 

then break apart when a significant force is exerted [159]. The contents above are 

summarized in Fig. 14.  

 

Fig. 14. Erosion mechanisms and their importance in lunar landing problem 

A simplified yet potent model to simulate erosion on the surface is the Roberts’ erosion 

model. According to Roberts [42], when the induced shear stress on the ground exceeds 

the threshold stress, erosion with a mass flux proportional to the excess shear will occur: 

1

2
cau      

(141) 

In the above equations,   is erosion rate (mass flux), au  is the fraction of gas velocity 

that the particles can obtain, τ is shear stress on the surface, and c  indicates the threshold 

stress below which erosion does not occur defined as 

tanc C P   . 
(142) 

Here, ,C P  and   are cohesive stress, gas static pressure on surface and friction angle, 

respectively. The coefficient a  is 

1

1 1 1

2 4
a
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 
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,  
(143) 
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where, 
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(144) 

From the above relations, it is clear that the coefficient a  is dependent on various 

parameters. In the equation (144), c  and cT  are the engine chamber viscosity and 

temperature, h is the hover altitude, s  and D are particle density and the particle diameter 

of regolith, hk  is the hypersonic factor which is defined by   21 nM   , where   is the 

ratio of specific heats and the Mach number at nozzle exit plane is specified by nM . Further, 

  in the above equation is related to R gas constant as well as drag coefficient, DC  (set 

equal to the constant value of 0.2 by Roberts) and engine thrust, F. 

Less sophisticated models can be derived by an analogy from sediment beds research area. 

More sophisticated models based on wind erosion are also available; However, the 

dependency of these models on regolith properties which are mostly unknown (or at best, 

limited) makes the use of these models impractical. Moreover, empirical relationships to 

take into account the particle density, diameter and gas density and velocity, and gravity 

are provided by [46, 167, 168].  
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Chapter 5.  Numerical approach 

5.1 Fundamentals of numerical simulation 

When an initial mathematical model with a proper level of approximation for the 

physical problem to be solved is selected, the next step is the choice of discretization 

method. It is essential to select the efficient method among the various available numerical 

methods for the solution of the specific system of equations. Important factors which affect 

this selection are the accuracy of the solution and computational expense (or power), and 

a compromise between these two should be taken into account. The discretization method 

involves two steps: space discretization and equation discretization. Space discretization is 

the introduction of a mesh to approximate the continuum space into a finite number of grids 

or points in which the solution values has to be determined. Equation discretization, on the 

other hand, implies the transformation of differential or integral equations to discrete 

algebraic relations to yield the unknown values.  

5.1.1 Discretization methods 

The most favorite discretization techniques in computational fluid dynamics (CFD) are 

finite difference method (FDM), finite element method (FEM) and finite volume method 

(FVM). The structure of a numerical method is depicted in Fig. 15. 
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Fig. 15 Structure of a numerical simulation. Reproduced based on [169]. 

The finite difference method is the simplest discretization method which is based on the 

properties of Taylor expansions. The FDM formulas can be defined in a general manner 

for first and higher order derivatives. While FDM is easy to code, capable of providing 

high-order accurate solutions and can be benefitted from hp-additivity, it cannot be used in 

complex geometries and unstructured grids. Another widely used discretization method is 

the finite element method, which was originated from the field of structural analysis. The 

method was first applied in fluid dynamics problem in the late 70’s and continued its 

development till date. It is based on variational methods, can reach any order of accuracy 

and is applicable on an unstructured grid. In FEM the reconstruction data are employed 

from within the element. One of the main drawbacks of the FEM method is the inability of 

providing explicit semi-discrete form. In other words, the method is inherently implicit; 

However, it can be explicit with major modifications. The final category is the finite 

volume method which solves the integral formulation of the conservation laws directly in 

the physical space. Besides the arbitrary mesh handling capability, the methods of 
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evaluation of the fluxes on the surfaces of the control volumes make the FVM a very 

flexible tool. The main weakness of the FVM is the difficulty associated with computation 

of high order solutions especially on unstructured grids which makes finite volume method 

limited to second-order accuracy in most applications.  

5.1.2 High order methods 

Another class of discretization methods which are gaining popularity in fluid dynamics 

field from fundamental fluid mechanics problems to more sophisticate wave-based 

problems of computational electromagnetics are the so-called high order —higher than 

second-order—spectral methods. The primary goal here is to provide a high-order 

conservative scheme that has a compact formulation and can handle complex geometries 

in a computationally efficient manner. In these methods, high order solution is achieved by 

increasing the polynomial order, and some of the popular subcategories include spectral 

difference (SD), spectral volume (SV), and flux reconstruction/correction procedure via 

reconstruction (FR/CPR) and discontinuous Galerkin (DG) method. In spectral (finite) 

volume method each spectral volume is further subdivided into control volumes depending 

on the desired order of accuracy, and the high-order reconstruction is based on cell-

averaged state variables from these control volumes [170]. In spectral difference method, 

the concept of discontinuous and high-order local representations is used to achieve 

conservation and high accuracy in a manner similar to the DG and SV methods. The 

difference is the application of the simpler finite-difference formulation to increase 

efficiency [171]. Flux reconstruction approach applies the differential form of the equation 

same as what is done in SD. However, in FR method the reconstruction of flux polynomial 

is achieved via a more general scheme compared to the interpolation procedure used by 

SD. By such general reconstruction, other schemes (DG, SD, and SV) can be recovered.  

The extension of FR approach [172] to simplex elements provided lifting collocation 
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penalty (LCP) framework [173]. The FR and LCP schemes are later renamed to CPR by 

their creators as both the methods provide a same final formulation. Interested readers are 

referred to the review papers of Ekaterinaris [174] and Wang [175] for more details 

regarding the comparison of high-order spectral methods.  

In discontinuous Galerkin formulation in comparison with continuous counterpart, 

discontinuous basis functions are applied (local elemental mass matrix of the finite element 

formulation versus globally coupled mass matrix of continuous finite element method). 

The discontinuous feature of the basis functions makes DG method more flexible. For 

example, arbitrary triangulation with hanging nodes can be allowed. P adaptivity can be 

achieved as the polynomial degree, or even the basis functions can be defined for individual 

elements independent from neighbor elements. Embarrassingly high parallel efficiency is 

also achievable due to extremely local data structure [176].  

These type of methods are known to benefit from the advantages of FVM and FDM at 

the same time. In the current thesis, a DG discretization is applied due to high order 

capability of the method which is desirable in most of the investigated problems, as well 

as the consistency of the selected mathematical model with some inherent features of the 

scheme which will be discussed in the following sections.  

5.2 A numerical framework based on a modal unstructured 

discontinuous Galerkin method 

5.2.1 Review of literature 

First introduced by Reed and Hill [177] and further developed by [178-180], the DG 

method has become a prominent tool for solving the fluid dynamics governing equations. 

While the DG method has been successfully applied to various classes of problems such 

as compressible and incompressible flows, aeroacoustics, magneto-hydrodynamics, and 
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many more [181], it has recently also found its way into the multiphase problem. This 

application is driven by the improvement of the method, as well as recent advances in 

computer resources, which make the DG method a feasible tool for a more substantial 

number of industrial applications. 

Sun and Wheeler [182] used primal DG with an interior penalty to solve the coupled 

system of flow and reactive transport in porous media. Klieber and Rivière [183] presented 

adaptive techniques in space and time and showed that the proposed DG schemes on 

heterogeneous media are robust. Franquet and Perrier [184] developed a robust high order 

DG method for compressible multiphase flows based on the Baer and Nunziato type 

systems and reported good agreement with experimental results. They also extended the 

method to reactive multiphase flows [185].  Owkes and Desjardins [186] applied the DG 

method to conservative level set equations for interphase capturing in multiphase flows.  

Lu et al. [187] presented a Runge-Kutta DG method together with the front tracking 

method for solving two-medium gas-gas and gas-liquid flows. They proved that the method 

has the capability of enhancing the resolution near discontinuities in the single medium and 

material interfacial vicinities. de Frahan et al. [188] obtained the DG solution for 

multiphase flows using the Mie-Grüneisen family of equations of state. They also show 

analytically that solving the non-conservative weak form of the equations and limiting of 

a suitable variable can prevent spurious oscillations. Recently, Dumbser and Loubère [189] 

proposed an accurate nonlinear a posteriori stabilization of the DG method and applied the 

method to the Baer-Nunziato model in two-dimensional space. Moortgat and Firoozabadi 

[190] developed a vertex-based DG method of multiphase compositional flow on 3D 

unstructured grids. Diehl et al. [191] obtained the solutions of the Navier-Stokes-Korteweg 

equations for compressible liquid-vapor multiphase flow with phase transition using the 
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local discontinuous Galerkin (LDG) method. It was shown that the approach is reliable and 

efficient in two and three space dimension. 

 Although these recent studies demonstrated the capability of the DG method for very 

diverse problems, few mathematical models pertaining to multiphase flow categories or 

regimes have been investigated using the DG method. To the best knowledge of the author, 

there is no previous work on applications of a high order DG method to solve a two-fluid 

model of dusty gas flows. Further, in flow problems with strong discontinuities and the 

presence of stiff source terms due to the coupling effects in the two-fluid model, the mere 

application of high-order methods without proper treatment of numerical artifacts or 

without proper handling of the non-homogeneous part of the partial differential equation 

will generally lead to divergence, an oscillatory solution or in the best scenario a huge 

computational penalty, caused by small time steps. 

The equations of the dusty gas flows described in the previous section are discretized 

using a modal discontinuous Galerkin (DG) method. The essential parts of the modal 

unstructured DG method developed in the present work—in particular, high order accuracy 

and positivity/monotonicity preserving property—are summarized in this section. For a 

more detailed discussion on general DG methods, readers are referred to [178-181], for DG 

implementations, and [192-195] for limiter-related issues. 

5.2.2 A modal DG formulation for inviscid (convection dominated) 

flows 

The mathematical model of interest in the present work can be written in a compact 

form; 

   inv ( ) ( ) in ,Ω 0, ,Ω ,t t t       U F U S U   
(145) 
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where Ω denotes a bounded domain, and U, Finv, S are conservative variables vector, 

inviscid flux vector, and source terms vector, respectively. The solution domain can be 

decomposed by a group of non-overlapping elements, Ω = Ω1⋃Ω2⋃...Ωne, in which ne is 

the number of elements. The partial differential equation of (145) cannot allow for 

solutions with discontinuities. By multiplying a weighting function ϕi into the conservative 

laws (145) and integrating over the control volume for each element, the following 

formulation can be derived: 

 inv( ) ( ) ( ) ( ) ( ) Ω 0
k

t d  


    U x F U x S U x . 
(146) 

In order to construct a discretized system of the conservation laws, the global spatial 

domain Ω can be approximated by Ωh where ΩhΩ as h0. The approximated domain, 

which is a tessellation of the space by bounded elementary control volumes, = {Ω }h k , is 

filled with ne number of the non-overlapping elementsΩk h . The exact solution of the 

governing equations can be approximated by the numerical solution in every local element 

as 

1

1

( , ) ( , )
ne

e n

h h h h

e

t t


    U x U U x U U . 
(147) 

By splitting the integral over Ωh into series of the integrals over the sub-elements and 

applying the integration by part as well as divergence theorem to the equation (146)(146), 

the elemental formulation reads as 

inv inv
ˆ( )dΩ ( ) ( ) ( ) ( )dΩ

( ) ( )dΩ ,

k k k

k

t h i k i h i h k

i h k

nd   



  



     



  



U x x F U x F U

x S U
 

(148) 

where n̂  is the outward normal vector of the element interface and Uh is the p-exact 

polynomial approximated solutions of the U on the discretized domain of Ωh. Uh can be 
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expressed as the polynomial field that sums the multiplication of local degree of freedom 

with the corresponding smooth polynomials of degree P in the standard element:  

( ) ( )
P

h i i

i

U t U x . 
(149) 

Here Ui (t) and ϕ(x) denote the local degree of freedom and the basis function, which can 

be chosen to be any continuous polynomial function, respectively.  

In the one-dimensional case, the orthogonal scaled Legendre functions were selected 

as basis functions, while a linear mapping function was used for mapping from the physical 

space to the standard element. In the two-dimensional case, the PDK polynomials [196] 

were selected as basis functions, while a collapsed coordinate transformation was used to 

transfer the triangles in the physical domain to the standard square elements, Ωe, in which 

the coordinates (a, b) are bound by constant limits  

{( , ) 1 , 1}a b a b   R . 
(150) 

Another transformation was introduced to transfer the triangle in the physical space into 

the computational space where the new local coordinates have independent bounds, as 

depicted in Fig. 16. A suitable coordinate system, which describes the triangular region 

between constant independent limits, can be defined by the following inverse 

transformation: 

(1 )(1 )
1,

2

a b
r w b

 
   . 

(151) 

New local coordinates (r, w) can then define the standard triangular region as follows: 

{( , ) 1 , ; 0}r w r w r w    T . 
(152) 

For more details on the various transformations used in the DG method, readers are referred 

to subsections 5.3-5.10 and the text book  [197].  
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Fig. 16 Coordinate transformation 

 

The simple and efficient local Lax-Friedrichs (LLF) flux function, commonly used in 

the DG method, is applied to all the multiphase test cases in the present study. Despite the 

dissipative nature of the numerical flux, it improves the linear stability of the DG numerical 

approximation. The dimensionless form of the LLF flux is defined as  

       ,invinv ,inv ,inv

1
( ) f ,

2
ih h h i h i h h hC          

 
F U U U F U F U U U , 

(153) 

where C is the maximum modulus of the eigenvalues of the Jacobian matrix, 

,inv
min( , ) max( , )

max | F ( ) |i
U U u U U

U
    

 , and for convex fluxes, it reads as 

 max ,S SC v a v a      . Here /Sa T M  is the speed of sound at an elemental 

interface, and the superscripts (+) and (–) denote the inside and outside of an elemental 

interface, respectively. 

Moreover, a third-order accurate, three-stage total-variation-diminishing Runge-Kutta 

method was employed for time integration, owing to its simplicity, efficiency, and 

robustness. In order to minimize the temporal discretization error, the time step was set in 

such a way that the Courant-Friedrich-Levy (CFL) criterion is always satisfied. The Gauss-

Legendre quadrature rule was used to calculate the volume and surface integrals in (148), 

which are proved to be 2P and 2P+1 order accurate, respectively.  
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5.2.3 A modal DG formulation for viscous (convection-diffusion 

problems) flows 

The mathematical model of interest in the present work can be written in a compact 

form; 

   inv vis( ) ( , ) ( ) in ,Ω 0, ,Ω ,t t t         U F U F U U S U   
(154) 

As can be seen in (154), when the solution of viscous flows is of interest, an approach 

for estimation of the derivatives of the conserved variable which appear in the viscous flux 

terms should be applied. In this regard. These first-order derivatives will change into 

second-order derivatives when the viscous fluxes are evaluated. These terms cannot be 

accommodated directly in a weak variational formulation using a discontinuous space 

function. One possible approach is the addition of a set of separate equations to regard the 

gradient of the conservative variables as an auxiliary set of unknowns, as proposed by Bassi 

and Rebay [198]. In this work A is chosen to be the derivatives of the conserved variables 

U, i.e., A U . This approach is known as mixed DG formulation and will result in a 

coupled system  

inv vis

0,

( ) ( , ) ( ).t

 

    

A U

U F U F U U S U
 

(155) 

In a similar way to (149) we can write, 

( ) ( )
P

h i i

i

U t U x  and ( ) ( )
P

h i i

i

A t A x . 
(156) 

where Ai(t) denotes the local degree of freedom for the auxiliary variable. By following the 

similar procedure outlined in section 5.2.2 for an inviscid system of equations,  

 ( ) ( ) Ω 0
k

d 


  A x U x  
(157) 

 inv vis( ) ( ) ( ) ( ) ( ) ( ) ( ) Ω 0
k

t d   


     U x F U x F U x S U x  
(158) 
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ˆ( ) dΩ ( ) ( ) dΩ 0,
k k k

i h k i h i h kA nd   
  

       x x U x U  
(159) 

inv inv

vis vis

ˆ( )dΩ ( ) ( ) ( ) ( )dΩ

ˆ( ) ( ) ( ) ( )dΩ ( ) ( )dΩ ,

k k k

k k k

t h i k i h i h k

i h i h k i h k

nd

nd

   

   

  

  

     

     

  

  

U x x F U x F U

x F U x F U x S U
 

(160) 

The process of estimation of surface and volume integrals are analogous to the inviscid 

system procedure. However, for the auxiliary terms, a central flux splitting scheme is 

applied.  

     

 

,visvis ,vis ,vis

,aux

1
( ) f , , , , ,

2

1
f ,

2

ih h h h h i h h i h h

i h h h h

       

   

   
 

    

F U U A U A F U A F U A

U U U U U

 
(161) 

The formulations outlined in sections 5.2.2 and 5.2.3 present a sample formulations that 

can be applied for convection dominated and convection-diffusion dominated systems, 

respectively. However, some of the features (for example the numerical fluxes) can be 

chosen based on the properties that each specific scheme suggests.  

5.3 Elemental transformation 

In order to perform the numerical integrations appear in (160), i.e., surface and volume 

integrations that involve basis functions, it is beneficial to define the bases over the 

standard elements.  

5.3.1 One-dimensional elemental transformation 

In the case of one-dimensional problems, the local element Ωh in space coordinate x is 

transferred to standard element Ωe through the following sub-parametric mapping.  

1

2 1i
h

i

x x

x xi
 




   


 

(162) 

with the inverse transformation as,  
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1

1 1

2 2
i i ex x x x

 


 
     

(163) 

The master element, in the one-dimensional case, is defined in the range of   [ 1,1]   , 

as shown in Fig. 17. 

The transfer Jacobians will be, 

x

x
x





  


J , / 2x x
x







  


J . 
(164) 

 

 

Fig. 17 Schematic diagram of the linear mapping of the 1D element. 

