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Introduction to gas micro flows
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Hard disk drive: Kn=0.6, M=0.7

Gas flow in micro/nano devices
Molecular interaction between gas particles and solid atoms
Velocity shear dominated flows (high Kn, but relatively low M)



Theory and modeling of gas micro flows

Continuum approach
Chapman-Enskog: Burnett
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Linearized Boltzmann equation
Lattice-Boltzmann method
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Hybrid approach
DSMC-continuum coupling (based on domain decomposition)
Multi-scale method (non-conserved variables calculated by MD)




Research goal of present study

Develop a unified computational model for
rarefied and micro- & nano-scale gases

upon which others can build efficient (3-D) CFD
codes (like state-of-the-art FLUENT package)

http://acml.gnu.ac.kr C) <Open knowledge>



Challenges and emphasis

Challenges in gas micro flows:

- unknown problem (deviation from classical physics)
- not easily testable (limited information)

- theoretical barrier (G.E. and B.C.)

- cross-disciplines

Emphasis in this talk:

- clear demonstration of knowns (fully exact analytic
approach, focusing on simple problems)

- gualitative over quantitative (putting many abnormal
behaviors in proper context, rather than one-time snap-shot
agreement)

- sharing failure and struggle (rather than making conclusive)
- verification & validation of computational simulation of gas
micro flows



Scope

Focusing on (1-D velocity shear dominated)
benchmark flows:

- Couette (generated by moving wall)

- force-driven Poiseuille (pure 1-D)

- pressure-driven Poiseuille (testable)

- verification & validation (V & V)

Based on published journal papers

- Physics of Fluids (2011)

- Computers & Fluids (2011)

- Int. J. Heat Mass Transfer (2006; with Lockerby & Reese)
- Physics of Fluids (2004)

- Physics of Fluids (1999)

and on-going work on Couette and pressure-driven
Poiseuille flows



Part |I.

Governing equations
and
boundary conditions



Governing equations

Assumption: Non-classical phenomena are related to what happens in
bulk flow region and what happens near the solid wall and to their
combination.

Boltzmann equation (1844-1906) collision integral
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Differentiating the statistical definition
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with time <> _ J'J' ---dvxdvydvz
and then combining
with the Boltzmann equation v
Moment equation p%+v-(pl+n)=pa (,o,u,T,H, ,---)(t,r)
t
shear stress heat flux

tensor vector



Derivation of continuum model

Conservation laws (exact) in vector form
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Derivation of algebraic constitutive relations
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Interesting non-classical physical laws

can be identified!



Linear uncoupled Navier-Fourier equations:
classical physical laws
Navier (1822) M =—n[Vu [’
Fourier (1822) Q=-kVT

{Hxx ny] . —277(T)[ux —(uy +v,)13  (uy,+vy)/2

I, I, (vy +u,)/2 v, —(uy +v,)/3
u, case (compression and expansion) u,, case (velocity shear only)
2u /3 0 Newtonian or [ 0 u /2—‘
2n(T)| . —2n(T ”“ | Uncoupled
o[ D ] %,
Not like (“x)z Always vanishing normal stress IT,, or IT,,

{Q"} « —k(T)Fx}. Not like (7..)?



Non-classical laws embodied in nonlinear
coupled constitutive relations (NCCR)
ic =2nV 2) +p : xp I1 Shear stress
Thermodynamic nvua :> Algebraic :>
driving force NCCR heat flux
—kVT C T C T Q
2o =2 % p|—L—
2Pr 2Pr
xx,xy/p Shear stress (Navier-Stokes) 2
i . . ’ = 1+& I,
Nonlinear (shear thinning) 5
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Bl Iy e . .
kinematic stress
0 constraint!

Normal stress (Navier-Stokes)
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Heat flux
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Non-Fourier law by the coupling of force
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Slip/jlump models (boundary conditions)

General comments:

- B.C. should describe the molecular interaction of the
gas particles with the solid surface atoms, involving the
Kinetic theory of gases and solid state physics.

- Boltzmann equation based on collision of gas particles
only may not be valid.

- Concept based on gaseous adsorption may give a hint
for parameters governing the gas-surface atom
molecular interaction. Also, surface diffusion can be
built from adsorption.

- We may have to live with simple B.C. such as Maxwell
model in case of continuum-based computational
models.




