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Nomenclature

C = integration constant
Cv = specific heat at constant volume
E = internal energy
l = mean free path based on mass flux
M = Mach number
O = mass flux
P = total momentum flux
p = thermodynamic pressure
Q = total energy flux
Qs = shock asymmetry
Qx = x component of heat flux vector
R = gas constant
r = dimensionless density
s = exponent of the inverse power laws
T = temperature
u = x component of velocity vector
v = dimensionless velocity
x = coordinate normal to the shock front
�x = dimensionless coordinate normal to the shock front
α = parameter of upstream Mach number
γ = specific heat ratio
Δ = temperature–density separation distance
δ = shock thickness
η = viscosity
θ = dimensionless temperature
κ = thermal conductivity
λ = mean free path
μ = parameter of upstream Mach number
ξ = dimensionless coordinate
Πxx = xx component of stress tensor
ρ = density
σ = dimensionless stress
ϕ = dimensionless pressure
φ = dimensionless heat flux
Ψ̂ = dimensionless nonequilibrium entropy

I. Introduction

T HE problem of shock wave structures of gases is not only
important from the technological viewpoint, but it has also been

a major stumbling block for theoreticians for a long time [1–7]. For
example, the shock wave structures have a big impact on the overall
flow patterns around hypersonic aerospace vehicles flying at high
altitude [8]. The stationary shock wave structure is defined as a very
thin (order of mean free path) stationary gas flow region between the
supersonic upstream and subsonic downstream [9–11].
There are at present two theoretical issues regarding this rather

simple physical problem. The first issue concerns the physics of
shock wave structures for varying Mach numbers, such as shock
thickness and asymmetry [1–3,6,7,12–17]. In addition, the derivation
of proper hydrodynamic equations valid in very high Mach numbers
is a hot research topic in nonequilibrium gas dynamics [4–7]. The
second issue is the numerical difficulty associated with the stiffness
of the shock structure arising from the rapid change of physical
properties in the extremely thin region. It is well known that the stiff
shock structure is one of the toughest problems to solve numerically,
either in the system of ordinary differential equations [6,18] or in the
form of partial differential equations [18–22]. It was further noted
that numerical results of the shock structure are found to be very
sensitive to the extent of the computational domain, the imposed
downstream boundary conditions, the level of intrinsic viscosity and
thermal conductivity, physical and artificial, and the employed time
integration schemes and so on [22], making the verification and
validation study very challenging [23].
This Note presents analytical solutions, in particular, the asym-

metry and temperature–density separation, to the shock structure
problem in elementary function form within the Navier–Stokes/
Fourier framework. These results, which do not seem to have been
derived in the past, are not only useful in the study of the physics
of the shock inner structure but also in the verification of the
computational fluid dynamics scheme.

II. Analytical Solutions in Closed Form

The conservation laws for the one-dimensional shock wave
structure and the equation of state can be written as

ρu � O;
ρu2 � p� Πxx � P;

ρu

�
E� 1

2
u2
�
� u�p� Πxx� �Qx � Q;

p � ρRT (1)

where O, P, and Q are integration constants for mass, momentum,
and total energy, respectively. It should be mentioned that the
conservation laws are the direct consequence of the kinetic
Boltzmann equation and are valid for all the flow regimes. When the
following Navier–Stokes/Fourier constitutive relations are inserted
into the conservation laws,

Πxx � −
4

3
η
du

dx
; Qx � −κ

dT

dx
(2)

and, after introducing the following dimensionless parameters based
on the conserved properties O, P, and Q, which turned out to be
crucial in deriving analytical solutions in closed form in a more
efficient way,
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r� ρO−2P; v � uOP−1; ϕ � pP−1; θ � RTO2P−2;

σ � ΠxxP−1; φ � QxQ−1; ξ� xl−1; α� OP−2Q (3)

the equations are reduced to (E � 3RT∕2)

rv � 1;

rv2 � ϕ� σ � 1;

v2 � 5θ� 2σv� 2αφ � 2α;

