Aircraft Survivability and Stealth Technology

Research goal

Aircraft survivability disciplines and RF & IR stealth design

- Development of multi-disciplinary computation and design method for RF & IR stealth design
 - Signature balancing/prioritisation
 - Cost, time, performance, maintainability, and supportability
 - Specification of RCS budgets for components
 - CATIA based multi-disciplinary computation: CFD + CEM, Panel Method + Physical Optics

Milestones

Stealth disciplines in aircraft design

- Development of CFD-based methods
 - 1st & 2nd order component buildup method
 - Asymptotic method for high frequency range (Physical Optics, hybrid of PO and CEM)
 - Multi-zone finite volume Maxwell code in time domain (broadband; fast Fourier transform)
 - Radar cross section in terms of frequency, polarization, azimuth & elevation angles

Computational electromagnetics and radar absorbing structure

- IR reduction technology and modeling of IR signal of exhaust plume
 - Computation of exhaust plume
 - IR signature measurement
 - Prediction of IR intensity level

Dissemination of research outcomes

- Progress in Electromagnetics Research B (MIT; 2009)
- Journal of The Korean Institute of Electromagnetic Engineering and Science (JKIEES; 2008)
- Lecture Note “Aircraft Survivability and Stealth Technology” (GNU Graduate School; 2007, 2009)

Collaborators

- Prof. A. Chatterjee
 (Indian Institute of Tech. Mumbai, India)
- Prof. S. P. Mahulikar
 (Indian Institute of Tech. Mumbai, India)
- Profs. C. G. Kim and S. W. Baek (KAIST, Korea)
- Prof. R. S. Myong, Ph.D.
 (Chonbuk Nat’ Univ., Korea)

Funding

Domestic

- Low Observable Research Center (2009-2017)
- Flight Vehicle Research Center (2007-2013)
- Korea Aerospace Industries Inc. (2006-2008)