Langmuir slip model based on gaseous
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adsorption isotherm (PoF 2004)
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Condense on the surface, being held by the field of force of the surface
atoms, and subsequently evaporate from the surface

= time lag = adsorption = slip and jump

~

ing with gas molecules ()
Na :number of sites which are covered
Then the equilibrium constant K becomes
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Heat of adsorption vs accommodation coeff.

Langmuir model (Dirichlet type)

u=ou,+(l-a)u.,a= p/AoKn
1+ p/4wKn
T 1+2/(v-1) D
o=awn,V) = exp| ——=—|= fm(v,T.,D
] 2

D, : Heat of adsorption [O(10™* ~ 10) kcal/mol]

Maxwell model (Neumann type)

ou 2—0, . :
u=u, + wﬂ(a— , @ = ~; slip (accommodation) coeff.
nj, o)

\%

Assignment of physical meaning to accommodation coeff.

An equivalence relation can be proved by solving pressure-driven gas
flow in a microchannel with two slip models

142/(v-1)
2-0 T D
L~ =w,(V) = exp| ——=
o T kyT,

1%




Morphing of NCCR into B.C.

Troubles found during the implementation
- how to determine reference velocity in the Langmuir model

u=au,+1-a)u,

- not successful in showing the velocity gradient singularity
(identified by Lilley PRE 2007) in Couette flow by NCCR and
B.C. (Maxwell & Langmuir)

Morphing of nonlinearity and coupling (of NCCR) into
B.C.
- back to the original concept of Maxwell model (degree of
slip proportional to the degree of non-equilibrium near the
wall)
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Morphing of NCCR into B.C.: Nonlinear
|

Conventional linear velocity slip and temperature jump models

w12 =v+oi- ()2 20T T v o0 ()L
V w T
Oy nlo 4 pT Ox |, Qy hl2

Nonlinear coupled velocity slip and temperature jump models

u(h12)=V +o,l HJ A V) QxJ , T(h12)=T,+0,l 2
71, 4rIPr p| . k

hil2

- Non-Navier-Stokes shear thinning behavior morphs into shear stress
- Non-Fourier law morphs into heat flux

- Morphing of NCCR (tangential heat flux generated by velocity shear)
into velocity slip

- Capable of describing the velocity gradient singularity



Summary of G.E. and B.C. (I)

Kn=M/Re N Hard disk drive
Z X
) D
8 @D Increase of thermal
=] =
m _ oy -
< o non-equilibrium
Q
Kn=0.1 | ©
Re-entry vehicle trajectory
Solid-gas
interaction
Nonlinear M2 /R
e=0(1
Kn=0.031 === )
Rarefied
2 _ -1
Local thermal / M /Re=0(10")
equilibrium @ — >
Coupling ‘Z \ M=30 M
Non-isothermal High temperature effect boundary
v-Vf(x,v)=C[f, 1,] pu-Vu+V:pl+V-II=0 Main parameter I1/p ~ Kn - M

Two terms: Kn Three terms: M, Kn (not Kn alone!)



Summary of G.E. and B.C. (ll)

@,
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sebsbes

Boltzmann (or
similar) in
bulk flow

Gas-surface
atom
interaction

Nonlinear Kn*M
Coupled
Morphing
(Seamless transition)
Nonlinear Kn
Coupled 2-0, - exp| - D,
O, kBTw

Combination of two nonlinearities and two couplings—nonlinear
coupled constitutive relation for bulk flow and nonlinear coupled
boundary conditions at the wall—may be critical within the

continuum framework.

There may exist many cases in how to combine them, making
gualitative & many-facets agreement more difficult.



Part Il.

Couette flow



Gaseous Couette flow (Comp. Fluids 2011 and

\ on-going)
u(y) V

Twall [ d _ny | 0
d_y p+1—‘[yy = 0
T Tu+Q,| L0

h—> — ) with

M =
JYRT,, (1, ..0.,)="Mn E—ﬂd—u,—k d—T]
Twall . \/F dy dy
v Kn = |2 DN nonlinear & coupled
2 p(O)h

Non-classical behaviors (well-understood parts)

- nonlinear velocity profile (non-isothermal)

- non-zero tangential heat flux and normal shear stress (coupling)
- small shear stress (shear thinning)

However, unsolved problems persist (within continuum
framework)

- velocity gradient singularity (power law identified from DSMC)