5.3.2 Two-dimensional elemental transformation 

Quadrilateral elements 

A mapping shown in  is used to transfer the physical element in Cartesian coordinate (x, 

y) to a standard quadrilateral element  1 2, [ 1,1]     as follows,  

1 2 1 2 1 2 1 2
1 2 3 4

1 2 1 2 1 2 1 2
1 2 3 4

(1 )(1 ) (1 )(1 ) (1 )(1 ) (1 )(1 )

4 4 4 4

(1 )(1 ) (1 )(1 ) (1 )(1 ) (1 )(1 )

4 4 4 4

x x x x x

y y y y y

       

       

       
   

       
   

 
(165) 

The transfer Jacobian form xy-coordinate to 1 2 -coordinate reads as follows, 

1 2

1 2

1 2

1 2

( , )

( , )
xy

x x

x y
J

y y


 

 

 



  
  
  
   

   

 
(166) 

where,  
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 

 

 

 

2 2 1 2 3 4

1

2 2 1 2 3 4

1

1 4 1 1 3 2

2

1 4 1 1 3 2

2

1
(1 )(x x ) (1 )(x x )

4

1
(1 )(y ) (1 )(y )

4

1
(1 )(x x ) (1 )(x x )

4

1
(1 )(y ) (1 )(y )

4

x

y
y y

x

y
y y

 


 


 


 



     




     




     




     



 
(167) 

 

 

Fig. 18 Schematic diagram of the linear mapping of the 2D quadrilateral element. 

 

Triangular elements 

For triangular elements, more care is required in the process of transformation of a 

physical element to the standard one. Here, a special coordinate mapping the so-called 

collapsed coordinate is used to fulfill the transformation. The two-step transformation, 

depicted in Fig. 19 includes:  

1. Transformation of an arbitrary triangle into the canonical (right triangle) element by 

the following, 

1 2 1 2
1 2 3

1 2 1 2
1 2 3

1 1

2 2 2

1 1

2 2 2

x x x x

y y y y

   

   

       
        

     

       
        

     

 
(168) 

Here,  
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1 2

1 2 2 1 3 1

2 1 2 11 2

1 2

( , ) 1
Area / 2

( , ) 2
xy

x x

x x x xx y
J

y y y yy y
 

 

 

 



  
     
     

      
   

 (169) 

2. Mapping of the right triangle element t

e  the standard square element e  by the 

following transformation 

1
1 2 2

2

.
1

2 1,
1


  




  


 (170) 

for which,  

1 2 1 2

1 1

1 21 2 2

2 21 2

1 2

( , ) 1

( , ) 2
J   

 

   

  

 



  
   
   
   
   

 (171) 

In order to perform collapsed coordinate transformation, the master triangular and 

quadrilateral elements should be considered as follows, 

  

  

1 2 1 2 1 2

1 2 1 2

, 1 , ; 0 ,

, 1 , 1 .

t

e

q

e

     

   

     

     
 (172) 
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Fig. 19 Schematic diagram of the linear mappings of the 2D triangular element. 

5.3.3 Three-dimensional elemental transformation 

For mapping of the tetrahedron elements in physical space to the canonical master element 

  1 2 3 1 2 1 3 1 2, , 0 1;0 1 ;0 1c

e                    (depicted in Fig. 20), the 

following linear transformation is applied, 
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Fig. 20 Schematic diagram of the linear mapping of the 3D tetrahedron element 

5.4 Basis functions 

In this section, we introduce functions in order to construct a polynomial basis for 

polynomials of degree P on standard reference elements which were introduced in the 

previous chapter. These are local functions restricted to an element and are the heart of the 

discontinuous Galerkin methods. Two popular class of polynomials are frequently used in 

discontinuous finite element methods: Lagrange polynomial and Legendre polynomial. 

The former is a non-hierarchical basis while the latter is a hierarchical basis. The Lagrange 

polynomials (eigenfunctions of a particular Sturm-Liouville problem) are particularly 

useful as an interpolation basis. The Legendre polynomials are a particular form of 

orthogonal Jacobi polynomials. The orthogonality property leads to helpful features such 

as block matrices which can be solved efficiently. This remarkable property will be useful 

in handling the source terms which will be discussed in section 5.10 in details. The use of 

the nodal basis will indicate a non-hierarchical expansion associated with a set of nodes; 
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however, the modal basis will typically represent a hierarchical expansion. These bases are 

called modal because the unknowns are the coefficients of the expansion functions (also 

known as modes). 

A schematic of the mass matrices computed by Lagrange and Legendre basis is shown 

in Fig. 21.  

  

Fig. 21 Comparison of typical mass matrices corresponding to Lagrange (right) and 

Legendre (left) bases 

Due to favorable properties such as recursion and orthogonality, the Legendre 

polynomials are used as basis functions in this work which will be introduced for one, two, 

and three-dimensional space in the following subsections. These functions are solutions to 

the Legendre differential equation. The nth -order Jacobi- polynomial , (x)nP   is given by  

, ( 1)
(x) (1 x) (1 x) (1 x) (1 x) , 1

2 !

n n
n n

n n n

d
P

n dx
           

 


       
(175) 

5.4.1 Basis functions for one-dimensional space  

In one-dimensional space, the Legendre polynomials (also known as Legendre functions) 

are denoted as ( )nP   and can be achieved by Rodrigue’s formula, 

 21
( ) 1

2 !

n
n

n n n

d
P

n d
 


  . 

(176) 

The orthogonality property of Legendre polynomials implies: 
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(177) 

The first few Legendre polynomials, which are the basis functions to provide a 6th order 

accurate estimation are: 
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Scaled Legendre polynomials are defined as:
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Fig. 22 Legendre polynomial space 

5.4.2 Basis functions for two-dimensional space  

Rectangular basis 

Basis functions can be constructed by tensorial product of the Legendre polynomials 

(principal functions) in each coordinate direction. The polynomial function of order N, is 

defined as 
1 2 1 2( , ) ( ). ( )k p qL L      with:  ( 1);  0 ;  .k p q N p q N       

where, k is the single indexed multidimensional basis which sorts all the modes of the 

principal functions (P and Q).  It should be noted that these polynomials on rectangular 

elements would not yield a diagonal mass matrix due to the applied bilinear mapping [197]. 
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Fig. 23 Polynomial space in terms of the Pascal’s triangle of the full tensor product for 

rectangular elements (up to polynomial order of P=6). 

Triangular basis 

Orthogonal basis functions can be constructed over t

e  by tensorial product of the 

Legendre polynomials (principal functions) in the region q

e . 
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Fig. 24 Polynomial space in terms of the Pascal’s triangle of the full tensor product for 

triangular elements (up to polynomial order of P=6). 

5.4.3 Basis functions for two-dimensional space  

Orthogonal basis functions can be constructed over e  by tensorial product of the 

Legendre polynomials (principal functions) in the region c

e . 
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In this case, the mass matrix is orthogonal.  

5.5 Numerical integration 

In order to compute the volume and surface integrals of the discrete local weak form of 

the governing equations, a numerical integration method may be applied. One of the 
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various possible algorithms,  known as numerical quadrature (in 1D and sometimes as a 

general term) or cubature (in 2D or 3D) rules in which a formula to approximate the definite 

integral of a function via a weighted sum of function evaluations, is widely used in finite 

element and discontinuous Galerkin. The choice of an in-exact integration rule leads to 

aliasing instabilities where strong discontinuities or turbulence effects are present. In this 

dissertation Gauss-Legendre quadrature as a particular class of Gauss quadrature technique 

is applied. The Gauss-Legendre quadrature is defined for the limits of integration of -1 to 

1.Thefore transformation of physical elements to standard ones is necessary.  In Fig. 25 

and Fig. 26, the integration approximation and the graphical illustration of the quadrature, 

depicting position and number of required quadrature points are summarized for 1D /2D 

and 3D respectively.   
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Fig. 25 Schematic representation of number and location of required quadrature points used 

in numerical integration for (a) 1D elements, (b) 2D quadrilateral elements, (c) 2D 

triangular elements 
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(a) Surface quadrature points 

   

(b) Volume quadrature points 

 

  

(c) Surface and volume quadrature points together 
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Fig. 26 Schematic representation of number and location of required quadrature points used 

in numerical integration in a 3D tetrahedron element  

5.6 Inviscid and viscous numerical flux functions 

The choice of the numerical flux can determine the stability, and the accuracy of the 

numerical method. In order to obtain a stable scheme the numerical flux should be 
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consistent as well as conservative. Consistency implies an identical solution of the 

numerical flux to the analytic flux function for smooth continuous inter-element boundary 

values. Moreover, conservativity requires single-valued flux on the inter-element 

boundaries. Two general class of inviscid numerical flux functions are categorized as flux 

difference splitting (FDS) methods and flux vector splitting (FVS) methods. These 

numerical schemes are based on the upwind direction identification approaches which are 

referred to as Riemann approach or Boltzmann approach. These approaches are 

extensively introduced in the classical review paper of Harten et al. [199] and various 

textbooks [169, 200-202]. It is well known that the FVS method leads to more 

straightforward and more efficient compared to Godunov-type methods of FDS class. In 

this work Rusanov [203] (or local Lax-Friedrichs) and Rotated-RHLL [204] fluxes which 

are both known to be simple and carbuncle-free are implemented and applied depending 

on the investigated problem. The implementation of the inviscid numerical flux is exactly 

analogous to the well-established FVM procedure, and the details of the implementation is 

skipped.  

The viscous numerical flux implementation in DG framework is not as straightforward 

as the inviscid flux is. Rigorous mathematical derivation and presentation of these 

numerical flux functions for pure elliptical equations (Laplace problem) can be found in 

[205, 206]. The unified representation of some numerical schemes suggested by [206] is 

summarized in Table 11. The operators   and  for scalar variable s and vector 

quantity v  is defined as follows 
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(182) 

Table 11 Comparison of some the numerical schemes for viscous flux. Adapted from [206]. 

Method û  ̂  

Bassi and Rebay [198] (BR1) { }hu  { }h  

Brezzi et al. [207] { }hu   { } hh r u   

Cockburn and Shu [208] 

(LDG) 
   .h hu u   { } jh h hu     

Douglas and Dupont [209] 

(IP) 
{ }hu   { }h jh hu u  

Bassi et al. [210] (BR2) { }hu   { }h rh hu u  
 

The functional operators of r  and 
j , the so-called penalty terms are defined as 

  1

j e eh      , 

    r e er     , 
(183) 

where, e  is a positive number and eh  is an indicator of element size (e.g., circumscribed 

circle radius of the element), and    . .e

e

r dx ds   


   . 

In most of the computations in this thesis, BR1 and LDG methods are applied unless 

otherwise is mentioned. In the BR1 scheme, central discretization is used for both auxiliary 

and viscous fluxes. This method which is extensively used  by the DG community is shown 

to have a convergence order of only P (polynomial degree) for odd ansatz [208]. Moreover, 

the stencil is known to be spread. These deficiencies motivated application of LDG method 

in which one-sided fluxes in opposite directions for the auxiliary and viscous fluxes are 

utilized. In this thesis, β is set equal to zero when LDG flux is used leading to an upwind-

downwind (also known as alternating flux) scheme.  
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5.7 Positivity preserving scheme 

High order conservative schemes, including the DG scheme introduced in the previous 

section, usually suffer from the non-physical negative density or pressure. This situation 

leads to the ill-posedness of the system and numerical breakdowns in consequence. On the 

other hand, in the case of conservation laws with source terms which are added to account 

for chemical reactions, gravity or the interaction of phases, as in the present case, the 

possibility of encountering negative density or pressure during numerical simulation 

increases. Therefore, the application of an efficient positivity preserving schemes is 

necessary to prevent the numerical breakdown. In the present work, the positivity 

preserving scheme of Zhang and Shu [211] for compressible Euler equations was applied 

to ensure the positivity of density and pressure fields, while maintaining the higher order 

accuracy. The general implementation of the scheme can be outlined as follows.  

Limiting the higher order coefficients for density was achieved first by computing the 

minimum value of the density amongst all quadrature points, ρmin. The coefficients for the 

density expansion were then modified as 
1i ia a   with 0

1

0 min

min( ,1)
a

a














. Here the i 

index accounts for all the bases, and the zero index represents the mean solution. Also, the 

value   is determined by 13

0min(10 , , )a p   where p  denotes the mean element 

pressure. 

For the modification of pressure, the following procedures were used. First, we set s as 

(1 )t   s w q , 
(184) 

where w  and q  are the cell average and conservative variables, respectively. 𝛽 can be 

calculated as follows  
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1 if ( )

the solution of ( ) , if ( )

p

p p


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 


 
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q

s q  (185) 

Finally, the coefficients are modified by 
2i ia a   with 2 min( ,1)   . 

The application of this limiter was proved to provide stable schemes for unstructured 

triangular meshes with favorable results [195]. We report the first application of this type 

of limiter to the two-fluid model of dusty gas flows. Our numerical experiments on all the 

test cases show that application of a positivity preserving limiter is necessary to obtain 

converged solutions without compromising the accuracy of the solution.  

5.8 Monotonicity preserving scheme 

Our numerical investigations show that simple application of the positivity preserving 

scheme is not enough to develop a stable scheme, especially in the presence of strong shock 

waves. The situation deteriorates when the multiphase system with source terms is being 

solved.  In the present study, the limiter of Zhang and Shu [212]  for  one-dimensional 

cases and the limiter of  Barth and Jespersen [192] which was initially devised for the finite 

volume framework are applied. It is important to note that any TVD/MUSCL type scheme 

can degrade the order of accuracy in the smooth regions of the solution unless a pragmatic 

shock detection scheme is introduced. 

According to Barth and Jespersen [192], the limiting procedure of slopes should be done 

in a way that the solution at the integration points is confined to the range spanned by the 

neighboring solution averages. The limited solution can then be written as  

0 0 min

0

( , ) ( ) ( ) ( )
p

i i

i

U t a t a  


  x x x , (186) 

where min imin max( ,0),    
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 (187) 

Here  *

2
( )

j i j
U U  x  and Umax and Umin are the maximum and minimum solution 

averages on the elements sharing edges, respectively. 

5.9 Boundary conditions 

The implementation of boundary conditions in two-fluid or multi-fluid systems requires 

a different set of conditions for each phase. The benchmark problems considered in this 

paper are free from boundary effects, except the compression corner test case, in which an 

adiabatic, impermeable, inviscid wall boundary condition is applied for both phases (Kim 

and Chang [142]. Other boundary conditions choices like the adherence condition or 

reflection conditions are also viable for the solid phase [213].  When the viscous system of 

conservation laws (e.g., Navier-Stokes-Fourier) is considered, it is necessary to use a non-

slip boundary condition for the gas phase and a slip boundary condition for the solid phase. 

5.10 Novel source terms treatment 

It was well-known that the stiff relaxation terms in balance laws (i.e., strictly hyperbolic 

systems with source terms) lead to disparate relaxation times, which in turn results in severe 

numerical difficulties. In the case of the two-fluid model, in addition to the time scale 

related to the convection, a much smaller relaxation time scale exists that inevitably 

imposes smaller time steps on the numerical solver. The use of a slower time scale in such 

problems can cause severe numerical instability. 

The most well-known methods for removing this limitation are the operator splitting 

and zero-relaxation limit; however, as reported in Béreux [214], the range of validity of 
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each method is very limited, to the product of relaxation time and the acoustic wave 

pulsation. Moreover, spurious solutions may arise when the effects of the source terms are 

not properly resolved [215]. Finally, it is well established that the convergence rate of the 

first-order finite difference methods for conservation laws will be no better than O(h1/2) 

[216]. Here we demonstrate that the inherent feature of the new DG scheme bypasses the 

need to apply such inefficient treatments in conventional methods. 

For a single variable uh, the elemental formulation (148) reduces to   
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Taking U as the global vector of degrees of freedom, this equation can be written in a 

matrix form: 

1 1 1
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  (189) 

Here, M and K are the mass and stiffness matrixes, and Θ and Θʹ are the vectors that 

incorporate the contributions of the boundary and source terms, respectively. The matrixes 

are defined as follows: 
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Owing to the orthogonal property of the basis functions, 
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The choice of orthogonal basis functions greatly simplifies the contribution of the high 

order moments of the polynomial approximate solution to the source-term related vector 

Θʹ in equation (30). Once the basis functions (Legendre polynomials), ( )
n

 x , are 

multiplied by the transformation Jacobian ( (1 ) / 2J b   ), the integration in the interval 

[-1 1] will vanish for all the terms except the first term, due to the orthogonal property of 

the basis functions and a coincidental relation 
1
( ) 1 x ; that is, 
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Note that, in this novel method, the source term treatment is greatly simplified, exactly 

the same as the first-order (P0) case. In other words, the contribution of the cell average 

solutions is dominant in the source terms in the DG framework, although the left-hand side 

of equations (148) and (25) is calculated by the high order polynomial approximation. 

5.11 The numerical algorithm for solving constitutive 

equations 

The nonlinear algebraic system of constitutive relations provided in ** can be recast in a 

reduced form as follows [2] 

   
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Π Π Π u

Π I u

Q Q ΠQ Q u

 
(195) 

Here the caret ˆ over a symbol represents a quantity with the dimension of the ratio of the 

stress to the pressure. The subscript 0 stands for first-order Boltzmann-based constitutive 

equations which are determined by the Newtonian law of shear, bulk viscosity and Fourier 

law of heat conduction as follows 

 
 2

0 0 02 , 2 . , lnb T           Π u u Q  
(196) 

The following definitions are necessary in order to have complete definition of the above 

relations 
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A nonlinear coupling factor  ˆq cR  is defined as 
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(198) 

where,  5 3 / 2      v is the exponent of the inverse power law for gas particle 

interaction potential, and the tabulated values of A2(v) are available in the literature. 

Definition of other parameters is in consistence with those introduced in Chapter 3.  

The solution of these equations will provide viscous stress, excess stress, and heat flux 

which are essential in defining the numerical viscous flux on cell interfaces. Contrary to 

the classical Navier-Stokes constitutive equations where the viscous stress and heat flux 

are linearly proportional to the thermodynamic forces (i.e., derivatives of velocity and 

temperature), solving the nonlinear form of the second-order Boltzmann-based constitutive 

equations requires an additional algorithm.  

Contrary to other the moments method in which the constitutive equations are derived in a 

way that the whole system is of hyperbolic type, the nonlinear algebraic constitutive 

equations are solved by an iterative algorithm. This solution can then be applied by the 

similar manner in conventional Navier-Stokes codes. The constitutive equations consist of 

10 equations (Πxx, Πxy, Πxz, Πyy, Πyz, Πzz, Δ, Qx, Qy, Qz) for known 14 parameters 

( , , , , ,p T u v w T    ). It has been shown that a proper numerical method for solving the 
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highly nonlinear equations can be developed by application of the method of iteration [2, 

95, 217].  