ϕ � rθ (4)

and

σ � −
4

3
η�

dv

dξ
; φ � −

5

2
κ�

θ1
αPr

dθ

dξ
(5)

where ξ represents a dimensionless length scale based on the
upstream (subscript 1) mean free path l

ξ � x
l
; l � η1

ρ1u1

Here the reduced viscosity η� and thermal conductivity κ� can be
expressed in terms of θ and s, which are related to the exponent of the
inverse power laws of gas molecules,

η� �
�
θ

θ1

�
s

; κ� �
�
θ

θ1

�
s

The spatial coordinate ξ is also related to �x the length scale based on
an effective mean free path λ:

ξ � �x

� ������
γπ

2

r
M

�
; �x � x

λ
� x��������

π∕2
p

η1∕�ρ1
���������
RT1

p
�

Here M and γ are the upstream Mach number and the specific heat
ratio, respectively. It can be further noted that the parameter α
introduced in Eq. (3) is basically a function of the upstream Mach
number

α � γ2M2�2� �γ − 1�M2�
2�γ − 1��1� γM2�2

In addition, the following boundary conditions, which are nothing
but the Rankine–Hugoniot relations, can be derived by applying σ,
φ�ξ � �∞� � 0 to Eq. (4):

r1;2 �
1

v1;2
� 8

5� μ
; ϕ1;2 �

3∓μ
8
; θ1;2 �

15∓2μ − μ2

64

(6)

where

μ �
�������������������
25 − 32α
p

Here the upper sign is for the upstream 1 and the lower sign is for the
downstream 2. Equations (4) and (5) can be simplified into the
following differential equation:

v2 � 5θ − 2α −
4

3
η�

d

dξ

�
v2 � 3∕4

Pr
�5θ�

�
� 0 (7)

There is no known general analytic solution to this nonlinear
differential equation, but they can be integrated in the case of
Pr � 3∕4, which is a good approximation for the actual value of
many gases including air (Pr � 0.72). It then reduces to an integrable
form

v2 � 5θ − 2α −
4

3
η�

d

dξ
�v2 � 5θ − 2α� � 0 (8)

Note that a term d�2α�∕dξ � 0 is added in the process. The solution is

v2 � 5θ − 2α � C exp

�
3

4

Z
ξ

−∞

1

η�
dξ

�

where C is an integration constant. It turns out that the constant must
be zero to have a physically allowable solution; otherwise, the total
energy density of the gas would vary exponentially with spatial
coordinate. Thus, we can derive a simple form of the energy
conservation law

v2 � 5θ − 2α � 0 (9)

By combining the momentum conservation law in Eq. (4) and the
Navier constitutive relation in Eq. (5) with the new form of energy
conservation Eq. (9), we can derive a differential equation for the
shock wave inner structure:

5

3
η�v

dv

dξ
� v2 − 5

4
v� α

2
(10)

By noting η� � �2α − v2�s∕�5θ1�s and recalling the fact that the
right-hand term can be factored into �v − v1��v − v2�, the equation
reduces to a nonlinear differential equation of the velocity v�ξ� only

dv

dξ
� 3

5
�5θ1�s

�v − v1��v − v2�
v�2α − v2�s (11)

A. Inverse Shock Density Thickness

Equation (11) can provide the shock thickness based on the
maximum slope of the velocity in the shock profile. However, the
density, not the velocity, is measured in the experimental
investigation of the shock structure [13,14]. Therefore, Eq. (11)
needs to be transformed into the following differential equation of the
density r�ξ�

dr

dξ
� 3

5
�5θ1�s

r�r − r1��r2 − r�
r1r2�2α − r−2�s (12)

By noting that dr∕dξ becomes maximum at the location ξ satisfying

6α2r4 − 10αr3 � α�1 − 2s�r2 � 5�s� 1�r − 2�2s� 1� � 0 (13)

the maximum slope can be determined without actually solving the
differential Eq. (12). A unique real root of the quartic equation of r
(r1 < r < r2) can always be obtained by Ferrari’s method [24]. The
inverse shock density thickness δ is then calculated by

