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Introduction to gas micro flowsg

Micro and nanoscale cylindrical flow

Hard disk drive: Kn=0.6, M=0.7

Gas flow in micro/nano devices
Molecular interaction between gas particles and solid atomsMolecular interaction between gas particles and  solid atoms
Velocity shear dominated flows (high Kn, but relatively low M)



Theory and modeling of gas micro flowsy g g

Continuum approach
Chapman Enskog: BurnettChapman-Enskog: Burnett
Moment method: Grad (1949), Eu (1992), 

R-13 (2005)
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Molecular approach
DSMC

Bottom-up

DSMC
Linearized Boltzmann equation
Lattice-Boltzmann method

Hybrid approach
DSMC ti li (b d d i d iti )

Lattice Boltzmann method

DSMC-continuum coupling (based on domain decomposition)
Multi-scale method (non-conserved variables calculated by MD)



Research goal of present studyResearch goal of present study

Develop a unified computational model for 
rarefied and micro- & nano-scale gases g

upon which others can build efficient (3-D) CFD 
d (lik t t f th t FLUENT k )codes (like state-of-the-art FLUENT package)

http://acml gnu ac kr <Open knowledge>http://acml.gnu.ac.kr <Open knowledge>  



Challenges and emphasisg p

Challenges in gas micro flows: 
unknown problem (deviation from classical physics)- unknown problem (deviation from classical physics)

- not easily testable (limited information)
- theoretical barrier (G.E. and B.C.)

Emphasis in this talk:

theoretical barrier (G.E. and B.C.)
- cross-disciplines

Emphasis in this talk: 
- clear demonstration of knowns (fully exact analytic 
approach, focusing on simple problems)
- qualitative over quantitative (putting many abnormal 
behaviors in proper context, rather than one-time snap-shot 

t)agreement)
- sharing failure and struggle (rather than making conclusive)
- verification & validation of computational simulation of gasverification & validation of computational simulation of gas 
micro flows



Scope
Focusing on (1-D velocity shear dominated) 
benchmark flows: 

C tt ( t d b i ll)- Couette (generated by moving wall)
- force-driven Poiseuille (pure 1-D)
- pressure-driven Poiseuille (testable)- pressure-driven Poiseuille (testable)
- verification & validation (V & V)

Based on published journal papersBased on published journal papers
- Physics of Fluids (2011)
- Computers & Fluids (2011)Co pute s & u ds ( 0 )
- Int. J. Heat Mass Transfer (2006; with Lockerby & Reese)
- Physics of Fluids (2004)
- Physics of Fluids (1999)

and on going work on Couette and pressure drivenand on-going work on Couette and pressure-driven 
Poiseuille flows



Part I.

Governing equations 
andand 

boundary conditions



Governing equationsg q

Assumption: Non-classical phenomena are related to what happens in 
b lk fl i d h t h th lid ll d t th ibulk flow region and what happens near the solid wall and to their 
combination.

Boltzmann equation (1844-1906) collision integral
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Derivation of continuum model
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Conservation laws (exact) in vector form
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Derivation of algebraic constitutive relations
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I t ti l i l h i l lInteresting non-classical physical laws 

can be identified!



Linear uncoupled Navier-Fourier equations: 
l i l h i l lclassical physical laws

Navier (1822) (2)η= − ∇⎡ ⎤⎣ ⎦Π u
Fourier (1822) k T= − ∇Q
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Non-classical laws embodied in nonlinear 
coupled constitutive relations (NCCR)coupled constitutive relations (NCCR)

Thermodynamic Shear stress
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Non-Fourier law by the coupling of force 
and shear stressand shear stress
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Slip/jump models (boundary conditions)

General comments:
B C should describe the molecular interaction of the- B.C. should describe the molecular interaction of the 

gas particles with the solid surface atoms, involving the 
kinetic theory of gases and solid state physics.y g p y
- Boltzmann equation based on collision of gas particles 
only may not be valid.y y
- Concept based on gaseous adsorption may give a hint 
for parameters governing the gas-surface atom 
molecular interaction. Also, surface diffusion can be 
built from adsorption.

W h t li ith i l B C h M ll- We may have to live with simple B.C. such as Maxwell 
model in case of continuum-based computational 
modelsmodels.