Here we present an iterative method in three-dimensional space via decomposition. In this 

case, the stress, excess stress and heat flux components (Πxx, Πxy, Πxz, Δ, Qx) on a surface 

can be approximated as the sum of three solvers in 3 spatial directions: 

1 2 3

1 2 3
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(199) 

The iterative procedures, which is proved to have a converged solution within a few 

iterations can be summarized as follows. In the solver on (ux,0,0,Tx) which is responsible 

for compression-expansion of the gas, for positive 0
ˆ

xx  and 0
ˆ

xQ  

1
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and for negative 0
ˆ

xx  and 0
ˆ

xQ , 
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Since the equations are invariant under a transformation ˆ ˆ
x xQ Q , only two cases 

satisfying ˆˆ 0xx xQ   are considered. In the above expressions,
1

ˆ
xx ,

1̂ , and 
1

ˆ
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(204) 

The outputs for these solvers are summarized in Table 12. More detailed discussions 

regarding the application of NCCR model in DG framework and extension to diatomic and 

polyatomic can be found in [218, 219]. 
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Table 12 The outputs for the NCCR solvers. 

  f1 f2 f3 

x 

ˆ
xx  ˆ

xx  ˆ
xx  ˆ

xx  

ˆ
yy  ˆ0.5 xx   ˆ2 xx   ˆ

xx  

ˆ
zz  ˆ0.5 xx   ˆ

xx  ˆ2 xx   

ˆ
xy  0 ˆ

xy  0 

ˆ
xz  0 0 ˆ

xz  

ˆ
yz  0 0 0 

ˆ
xQ  ˆ

xQ  0 0 

ˆ
yQ  0 0 0 

ˆ
zQ  0 0 0 

̂  ̂  0 0 

y 

ˆ
xx  ˆ0.5 yy   ˆ2 yy   ˆ

yy  

ˆ
yy  ˆ

yy  ˆ
yy  ˆ

yy  

ˆ
zz  ˆ0.5 yy   ˆ

yy  ˆ2 yy   

ˆ
xy  0 ˆ

xy  0 

ˆ
xz  0 0 0 

ˆ
yz  0 0 ˆ

yz  

ˆ
xQ  0 0 0 

ˆ
yQ  ˆ

yQ  0 0 

ˆ
zQ  0 0 0 

̂  0 0 0 

z 

ˆ
xx  ˆ0.5 zz   ˆ2 zz   ˆ

zz  

ˆ
yy  ˆ0.5 zz   ˆ

zz  ˆ2 zz   

ˆ
zz  ˆ

zz  ˆ
zz  ˆ

zz  

ˆ
xy  0 0 0 

ˆ
xz  0 ˆ

xz  0 

ˆ
yz  0 0 ˆ

yz  

ˆ
xQ  0 0 0 

ˆ
yQ  0 0 0 

ˆ
zQ  ˆ

zQ  0 0 

̂  0 0 0 
 

 



 

122 

 

Chapter 6. Numerical experiments on zeroth-

order Euler-type systems of equation 

In this chapter, we present the results for some of the well-known benchmark problems 

in one- and two-dimensional space. For the purpose of verifying the code and estimating 

the order of accuracy of the numerical scheme, we first solve a smooth problem with 

analytical solutions. We then investigate the widely studied Sod’s shock tube problem in 

dusty gas flows with special emphasis on the complex wave behaviors therein. Finally, we 

solve two two-dimensional multiphase flows—explosion and compression corner 

problems—to highlight the effects of the dispersed phase (solid dust) on multi-dimensional 

dusty gas flow.  In all test cases, the ratio of the specific heats of air (γ) and the ratio of the 

specific heats of the two phases (cm/cv) are set equal to 1.4 and 1.0, respectively.  Unless 

otherwise mentioned, the following values are used for particle properties: 

diameter, d=10 µm; 

mass density, ρs=2,500 kg/m3; 

specific heat, cm=718 J/kg-K. 

6.1 One-dimensional dusty gas flows 

6.1.1 Verification study in the single-phase case (1-D) 

The propagation of a smooth sine wave (known as the entropy waves problem) was 

considered for verification of the code. The periodic boundary conditions were applied at 

both sides of the domain. For the following initial condition, 

( ,0) 1,

( ,0) 1.0 0.2sin( ) ,

( ,0) 1,

u x

x x

p x

 




 
 

  (205) 
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the corresponding exact solutions can be written as 

 

 

Roe flux function 

 

 

HLL flux function 

 

 

Rusanov (LLF) flux function 

Fig. 27. Comparison of various numerical fluxes for smooth solution of Euler equation; 

(left) profile, (right) Euclidean norm of density 
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 
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

  
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 (206) 

In order to measure the order of accuracy of the DG method for various flux functions, 

the density distribution of the solution was obtained for different orders of accuracy (Pχ, 

with χ indicating the polynomial order) and the results are shown in Fig. 27. It can be seen 

that numerical deviation from the analytical solution is large in the first-order piecewise 

constant case (P0); however, the application of more sophisticated numerical fluxes such 

as Roe and HLL can improve the accuracy of the piecewise constant solution.  

In order to evaluate the performance of the numerical scheme in more detail, the 

numerical errors and the order of accuracy were calculated based on the density solution. 

The results were found to be consistent with the observations of Qiu et al. [220]. Moreover, 

it was confirmed that all numerical fluxes lead to the expected order of accuracy of P+1.  

It is worth noting that each flux function shows a different behavior in performance for 

different orders of polynomial function, and thus drawing a general conclusion is not 

possible. 

6.1.2 Sod shock tube problem in dusty gas flows 

Fig. 28 depicts the shock tube problem in single phase (pure gas) and multiphase (dusty 

gas).  The evolution of various types of waves and discontinuities from the initial Riemann 

data can provide the essence of dusty gas flows; as, for example, the supersonic flows 

formed by the interaction of rocket plume and lunar dust. Moreover, the shock tube 

problem is ideal for examining the feasibility and validity of the new numerical methods, 

since it is free from boundary effects or other numerical complexities. The scheme tested 
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in the one dimension problem can also be extended to the multi-dimensional situation 

afterwards. 

 

Fig. 28. Schematic of the shock tube problem in dusty gas (pure gas versus dusty gas) 

(computational domain length: 100L) 

In order to obtain solutions without spurious oscillations, the positivity-preserving 

scheme was used in conjunction with the monotonicity-preserving limiter. It should be 

emphasized again that no extra effort is necessary for handling the source terms, thanks to 

the special feature associated with the orthogonal basis functions introduced in the new DG 

scheme, as explained in subsection 3.5. That is, the present DG method is immune to the 

artifact that may arise from splitting the source terms, or the complexity incurred by 

application of the fractional step approach [81, 221] or the random choice method [140] to 

cope with the source terms. 

Table 13. Initial condition for the Sod’s shock tube problem  

Non-dimensional variable Driver section Driven section 

Pressure 10.0 1.0 

Gas density 10.0 1.0 

Particle concentration 0.00001 1.0 

Gas velocity 0.0 0.0 

Dust velocity 0.0 0.0 
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The results of the dusty shock tube problem with the initial condition summarized in 

Table 1 are presented in Fig. 29. It can be seen that the numerical solutions of the pure gas 

are in good agreement with the analytical solutions of the shock tube problem. In the figures, 

the term ‘dusy gas’ implies the carrier gas phase. This problem has been previously 

investigated by Saito [75], Saito et al. [76] and Pelanti and LeVeque [80]. Comparison with 

these previous results can be used as verification of the present computational model of 

two-fluid dusty gas.  The multiphase solutions clearly demonstrate the profound effects of 

the inertia of the dust particles on the flow properties. The gradual response of the dust 

particles to the diaphragm rupture was observed, especially in the velocity and temperature 

profiles. Interestingly, the strength of the right-running shock wave front was found to be 

much smaller than that of pure gas, which is due to the absorption of momentum and heat 

from the gas molecules by the dust particles. In addition, the deceleration of the shock wave 

front was observed from the velocity profile, inducing compression waves behind the shock 

wave. This phenomenon was identified in the pressure profiles as well.  

6.1.3 Composite wave structures in the Sod problem of dusty gas flows 

In contrast to a single-phase flow, dusty gas flows can show some striking wave 

structures, which have no counterpart in classical theory. The physical explanation of these 

phenomena in dusty gas flows has rarely been addressed in the literatures. In this section, 

we provide a detailed discussion on the underlying physics forming these abnormal waves. 

Various wave structures that are formed in the shock tube problem of dusty gases are 

schematically illustrated using the x-t diagram in Fig. 30 (a) describes the case in which 

the contact discontinuity of gas and the boundary path of a particle are located at the same 

position, while Fig. 30 (b) describes the case in which the boundary path of a particle is 

located at a distance from the contact discontinuity of gas. When a shock wave impinges 

on a cloud of particles in dusty gas flows, it will be reflected as an expansion or shock 
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wave, depending on the ratio of the specific heats of the solid particle and gas, and the 

particulate loading of the mixture [67]. In this diagram, the case of reflected rarefaction 

waves was not considered, since the properties of the test case of the mixture correspond 

to the case of shock wave reflection. Since solid particles with non-negligible inertia cannot 

follow the abrupt changes of flow, a relaxation zone attached to the shock wave forms and 

the shock wave front decelerates until a new equilibrium condition is reached. The size of 

the relaxation zone is affected by the diameter of the solid particle, density, and heat 

capacity. As mentioned before, a finite time is required for the particles to fully attain the 

speed of the gas. During this period, reflected compression waves are generated from the 

boundary path of the particle, eventually forming a weak left-running shock wave, as 

illustrated in Fig. 30 (a). 

For better clarification, we investigated in detail how the evolution of those waves is 

affected by the concentration of dust particles. We identified three abnormal behaviors 

based on the density profile: 1) the tale of the left-running rarefaction waves; 2) the region 

before the contact discontinuity; and 3) the tale of the right-running shock wave.  It is well 

known that, after the diaphragm ruptures, a right-running compression wave and left-

running rarefaction waves will start to propagate in the background medium. On the other 

hand, dust particles with different density ratios on each side of the diaphragm will lead to 

the existence of an extra contact discontinuity (in solid phase) compared to the case of pure 

gas. We refer to this discontinuity as the dust contact discontinuity (DCD). 

The first composite wave structure, marked as number (1) in Fig. 31, was observed at the 

tail of the rarefaction waves in the density profile. This exotic structure should be 

distinguished from the numerical artifacts that may be found in high order methods when 

they are not treated properly. Due to the presence of dust particles, the rarefaction waves 

weaken and their propagation speed decreases as well. Therefore, gas will accumulate in  
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t=5 t=10 

Fig. 29. Solutions of the Sod’s shock tube problem in dusty gas for two different time steps 

(P1 solution) 
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(a) 

 

(b) 

Fig. 30. Schematic of various wave structures in the 1-D dusty gas flows: (a) The gas contact 

discontinuity and boundary particle path are initially located at the same position, (b) The 

particle boundary path is located at a distance from the gas phase contact discontinuity. 

 

the region close to the tail of the rarefaction waves, and the reflected compression waves 

generated from the boundary path of the dust particle will form a weak shock wave attached 

to the tail of the left-running rarefaction waves, as observed in Fig. 31 (a).  
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This weak shock wave is directly related to the presence of the DCD and it will be 

strengthened when the dust concentration increases. It will be shown in a later figure that, 

when there is no DCD, i.e., when both the high and low pressure sections are filled with 

the same dust concentration, this composite wave structure will disappear. In passing, it 

should be mentioned that this type of composite waves is different from the generic 

compound waves observed in magneto-hydrodynamics, due to the non-convexity and the 

non-strict hyperbolicity [222], and the present waves should be called composite waves or 

pseudo-compound waves, rather than compound waves. 

In another region, marked number (2) in Fig. 31, the presence of dust induces an increase 

in pressure (and a decrease in velocity) in the middle region, leading to higher density 

compared to the case of pure gas. It turns out that this increase in density is dependent on 

dust concentration, as well as the location of the DCD.  

A second composite wave structure, marked number (3) in Fig. 31, was observed at the tail 

of the shock wave. It consists of a right-running shock wave followed by a relaxation zone. 

When there is no particle, the shock wave is steep and strong as expected. When particles 

are present, however, the shock wave weakens substantially and the relaxation zone forms 

instead, due to the coupling effects between the two phases. We can clearly see that a higher 

particle concentration leads to a larger relaxation zone and a reduction in the propagation 

speed of the shock wave. It will be shown in the next figure that the location of the DCD 

changes the position where the shock wave forms, but does not affect the size of the 

relaxation zone. 
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(a) (b) 

  

(c) (d) 

 
 

Pseudo compound wave made up 

of  RW-RS 

 
 

CD attached to RZ 

                                                                                      

 
 

RZ attached to SW 

 

Fig. 31. Effects of initial dust concentration on the Sod’s shock tube in the dusty gas (P1 solution) 

(RW: rarefaction wave, RS: reflected shock, CD: contact discontinuity, RZ: relaxation zone, SW: shock 

wave ) 
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In order to investigate how the DCD would affect wave patterns in the dusty gas flows, 

additional cases were simulated by varying the position of the DCD (from x=40 to x=60) 

while maintaining the same dust concentration, as shown in Fig. 32. The other profiles in 

  
(a) (b) 

  
(c) (d) 

 
Pseudo compound wave made up of  

RW-RS 

 
CD attached/detached to/from RZ 

 
RZ attached to SW 

Fig. 32. Effects of location of the initial dust contact discontinuity (DCD) on the Sod’s shock tube in the dusty gas 

at t=30 (P1 solution) 

(RW: rarefaction wave, RS: reflected shock, CD: contact discontinuity, RZ: relaxation zone, SW: shock wave) 
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this figure correspond to the pure gas and the dusty gas case of the previous figure. In all 

cases, the dust concentration is assigned with the same value (α0ρ0=0.1). In the region 

marked number (1), the weak discontinuity in density, pressure and temperature profiles 

discussed in Fig. 31 vanishes when there is no DCD. When the DCD is shifted towards the 

right end of the tube (x=60), the discontinuity is detached from the rarefaction waves and 

is shifted to the right as well.  

In the region marked number (2), the shifted DCD seems to produce yet another contact 

discontinuity (around x=70) attached to the relaxation zone. When put together with 

adjacent waves, there seems to be a new composite wave structure, consisting of three 

waves—a contact discontinuity, the relaxation zone, and a shock wave. On the other hand, 

as can be seen in region number (3), the strength of the right-running shock wave and the 

size of the relaxation zone remain the same for all dusty gas cases, though the position of 

the waves is shifted as expected. 

6.2 Two-dimensional dusty gas flows 

6.2.1 Verification study in the single-phase case (2-D) 

In order to examine the order of the accuracy of the developed method, the propagation 

of a smooth sine wave in a two-dimensional domain was considered. The periodic 

boundary conditions were applied at all sides of the square domain as shown in Fig. 33(a). 

For the following initial condition, 

 

( , ,0) 1,

( , ,0) 1,

( , ,0) 1.0 0.2sin ( ) ,

( , ,0) 1.

u x y

v x y

x y x y

p x y

 







  
 

  (207) 

the corresponding exact solutions can be written as 
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x y x y t
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 
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
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
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  (208) 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 33 Analysis of the order of the accuracy of the two-dimensional code for a smooth sine 

function problem 

 

The error norms for density solutions up to fourth-order accuracy (P3) are calculated and 

summarized in Fig. 33 (b-d) Table 14. It can be seen that the desired order of accuracy is 

achieved. For fine grids, the actual order is shown to be higher than the nominal order of 

accuracy.  
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Table 14 Accuracy analysis for 2D entropy waves. 

P1  

ΔX Nx L1 error L2 error L∞ error L1 order L2 order L∞ order 

1.25 8 1.47E-03 1.72E-03 3.09E-03 - - - 

0.625 16 4.33E-04 4.84E-04 8.65E-04 1.764 1.829 1.835 

0.3125 32 1.16E-04 1.29E-04 2.30E-04 1.896 1.912 1.914 

0.15625 64 3.01E-05 3.31E-05 5.92E-05 1.951 1.955 1.956 

0.078125 128 7.64E-06 8.40E-06 1.50E-05 1.979 1.980 1.980 

P2 

ΔX Nx L1 error L2 error L∞ error L1 order L2 order L∞ order 

1.25 8 1.47E-03 1.72E-03 3.09E-03 - - - 

0.625 16 4.33E-04 4.84E-04 8.65E-04 1.764 1.830 1.835 

0.3125 32 9.60E-05 1.06E-04 1.92E-04 2.174 2.197 2.172 

0.15625 64 6.77E-06 7.44E-06 1.38E-05 3.827 3.825 3.801 

0.078125 128 3.55E-07 3.91E-07 7.06E-07 4.251 4.249 4.286 

P3 

ΔX Nx L1 error L2 error L∞ error L1 order L2 order L∞ order 

1.25 8 1.43E-03 1.59E-03 2.90E-03 - - - 

0.625 16 3.69E-04 4.03E-04 7.30E-04 1.959 1.980 1.990 

0.3125 32 5.90E-05 6.50E-05 1.09E-04 2.643 2.633 2.744 

0.15625 64 4.47E-06 4.91E-06 7.75E-06 3.725 3.728 3.813 

0.078125 128 3.06E-07 3.37E-07 5.68E-07 3.866 3.863 3.771 

 

6.2.2 2-D explosion problem in dusty gas flows 

As the first two-dimensional test case, we investigated the explosion problem outlined 

in Toro [200] for a pure gas. This problem is in essence the two-dimensional extension of 

the classical Sod’s shock tube, as illustrated in Fig. 34.  
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Fig. 34. Schematic of the pure gas (left) and dusty gas (right) 2-D explosion problems 

(outer radius: L) 

The initial conditions for the single-phase and multiphase cases are summarized in Table 

2. 

A study on grid independency is presented in Fig. 35 where five different grids with 

mesh sizes of h=1/20, 1/40, 1/80, 1/120 and 1/160 are considered, where h is the 

characteristic size of grid. A grid resolution with h=1/120 was found to provide almost 

identical results with h=1/160, and hence this grid was used for the rest of simulations. 