δ−1 �
������
γπ

2

r
M

r2 − r1

�
dr

dξ

�
max

(14)

B. Shock Structure Asymmetry

In contrast to the case of the thickness, the exact profile within the
shock structure is necessary to determine other shockwave properties
such as the asymmetry. The simplest case s � 0 in the nonlinear
differential equation of the velocity v�ξ� [Eq. (11)], constant
coefficients of viscosity and conductivity, was already solved
analytically in the previous study [3]. The possibility of deriving the
analytical solutions in closed form in the case of the Maxwellian
molecule (s � 1) and the hard sphere (s � 1∕2) has been, however,
overlooked in the past, probably due to the rather complicated formof
the nonlinear differential Eq. (11). Here the analytic solution to the
Maxwellian molecule is first presented in closed form, because it is
simpler in the mathematical sense and, at the same time, it preserves
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the essence of behaviors inherent in general molecules. By
recognizing the following integral formula,

Z
v�2α − v2�

�v − v1��v − v2�
dv � −�v1 � v2�v −

1

2
v2

� 1

v1 − v2
ln
�v1 − v�v1�2α−v

2
1
�

�v − v2�v2�2α−v
2
2
�

the following differential equation can be integrated analytically:

3

5
�5θ1�dξ �

v�2α − v2�
�v − v1��v − v2�

dv

That is, by choosing the proper integration constant related to the
physical location of the shock wave and also by noting
r�x� � 1∕v�x�, the implicit density solution r�x� in the range of
r1 < r < r2 can be derived in a compact functional form:

3θ1M

������
γπ

2

r
�x � 1

ra

�
5

4
� 1

2ra

�
−
1

r

�
5

4
� 1

2r

�

� 4

μ
ln
��r−11 − r−1�∕�r−11 − r−1a ���2α−r

−2
1
�∕r1

��r−1 − r−12 �∕�r−1a − r−12 ���2α−r
−2
2
�∕r2

(15)

Here the integration constant is determined by the arithmetic mean of
the upstream and downstream density

ra �
1

2
�r1 � r2� �

5

4α

which is equivalent to the harmonic mean of the upstream and
downstream velocity. Note that the choice of the integration constant
is not unique; for example, in the previous study [3], the constant was
chosen such that the inflection point, that is, the point with maximum
velocity slope, may coincide with the origin of the coordinate x � 0.
For the known density profile (15), the shock asymmetry introduced
by Schmidt [13] can be expressed as follows:

Qs�
R
0
−∞�r�x�−r1�dxR∞
0 �r2−r�x��dx

�
R
r1
ra
x�r�drR

r2
ra
x�r�dr�

−�μ∕4���5∕4�ln�r1∕ra�−�1∕2���1∕r1�−�1∕ra��−�1∕ra���5∕4���1∕2ra���r1−ra��−�5∕4���1∕r2�−�1∕r1��ln�r1∕ra�−�2α−�1∕r22���1−�r1∕r2��ln��r−1a −r−12 �∕�r−11 −r−12 ��
−�μ∕4���5∕4�ln�r2∕ra�−�1∕2���1∕r2�−�1∕ra��−�1∕ra���5∕4���1∕2ra���r2−ra��−�5∕4���1∕r2�−�1∕r1��ln�r2∕ra�−�2α−�1∕r21����r2∕r1�−1�ln��r−11 −r−1a �∕�r−11 −r−12 ��

(16)

Note that a new technique, the exchange of variables r�x�, x�r� in
integrand, is needed to derive the asymmetry in closed form. That is,
for the implicit density solution (15) in the form of x � F�1∕r�
or 1∕r � F−1�x�, the integral ∫ r�x� dx � ∫ 1∕F−1�x� dx in the
asymmetry can be reduced into an analytically solvable form
∫F�1∕r� dr because the area defined by an integration