Langmuir slip model based on gaseous 
adsorption isotherm (PoF 2004)adsorption isotherm (PoF 2004)
g c

g + s      c
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c

Condense on the surface, being held by the field of force of the surface 
atoms and subsequently evaporate from the surface
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Heat of adsorption vs accommodation coeff. 

Langmuir model (Dirichlet type)
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An equivalence relation can be proved by solving pressure-driven gas 
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Morphing of NCCR into B.C.

Troubles found during the implementation
- how to determine reference velocity in the Langmuir modelhow to determine reference velocity in the Langmuir model

rw uuu )1( αα −+=

- not successful in showing the velocity gradient singularity 
(identified by Lilley PRE 2007) in Couette flow by NCCR and 
B C (M ll & L i )B.C. (Maxwell & Langmuir)

Morphing of nonlinearity and coupling (of NCCR) intoMorphing of nonlinearity and coupling (of NCCR) into 
B.C.
- back to the original concept of Maxwell model (degree of 
slip proportional to the degree of non-equilibrium near the 
wall)



Morphing of NCCR into B.C.: Nonlinear 
coupled Maxwell modelcoupled Maxwell model

Conventional linear velocity slip and temperature jump models
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- Non-Navier-Stokes shear thinning behavior morphs into shear stress
- Non-Fourier law morphs into heat fluxp
- Morphing of NCCR (tangential heat flux generated by velocity shear) 
into velocity slip
- Capable of describing the velocity gradient singularityCapable of describing the velocity gradient singularity



Summary of G.E. and B.C. (I)
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Summary of G.E. and B.C. (II)

Boltzmann (or 
similar) in 
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Combination of two nonlinearities and two couplings—nonlinear 
coupled constitutive relation for bulk flow and nonlinear coupled 
boundary conditions at the wall—may be critical within the y y
continuum framework.

There may exist many cases in how to combine them makingThere may exist many cases in how to combine them, making 
qualitative & many-facets agreement more difficult.



Part II.Part II.

Couette flowCouette flow



Gaseous Couette flow (Comp. Fluids 2011 and 
on going)on-going)
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Non-classical behaviors (well-understood parts)

nonlinear & coupled

- nonlinear velocity profile (non-isothermal)
- non-zero tangential heat flux and normal shear stress (coupling)
- small shear stress (shear thinning)( g)
However, unsolved problems persist (within continuum 
framework)
- velocity gradient singularity (power law identified from DSMC)velocity gradient singularity (power law identified from DSMC)
- smaller slip (or larger velocity slope)
- exact role of non-isothermal physics



NCCR + nonlinear Maxwell

With NCCR + linear Maxwell
capable of describing non zero- capable of describing non-zero 

tangential heat flux and normal 
shear stress

b t t bl t d ib th- but not able to describe the 
velocity gradient singularity in the 
Knudsen layer

With NCCR + nonlinear 
(coupled) Maxwell( p )
-capable of explaining the origin 
of the velocity gradient singularity
- at the same time being able toat the same time being able to 
describe all other abnormal 
behaviors in qualitative 
agreement with DSMC
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Summary of Part II: Well-posedness of Couette 
flowflow

0 M≤ < ∞

Initial data Physical constraints imposed
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Note: T(0) itself is the part of solution. Without it, the analysis remains incomplete. 
(For example, Marques et al. 2001 in Contin. Mech. Thermo.)



Part III.Part III.

Force-driven andForce driven and 
pressure-driven 

PoiseuillePoiseuille 
(monatomic) 

gas flowsgas flows



1-D force-driven compressible Poiseuille gas flow
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Non-classical behaviors (easy parts)
3- central temperature minimum

- non-zero tangential heat flux and normal shear stress
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However, difficult parts (within continuum framework)
- concave cross-stream pressure distribution with central temp. minimum
- correct cross-stream density distributioncorrect cross stream density distribution
- exact role of non-isothermal physics (for example, Knudsen minimum in 
mass flow rate)



Exact analytic solutions (with only one 
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Exact analytic solutions: stresses
Qualitative agreement with DSMC
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Exact analytic solutions: temp., density, heat fluxes
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Exact analytic solutions: Knudsen minimum
Capturing all the qualitative features predicted by the DSMC 

and providing insights DSMC can not !
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What happened here: Knudsen minimum
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Pressure-driven compressible Poiseuille gas flow
y
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Easy (or already-done) parts
- the benchmark problem most studied in the past
- experimental data available (but, mass flow rate and stream-wise 
pressure distribution only)p y)
Difficult parts
- overall flowfields physics remain illusive (for example, concave or 
convex cross-stream pressure distribution)convex cross stream pressure distribution)
- how subtle the effect of channel length-to-height ratio is
- exact role of non-isothermal physics (in particular, high Knudsen flows)