In the next step, the effects of the polynomial order of the DG method was examined 

with and without the monotonicity preserving limiter for the single-phase problem, while 

the positivity preserving limiter was applied for all cases.  It can be seen in the left column 

of Fig. 36 that, without the monotonicity preserving limiter, the second- and third-order 

solutions exhibit severe oscillations near strong waves. The Barth-Jespersen limiter 

described in subsection 3.3, however, was shown to handle the non-physical oscillations 

effectively, as confirmed in the right column of Fig. 36. Our numerical experiments showed 

that such oscillations lead to a breakdown of the numerical code, in the case of high CFL 

numbers, or when multiphase problems are solved without proper monotonicity preserving 

limiters. The judicious use of limiters specially developed for the DG method, along with 
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Fig. 35. Grid independency test for the explosion test case (P1 solution) 

the discontinuity detection scheme, is believed to be key factors in the successful shock 

capture with a minimum penalty in accuracy. 

In addition, we investigated the evolution of the gas and solid phase concentrations, as 

summarized in Fig. 37 and Fig. 38. The initial conditions for this multiphase case are given 

in Table 15. The physical justifications obtained from the one-dimensional Sod’s shock 

tube in dusty gas flows hold true here. That is, the presence of dust particles leads to a 

weakened shock wave whose front is cut by the relaxation zone. Moreover, for the same 

reason, the shock wave front decelerates substantially as time elapses.   
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Table 15. Initial condition for the explosion problem 

Non-dimensional variable Driver section Driven section 

Pressure 1.0 0.1 

Gas density 1.0 0.125 

Particle concentration 0.00001 0.1 

Gas velocity 0.0 0.0 

Dust velocity 0.0 0.0 

 

6.2.3 Asymmetric explosion problem in dusty gas flows 

With the same initial data applied to the 2-D explosion problem in dusty gas flows in 

the previous section and with specifying a square area in the low-pressure section the 

problem will be asymmetric explosion problem. The solutions will be more complicated 

when there is no radial symmetry, such as the rectangular case shown in Fig. 15. This non-

radial symmetrical multiphase explosion problem was suggested by Saito [75], primarily 

to examine the ability of the numerical method to capture more complicated flow patterns.  

The contours of the evolution of pure gas, dusty gas, and dust concentrations evolutions 

are depicted in the figure. Conclusions similar to those of the previous radial symmetrical 

multiphase explosion problem can be drawn. 
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Fig. 36. High order solutions of the explosion problem for pure gas (h=1/100, t=0.2) 

Without monotonicity preserving limiter (left); with monotonicity preserving limiter (right) 

(P1 solution) 
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Pure gas Dusty gas Dust 

   

   

   

   
Fig. 37. Graphical presentation of time evolution of density in the multiphase explosion problem (P1 solution) 
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t=5 t=10 

Fig. 38. Time evolution in the multiphase explosion problem (P1 solution) 
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Pure gas Dusty gas Dust 

   

   

   

   

   

Fig. 39. Time evolution of density in the rectangular multiphase explosion problem (P1 

solution) 
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6.2.4 2-D compression corner problem in dusty gas flow  

As the second two-dimensional benchmark problem, we investigated the compression 

corner problem for both the single and multi-phase applications. This problem is far more 

complicated due to the presences of boundary effects and the intrinsic complexity of the 

flow. The incident shock Mach number Ms, the wall inclination angel θw, and the initial 

condition of driven and driver sections define the governing physics of the shock-wave 

diffraction. The schematic of the compression corner problem is illustrated in Fig. 40. 

 

Fig. 40. Schematic of the pure gas (left) and dusty gas (right) 2-D compression corner 

problems  

(computational domain size: 5L×4L) 

As a validation study, we compared our numerical solutions with the experimental 

results obtained by [139] for the case of a single Mach reflection (SMR). The initial 

condition are for both the single-phase and multiphase cases are provide in Table 16. 

Table 16. Initial condition for the single Mach reflection problem 

Non-dimensional variable Driver section Driven section 

Pressure 4.64 1.0 

Gas density 2.71 1.4 

Particle concentration 0.1 0.1 

Gas velocity (x-direction) 1.51 0.0 

Gas velocity (y-direction) 0.0 0.0 

Dust velocity (x and y -directions) 0.0 0.0 
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Experimental image [139] P0 soloution  

  

P1 soloution P2 soloution 

A 

 

  

  

  
 

B 

C 

Ben-Dor et al. [133] 
Present result (P1 solution) 

Fig. 41. Validation of pure gas case (Isopycnics for single Mach reflection: Ms=2.03 and θw=27°) and 

verification of dusty gas case (A-constant flow Mach number contours, B-constant gaseous phase 

density contours, and C-constant dust phase spatial density) 
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The incident shock Mach number is set to 2.03, and the corner wedge angel is given by 

27°. Numerical solutions, up to the third order of accuracy, were in good agreement with 

experimental data, as shown in Fig. 41. We confine our validation to a single-phase SMR 

case, since no experimental data are available in the case of dusty gas flows. The 

comparison shows that the solutions up to third order accuracy (P2) are in good agreement 

with the experimental data. Also, we verified the dusty gas results with the solutions of 

[133] for two particle diameters (1 µm and 5µm) in the case of SMR.  The comparison of 

Mach contours as well as isopycnic surfaces of gas and dust densities indicates a good 

agreement. 

Furthermore, a very strong shock wave case studied by Woodward and Colella [223] 

was investigated. The problem, a strong Mach 10 shock impinging on a wall inclined at 

30°, was known to lead to a complicated double Mach reflection (DMR). The initial 

conditions for both the single-phase and multiphase cases are summarized in Table 17. 

In Fig. 42 (a), a study on grid independency was done for solutions with the second 

order of accuracy (P1). A grid resolution with h=1/100 was found to provide almost 

identical results with h=1/120, and hence the grid with h=1/100 was used throughout. The 

density and Mach contours at non-dimensional time t=200, as shown in Fig. 42 (b) and (c),  

indicated that the present DG scheme successfully resolves all the important flow features: 

Table 17. Initial condition for the double Mach reflection problem 

Non-dimensional variable Driver section Driven section 

Pressure 116.5 1.0 

Gas density 8.0 1.4 

Particle concentration 0.1 0.1 

Gas velocity (x-direction) 8.25 0.0 

Gas velocity (y-direction) 0.0 0.0 

Dust velocity (x and y -directions) 0.0 0.0 
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slip lines, Mach stem, secondary Mach stem, reflected shock wave, and the formation of 

supersonic flow in the delta region. A weak jetting effect reported in Ben-Dor et al. [133] 

was also observed.  

 
(a) Grid independency study: Pressure distribution along the reflecting wedge surface  

 
(b) Density contour 

 
(c) Mach contour 

Fig. 42. Verification study: Double Mach reflection (pure gas P1 solution) 
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The effects of polynomial order on numerical solutions were analyzed in Fig. 43. It can 

be clearly seen that the first-order solution with h=1/100 cannot resolve the expected flow 

feature properly. However, higher order solutions can provide a satisfactory resolution to 

accurately explain the important physical features of the flow. It can also be seen that there 

is no drastic change in solutions when increasing the polynomial order from one (P1) to 

two (P2). It should be mentioned that the application of the positivity preserving scheme is 

necessary to prevent numerical instabilities in this high Mach number flow. 

In order to understand the effects of dust particles on the time evolution of the flow, the 

single-phase and multiphase solutions (pure gas, dusty gas, and dust concentration) are 

summarized in Fig. 44 for two different time steps. One of the main features of the dusty 

gas flows is that the transition region in the shock waves is much thicker than that of the 

pure gas. In the multiphase flow, as the shock front is decelerated due to interaction with 

particles, a longer time is required for the shock front to reach the same location when there 

is no particle in the flow field. It is also evident that the presence of the particles can lead 

to attenuation of the incident shock wave. It should be mentioned that both the positivity 

and monotonicity preserving limiters were applied in the simulation of multiphase flows 

to prevent the numerical breakdown. 
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(a) Pure gas (P0) 

 
 (b) Pure gas (P1)  

 
 (c) Pure gas (P2)  

Fig. 43. Effects of polynomial orders on the density contours 
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Pure gas (t=1) 

 
Pure gas (t=2) 

 
Dusty gas (t=1) 

 
Dusty gas (t=2) 

 
Dust (t=1) 

 
Dust (t=2) 

Fig. 44. Time evolution of density contours in the compression corner (double Mach 

reflection) problem (P1 solution) 

The effects of dust particles on the structure of the DMR were also investigated, as 

summarized in Fig. 45. The convex shape of the Mach stem in the pure gas simulation is 

due to the front of the curled slipstream reaching the Mach stem [224]. The presence of 

particles, however, decelerates the velocity of the slipstream front and does not allow the 

slipstream to catch up with the Mach stem, as shown in Fig. 45 (b) of the multiphase case 

with a particulate loading β=0.1 and a particle diameter 10 µm. As a result, the Mach stem 

forms almost perpendicular to the reflecting wall surface in the dusty gas case. The 

secondary reflected shock wave and slipstream are severely distorted so that they are not 

clearly identified. Moreover, the secondary triple point configuration, in which the 

secondary reflected shock wave, Mach stem and slipstream coincide undergoes a 

significant change so that such a point is almost indistinguishable. 
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(a) Pure gas 

  
(b) Dusty gas: β=0.1, d=10.0 µm 

  
(c) Dusty gas: β=0.5, d=0.5 µm 

Fig. 45. Change of the DMR structure in presence of dust particles (P1 solution) 

Another dusty gas case with a particulate loading β=0.5 and a particle diameter 0.5 µm 

was considered. Such a setting leads to a greater number of particles in the domain 

compared to the previous case. It can be seen in Fig. 45 (c) that, unlike the previous case 

in which only the secondary triple point is subject to major change, both the primary and 
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secondary triple points are affected by dust particles. Note also that the incident shock front 

is significantly decelerated in this case with high dust concentration. 

Finally, a more detailed parametric study on the effects of particulate loading and particle 

diameter size was summarized in Fig. 46. Isopycnic surfaces, that is, surfaces with a 

constant density of gas phase in the dusty gas indicate that the particulate loading will 

substantially affect the configuration of the triple points. This change is more significant 

in the case of larger dust particles. Moreover, when the particulate loading increases, the 

incident shock front greatly decelerates, especially in the case of smaller dust particles. 

Furthermore, it can be seen that the height of the Mach stem shortens in dusty gas flows. 

Due to the increased momentum and thermal interactions, the height of the Mach stem 

shortens more in the case of a smaller dust particle. In addition, it can be observed that the 

particle diameter affects the curvature and slope of the secondary and primary reflected 

shock waves. The larger the particle diameter is the less is the curvature of the secondary 

reflected wave. Also the primary reflected shock gets more aligned with the secondary 

reflected shock as the diameter increases. In case of large particles and high mass loadings, 

the reflected shocks are completely distorted. Furthermore, it can be seen that the 

slipstreams are affected by increase of particulate loading. The slipstreams are found highly 

distorted in case of smaller particles. In summary, it can be inferred that the increase of 

particle diameter and mass loading would lead to blurrier flow patterns of reflected waves 

and slipstreams. The surfaces of constant density of solid phase in the dusty gas, shown in 

Fig. 46 (b), imply that smaller particles can follow the gas phase closely, but larger particles 

cannot follow the gas phase, so that the structure of isopycnic surfaces becomes drastically 

different from that of the corresponding gas.  
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β=0.1, d=1.0 µm β=0.5, d=1.0 µm β=1.0, d=1.0 µm 

   
β=0.1, d=5.0 µm β=0.5, d=5.0 µm β=1.0, d=5.0 µm 

   
β=0.1, d=10.0 µm β=0.5, d=10.0 µm β=1.0 , d=10.0 µm 

(a) Gas phase 

   
β=0.1, d=1.0 µm β=0.5, d=1.0 µm β=1.0, d=1.0 µm 

  
 

β=0.1, d=5.0 µm β=0.5, d=5.0 µm β=1.0, d=5.0 µm 

   
β=0.1, d=10.0 µm β=0.5, d=10.0 µm β=1.0 , d=10.0 µm 

(b) Solid phase 

Fig. 46. Parametric study on particulate loading and particle diameter in the double Mach reflection 

problem (P1 solution) 
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6.2.5 Axisymmetric particle-laden under-expanded jet  

One of the few experimental studies on the interaction of particles with shock waves is 

the case of under-expanded supersonic jets of gas and particle. In this subsection, we 

investigate the problem of supersonic jets of particle-laden gas [143]. In order to implement 

the axisymmetric formulation in the present computational framework, the source terms in 

the system of governing equations should be modified. The axisymmetric equations can be 

easily derived by following previous studies [80, 141, 143]. The problem is defined as a 

supersonic jet which is expanded from a high pressure chamber into a low pressure 

chamber, as illustrated in Fig. 47. 

 

Fig. 47 Schematic of the under-expanded jet of particle-laden gas 

(computational domain size: 5D×10D) 

The location of Mach disk in the absence of particles is first studied for validation of 

the pure gas solver. This parameter has been experimentally studied by various 

researchers in the past [143, 225-227]. Recently, Franquet et al. [228] presented an 

extensive review on experimental works dealing with free under-expanded jets. The 

comparison of Mach disk location with experimental results is shown in Fig. 48. 

Generally, the results are in good agreement with experimental data of Avduevskii et al. 
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[227] for mid-range pressure ratios. In the case of pressure ratios of 2 and 100, our 

predictions are more close to the experimental results of Lewis and Carlson [225]. 

 

Fig. 48 Comparison of prediction of Mach-disc location depending on the pressure ratio for 

the pure gas flow with previous experimental results 

Moreover, a comparison of dusty gas solutions with experiments of Sommerfeld [143] 

is shown in Fig. 49. Here, particle properties are set equal to the values of diameter 45 µm 

and mass density 2500 kg/m3. In this problem, one of the important flow features is the 

upstream movement of Mach disk as a consequence of the interaction of gas phase with 

particles. As reported in [143], when the particle loading increases, the Mach disk gets 

closer to the nozzle exit and the wave patterns observed in the downstream of the Mach 

disk becomes more pronounced. The phenomena of movement of Mach disk has also been 

reported in [229] and [230]. As can be seen in Fig. 49 (b), even though an exact match with 

experimental results is not achieved, a close agreement in the qualitative trend of upstream 

movement of the Mach disk is found. There were, nonetheless, some differences between 

the numerical solutions and the experimental shadowgraphs; for example, the curvature of 

the Mach disk and the width of the jet boundary. While experiments show that the Mach  
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Fig. 49  Shadowgraphs of the under-expanded gas-particle [143] (top) and  density contours 

of pure gas solution (right) with dusty gas (left) jet for different particle loadings (bottom): a) 

β= 0.0; b) β= 0.11 ; c) β= 0.24; d) β= 0.35; e) β= 0.64; f) β= 1.07 (P0 = 0.31MPa, P0/P∞ = 

29.8, d = 45µm) (P1 solution) 

 

disk tends to straighten as the particle loading increases, the numerical simulation cannot 

predict this feature. In addition, the width of the jet boundary is over-predicted in the 

numerical solutions compared to experimental results. Such deviations may arise from the 
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difference in considering the effect of a nozzle. In the present investigation, for the sake of 

simplicity, the computation is set up to simulate expansion of a circular jet from a hole into 

ambient condition without considering a nozzle. Apparently, further in-depth investigation 

will be necessary for capturing all the detailed features observed in experiments.  
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Chapter 7. Numerical experiments on first-order 

NSF-type systems of equation 

In this chapter simulation results for few problems where the first-order Boltzmann-

based constitutive relations (NSF) govern the flow are presented. In the investigated 

problems the viscous effects find importance and application of zeroth-order Boltzmann-

based constitutive relations (Euler) is not sufficient for prediction of this category of 

problems. 

7.1 Flow past NACA0012 airfoil 

In this section, external flow over the NACA0012 airfoil for which experimental results 

are well documented is considered, and a series of numerical experiments have been 

conducted. Variety of experimental results for the investigated airfoil is available in [231] 

which can be used as a comprehensive reference for validation of numerical methods.  The 

goal is to compare the solution of different numerical flux functions for both inviscid 

(Rotated RHLL and LLF) and viscous flux (BR1 and LDG) parts and evaluate their 

performance. Moreover, the effect of the polynomial order is investigated. To these ends, 

two types of computational grid, i.e., grids produced by map-split and pave algorithms are 

applied. The results for polynomial degrees corresponding to first-order (P0), second-order 

(P1), and third-order (P2) accuracy are presented. We note that here we are more interested 

in the numerical behavior of the flux functions rather than producing perfect matches with 

experimental results. Therefore, relatively coarse grids are applied to highlight the effects 

of the used numerical grid, flux functions, and polynomial orders. The grid size for both 

the applied meshes is almost identical in order to make a reasonable comparison possible. 

The density isolines for the subsonic flow past NACA0012 with M=0.8, Re=73 and an 
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angle of attack of 10 degrees is shown in Fig. 50 and Fig. 51 for map-split and pave grids, 

respectively. It can be seen that the solutions are almost identical with the experimental 

results in most cases. More oscillations in high order solutions are observed. These 

oscillations will diminish using a smaller CFL number. An artifact is observed when 

Rotated-RHLL flux is applied with LDG flux. It can also be observed that an LLF-BR1 

combination can give solutions more close to experimental results. The results of a similar 

comparison for supersonic flow is provided in Fig. 52 and Fig. 53. Here the Mach and 

Reynolds numbers are set equal to 2.0 and 106, respectively. The artifacts observed in the 

subsonic case for Rotated-RHLL-LDG combination does not exist here. As expected, high 

order solutions predict a less diffused shock wave and show more oscillatory contours. 

These oscillations would diminish as the CFL decreases. Here, almost all the solutions are 

in good agreement with the experimental solution of density. Rotated-RHLL shows better 

performance compared with LLF in combination with any of the viscous flux functions.   
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Experimental solution Computational domain Grid near the airfoil 

   

   

   

   
 

Fig. 50 Density solutions of different flux functions for map split grid (Re=73, M=0.8) 
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Experimental solution Computational domain Grid near the airfoil 

   

   

   

   
 

Fig. 51 Density solutions of different flux functions for pave grid (Re=73, M=0.8) 
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Experimental solution Computational domain Grid near the airfoil 

   

   

   

   
 

Fig. 52 Density solutions of different flux functions for map split grid (Re=106, M=2.0) 
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Experimental solution Computational domain Grid near the airfoil 

   

   

   

   
 

Fig. 53 Density solutions of different flux functions for pave grid (Re=106, M=2.0) 
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The preliminary results for simulation of dusty gas flow past the airfoil are also provided. 