Z
∞

0

�r2 − r�x�� dx

is equal to the area defined by an integration

Z
r2

ra

x�r� dr

in the present monotonic shock profile bounded by r1 and r2. In this
process, the following integral formula has been used:

Z �Z
v�2α − v2�

�v − v1��v − v2�
dv

�
dr � 1

2r
− �r−11 � r−12 � ln r

� 2α − r−21
r−11 − r−12

�r−11 r − 1� ln�r−11 − r−1�

−
2α − r−22
r−11 − r−12

�r−12 r − 1� ln�r−12 − r−1�

In addition, the shock asymmetry has the following asymptotics for
upstream Mach numberM:

QsM→1
� 1; QsM→∞

� 125

106
ln 5 −

38

53
≐ 1.181

C. Shock Temperature–Density Separation

Until now, no investigations of temperature (or pressure) profiles
in the shock inner structure have been conducted. Another parameter,
the so-called the shock temperature–density separation, can be
considered. It measures the separation distance between density and
temperature profiles and can be easily calculated as follows: In
conjunction with Eqs. (9) and (15),

Δ � �x�ra� − �x�r�θa�� � − �x�r�θa��

where r�θa� �
�

32

25 − 16α

�
1∕2

and θa �
θ1 � θ2

2
(17)

The shock separation distance has the following asymptotics:

ΔM→1 �
1

2

������
30

π

r
≐ 1.545; ΔM→∞ → ∞

D. Other Profiles

Once the density and velocity profiles are known, all other
solutions, including nonconserved variables, the stress, the heat flux,

and the nonequilibrium entropy distribution Ψ̂ [6], can be derived
using the following relations:

θ�2α−v2

5
; ϕ�2α−v2

5v
; σ�−

4v2−5v�2α

5v
; φ�4v2−5v�2α

5α
;

Ψ̂−Ψ̂1

Cv
� ln

θ

θ1
��γ−1�lnr1

r
−
γ−1

4

�
�σ2� 2γ

γ−1
�φ2

�
(18)

where two additional parameters of the normal stress and the heat flux
are introduced:

�σ � σ

ϕ
; �φ � γ − 1

γ

αφ

ϕ
���
θ
p (19)

III. Results

The analytical solutions expressed in terms of r, v, and θ can be
transformed in terms of ρ, u, and T properties
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r� ρO−2P� ρ

ρ1

�
1� 1

M2

�
; v� uOP−1 � u

u1

�
1� 1

M2

�−1
;

θ� RTO2P−2 � T

T1

1

γM2

�
1� 1

M2

�−2

When the normalized variables [e.g., �r ≡ �r − r1�∕�r2 − r1�] are
introduced, then it can be shown that

�r � �ρ; �v � �u; �θ � �T

In Figs. 1 and 2, the shock structure profiles of conserved and
nonconserved variables in the case of a high Mach number 15 are
illustrated for different molecules. A noticeable feature is that the
shock transition regime extends further to upstream as the molecule
deviates from the Maxwellian type. In the case of a Maxwellian
molecule, there exists a rapid transition at the upstream front starting
near the location x∕λ � −10. Another feature can be found in Fig. 3
of the stress and heat flux in the phase plane �σ;φ�: The phase
portraits remain essentially the same for a given Mach number
regardless of the molecule type. In Figs. 4–6, the main profile
characteristics of the shock inner structure are illustrated for varying

Mach numbers. It can be observed that molecules close to the
Maxwellian type show nonmonotonic behavior in the thickness,
whereas molecules with small value of s do not show any finite
asymptotic behavior for increasing Mach numbers. It is also shown
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Fig. 1 Shock structure profiles (M � 15). Maxwellian molecule (s � 1)
for the thick solid curve; hard sphere (s � 1∕2) for the thin solid curve;
constant case (s � 0) for the broken curve.