- smaller slip (or larger velocity slope)

- exact role of non-isothermal physics



NCCR + nonlinear Maxwell

With NCCR + linear Maxwell

- capable of describing non-zero
tangential heat flux and normal
shear stress

- but not able to describe the
velocity gradient singularity in the
Knudsen layer

Velocity slope A

With NCCR + nonlinear
(coupled) Maxwell
-capable of explaining the origin at
of the velocity gradient singularity
- at the same time being able to 0
describe all other abnormal

behaviors in qualitative ' _
HJ L30-D Qx}
hil2 hl?2

agreement with DSMC ”(h/Z)ZVJr"VZ'; 4 yIPr p

I L I I I L ! 1
0 1 2 3 4 5 6 7 8 9 10




Summary of Part Il: Well-posedness of Couette

Wall boundary
conditions

u (slip)

T (jump)

'Flﬁ\lll

11U VY

Initial data

M, Kn,T

wall

y

/T

ave

nduldy,T

wall

A 4

7(0), p(0)

T(y)u(y), p(»)

T, 11,11 11

xy ! T xx yy! zz

0.(»).0,()

Physical constraints imposed
0<M<w
O<Kn<w
0<T

wall

Primary solutions

p=pRT
p,T,p>0
Hm+HW+HH=O

Conservation laws
satisfied exactly

Note: T(0) itself is the part of solution. Without it, the analysis remains incomplete.
(For example, Marqgues et al. 2001 in Contin. Mech. Thermo.)



Part Ill.

Force-driven and
pressure-driven
Poiseullle
(monatomic)
gas flows



1-D force-driven compressible Poiseuille gas flow

Y
Lo 4 Ty I, pa
h / a4 p+II =10
dy Yy
Twall \L nyu + Qy pau
T S ——— .
(p )reservmr r_: —_ —E)) — el :)TVX (p, T)reservoir with

I ——
- Y B wall T (H ’Q ):f nﬁ _kd_T
uniform driving Y dy dy
force a .

nonlinear & coupled

ah - Wa Wa
¢, =——: Richardson no., Kn = ,|——= PN : Knudsen no.
v R Twall 2 p reserv0|r

Non-classical behaviors (easy parts)
- central temperature minimum 2= —(MHZ ] o
- non-zero tangential heat flux and normal shear stress

However, difficult parts (within continuum framework)

- concave cross-stream pressure distribution with central temp. minimum
- correct cross-stream density distribution

- exact role of non-isothermal physics (for example, Knudsen minimum in
mass flow rate)



Exact analytic solutions (with only one
assumotion tvame ’Z‘rH 1(2> DAC 2°N11 \
puvuit |v 4 - FUr £ull )

Rigorous treatment of thermal property through

hil?2
hl?2
j T7'dy

0

. 2 ¢hl2
Average quantities u, = Z.[o udy, T. =

A new (temperature scaled) variable T°ds” = dy™ and auxiliary relations
* * 1 1 1/2 * * * 1 1/2 * * 1
s (y ZEJZE, IO uT ds =2 IO T'ds =—

Analytic form of concave pressure distribution

d dIl, , 3

5<p+nyy): dyy =pa, p=pRT and I1 =—§(p+HW)Hyy
2 R STNTY P

= p =1+tan’ [ =& T s J, HW:_—N5 tan [ ggthws ),

\/* \/* Very surprising tangent profile!
o tan| ,[—¢
h Pressure more fundamental (than velocity,

temperature)!



Exact analytic solutions: stresses
Qualitative agreement with DSMC (s, , =0.6, Kn=0.1)
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Exact analytic solutions: temp., density, heat fluxes

After applying the Langmuir slip/jump model
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Exact analytic solutions: Knudsen minimum

Capturing all the qualitative features predicted by the DSMC
and providing insights DSMC can not !
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What hannened here- Ace
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Pressure-driven compressible Poiseuille gas flow

wall wall
h Conservation laws
...... T Lo with
! ! fn| - &, 4L
...... - T I, ..0.,)= ( T dyj
wall .
iy’ \ nonlinear & coupled
D, «
~(x)

pin
pout

S

l
Y

: pressure ratio, Kn =, [— Mo N E :Z length-to-height ratio

Easy (or already-done) parts

- the benchmark problem most studied in the past

- experimental data available (but, mass flow rate and stream-wise
pressure distribution only)