Such simulations can be useful in applications including the flight through sand storms, 

rain and atmospheric icing to name a few. In Fig. 54, the accretion of particles for flow 

past NACA0012 with different flow condition and dust parameters is provided. With the 

knowledge that such analysis without verification and validation is not worthy of note, the 

preliminary results are presented to show feasibility of applications of the current model in 

this class of problems. It should be noted that in case of flight in rain and snow, 

modifications are more substantial.  

  
Re=73, M=0.8, d=10 μm, β=0.1 Re=106, M=2.0, d=10 μm, β=0.1 

  
Re=73, M=0.8, d=45 μm, β=0.1 Re=106, M=2.0, d=45 μm, β=0.1 

  
Re=73, M=0.8, d=10 μm, β=0.5 Re=106, M=2.0, d=10 μm, β=0.5 

Fig. 54 Concentration contours of dusty gas past NACA0012 
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7.2 Flow past triangular prism 

Flow past bluff bodies has been a compelling subject for researchers due to a vast area 

of applications including aerodynamics design of flying objects, electronic cooling, 

acoustic emission, heat exchangers, solar heating systems, flow dividers and many more. 

The shape and size of the bluff body would influence the location of separation as well as 

wake dynamics behind the obstacle. The location of separation on bodies with continuous 

surface curvatures (circular/elliptical cylinders) depends on the geometry of the body and 

the state of the boundary layer defined by the free stream Re number. However, on sharped 

edged surfaces (triangular/rectangular prisms) this parameter is only dependent on the 

shape of the body. Moreover, it is well known that above a certain Reynolds number 

(critical Reynolds number) the stable flow around the bluff body turns into an unstable one 

(the onset of von Kármán vortex street).  The Bérnard-von Kármán instability leads to 

deformation of the symmetrical twin vortices (bubbles), and vortices are shed with the 

frequencies which are defined by Strouhal number.  The vortex shedding phenomenon may 

be laminar or turbulent. Here, we limit our investigation to the laminar case. There are 

plenty of researches in which these crucial features are investigated both experimentally 

and numerically. The problem for circular cylinders is well reviewed and documented in 

[232, 233]. Also, works are abundant on square cylinders [234-240]. However, the number 

of researches on triangular prisms has been limited. In the previous studies, both 

unconfined and confined channels are investigated. Jackson [241] reported the critical 

Reynolds number to be 34.318 for isosceles triangles with base 1 and height 0.8. A critical 

Re number of 38.3 for flow past equilateral triangular prism with a blockage ratio of 1.15 

was reported in a numerical investigation by [242]. The findings of Zielinska and Wesfreid 

[242] were further confirmed by experiments of Goujon-Durand et al. [243] and Wesfreid 

et al. [244]. Reynolds-averaged Navier-Stokes (RANS) turbulence model of the k-ε model 
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was applied by Johansson et al. [245] in order to investigate the turbulent flow past a 

triangular cylinder. Two-dimensional laminar flow past triangular cylinder was 

investigated by De and Dalal [246] in which a Recr=39.9 was predicted. Further discussions 

on time-averaged drag coefficient, rms of lift and Strouhal number were also presented. 

Prhashanna et al. [247] conducted numerical investigations on the influence of power-law 

index on the formation of the wake and the onset of vortex shedding in flow across an 

equilateral triangular cylinder. Effect of variation of Reynolds number and Prandtl number 

on the drag coefficients and heat transfer in the steady regime has also been investigated. 

Furthermore, Chatterjee and Mondal [248] studied forced convection heat transfer for flow 

past a long heated equilateral triangular cylinder in an unconfined medium for the low 

Reynolds number laminar regime. 

Works in which the effect of Re number in a flow regime with Mach numbers over the 

limit of compressible and over the limit of subsonic regimes are absent or rare. This section 

was initially motivated by verification of the NSF solver for unsteady incompressible 

subsonic Mach regime. However, as the reviewed work were all confined to the limit of 

the incompressible regime, in addition to verification of method some further analysis on 

the compressibility effects has been done.  

Moreover, the influence of dust particles on viscous flows, which can be seen in many 

natural phenomena such as soil erosion by natural winds, volcanic eruptions or engineering 

applications like in petroleum industry for purification of crude oil, in gas cooling systems 

for enhancement of heat transfer process with the use of dust, in dust/mist/fume collators, 

is an interesting subject for investigation. The need for elucidating the two-way coupling 

effects [249] motivated conducting extensive numerical experiments in order to investigate 

the influence of particles on the steady and unsteady behavior of vortices.  



 

166 

 

Due to the importance of the interaction of particles with vortices in applications like 

combustion systems, wire and plate electrostatic precipitators, the spread of fires by 

firebrands [249, 250], some investigations have been done before. [251] showed that for 

fine dust particles (
V reft  ) the addition of dust could destabilize a gas flow. However, for 

coarse grain particles, the dust addition leads to a stabilizing action. Damseh [252], 

investigated the flow of a viscous incompressible flow of gas in the presence of uniform 

dust particles cloud across an isothermal cylinder. Mehrizi et al. [253] investigated the 

effect of nanoparticles on natural convection heat transfer in two-dimensional horizontal 

internal flow in an annulus made up of a heated triangular inner cylinder and a circular 

outer cylinder. In a more recent work, Xu et al. [254] investigated the fine particle behavior 

in the laminar flow of air past a triangular prism experimentally and numerically. Bai and 

Li [255] investigated the motion and deposition of particles in supersonic flow past a wedge 

using a Eulerian-Lagrangian numerical model. 

Here we are interested in phase coupling effects on the symmetrical vortices, the onset 

of unsteadiness and frequency of the shedding. A set of numerical experiments can be 

designed based on the Reynolds and Mach number variations. The Mach regime based on 

classical categorization can be divided into: low subsonic (incompressible limit, 0.3M  ), 

subsonic ( 0.3 0.8M  ), transonic ( 0.8 1.2M  ), supersonic ( 1.2 5.0M  ) and 

hypersonic ( 5.0M  ) regimes. We are interested in the low Reynolds laminar flow before 

and after the onset of the shedding phenomena characterized by Recr. The overall outline 

of the investigated test cases is summarized in Table 18. 
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Table 18 Categorization of regimes based on Reynolds and Mach numbers and 

investigated regimes in this work 

 Re Recr   Re Recr  

 Pure gas Dusty gas  Pure gas Dusty gas  

0.3M       

0.3 0.8M       

0.8 1.2M       

1.2 5.0M       

5.0M       

 

 

The applied computational domain size, boundary conditions, and grid are outlined in 

Fig. 55. As shown in the figure, far-field and outflow boundary conditions are applied in 

the distance far enough from the prism. Moreover, it can be seen that the grid is finer in 

locations where larger gradients exist. 

 

 

 

 

 

 



 

168 

 

 

 

Fig. 55 Computational domain, boundary conditions, and grid. 

7.2.1 Pure gas simulations 

The validity of the numerical solutions are verified by comparison with previous 

solutions of [246, 256]. It can be seen in Fig. 56 that a good agreement with previous results 

is achieved. A discrepancy with the drag solution of Zeitoun et al. [256] for low Reynolds 

numbers is observed. The cause of this mismatch may be due to a different formulation 

(incompressible vs. compressible), numerical grid (quadrilateral vs. triangular), or used 

numerical schemes. However, as athird solution in this regime is not available, recognizing 

the more accurate solution is not possible. The magnitude of this deviation is not 
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considerable (<10%), however. Furthermore, it can be seen that in higher Re numbers all 

three solutions are in good agreement.  

 

Fig. 56 Verification of drag coefficient.  

The effect of Mach number on the flows with Re numbers less than Recr is shown in Fig. 

57. It can be observed that with the increase of Mach number the symmetrical vortices 

shrink in size. For 2M  , there is no separation, and thus no vortices can be observed.  
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Re=30, M=0.1 

 

Re=30, M=0.3 

 

Re=30, M=0.8 

 

Re=30, M=1.2 

 

Re=30, M=2.0 

Fig. 57 Effect of variation of M number for a constant Re number smaller than critical Re 

number. 
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Furthermore, the effect of variation of Mach number on a flow with Re number higher 

than the critical Reynolds number is investigated. As can be seen in Fig. 58, an increase of 

M leads to a decrease in amplitude and an increase in the frequency of the drag coefficient 

oscillations. For high transonic regime  1.2M  , this oscillatory behavior has almost 

vanished. No oscillation in the case of the supersonic regime is observed. The snapshots of 

instantaneous vorticity and streamlines for the investigated Mach numbers are plotted 

individually in Fig. 59 to Fig. 63. Such analysis is useful in studying the transient behavior 

of vortices and can elaborate on how this transient behavior is influenced by variation of 

M number. As the drag coefficient variation implies, the increase of M number would 

stabilize the flow. For M numbers corresponding to supersonic regimes, the von Kármán 

vortex street changes into two symmetrical counter-rotating vortices (Fig. 62 and Fig. 63). 

The topologies of these vortices are however different from the symmetrical vortices that 

appear in low Re and low M number regimes.   
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Re=250, M=0.1 

 
Re=250, M=0.3 

 
Re=250, M=0.8 

 
Re=250, M=1.2 

 
Re=250, M=2.0 

Fig. 58 Effect of variation of M number for a constant Re number smaller than critical Re 

number. 
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Fig. 59 Snapshots of instantaneous vorticity (left) and streamlines (right) in different time 

steps within a shedding cycle, Re=250, and M=0.1.  
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Fig. 60 Snapshots of instantaneous vorticity (left) and streamlines (right) in different time 

steps within a shedding cycle, Re=250, and M=0.3. 
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Fig. 61 Snapshots of instantaneous vorticity (left) and streamlines (right) in different time 

steps within a shedding cycle, Re=250, and M=0.8. 
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Fig. 62 Snapshots of instantaneous vorticity (left) and streamlines (right), Re=250 and 

M=1.2. 

  

Fig. 63 Snapshots of instantaneous vorticity (left) and streamlines (right), Re=250 and M=2. 

 

The effect of variation of Re for a constant Mach number in the early supersonic flow 

regime is also investigated. The compressibility effects are dominant here. The Recr (which 

marks the transition from steady to unsteady flow structure) is much higher when the 

compressibility effects are present. As evident from Fig. 64, the increase of Mach number 

hinders the separation and transition processes. Even though the Recr is around 40 for the 

incompressible regime, no unsteady behavior is observed in this case even for a Re=200 

simulation.  
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M=1.2, Re=10 

 
M=1.2, Re=20 

 
M=1.2, Re=50 

 
M=1.2, Re=100 

 
M=1.2, Re=200 

Fig. 64 Effect of variation of Re number for a constant M number in transonic Mach regime  
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7.2.2 Dusty gas simulations 

For some of the simulated test cases in the previous section, the effects of adding 

particles are investigated. Here, the properties of the simulated particles are similar to glass 

beads with a diameter of 20 μm. Due to the lack of experimental data for the cases of 

interest in here, a validation study is not conducted, and we rely on the previous validation 

in Chapter 6 as well as the verification on pure gas in the previous section.  

The effect of particulate loading is first investigated on a flow with Re=30 and M=0.1. 

In the case of pure gas, as mentioned in previous works and confirmed in Fig. 57, we expect 

two counter-rotating vortices to form. As demonstrated in Fig. 65, the increase of 

particulate loading will destabilize the flow. While particles have almost no effect on the 

behavior of the flow and the shape of the symmetrical vortices for β<0.1, in higher 

particulate loading simulations a transition can be observed.  
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Re=30, M=0.1, β=0.0 

 
Re=30, M=0.1, β=0.05 

 
Re=30, M=0.1, β=0.1 

 

 
Re=30, M=0.1, β=0.5 

 
Re=30, M=0.1, β=1.0 

Fig. 65 Effect of variation of particulate loading (β) in low Re and low M number flow past 

the triangular prism 
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The effect of variation of particulate loading in case of low Mach number and Reynolds 

number higher than the critical value (Re=250 and M=0.1) is also studied. In Fig. 66, the 

unsteady behavior of Cd is plotted. While the drag coefficient shows a sinusoidal behavior, 

the increase of dust loading irregulates the shape of this behavior. However, the trend is 

periodic still.  The more the particulate loading is, the more is the degree of disorder of Cd. 

The nature of the behavior of Cd, and thus the flow field for all the particulate loadings 

investigated here is oscillatory, however. This is primarily due to two-way coupling effects. 

The details of this behavior is illustrated via snapshots of vorticity and streamline in Fig. 

66 to Fig. 70. These figures can help in understanding the irregular behavior of Cd which 

was previously discussed. Specifically vorticity snapshots plotted in Fig. 69 and Fig. 70, 

can explain how the non-smooth time-dependent drag profiles are generated as the vortices 

are deformed near the solid walls. 
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β=0.0 β=0.01 

  
β=0.05 β=0.1 

  
β=0.5 β=1.0 

Fig. 66 Effect of variation of particulate loading on Cd in a Re higher than the critical Re 

number and Mach number below the compressibility limit (Re=250, M=0.1) 
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Fig. 67 Snapshots of instantaneous vorticity (left) and streamlines (right) in different time 

steps within a shedding cycle, Re=250, and M=0.1, β=0.01. 
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Fig. 68 Snapshots of instantaneous vorticity (left) and streamlines (right) in different time 

steps within a shedding cycle, Re=250, and M=0.1, β=0.1. 
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Fig. 69 Snapshots of instantaneous vorticity (left) and streamlines (right) in different time 

steps within a shedding cycle, Re=250, and M=0.1, β=0.5. 
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Fig. 70  Snapshots of instantaneous vorticity (left) and streamlines (right) in different time 

steps within a shedding cycle, Re=250, and M=0.1, β=1.0. 
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The effect of the addition of particles in Re=30 and different Mach number flows is also 

investigated in Fig. 71 and Fig. 72 for M=0.1 and M=1.2, respectively. In low Mach number 

flows, adding particles to the gas flow would lead to an increase in the size of the 

symmetrical vortices. In high Mach number flow, particles would produce an instability 

when the particulate loading is higher than a specific value.   
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Re=30, M=1.2, β=0.0 

 
Re=30, M=1.2, β=0.05 

 
Re=30, M=1.2, β=0.1 

 
Re=30, M=1.2, β=0.5 

 
Re=30, M=1.2, β=1.0 

Fig. 71 Effect of variation of particulate loading (β) in low Re and high M number flow past 

the triangular prism 
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Re=250, M=0.1, β=0.0 

 
Re=250, M=1.2, β=0.05 

 
Re=250, M=1.2, β=0.1 

 
Re=250, M=1.2, β=0.5 

 
Re=250, M=1.2, β=1.0 

Fig. 72  Effect of variation of particulate loading (β) in low Re and high M number flow past 

the triangular prism 

 

 

  



 

189 

 

Regarding the dispersion of the particles by the vortices, as mentioned in [257] both the 

particle parameters and the career phase properties are in effect. The level of interaction of 

gas and particles depends on the Stokes number which depends on the relaxation time of 

the particles and the time scale of the fluid flow. As schematically shown in Fig. 73, for 

very small particles ( 1St ), the particulate phase will be in dynamic equilibrium with the 

career phase. Therefore particles would closely follow the streamlines of the vertical flow. 

On the other hand, large particles ( 1St ) will be unaffected by the vortices of the fluid 

flow due to large inertia. There may be an intermediate case where intermediate particle 

sizes ( 1St  ) tend to be centrifuged from the vortex cores and accumulate at the edge of 

the vortices leading to inhomogeneous particle concentrations.  

 

 

Fig. 73 The schematic representation of the effect of Stokes number on particle dispersion in 

vortices. Reprinted from [257] with permission. 

While the above discussions are on the particle parameters, similar interpretation can be 

inferred regarding the variation of Stokes number by fluid flow. In Fig. 74, the velocity 

vectors of the dust phase and gas phase are compared for two different Mach and Re 

numbers. In both cases, as the flow is decelerated behind the cylinder, particles cannot 
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follow the gas phase trajectory. When the Reynolds number is low (Re=30), particles can 

follow the gas streamlines. In this case, by an increase of the Mach number, the velocity 

vectors of particles show a slight deviation from that of the gas. However, when the 

Reynolds number of the flow is large (Re=250), deviation of particles path from gas is 

more significant. Unlike the low Reynolds test case, this deviation is more critical for the 

case of low Mach number flow. This effect is probably due to the two-way coupling effects, 

by which the gas phase itself is affected by the particle phase.   
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Re=30, M=0.1, β=1.0 

 

Re=30, M=1.2, β=1.0 

 

Re=250, M=0.1, β=1.0 

 

Re=250, M=1.2, β=1.0 

Fig. 74 The effect of fluid properties on particle dispersion in vortices using velocity vectors 

of gas (black) and particle (red) phases. 

 

7.3 Axisymmetric particle-laden under-expanded jet  

The under-expanded jet which was partly investigated in Chapter 6 for zeroth-order 

constitutive relations (Euler-type) is further investigated using first-order constitutive 
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relations (NSF-type) in this chapter. Here, in addition to providing the similar verification 

and comparison with experimental solutions (Fig. 75), the effect of particle phase on the 

flow is studied in terms of Stokes number. According to equations (5) and (8), the Stokes 

number can be assigned by variation of different parameters including particle diameter, 

the density of the particle phase, the viscosity of the career phase or characteristics time of 

the flow. Here Stokes number is artificially assigned by multiplying a constant coefficient 

in the source terms so that only coupling effects are investigated. It has been demonstrated 

through experiments of Sommerfeld [143] and simulations in Chapter 6 that the Mach disk 

location moves towards the jet exit plane by the increase of the particulate loadings. 

However, in Fig. 76 a counter-intuitive behavior is observed in case of high Stokes 

numbers. It can be seen that not only the Mach disk distance from jet exit plane do not 

decrease, but also it increases for Stokes number higher than 10.  In high Stokes number 

flows dust particles can follow the gas streamlines closely as shown in Fig. 77. 