−35 −30 −25 −20 −15 −10 −5 0 5 10 15

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x/λ

N
on

−
co

ns
er

ve
d 

va
ria

bl
es

Stress

Heat flux

Fig. 2 Stress σ vs heat fluxφ (M � 15).Maxwellianmolecule (s � 1) for
the thick solid curve; hard sphere (s � 1∕2) for the thin solid curve;
constant case (s � 0) for the broken curve.
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Fig. 3 Stress σ and heat flux φ in the phase plane.
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Fig. 4 Inverse shock density thickness.Maxwellianmolecule (s � 1) for
the thick solid curve; hard sphere (s � 1∕2) for the thin solid curve;
constant case (s � 0) for the broken curve.
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Fig. 5 Shock asymmetry. Maxwellian molecule (s � 1) for the thick
solid curve; hard sphere (s � 1∕2) for the thin solid curve; constant case
(s � 0) for the broken curve.
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that the asymptotic values of the Maxwellian molecule and hard
sphere are 0.0 and 0.9076, respectively. On the other hand, the shock
asymmetry is qualitatively similar for all molecules as shown in
Fig. 5. All molecules haveQs � 1 inM � 1 limit, but have different
asymptotic values in infinite Mach number limit, with the
Maxwellian molecule showing the smallest asymmetry. Finally, the
shock temperature–density separation distance is shown in Fig. 6.
The shock separation is not monotonic for all molecules and it
continuously increases for increasing Mach numbers after a critical
Mach number. Interestingly, the shock distances coincide at a
particular Mach number M � 1.811 (Δ � 1.29) for s � 0, 1∕2, 1,
which does not seem to have been identified previously.

IV. Conclusions

Closed-form analytical formulas (12–19) and (A1–A4) for the
shock wave structure in monatomic gases are derived within the
Navier–Stokes/Fourier framework. In particular, the shock thickness
and asymmetry requiring the spatial differentiation and integral of
density profile, respectively, are presented in elementary function
form. In the derivation, the only major assumption introduced is a
special value of a Prandtl number of three-fourths. These fully
analytical results are expected to benefit the better understanding of
the shock inner structure physics for all Mach numbers and the
verification of the numerical scheme.

Appendix A: Other Molecular Cases

A1 Hard Sphere Case

The analytic solution to the hard sphere (s � 1∕2) can also be
derived in closed form. By recognizing the following integral
formula,

Z
v�2α − v2�1∕2
�v − v1��v − v2�

dv � �2α − v2�1∕2

− �v1 � v2�tan−1
v

�2α − v2�1∕2

−
v1�2α − v21�1∕2

v1 − v2
tanh−1

�2α − v21�1∕2�2α − v2�1∕2
2α − v1v

� v2�2α − v22�1∕2
v1 − v2

tanh−1
�2α − v22�1∕2�2α − v2�1∕2

2α − v2v

the implicit density solution can be derived in a compact functional
form:

3θ1M

������
γπ

2

r
�x � �2α − r−2�1∕2 − �2α − r−2a �1∕2

� 5

4
�tan−1�2αr2a − 1�−1∕2 − tan−1�2αr2 − 1�−1∕2�

� 4

μ
r−11 �2α − r−21 �1∕2

�
tanh−1

�2α − r−21 �1∕2�2α − r−2a �1∕2
2α − r−11 r−1a

− tanh−1
�2α − r−21 �1∕2�2α − r−2�1∕2

2α − r−11 r−1

�

−
4

μ
r−12 �2α − r−22 �1∕2

�
tanh−1

�2α − r−22 �1∕2�2α − r−2a �1∕2
2α − r−12 r−1a

− tanh−1
�2α − r−22 �1∕2�2α − r−2�1∕2

2α − r−12 r−1

�
(A1)