Exact analytic solutions (on-going work)y ( g g )

Analytic form of sectional pressure distribution andAnalytic form of sectional pressure distribution and 
effect of length-to-height ratio on the mass flow rate
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Summary of Part III
In contrast with Couette flow, the boundary condition 
seems to remain secondary in case of the force (orseems to remain secondary in case of the force (or 
pressure) driven Poiseuille flows.

In the force-driven flow, non-isothermal effect has a 
definite role in high Knudsen flows. For example, the 
change of temperature profile (measured by the averagechange of temperature profile (measured by the average 
temperature) is responsible for the Knudsen minimum.

The concave cross-stream pressure distribution is due to 
the non-classical stress constraint.

Further experimental study on cross-stream pressure 
distribution and temperature flowfield is stronglydistribution and temperature flowfield is strongly 
recommended.



Part IV.

Diatomic gas g
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verification 
and validation 
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Diatomic gas case
Surprisingly, there is even no consensus what the proper master 

kinetic equations would be for describing diatomic gases like 
nitrogen in thermal non-equilibriumnitrogen in thermal non equilibrium.
A proposed master equation: Boltzmann-Curtiss equation with a 

moment of inertia I and an angular momentum j
: excess normal stressΔ
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Why V & V in gas micro flows are 
difficult?difficult?

Too many computational models (governing equation, boundary
condition)
Cf. Only one in near-equilibrium: Linear uncoupled NSF + no-slip

DSMC is not immune since it is also highly subject to the
boundary condition and post-processing employed.

Lack of experimental data (how to measure exotic properties
such as temperature jump?)

Lack of theories:
- no consensus what the proper master kinetic equations would

be for describing diatomic gases like simple nitrogen inbe for describing diatomic gases like simple nitrogen in
thermal non-equilibrium

- no rigorous gas-surface molecular interaction theory



Microscopic sampling vs macroscopicp p g p
DSMC solutions of the two-dimensional lid-driven cavity gas 

flow are considered (Kn=0.1).
The exact values of slip velocity and temperature jump in the 

DSMC method are prone to how these properties are 
obtained from the simulation resultsobtained from the simulation results.



Microscopic sampling vs macroscopic
(courtesy of Dr Roohi)(courtesy of Dr. Roohi)

Direct microscopic 
sampling of the 
molecular 
properties of 
particles that strike 
the wall surface
vs
macroscopic 
approach that pp
accounts for all 
molecules in the 
adjacent cellj



Assessment of internal errors in DSMC
Key observation: The conservation laws must be satisfied 

irrespective of computational models. 
The relative internal error of numerical solutions for one-

dimensional gas flow can be checked (Comp. Fluids 2011).
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The relative error of the DSMC 
increases from the center to the 
solid wall and reaches non-solid wall and reaches non
negligible value near the solid 
wall (Kn=0.1).Force-driven compressible Poiseuille gas flow

wallwall



Assessment of internal errors: Another 
lexamples

The relative errors of the 
DSMC is not

DSMC
DSMC is not 
negligible.

In case of a PDE-type 
higher-order model, 
large errors are found 
i th t llin the center as well 
as near the wall.DSMC: traceless error

PDE-type constitutive

llll

PDE type constitutive 
equation model

wallwall



Concluding remarks: What makes 
gas micro flowsgas micro flows 

so complicated—and difficult?

Complicated physics coming from non-classical physics
(nonlinearity and couplings in G E and B C )(nonlinearity and couplings in G. E. and B. C.).

Lack of theories in some problems; in particular, rotational non-
equilibrium and gas surface molecular interactionequilibrium and gas-surface molecular interaction.

Presence of exotic properties such as tangential heat flux
( t l diffi lt t i t ll )(extremely difficult to measure experimentally).

Need of theoretical and experimental investigation on the whole
flowfields, including diatomic gases, beyond a reduced quantity
such as the mass flow rate. Showing a snap-shot agreement one
thing, but describing many features simultaneously quite another.g g y y q