 

Fig. 75 Prediction of Mach disk location in comparison with experimental results  
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β= 0.11, St=0.018 β= 0.11, St=0.09 β= 0.11, St=0.18 β= 0.11, St=18.7 

    
β= 0.24, St=0.018 β= 0.24, St=0.09 β= 0.24, St=0.18 β= 0.24, St=18.7 

    
β= 0.35, St=0.018 β= 0.35, St=0.09 β= 0.35, St=0.18 β= 0.35, St=18.7 

    
β= 0.64, St=0.018 β= 0.64, St=0.09 β= 0.64, St=0.18 β= 0.64, St=18.7 

    
β= 1.07, St=0.018 β= 1.07, St=0.09 β= 1.07, St=0.18 β= 1.07, St=18.7 

 

Fig. 76 Effect of variation of particulate loading and Stokes number on Mach contours in 

the under-expanded jet problem 
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β= 0.11, St=0.018 β= 0.11, St=1.87 β= 0.11, St=18.7 

   
β= 0.24, St=0.018 β= 0.24, St=1.87 β= 0.24, St=18.7 

   
β= 0.35, St=0.018 β= 0.35, St=1.87 β= 0.35, St=18.7 

   
β= 0.64, St=0.018 β= 0.64, St=1.87 β= 0.64, St=18.7 

   
β= 1.07, St=0.018 β= 1.07, St=1.87 β= 1.07, St=18.7 

 

Fig. 77 Effect of variation of particulate loading and Stokes number on density contours and 

particles streamlines in the under-expanded jet problem 

 

7.4 Tone producing under-expanded impinging jets 

When it comes to dynamics of compressible jets, a classical problem of interest is the 

impingement of a supersonic jet onto a perpendicular plate. A jet is called under-expanded 

when the pressure ratio exceeds a critical value (1.893 for air). During the interaction of an 

under-expanded jet with an impingement surface, the flow field is dominated by the 

complex shock structures. In atmospheric pressure condition or in case of high inflow Re 

numbers, this structure experiences an intense acoustic field with discrete-frequency sound 

(also known as a tone-producing jet). While the steady-state structure of the flow will be 
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characterized only by the nozzle pressure ratio and the impingement distance, the unsteady 

behavior of the acoustic waves depends on the exit jet Re number as well. An under-

expanded jet itself (without considering wall impingement) can experience instabilities. 

These instabilities (demonstrated in ) are due to the reflection of expansion waves 

(produced at the nozzle lip) from the constant pressure jet boundary in the form of shock 

waves and generation of new expansion waves as the shock is reflected from the axis. The 

shearing process in the interaction of supersonic flow of the jet boundary and the 

atmospheric gas generate vortices. The shock cell structure and vortices interaction account 

for the noise radiated from the jet. 

  
Re=465 Re=4650 

  
Re=46500 Re=465000 

Fig. 78 Instantaneous Mach contours of under-expanded jet depicting the flow instabilities 

for high Re flows 

These oscillations are illustrated in Fig. 78. It should be noticed that for low Reynolds 

number test cases the viscosity damps these oscillations.  
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In case a surface is placed downstream of the jet a feedback model is formed. The waves 

at the impinging locations are reflected towards the nozzle perturbing the shear layer. Then 

a process known as collective interaction makes large-scale structures to form which 

impinge on the plate and the cyclical loop is repeated continuously.  

This oscillatory behavior is investigated via plotting the drag force on the impingement 

surface for different jet Re number. A transition from steady drag behavior to unsteady is 

observed which is due to the feedback loop discussed above. Therefore, for higher Re 

number flows a non-uniform jet with lateral or helical oscillations.  
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(a) Re=1000 

  
(b) Re=10000 

  
(c) Re=10000 

  
(a) Re=100000 

Fig. 79 Effect of variation of jet Reynolds number on oscillatory behavior of the impinging 

jet 
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To further validate the applied scheme for impinging jets in low pressure-ratios and in 

the atmospheric condition, the density solution in comparison with mean shcillerian image 

is provided. A good qualitative agreement is demonstrated in Fig. 80.  

 

Fig. 80 Comparison of mean schlieren image (left) and DG density solution (right) 
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Chapter 8. Numerical experiments on second-

order NCCR-type systems of equation 

8.1 The problem of Lunar landing 

Moon has a tremendously different environment compared to that of the earth. The 

extremely weak gravity on the Moon cannot hold an atmosphere. Therefore, only the heavy 

gas particles that rarely collide with one another would form an exosphere (100 molecules 

per cubic centimeter compared to 100 billion billion molecules per cubic centimeter on 

Earth’s atmosphere at sea level). In such a rarefied atmosphere where the Sunlight would 

not be blocked, and heat cannot be trapped, temperature variations are also significant (i.e., 

123 Celsius in the daytime and -233 Celsius at night).  As explained before, during the final 

stages of a soft landing on the Moon, when the Lunar lander approaches the dusty surface 

of the Moon, the interaction of engine plume and Lunar regolith cause a surface erosion 

and consequently dispersion of particles into the flow-field. This interaction would lead to 

some severe consequences, including the pilot’s vision reduction, damage to the descent 

module or previously established sites on the Moon, false instrument readings, to name a 

few. Apart from the rarefied condition and presence of dust particles there exists a number 

of other complexities (e.g., mixed subsonic-supersonic regimes, shock-expansion 

interaction, shear layers) which make the simulation of descent phase an exciting subject 

from CFD point of view. In this section, we first introduce the prevailing physics observed 

in a Lunar landing problem, then our methodology for the simulation will be outlined, and 

finally, some simulation results will be presented.  
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8.2 Prevailing physics 

In Fig. 81 the schematic of the problem (descent phase of Lunar lander) is illustrated. 

To explain the physical phenomena that govern the flow, some of the regions of the domain 

with essential features are marked by numbers on the figure. Region 1, shows the formation 

of the expansion fan at the lip of the nozzle. Region 2 marks the continuum flow exhausting 

from the descent engine characterized by high Mach and low Knudsen numbers. Number 

3 defines the surface through which continuum assumption breaks down. Due to the 

presence of a surface opposing the exiting jet a strong stand-off bowl-shaped shock 

(number 4) forms and gradually weakens by deviation from the axis. The location of this 

shock wave will largely depend upon the external ambient pressure or exit to ambient 

pressure ratio. Right after the normal shock and exactly underneath the nozzle the flow re-

compresses to a near-continuum condition in the stagnation region marked by number 5. 

The virtual diverging channel formed by the stand-off shock and the Lunar surface expands 

the flow in the radial direction. The flow after reaching to sonic speed at the sonic line 

(number 6) gains supersonic speeds and expands further into the near vacuum condition. 

In a region in the proximity of the sonic line, a supersonic boundary layer forms causing 

dynamic pressure which is the source of viscous erosion to maximize. Hence peak of the 

mass flux of the eroded particles can be observed at somewhere near this point. The 

entrained particles then gain supersonic velocities and can travel significant distances away 

from the landing site as negligible drag force of rarefied atmosphere cannot impede the 

debris particles seriously.  
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Fig. 81 The prevailing physics in the descent phase of a Moon landing 

8.3 The approach for simulation of the Lunar landing 

problem 

Various strategies can be applied in order to simulate this problem numerically. Almost 

all of the works in which this problem was investigated were briefly reviewed in Chapter 

1. A summary of the four possible strategies among many other strategies is provide in 

Table 19. Other approaches by combinations of other methods for handling the rarefied 

regime and the dust phase can be also achieved which may suggest positive and negative 

consequences. To the best knowledge of the author, this is the first fully continuum-based 

approach for solving this problem to date.   A full continuum-based approach is beneficial 

in various aspects. First and foremost, this methodology is computationally efficient. With 

the various parameters which can influence the physics of non-equilibrium multiphase flow, 

availability of a tool which can provide the final solution in a matter of few computational 

hours with an acceptable level of accuracy is an asset. Moreover, the implementation of 

this strategy can be easily achieved. Almost all the well-developed schemes for the gas 
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phase can be applied to the dust phase directly (or with some modifications). The other 

advantage is that the applied strategy allows for a broader range of Mach-Knudsen regime 

for the gas phase as well as a more broad range of particulate loadings for the dust phase 

making it a general tool for investigation of various other problems with similar pre-

requisites.   

Table 19 Four possible approaches for solving the Lunar landing problem 

 

The chart in Fig. 82 depicts how the desired algorithm is implemented in an in-house 

CFD code. The procedure is straightforward: the mesh produced by grid generation 

software will be fed into the computational code. The flow-field is initialized and solved 

with the assigned boundary conditions. The NCCR module which was discussed in detail 

in Chapters 3 and 4, can take into account the non-equilibrium effects. The erosion 

modeling is made possible by an extra boundary condition. This boundary condition 

applies the gas phase solution and estimates the local mass flow rate of the particles based 

on either the dynamic pressure or the shear stress on the erosive wall surface. The estimated 
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mass flux is then in-fluxed into the computational domain through surface cell faces. With 

the Eulerian-Eulerian algorithm, both loose and strong couplings can be achieved via 

source terms. As the applied Eulerian solver uses an explicit algorithm, the transient phase 

can also be captured. The calculation can be stopped as soon as the criteria for steady-state 

solution are met.  

 

Fig. 82 Schematic of the implemented algorithm depicting the input and output of each 

module. 

The computational domain and the type of boundary conditions that are applied are 

demonstrated in Fig. 83. Viscous wall boundary condition is applied on the nozzle and 

Lunar surface. Symmetry condition is assigned on the axis. The nozzle chamber condition 

can be assigned on the inlet of the converging-diverging nozzle. On the other boundaries 

of the domain, the ambient condition of the Lunar atmosphere can be assigned. The other 

alternative for these boundaries is the application of supersonic outflow condition.  
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Fig. 83 The schematic of the computational domain and type of applied boundary conditions 

In all the simulations of this chapter axisymmetric equations are applied. On the nozzle 

inlet, a pressure inlet boundary condition is assigned. The viscous wall boundary condition 

is applied to the nozzle wall and lunar surface. The symmetry condition is used on the 

symmetry axis. The rest of the boundaries are assigned as the Lunar ambient condition.  

Before proceeding to the simulation of the plume and its interaction with the surface, 

the internal flow inside the nozzle is investigated. The contoured nozzle profile of Apollo 

descent module [258, 259] is selected to keep consistent with [48], and thus to make a 

comparison with Apollo observations possible. The details of the Lunar module descent 

engine (LMDE) is also provided in [48]. However,  we briefly repeat some of the essential 

features that may find importance in our simulations. The LMDE (a throttleable hypergolic 

engine) had a maximum thrust of approximately 44.5 kN. Exit to throat area ratio, specific 

impulse and exit diameter for this engine is reported to be 47.5, 305 s, and 1.67m, 

respectively. Furthermore, the designed propellant is Aerozine-50 (hydrazine and 

unsymmetrical dimethylhydrazine). The primary exhaust products are H2O, NH3, CO, NO, 

O2, CO2, and NO2 [260]. However, in our simulations, either water vapor (H2O) or 

ammonia (NH3) which constitute the highest mole fractions in the exhaust product are 
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applied. It should be noticed that inside the nozzle the flow is mostly inviscid and either 

Euler or NSF system of equations can provide satisfactory results. Also, the high 

temperature makes the gas chemically and vibrationally active. These effects are however 

neglected to simplify the problem.   

In Fig. 84, the solution of internal nozzle flow is presented. As is evident from Fig. 84,  

the density, pressure, and temperature decrease as the gas expands through the nozzle 

contour and the velocity increases. An important feature is the presence of a weak internal 

shock characterized by the pressure ratio across the wave. The shock strength is variant in 

different cross-sections of the nozzle. Moreover, a thin boundary layer is formed which can 

be observed in Fig. 84 (e).   

 

 
(a) Density contour 

 

 
(b) Pressure contour 

 
(c) Temperature contour 

 
(d) Mach contour 

  
(e) Profiles of primitive variables solution on 

axis line 

 
(f) Profiles of primitive variables solution on 

on nozzle exit plane  

Fig. 84 Solution of internal nozzle flow (Pref= 141251.1542 Pa, Tref= 2317.596567 K, uref= 

1192.698279 m/s, Lref=1 m) 
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8.4 Pure gas simulations 

In this section simulation results for verification and validation of the pure gas solver is 

provided. Fig. 85 presents a comparison of Mach solution with experimental mean 

schlieren image conducted by Land and Clark [44]. The applied gas here is the Nitrogen, 

and the exit Mach number is set equal to 5. The numerical results are in a good agreement 

with experiments.  

Due to complexities that arise for setting up an experiment for this problem, very few 

experimental results are available. Even in these few experiments, the exact Moon 

conditions cannot be accurately simulated experimentally. Therefore, we continue our 

verification process by comparing our results with the previously done DSMC simulations, 

specifically the works of Morris [48].  

 

Fig. 85 Validation of jet impingement on the surface with the experiment of [44] 

 (Nitrogen gas, M=5.0, Re=10000, Pressure ratio=3.79, h/D=6.7) Comparison of mean 

schlieren image (left) and DG Mach solution (right) 
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8.5 Verification of results with DSMC solutions for single-

phase flow (pure gas) 

In this section, the simulation results for Apollo LMDE are presented, and results are 

compared with solutions of [48]. A sample grid which is used in the simulation is shown 

in Fig. 86. It must be noted that the computational grid should be extended a reasonable 

distance from the exit jet in order to omit the boundary effects on the solution. Our 

numerical experiments show that when a finer grid is used the effect of boundary becomes 

smaller. In Fig. 87, the pressure solution of the second-order Boltzmann-based constitutive 

relationships (NCCR) with DSMC solutions are compared. It can be seen that the results 

are in a very good qualitative agreement. Slight deviations in height prediction of the 

normal shock and also the location of the reflection wave can be observed. These deviations 

may be due to the different nozzle profiles, differences in some of the setup parameters that 

are not explicitly mentioned in the [48] or the inherent deferent nature of the models in the 

DSMC and continuum theory.  

 

Fig. 86 A sample computational grid for 5m of hover altitude. 
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Fig. 87 Comparison of pressure solution NCCR (left) and DSMC (right) solution of [48]. 

Hover altitude: 5m 

 

A comparison of first and second order solutions is provided in Fig. 88. Due to the 

application of a relatively fine grid resolutions, the second-order solution does not improve 

the quality of the solution significantly. However, it is expected to gain a better resolution 

(sharp discontinuities) when coarser grids are used.  

Also shown are the comparison of NCCR and NSF solutions of pressure and Mach. 

Surprisingly the comparison shows that the application of first-order Boltzmann-based 

constitutive relationships in near-field flow can provide acceptable solutions. This is 

justified by the fact that the gas exiting the nozzle is in high density and most of the 

simulated region is in near-equilibrium condition.  

To demonstrate the degree of non-equilibrium the Rayleigh-Onsager dissipation function 

is shown in Fig. 90. It is expected that for higher hover altitudes or when the far-field 

simulation is of interest the deviation from equilibrium gets more. The most important 

parameter which affects the structure of the under-expanded jet and impinging under-

expanded jets is the exit to ambient pressure ration. The effect of variation of the jet 

structure in different ambient pressures is investigated in Fig. 91. In this figure, the left side 

contour shows the pressure distribution and the right one is the Mach contour.  
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(a) Pressure solution 

 

(b) Mach solution 

Fig. 88 Comparison of first-order (left) and second-order (right) solutions of pressure and 

Mach. Hover altitude: 5m. 
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(a) Non-dimensional pressure contour 

 

(b) Mach contour 

Fig. 89 Comparison of pressure (top) and Mach (bottom) solutions of first-order Boltzmann-

based (NSF) with second-order Boltzmann-based (NCCR),  Hover altitude: 5m. 

 

Fig. 90 Comparison of Rayleigh-Onsager dissipation function for NSF (left) and NCCR 

(right) 
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Pamb = 50 Pa Pamb = 15 Pa 

  

Pamb = 5 Pa Pamb = 1 Pa 

Fig. 91 The effect of ambient pressure on pressure (right) and Mach (left) solution of the 

impinging jet. 
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As can be seen, the stand-off shock location gets closer to the surface as the ambient 

pressure decreases. Also, the radius of the normal shock wave changes substantially. The 

degree by which the jet is under-expanded is also strongly dependent on this parameters. 

As Mach contours reveal, the lower the ambient pressure, the more is the under-expansion. 

8.6 Verification of results with DSMC solutions for 

multiphase flow (dusty gas) 

When the problem is simulated with the inclusion of nozzle the flow-field will be more 

complicated due to the presence of internal and reflected shocks. These complexities 

require higher grid resolutions to be captured properly. Moreover, as demonstrated in [48] 

the effect of the presence of the nozzle compared to the uniform flow on the erosion 

properties is negligible. Comparison of the number density solutions of NCCR with DPLR 

and hybrid DPLR-DSMC pressure solutions are provided in Fig. 92. It can be seen that the 

NCCR solutions are in a better agreement with DSMC solutions.  

The shear stress on the surface is used in the erosion model in order to estimate the 

eroded mass flux. Morris [48] used the dynamic pressure in a distance (above the boundary 

layer) from the wall as the effective shear stress. The dynamic pressure at different 

distances from the wall is plotted in Fig. 93. It can be seen that the variation of this 

parameter can be large at different distances from the wall. Therefore, the application of 

dynamic pressure in Roberts’ model might be improper. In order to omit the dependacy of 

the model on such parameters it might be better to use a surface parameter such as wall 

shear stress.  
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Fig. 92 Comparison of NCCR solution with DPLR and Hybrid solution of 

[47] 
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Fig. 93 Distribution of the dynamic pressure on the different distances from the surface for 

two hover altitude 

 

 

Fig. 94 Vectors of eroded mass flux overlaid on radial velocity 

The model of Roberts is shown to be capable of providing promising results for the 

erosion rate [9, 47, 48]. However, in the works of Morris [48], the dynamic pressure of the 

gas in a distance from the surface (slightly more than the height of boundary layer) is 

selected as the shear stress acting on the surface. This assumption would add to the 

complexity of the model implementation in an unstructured algorithm. In this work, we 



 

215 

 

applied a more straightforward strategy in which the excess shear stress is calculated based 

on the shear stress of the gas phase on the surface (rather than dynamic pressure) and the 

critical shear stress based on the available data in [261, 262]. In our used model a parameter 

known as the coefficient of soil erosion can be adjusted as a scaling factor which allows 

providing predictions in agreement with experiments or the observations gathered from 

previous Lunar missions through Aoppllo program for example. It should be noted that 

accurate erosion modeling has not been a prime interest in the current thesis. If the 

sophisticated erosion mechanism is necessary to be taken into account, conducting more 

extensive research using microscale modeling (e.g., using MD or DEM) in order to provide 

the adjustable parameters which will be used in the erosion model is necessary. 

It is worth to note that when such an erosion model is used, the importance of second-

order constitutive relations would be heightened. This significance is due to the fact that 

not only the gas phase is governed by non-equilibrium effects but also the mass flow rate 

of the eroded particles will be determined by a second-order non-conserved variable (shear 

stress).  