The corresponding shock asymmetry is reduced to

Qs � r1r−12
�
��2α − r−21 �1∕2 − �2α − r−2a �1∕2�

� r−12 �tan−1�2αr2a − 1�−1∕2 − tan−1�2αr21 − 1�−1∕2�

� �2α − r−22 �1∕2
�
tanh−1

�2α − r−22 �1∕2�2α − r−2a �1∕2
2α − r−12 r−1a

− tanh−1
�2α − r−22 �1∕2�2α − r−21 �1∕2

2α − r−12 r−11

��
·

�
��2α − r−22 �1∕2 − �2α − r−2a �1∕2�

� r−11 �tan−1�2αr2a − 1�−1∕2 − tan−1�2αr22 − 1�−1∕2�

� �2α − r−21 �1∕2
�
tanh−1

�2α − r−21 �1∕2�2α − r−2a �1∕2
2α − r−11 r−1a

− tanh−1
�2α − r−21 �1∕2�2α − r−22 �1∕2

2α − r−11 r−12

��−1
(A2)

In this process, the following integral formula has been used:

Z �Z
v�2α − v2�1∕2
�v − v1��v − v2�

dv

�
dr � �2αr2 − 1�1∕2

� �1 − �r−11 � r−12 �r�tan−1�2αr2 − 1�−1∕2

−
r−11 �2α − r−21 �1∕2

r−11 − r−12
�r − r1�tanh−1

�2α − r−21 �1∕2�2αr2 − 1�1∕2
2αr − r−11

� r
−1
2 �2α − r−22 �1∕2
r−11 − r−12

�r − r2�tanh−1
�2α − r−22 �1∕2�2αr2 − 1�1∕2

2αr − r−12

Note that the inverse function of the hyperbolic tangent can be
expressed in terms of the logarithmic function

tanh−1 t � 1

2
ln
1� t
1 − t

The shock asymmetry has the following asymptotics:

QsM→1
� 1; QsM→∞

� 1

8

−8
������
21
p
� 10�tan−1�2∕

������
21
p
�− π∕2�� 10

������
15
p

tanh−1
������
35
p

∕6
5

������
15
p

− 4
������
21
p
� 20�tan−1�2∕

������
21
p
�− tan−1�1∕

������
15
p
��

≐ 1.416

The shock distance has the following asymptotics:

ΔM→1 �
4

5

������
10

π

r
≐ 1.427; ΔM→∞ → ∞
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Fig. 6 Shock temperature–density separation. Maxwellian molecule
(s � 1) for the thick solid curve; hard sphere (s � 1∕2) for the thin solid
curve; constant case (s � 0) for the broken curve.
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No error in Maxwellian case.But an error in HD case.3 theta_1 M sqrt{gamma*pi/2} bar{x}->3 M sqrt{theta_1 * gamma*pi/10} bar{x}Cf. When plotting analytic solutions,computer first bar{x} for given r and then plot bar{x} versus r using the data, rather than compute r for given bar{x}



A2 Constant Transport Coefficient Case

For completeness, the analytical solution to the constant case
(s � 0) is also presented. By recognizing the following integral
formula,

Z
v

�v − v1��v − v2�
dv � 1

v1 − v2
�v1 ln�v1 − v� − v2 ln�v − v2��

the density solution r�x� can be derived:

3θ1M

������
γπ

2

r
�x � 4

μ
ln
��r−11 − r−1�∕�r−11 − r−1a ��1∕r1
��r−1 − r−12 �∕�r−1a − r−12 ��1∕r2

(A3)

The corresponding shock asymmetry reduces to

Qs �
ln ��r−1a − r−12 �∕�r−11 − r−12 ��1∕r2
ln ��r−11 − r−1a �∕�r−11 − r−12 ��1∕r1

(A4)

In this process, the following integral formula has been used:

Z �Z
v

�v− v1��v− v2�
dv

�
dr� 1

r−11 − r−12
�r−11 r− 1� ln�r−11 − r−1�

−
1

r−11 − r−12
�r−12 r− 1� ln�r−1 − r−12 �

In addition, the shock asymmetry has the following asymptotics:

QsM→1
� 1; QsM→∞

� ln 51∕4

ln�5∕4� ≐ 1.803

The shock distance has the following asymptotics:

ΔM→1 �
32

75

������
30

π

r
≐ 1.319; ΔM→∞ → ∞
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