Difficult parts

- overall flowfields physics remain illusive (for example, concave or
convex cross-stream pressure distribution)

- how subtle the effect of channel length-to-height ratio is

- exact role of non-isothermal physics (in particular, high Knudsen flows)



Exact analytic solutions (on-going work)

Analytic form of sectional pressure distribution and
effect of length-to-height ratio on the mass flow rate

* * 2 h d _In * «
P (3’ ) —14+tan? \/:— ( *p’") Y | concave (tangent-type)
o 3L dx

*

N i
.2477LRT_d(—lnpm)(tansl,ﬂ _a’(—lnpm)(l+S*z . )
_atzin _at=in o

m—s—
H’p dx S
Fm, \ Puz, )

) 2 hd(-Inp’) 1
Whel‘e S1/2L = \/;Z dx* E \

Non-classical term
related to the stress
constraint



Summary of Part Il

In contrast with Couette flow, the boundary condition
seems to remain secondary in case of the force (or
pressure) driven Poiseuille flows.

In the force-driven flow, non-isothermal effect has a
definite role in high Knudsen flows. For example, the
change of temperature profile (measured by the average
temperature) is responsible for the Knudsen minimum.

The concave cross-stream pressure distribution is due to
the non-classical stress constraint.

Further experimental study on cross-stream pressure
distribution and temperature flowfield is strongly
recommended.



Part V.

Diatomic gas
and
verification
and validation
(V& V)



Diatomic gas case

Surprisingly, there is even no consensus what the proper master
kinetic equations would be for describing diatomic gases like
nitrogen in thermal non-equilibrium.

A proposed master equation: Boltzmann-Curtiss equation with a

moment of inertia | and an angular momentum |
A : excess normal stress

O vviav 419 Cwt) =
{atﬁLv V+a VVJF]&(//}J{(V’LJ’W’I) Clf]

§g+u- 1 = syl —2[H.Vu]‘2’—2(p+A)[Vu](2’—%q(H,Q,A,---)
nlp

Ot
11r N}?(monax ooooo f =0) monatomlc
.................................................. * 2 7 *  *
..... /Z 2 h,"w
0.9 .....".\ NSF & NCCR (diatomic; f, =2/9) ..'0.... ) CO nvex hyperbO”C tangent
ot TN ‘ profile! (PoF 2011)
08" diatomic

Pressure profile across channel



Why V & V in gas micro flows are
difficult?

Too many computational models (governing equation, boundary
condition)
Cf. Only one in near-equilibrium: Linear uncoupled NSF + no-slip

DSMC is not immune since it is also highly subject to the
boundary condition and post-processing employed.

Lack of experimental data (how to measure exotic properties
such as temperature jump?)

Lack of theories:

- no consensus what the proper master kinetic equations would
be for describing diatomic gases like simple nitrogen In
thermal non-equilibrium

- no rigorous gas-surface molecular interaction theory



Microscopic sampling vs macroscopic

DSMC solutions of the two-dimensional lid-driven cavity gas
flow are considered (Kn=0.1).

The exact values of slip velocity and temperature jump in the
DSMC method are prone to how these properties are
obtained from the simulation results.

U wall
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Microscopic sampling vs
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Assessment of internal errors in DSMC

Key observation: The conservation laws must be satisfied
irrespective of computational models.

The relative internal error of numerical solutions for one-
dimensional gas flow can be checked (Comp. Fluids 2011).
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The relative error of the DSMC
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Force-driven compressible Poiseuille gas flow wall (Kn:O_l)_
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Assessment of internal errors: Another
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PDE-type constitutive
equation model
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The relative errors of the
PSME . DSMC is not
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In case of a PDE-type
higher-order model,
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Concluding remarks: What makes
gas micro flows
so complicated—and difficult?

Complicated physics coming from non-classical physics
(nonlinearity and couplings in G. E. and B. C.).

Lack of theories in some problems; in particular, rotational non-
equilibrium and gas-surface molecular interaction.

Presence of exotic properties such as tangential heat flux
(extremely difficult to measure experimentally).

Need of theoretical and experimental investigation on the whole
flowfields, including diatomic gases, beyond a reduced quantity
such as the mass flow rate. Showing a snap-shot agreement one
thing, but describing many features simultaneously quite another.