  

(a) Particle concentration: NSF (right) and NCCR (left) 

  

(b) Particles velocity vector overlaid on vertical velocity: NSF (right) and NCCR (left) 

  

(c) Shear stress contours: NSF (right) and NCCR (left) 

Fig. 95 Comparison of first-order and second-order constitutive relationships in erosion 

modeling 
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8.6.1 Effect of particle diameter 

The effect of different particle diameters is briefly discussed in this section. Fig. 96 

shows the simulation results for five different particle diameters in the vicinity of the 

erosive surface. It can be seen that when the particle diameter is large, the path that eroded 

particles go through is substantially affected. The main reason behind this behavior is the 

higher drag force on the solid particles exerted from the gas phase. It should be noted that 

the flow Stokes number which defines the dynamics of gas-dust interaction is greatly 

dependent on the molecular diameter.  
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(a) 1μm particles 

 
(b) 5 μm particles 

 
(c) 10 μm particles 

 
(d) 30 μm particles 

 
(e) 45 μm particles 

Fig. 96 Effect of particle diameter on dust momentum vectors of the eroded particles in the 

vicinity of the surface overlaid on normalized density (Pamb=3 Pa) 
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8.6.2 Effect of pressure ratio 

Another parameter which can affect the erosion characteristics is the pressure ratio of 

the exit jet to ambient condition. Simulation results to highlight this effect are presented in 

the Fig. 97. This parameter can change the structure of the gas phase flow field, and 

consequently, the shear stress exerted on the surface may vary significantly. As illustrated 

in Fig. 97, the higher the pressure ratios (lower ambient pressure for a constant exit pressure) 

the higher is the eroded mass flux.  

 

(a) Pamb=10 Pa 

 

(b) Pamb =3 Pa 

Fig. 97 Effect of ambient pressure on dust momentum vectors of the eroded particles in the 

vicinity of the surface overlaid on normalized density (Pamb=3 Pa) 

 

8.6.3 Effect of cohesive strength 

The characteristics of the regolith Moon surface in a different location is expected to be 

different. The surface cohesive stress which plays a vital role in the erosion prediction is 

one these variable parameters. In Fig. 106, the effect of variation of surface cohesive stress 

is investigated. As can be seen, this parameter affects the domain of eroded area as well as 

the magnitude of eroded mass flux. The larger the cohesive surface, the lower is the eroded 
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mass flux and the area in which erosion occurs. In the particular case investigated here, it 

can be seen that for surface cohesive stresses of larger than 40 Pa almost the eroded mass 

flux is negligible.  

 
Surface cohesive stress= 5 Pa 

 
Surface cohesive stress= 10 Pa 

 
Surface cohesive stress= 20 Pa 

 
Surface cohesive stress= 40 Pa 

Fig. 98 Effect of particle diameter on dust momentum vectors of the eroded particles in the 

vicinity of the surface overlaid on normalized density (Pamb=3 Pa, d=30 μm) 

 

8.6.4 Effect of erosion model parameters 

One of the critical parameters in the Roberts erosion model is the parameter a defined 

in Equation (141). This parameter is a function of various conditions including the engine 

chamber viscosity and density, thrust, hover altitude, the ratio of the specific heats, Mach 
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number at the nozzle exit, gas constant, the ratio of specific heats and the drag coefficient. 

The values of coefficient a for the case of Apollo landing for two different altitudes and 

four different particle diameters is provided in Table 20. 

Table 20 Coefficient a values for different hover altitudes and particle diameters. 

Hover altitude (m) Particle diameter (μm) Coefficient 𝑎 

5 

1 0.998 

10 0.86 

30 0.54 

50 0.39 

10 

1 0.999 

10 0.92 

30 0.66 

50 0.51 
 

A number of simulations have been conducted in order to independently investigate the 

effect of this parameter on erosion properties with keeping other variables constant. It 

should be noted that here the coefficient a is set artificially rather than changing the 

simulated problem parameters to check the sensitivity of the solutions only on this 

parameter. This parameter should be appropriately calculated and set in the model with the 

help of equations (143) and (144). As shown in Fig. 107, the larger the coefficient a is set, 

the less is the rate of erosion. However, this parameter does not affect the area in which the 

erosion occurs. This is obvious because the limits of the area in which erosion occurs are 

defined by the gas solution and the surface cohesive stress and the coefficient a is only a 

modeling parameter which its value is not critical on other physical properties of the flow. 

This analysis is only important for code verifications purposes. 
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(a) a=0.2 

 
(b) a=0.4 

 
(c) a=0.6 

 
(d) a=0.8 

Fig. 99 Effect of particle diameter on dust momentum vectors of the eroded particles in the 

vicinity of the surface overlaid on normalized density (Pamb=3 Pa, d=30 μm) 

 

8.7 Application of commercial CFD software package 

(FLUENT) 

The comparison of solutions obtained by second-order Boltzmann-based constitutive 

relations with DSMC as well as first-order Boltzmann-based models shows that in low 

hover altitudes and in the vicinity of the surface due to high-density and pressure of exiting 

jet from the nozzle most of the simulated area is in continuum regime. This observation 
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has motivated applying the CFD software package FLUENT in which NSF equations are 

solved for solving the Lunar landing problem. Application of such system of equations for 

this problem, even though might look controversial at first glance, can provide an 

acceptable prediction of the flow quantities which can be used for an assisting engineering 

design tool. The strategy applied here is different from the one developed in in-house code 

in two essential aspects: 

1. Only first-order constitute relationships (NSF equations) can be applied.   

2. For simulation of the particulate phase, the Lagrangian formulation (discrete element 

method DEM module) is applied.  

In order to represent the validity of the continuum assumption the test case simulated in 

section 8.5 is simulated and local M, Kn and Nδ numbers are plotted in Fig. 100. It can be 

seen that in this special case only a small portion of the domain (i.e., point 7) considerably 

deviates from equilibrium state. As evident in the figure, points 5 and 6 slightly deviate 

from equilibrium, and the rest of the numbered areas are in equilibrium or near-equilibrium 

condition.  A similar comparison has been conducted for the under-design Korean Lunar 

lander. The preliminary design of this lander suggests clustering of five 200 N 

monopropellant thrusters for hover altitude control [263]. A schematic of Lunar lander 

demonstrator Descending Control Thruster (DCT) mounting location and direction is 

shown in Fig. 101. Due to the low thrust engine, it is expected that rarefaction is more 

dominant when a single nozzle approaches the surface. This presumption has been 

examined in Fig. 102 by plotting the local Mach, Knudsen, and Nδ numbers. As the figure 

implies more points in the simulated domain is are in non-equilibrium, compared to the 

case of Apollo. However, the interaction of the plumes in five-nozzle configuration would 

increase the number of points which fall into continuum or near-continuum limits.  The 

simulation results of a three-dimensional analysis for a five-nozzle configuration are 
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summarized in Fig. 103. For this simulation also, the deviation from non-equilibrium 

similar to what has been presented in Fig. 100 and Fig. 102 is analyzed. This analysis, as 

summarized in Fig. 104, confirms the presumption of less non-equilibrium areas due to 

nozzles plumes interactions. 

 

 

 
(d) 

(a) 

 
(b) 

 
(c)  

Fig. 100  Contours of local a) Kn, b) M, c) Nδ numbers and d) degree of deviation of 

different regions from equilibrium for Apollo descent engine at 5 m hover altitude. 
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Fig. 101 Schematic representation of Korean Lunar lander descent module with a five-

nozzle configuration. Reprinted from [263] with permission. 

 

As mentioned earlier the strategy for prediction of particulate phase is based on the 

Lagrangian model. The UDF feature of the FLUENT package is applied to provide the 

non-uniform influx of particles into domain estimated by the erosion model. The solution 

of a sample test case and comparison with DSMC simulation is provided in Fig. 105. A 

good qualitative agreement between the radial velocity solution as well as the trajectory of 

the particles can be observed in this figure. As mentioned earlier, such simulations can be 

helpful for preliminary estimates for engineering design purposes and further analysis, 

especially when the behavior of the flow and particles in the far-field is of interest, is 

necessary. 
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(a) 

 
(d) 

 
(b) 

 
(c) 

Fig. 102  Contours of local a) Kn, b) M, c) Nδ numbers and d) degree of deviation of 

different regions from equilibrium for the single nozzle operation of Korean lunar lander 

descent engine at 5 m hover altitude. 
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(a) Top view of Mach 4,6 and 8 iso-surfaces 

  
(b)  Mach contour at A-A slice (c)  Mach contour at B-B slice 

Fig. 103 3D solution of local Mach number 
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A-A section 

 
B-B section 

Fig. 104  Contours of  local  Kn, M, Nδ numbers and degree of deviation of different regions 

from equilibrium for the single nozzle operation of Korean lunar lander descent engine at  

5 m hover altitude. 
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(a) Streamline of exhausted gas from nozzle overlaid upon the gas radial velocity 

 

(b) The trajectory of eroded particle overlaid upon the gas radial velocity 

 

(c) Injected particles in DSMC solution [47] 

Fig. 105 Dust grains overlaid upon radial velocity (d=30μm, h=5m) 

 

8.8 Applications of the model in pressure impactors 

In the problem of jet impingement on a surface, the non-equilibrium can be due to either 

low ambient pressures (e.g., the Lunar landing problem) or because of the low exit 

pressures. In pressure impactors, a low-pressure sonic jet is expanded into a low(er)-

pressure ambient forming a supersonic free jet. The high velocity and low-pressure avail 

to decrease the interphase drag force acting on particles (typically nanoparticles) that are 

contained in the jet. The particles bigger than a certain size cannot follow the sharp changes 

in career phase direction and will be deposited on the impact plate. This process is called 
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inertial impaction mechanism. This problem is very similar to the Lunar landing problem 

and can be studied by the developed model.  

In this section, some preliminary results will be reported which can be helpful in the 

simulation of pressure impactors. We emphasize that comparison of solutions of different 

models (NSF and NCCR) when Re number is high, should be done in a way that the 

unsteady behavior of the jet does not mislead the conclusions. In such cases, a better 

analysis can be provided by comparison of time-averaged solutions. As depicted in Fig. 98, 

the frequency and domain of the oscillations which can be characterized by plotting the 

drag force on the impingement surface is different in each model. However, for low-Re (or 

high Knudsen) cases there is no oscillation, and therefore such type of analysis is not 

necessary. 

  

Fig. 106 Comparison of drag force of high-Re (left) and low-Re (right) jet on the surface  

In Fig. 107, a comparison of Mach solutions for different exit pressures and pressure 

ratios is provided. For an exit pressure of 1 Pa and the pressure ratio of 2.5, both models 

provide almost identical Mach solutions. However, a slight deviation in the streamlines can 

be observed in Fig. 107 (a). When the pressure ratio increase by reducing the ambient 

pressure, the models deviation in prediction of the flow becomes more evident. Here, the 

location of the Mach disk, in this case, is under-predicted by the NSF model. For lower 
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exit pressures, as shown in Fig. 107, the deviation of models in the Mach solutions is more 

evident. 

 

P
exit

=1 Pa, Exit to ambient pressure ratio=2.5 

 

Pexit=1 Pa, Exit to ambient pressure ratio=5 

 

Pexit=0.1 Pa, Exit to ambient pressure ratio=2 

Fig. 107 Comparison of Mach solution achieved by application of first-order and second-

order Boltzmann-based constitutive relationships 

 

The comparison of non-conserved variables highlights the deviation of models. In Fig. 

108, xy component of shear stress tensor in and heat flux in axial direction for Pexit=0.1 Pa 

and exit to ambient pressure ratio of 2 are plotted. The differences in prediction by first-
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order and second-order models are quite obvious. This observation necessitates the 

application of higher-order constitutive relations when rarefaction effects are dominant 

(low exit pressure, high pressure-ratios). 

 

Shear stress (Πxy) 

 

Heat flux in the axial direction (Qy) 

Fig. 108 Comparison of non-conserved variables solution achieved by application of first-

order and second-order Boltzmann-based constitutive relationships 
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Chapter 9. Conclusion and future works 

9.1 Concluding remarks 

In this thesis, the application of Boltzmann-based constitutive relations in order to 

investigate dusty gas flows in a non-equilibrium condition was investigated. The research 

was motivated by providing a solution to the problem of Lunar landing. For this purpose, 

discontinuous Galerkin method was applied to solve the conservation laws equipped with 

high order constitutive relations in the two-fluid model framework. Application of DG 

made a novel treatment of source terms in two-fluid model equation possible.  Various 

bench mark problems for zeroth-order, first-order, and second-order Boltzmann-based 

models were put into numerical experiments and results were discussed.  

9.1.1 Conclusions regarding the zeroth-order constitutive relationships  

In case of zeroth-order constitutive equations (Euler equations), the complex wave 

patterns which are rarely investigated in the literature were extensively investigated and 

justifications to explain the physical phenomena such as are provided. In particular, it was 

shown that, when a dust contact discontinuity is present in the dusty gas flow, a pseudo-

compound wave, as well as a composite wave, can form. Further, the new DG scheme not 

only meets the demand for high order accuracy (at least second-order) to accurately 

simulate dusty gas flows, but it can also handle the tricky source terms of coupling effects 

between the two phases, without resorting to the complicated operator splitting method 

commonly employed in the conventional method. In fact, in the study of multiphase flow, 

developing a robust DG solver for dusty gas flows has recently been considered a 

challenging topic deserving attention.  

It turned out that the orthogonality of the basis functions, the backbone of the DG 

method, again played a critical role in the novel treatment of the high order moments of 
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the polynomial approximations to the source-term. Based on the new DG scheme, various 

benchmark problems with different physical features in one- and two-dimensional space 

were studied. In order to elaborate the complex wave patterns in gas-particle flows, the 

wave propagation mechanisms in the one-dimensional shock tube problem of the dusty gas 

were first investigated in detail. Several abnormal waves in dusty gas flows—most of them 

not previously identified—were highlighted and a physical explanation on the origin of 

such abnormal waves was given. 

In addition, the new unstructured DG scheme was applied to two different types of 

problems with and without the presence of boundary effects.  The results in both cases 

were shown to be in accordance with the previous data. The explosion case was first 

simulated in such a way that radial symmetry was preserved to confirm the one-

dimensional behavior. Then, the multiphase explosion problem was considered to examine 

the ability of the numerical method to capture more complex flow patterns. The new 

scheme was then applied to investigate the compression corner problem for both the single 

and multi-phase applications. Both single and double Mach reflection problems were 

solved, and the higher order solutions (up to a polynomial order of two) were successfully 

obtained. 

Furthermore, a detailed parametric study on particulate loading and particle diameter 

size was conducted. Isopycnic surfaces indicated that the particulate loading substantially 

affects the structure of the double Mach reflection, including the configuration of triple 

points. The main reason for this change is the amplification of the relaxation region, that 

is, the main element of the abnormal waves in dusty gas flows. In all cases, it was found 

that the secondary triple point was much more affected by the dust particles. Moreover, the 

convex Mach stem formed in the pure gas flow changed into a perpendicular Mach stem 

in the dusty gas flows. It was found that the particle diameter and mass loading affect the 
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slope and curvature of the reflected waves as well. While an increase in particle diameter 

causes the secondary reflected wave to align along the primary wave, the increase in mass 

loading leads to increase of the intersection angle of these two waves. It was also found 

that as the particle diameter and mass loading increase, the structure of the DMR becomes 

blurrier. 

Lastly, based on axisymmetric formulation, the problem of the particle-laden free under-

expanded jet was investigated for the purpose of validating the numerical simulation in 

capturing multiphase interactions. Even though a slight over-estimation of Mach disk 

location and jet boundary width was found in the numerical solutions, the important feature 

of upstream movement of the Mach disk was shown to be in good agreement with 

experimental results. 

9.1.2 Conclusions regarding the first-order constitutive relationships 

Most of the numerical results regarding the first-order constitutive relationships were 

on flow past a triangular prism and under-expanded jet. Some attention-grabbing (in some 

cases, counter-intuitive) results were observed.  

The results presented on the flow past the triangular prism in this thesis are the first 

comprehensive investigation of dusty gas flow past a bluff body which takes into account 

both viscous and compressibility effects. The viscous effects are investigated by variation 

of Re number up to the limit of laminar flow. The compressibility effects are taken into 

account by variation of Mach number. It was observed that compressibility effects could 

alter the critical Re number for which transition from steady flow to unsteady vortex 

shedding flow occurs. The critical Re number is higher as the flow becomes more and more 

compressible (or as the M number increases). It was also shown that the addition of 

particles could induce instabilities in the flow leading to lower critical Reynolds numbers.  
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In the problem of under-expanded jet also intersting results were observed. The counter-

intuitive phenomenon of downstream movement of the Mach disk was demonstrated for 

high Stokes number flows, and physical justifications were provided based on the particles 

streamlines.  

9.1.3  Conclusions regarding the second-order constitutive 

relationships 

Finally, a novel strategy for the solution of the Lunar landing problem (initial motivation 

of this thesis) was put forward by the help of second-order Boltzmann-based constitutive 

relationships. The challenging issues in this problem based upon the level of complexity in 

implementation in the suggested strategy can be summarized as in Fig. 109. 

 

Fig. 109 The relative level of complexity of the implementation of challenging issues in the 

proposed strategy of solving Lunar landing problem.  

The proposed strategy is achieved using fully continuum-based methods for handling 

both the rarefied and the dust phase flow. Therefore, it can suggest considerable 

computational time savings. It was shown that second-order Boltzmann-based constitutive 

equations could provide solutions almost identical to DSMC solutions. Moreover, a new 

boundary condition was developed through which the prediction of erosion rate was made 
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possible. It has also been demonstrated that the multiphase solver could qualitatively 

predict the dust dispersion in the domain. A number of parametric studies were also 

presented, and the physical features were discussed.  

9.2 Future works 

There are various directions through which this work can be extended. From a modeling 

point of view extension of the second-order Boltzmann-based constitutive equation for the 

dust phase is an attractive subject. Also a classification of dusty gas flow regimes based on 

solid phase Knudsen number or a similar parameter like Nδ which shows the range of 

validity of the existing models is not available in the literature. The Nδ  parameter for the 

gas itself is not well-defined, and the existing ranges are based on insufficient numerical 

observations. The refining of the Knudsen regimes based on this parameter can be achieved 

by applying more comprehensive comparisons of classical models with DSMC or NCCR 

solutions. 

From the numerical point of view, comparison of the previously developed methods for 

handling the source terms with the current approach or using the current idea in 

combination with other methods for example with splitting. In Euler-type problems, the 

non-strictly hyperbolic equations of dust can be converted to strictly hyperbolic by adding 

a pressure-like term to both sides of the equations. This simple idea has been applied to 

shallow water equations in the simulation of atmospheric aircraft icing problems and can 

be equivalently applied in two-fluid equations of dusty gas. In some of the test cases of this 

work, it was observed that the convergence of the method improves extensively when 

source terms are present. This feature combined with the idea explained before (adding a 

term in both sides of the equation) might be useful as a new acceleration method for a 

specific class of problems.  
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There are a variety of problems which were discussed very briefly in this thesis, and 

more extensive investigation of physical features in those problems can be followed in 

future. For example, it was observed that in the one-dimensional problem of dusty gas 

shock tube a wave is reflected into the high-pressure side. The type of reflected wave 

depends on the specific heats of the solid particle and gas as well as the particulate loading 

of the mixture. Reflection of shock wave was investigated in this work. However, the 

reflection of rarefaction wave was not investigated which can be a topic of future studies. 

There are various benchmark problems which can be used in the dusty gas framework to 

provide more fundamental knowledge on the complex behavior of the dusty gas flows. 

Dusty gas flows past streamlined and also blunt bodies which were partly investigated 

for flow past NACA0012 aerofoil and a triangular prism in Chapter 6 can be further 

examined by considering a wider range of Mach numbers, Reynolds number, Knudsen 

number, Stokes number (with variation of particulate loadings, particle diameters, particle 

mass, gas viscosity). Providing the critical Re number which depicts the onset of separation 

and transition depending on these numbers is also lacking in the literature and can be 

achieved via the developed tool with a little extra effort.  

A number of unsolved issues in the problem of under-expanded jets which has been 

extensively investigated either experimentally or numerically still exists. These can be 

poorly managed Mach disk diameter and curvature, the effect of viscous forces on the 

transition to turbulence as well as interactions with hydrodynamic instabilities [228]. With 

the efficient and high-order numerical tool developed in this work not only those issues 

can be investigated but also more areas where either rarefaction or presence of dust play a 

role can be further investigated. Effect of the addition of particles on under-expanded jets 

which has applications in volcanic eruptions is one of the other directions which can be 

followed. Asymmetric under-expanded jet can be investigated within the three-
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dimensional formulation framework. The effect of rarefaction and dust has never been 

investigated on the structure of these 3D configuration types of flows.  

Investigation of dusty gas micro-flows, pressure impactors are the other directions which 

can be followed.  

More detailed investigations on the Lunar landing problem including parametric studies 

and inclusion of more accurate erosion models in another direction.  

Comparison of the method with Lagrangian counterpart can also provide more details on 

the strength and weaknesses of the currently developed tool.  

Moreover, multiphase turbulent flows can be called an almost new topic in fluids dynamics. 

The current tool with the incorporation of turbulence models (or approaches) can be used 

in this area as well. In this case, one of the most interesting problems at hand is the aircraft 

atmospheric icing. Here, instead of solid particles, liquid droplets or bubbles should be 

modeled, and further necessary modifications to simulate the ice formation after collection 

of droplets on the surface should be taken into account.  

There are other classes of two-fluid models with interphase tracking, and the developed 

code can be further extended to be applied to problems in which interphase shape and 

location is important.  
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 List of Moon and Mars missions with 

a soft landing 

The most famous Lunar landings include unmanned Luna missions (Luna 13 1966, 

Luna 16 and 17 in 1970, Luna 20 in 1972, Luna 21 in 1973 and Luna 24 in 1976) operated 

by the Soviet Union as well as Surveyor 3, 5 and 6 operated by the United States in 1967 

and recent Chang'E-3 mission operated by China in 2013. The only successful manned 

missions are the well-known Apollo missions (Apollo 11 in 1969, Apollo 12 in 1969, 

Apollo 14 and 15 in 1971, Apollo 16 and 17 in 1972). The future Moon landing missions 

are summarized in Table 21. 

A series of Mars missions some of which included a landing has been carried out in the 

past. Successful missions which could land on the Mars include Viking 1 and 2 landers in 

1975, Mars Pathfinder in 1996, Spirit (MER-A) in 2003 and Phoenix in 2007 all operated 

by NASA. The recent en route mission, InSight (also operated by NASA) is due to land on 

Mars by November 2018. The future Mars missions which include a soft landing is 

provided in Table 22. 
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Table 21 List of future Lunar missions with a soft landing involved 

Country 

(Organization) 
Launch Mission Status 

China (CNSA) 2018 
Chang'E-4 landing and 

roving 

Funded/ 

In 

development 

 

India (ISRO) 2018 
Chandrayaan-2 (landing, 

roving, sample analyzing)  

China (CNSA) 2019 
Chang'E-5 (Sample 

return) 

Private 2019 
PTScientists (Landing 

and rovering) 

Private 2020 
Lander and 3+ 

rovers: Hakuto, AngelicvM 

Japan (JAXA) 2021 Pinpoint landing, roving 

China (CNSA) 2020s 
Chang'E-6 (Sample 

return 

Japan (JAXA) 2020s 
SELENE-2 (orbiting, 

landing and roving) 

Private 2019 
TeamIndus (Landing 

and roving) 

Proposal/ 

Unclear 

funding 

 

Korea (KARI) 2025* Moon Lander 

Russia (Roscosmos) 2028 
Luna-Glob (Manned 

lunar orbiter) 

Russia (Roscosmos) 2030 
Luna-Glob (Manned 

lunar orbiter) 

Japan (JAXA) 2030 Manned moon landing 

China (CNSA) 2036 
CLEP Manned moon 

landing 

Russia (Roscosmos) 2037 

Lunnyj Poligon 

(Completion of robotic 

lunar base) 
 

 

  

https://en.wikipedia.org/wiki/Chandrayaan-2
https://en.wikipedia.org/wiki/Chandrayaan-2
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Table 22 List of future Mars missions with a soft landing involved 

 

Country (Organization) Launch Mission Status 

Japan (JAXA) 2020 
Mars Terahertz 

Microsatellite Funded / 

In 

development 

 

EU (ESA/ASE) 2020 ExoMars 2020 

China (CNSA) 2020 
2020 Chinese Mars 

Mission 

USA (SpaceX) 2022 Demo mission 

Proposal/ 

Unclear 

funding 

 

Netherlands (Mars One) 2022 
Mars One, demo 

mission 

USA (SpaceX) 2024 Crewed mission 

Netherlands (Mars One) 2026 
Mars One, rover & 

ComSat mission 

Netherlands (Mars One) 2029 
Mars One, cargo 

missions 

China (CNSA) 2030 

Sample return phase 

of the Chinese Mars 

exploration program 

Netherlands (Mars One) 2031 
Orbiter, lander, 

cargo, crew of 4 

Netherlands (Mars One) 2033 
Orbiter, lander, 

cargo, crew of 4 

China (CNSA) 2036 

Crewed phase of the 

Chinese Mars 

exploration program 

Russia (Roscosmos) 2040-45 

Crewed phase of the 

Russian Mars 

exploration program 
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 Derivation of conservation laws from 

the Boltzmann transport equation 

The Boltzmann transport equation (BTE) for monatomic, diatomic and linear 

polyatomic particles known as Boltzmann-Curtiss equation in the absence of external body 

forces can be written as [2, 117, 264],  

   1, , ,
j

f t C f f
t I 

  
   

  
v v r  

(209) 

In the above equation j, I, and θ are the magnitude of the angular momentum, moment 

of inertia and azimuthal angle. We derive the conservation laws for the Boltzmann-Curtis 

which is an extended version of the Boltzmann equation. The third term in the above 

relation (and in the rest of the derivation process accordingly) will vanish for the case of 

monatomic gases. 

Before deriving the conservation equations, statistical mechanics definitions of some 

macroscopic parameters which are necessary for the derivation process are provided in the 

table below.  

Table 23 Statistical definition of macroscopic parameters 

Macroscopic quantity  Statistical definition 

Number density  , ,n f t r v   

Density  , ,mf t  r v  

Momentum  , ,m f t u v r v  

Energy 
 21

, ,
2

rotE mc H f t
 

  
 

r v  

Stress tensor  , ,m f tP cc r v  
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Shear stress tensor    
2

, ,m f tΠ cc r v  

Excess normal stress 
   

1
Tr , ,

3

p
m f t

n

 
   

 
cc r v  

Heat flux vector 
 21 ˆ , ,

2
rotmc H mh f t

 
   

 
Q c r v  

Differentiating the above statistical definitions introduced above with time and 

combining with BTE will give the conservation equations and constitutive relations. It 

should be noticed that the t, r, and v are independent variables, whereas peculiar velocity 

is not independent of space and time. Moreover, molecular, average and peculiar (random) 

velocities are related by v=u+c. By defining the material time derivative as .
D

Dt t


  


u , 

equation (209) can be written as, 

 1,
Df f j f

C f f
Dt I 

 
  

 
c

x
. 

(210) 

For the derivation of the mass conservation, the Boltzmann-Curtiss equation is 

multiplied by m and integrated over velocity space to yield 

 1,
f j f

m m f m mC f f
t I 

 
   

 
v . 

(211) 

As mass is a collision invariant of BTE the right-hand-side term will be zero: 

0
f j f

m m f m
t I 

 
   

 
v . 

(212) 

The above relation can be further simplified as 

. 0
j f

mf m f m
t I 

 
  

 
v . 

(213) 

Curtiss stated that f does not depend on the azimuthal angle and it only depends weakly 

on the position of gas molecules. With the use of statistical definition of density and 

momentum in Table 23, we can get the mass conservation equation:   
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 . 0
t





 


u . 

(214) 

The above equation is the same as the mass conservation form in continuum theory. 

With a similar approach, it can be shown that the Boltzmann equation fulfills the 

requirement of the momentum conservation law. This is achieved by differentiation of 

statistical definition of momentum and use of Boltzmann-Curtiss equation as follows 

 1,
f j f

m m f m m C f f
t I 

 
   

 
v vv v v . 

(215) 

The other collision invariant of the BTE is the momentum. Therefore, 

0
f j f

m m f m
t I 

 
   

 
v vv v . 

(216) 

The Curtiss’s assumption implies that 

0
f

m m f
t


  


v vv . 

(217) 

By substituting the molecular velocity in terms of thermal and macroscopic velocities 

in the second term, and use of statistical definitions of viscous stress tensor and excess 

normal stress we get 

  

   

     

   

   

    

 

2

2

. .

. . . .

1
. .

3

1
. . .

3

1
. . .

3

. . .

. .

. . .

m f m f

m f m f m f m f

m Tr f mf

m f Tr f

Tr f

p

p











    

    

 
    

 

   

   

     

     

  

vv c u c u

cc cu uc uu

cc cc I uu

cc cc I uu

Π cc I uu

Π I uu

uu I Π

uu P

 
(218) 
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In the above relation, P is the stress tensor which is decomposable into hydrostatic 

pressure, excess trace part and traceless part. Finally, the momentum equation can be 

expressed as, 

   . . 0p
t
 


    


u uu I Π I . 

(219) 

Accordingly, with the help of the statistical definition of the internal energy density of 

the fluid and consequent substitution and differentiation as has been done for the derivation 

of mass and momentum conservation equations, we can derive the energy conservation law 

or the first law of thermodynamics.  

 

2 2 2

2

1

1 1 1

2 2 2

1
, .

2

rot rot rot

rot

f j f
mc H mc H f mc H

t I

mc H C f f



      
          

      

 
  

 

v

 
(220) 

The third collisional invariant of the Boltzmann equation is the energy, therefore,  

2 2 21 1 1
0

2 2 2
rot rot rot

f j f
mc H mc H f mc H

t I 

      
           

      
v  

(221) 

The above equation can be further simplified as follows 

   

   

   

   

 

2 2

2 2

2 2 2

2 2 2

1 1
0

2 2

1 1
0

2 2

1 1 1
. .

2 2 2

. . 0

1 1 1
. .

2 2 2

. 0.

rot rot

rot rot

rot

rot rot

rot

rot

mc H f mc f H f
t

mc H f m c f H f
t

mc H f m c f m f c
t

H f f H

mc H f m c f m f c
t

H f

  
      

  

  
      

  

  
     

  

   

  
     

  

 

v v

v v

v v

v v

v v

v

 
(222) 
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By substituting the molecular velocity in terms of thermal and macroscopic velocities: 

 

      

2 21 1
.

2 2

. . . 0

rot

rot

mc H f m c f
t

m f H f

  
   

  

     

c u

c u c u c u

 

 

2 2 21 1 1
. .

2 2 2

. . . . . 0

rot

rot rot

mc H f m c f mc f
t

m f m f H f H f

  
   

  

      

c u

cc u u c u c u

 

 

2 2

2

1 1
.

2 2

1
. . . 0

2

rot rot

rot

mc H f mc H cf
t

mc H f m f

    
     

    

 
     

 
u cc u

 

(223) 

Finally, we can write the energy conservation as  

 . : 0E E
t
 


      

u Q P u  
(224) 

Alternatively, the above equation can be written as 

   . . . 0E E p
t
 


           

u Π I u Q  
(225) 
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 Derivation of constitutive relations 

from the Boltzmann transport equation 

It was shown in Chapter 3 that the moment equations can be obtained by differentiating 

the statistical definition of the variable with respect to time and combining it with 

Boltzmann (Boltzmann-Curtiss for diatomic and linear polyatomic) transport equation 

which yields the general moment h(n)  as follows [2, 264, 265], 

 

 

( ) ( )

( )

. .

. .

nn n

n n

h f h f h f
t

j
f h

t I 

 
     

 

  
     

  

u u c

u c Λ

 
(226) 

By defining ( )n
Ψ  as the flux of ( )nh f  (high-order moments), Z(n) kinematic term due 

to hydrodynamic streaming effect and ( )n
Λ  the dissipation term to account for energy 

dissipation in the irreversible process as  

( ) ( )

( ) ( )

( ) ( )

1

.

[ , ]

n n

n n

n n

ch f

D j
f h

Dt I

h C f f





 
   

 



Ψ

Z c

Λ

 
(227) 

Moreover, after denoting ( ) /nh f  as 
( )ˆ nh  the general evolution can be written as 

( ) ( ) ( ) ( )ˆ .n n n nD
h

D
   Ψ Z Λ  

(228) 

The constitutive equation for viscous stress tensor  
(2)

= m fΠ cc  can be derived by 

taking  
(2)(1)h = m cc  as follows 

( ) ( ) ( ).
D

D




   
   

 

Π
Ψ Z Λ  

(229) 

The kinematic term can be expanded as follows 
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 

   

    

( ) (1)

(1) (1) (1)

(2) (1) (1)

(2) (2) (1) (1)

(2) (2)

.

.

.

.

2 2 2 .

D j
f h

Dt I

D j
f h f h f h

Dt I

D j
f m f h f h

Dt I

D D j
f m f m f h f h

Dt Dt I

D
p

Dt









  
   

 


   




   




    



 
       

 

Z c

c

cc c

cc cc c

u
J Δ u u

 
(230) 

In the above equation m fJ c  is the diffusion flux which can be neglected for single 

species flows. The final equation of constitutive equation for shear stress then reduces to  

    
(2) (2)( ) ( ). 2 2 .

D
p

D




  
       

 

Π
Ψ Δ u u Λ  

(231) 

The excess normal stress  2 / 3 /mC p n f    balance equation can be achieved by 

setting / 3 /(2) 2h = mc p n , with n as number density in the general evolution equation,  

(2) (2) (2) (2)ˆ .
D

h
D

   Ψ Z Λ  
(232) 

Equivalently,  

( ) ( ) ( ).
D

D




   
   

 

Δ
Ψ Z Λ  

(233) 

Again the kinematic term can be expanded as  

 

( ) (2)

(2) (2) (2)

2 2 2

.

.

1 1 1
.

3 3 3

2
2 : .

3

D j
f h

Dt I

D j
f h f h f h

Dt I

D p p j p
f mC f mC f mC

Dt n n I n

p







 

  
   

 


   



     
           

     

       

Z c

c

c

Π I u u

 
(234) 
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Therefore, the excess normal stress constitutive relation can be written as 

 ( ) ( )2
. 2 : .

3

D
p

D
  



  
        

 

Δ
Ψ Π I u u Λ  

(235) 

The heat flux  2 ˆ/ 2 rotmC H mh f  Q c  balance equation can be achieved by 

setting  2 ˆ/ 2(3)

roth = mC H mh  c , with Hrot and ĥ  as rotational Hamiltonian of the 

molecule and the enthalpy density per unit mass, in the general evolution equation,  

(3) (3) (3) (3)ˆ .
D

h
D

   Ψ Z Λ . 
(236) 

Similar to derivation previous in previous parameters the kinematic term can be 

expanded as 

( ) ( ) ( ). Q Q QD

D




 
   

 

Q
Ψ Z Λ . 

(237) 

Expanding the kinematic term yields 

   

( ) (3)

(3) (3) (3)

2 2

2

( )

.

.

1 1ˆ ˆ.
2 2

1 ˆ
2

: . .

Q

rot rot

rot

P

p p

D j
f h

Dt I

D j
f h f h f h

Dt I

D
f mC H mh f mC H mh

Dt

j
f mC H mh

I

d
p C T C T

dt









 
   

 


   



   
         

   

  
   

  

             

Z c

c

c

u
u Π I Π Q u

 
(238) 

Finally, the constitutive equation for heat flux can be written as 

   ( ) ( )

( )

. : .

.

Q P

p

Q

p

D d
p C T

D dt

C T

 


 
        

 

    

Q u
Ψ u Π I

Π Q u Λ

 
(239) 
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 Applied basis functions and 

integration process of the source term vector for 

triangular elements  

In this appendix, the applied basis functions and the analytical integration, which shows 

that only the first term of Θ vector has non-zero value is provided.  

1

2

( ) d
Cell Area/2

( ) d 0

0
( ) d

k

k

k

k

k

n k

J

J

J













 
   
   
     
   
   

  
  







x Ω

x Ω
Θ

x Ω

 
(240) 

The vector of basis functions, which is used in order to achieve a third order (P2) solution, 

is as follows:  

    
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1
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The transformation Jacobian is (1-b)/2; therefore,  
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