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In a previous research article �Z. M. Hu et al., Phys. Fluids 21, 011701 �2009��, an overall Mach
reflection �oMR� configuration with double inverse Mach reflection patterns was computationally
confirmed when a double-wedge geometry interacts with a hypersonic flow. Extended computations
are conducted in this paper and compared to analytical solutions based on the classical two- and
three-shock theories. A geometric criterion is proposed for the transition between regular reflection
and Mach reflection occurring inside the parameter space where a type V interaction of shock wave
presents in hypersonic double-wedge flows. An oMR solution is allowed by the geometric criterion,
while it is theoretically inadmissible. In the vicinity of symmetric condition, regular to Mach
reflection transition can also be triggered prior to the theoretical criterion by disturbance generated
by a slight increase in the second wedge angle. © 2010 American Institute of Physics.
�doi:10.1063/1.3276907�

I. INTRODUCTION

In late 19th century, Ernst Mach found two fundamental
shock wave reflection patterns, regular reflection �RR�
and Mach reflection �MR�. The finding initiated succes-
sive study of shock wave interactions. The criteria for the
RR↔MR transition of symmetric shock waves, the
von Neumann criterion and detachment criterion were intro-
duced by von Neumann �1943�.2 Below the former, a MR
wave configuration is theoretically inadmissible, while be-
yond the latter, a RR configuration is theoretically inadmis-
sible. The two criteria bound a dual-solution domain inside
which both RR and MR are theoretically admissible. The
state-of-the-art of shock wave interactions and the transition
criteria were reviewed by Ben-Dor.3,4 Hornung et al.5 first
hypothesized that hysteresis presents during the RR↔MR
transition process. With increasing wedge angle, the RR
→MR transition occurs at the detachment condition, while
with decreasing wedge angle the MR→RR transition occurs
at the von Neumann condition. The hysteresis phenomenon
has been proved by experiments when quiet supersonic test
facilities became available6–11 and by computations when
high-performance computers were available.12–18 The re-
search on shock wave interactions is still active in recent
times.1,19–24

The shock wave interactions have significant impacts on
the performance and reliability of a high-speed aircraft. An
example is the shock/shock interaction on double-wedge-like
geometries in a hypersonic flow which is considered to be a
fundamental research problem related to hypersonic flights.

Edney25 used shock polar diagrams and classified the inter-
actions of oblique shock waves and bow shocks on a cylin-
der. His experimental research proved that abnormally high
heating and pressure loads can be induced by shock/shock
interactions on the surfaces and that a small variation in the
geometry can lead to a major change in overall flow struc-
ture. Numerical study was first conducted by Olejniczak
et al.26 for shock interactions and their transition among
types VI, V, and IV wave patterns over double-wedge-like
geometries. It was found that hysteresis and self-induced os-
cillations in the shock flow pattern can result in extremely
high and unsteady loads on the wedge surfaces.21,27 Ther-
mally nonequilibrium effects on the transition and the oscil-
lation were reported by Hu et al.22 where the thermal prop-
erties of the components of air are temperature dependent.
Advanced RR→MR transition due to downstream influence
has been first reported in a theoretical dual-solution regime.24

However, the shock interaction phenomena in such a hyper-
sonic background have not been well explained by computa-
tions or experiments to the best of our knowledge on related
research.

In a previous article, an abnormal MR configuration of
asymmetric shock waves was computationally confirmed.1

Such an overall Mach reflection �oMR� configuration, which
is theoretically impossible,8 consists of two inverse MRs
�InMRs� and is denoted as oMR�InMR+InMR� hereafter.
The slip layer and the reflection plane form a diverging
stream tube in an InMR wave assembly. On the contrary, in a
direct MR �DiMR� they form a converging stream tube. Con-
sequently, a DiMR rather than an InMR wave structure in a
MR is stable and theoretically admissible because that a con-
verging stream tube is essential to accelerate the subsonic
flow downstream the Mach stem to match the overall super-
sonic flow. The physical mechanism behind the above-
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mentioned oMR�InMR+InMR� wave configuration was
found to be the diverging-converging-diverging stream
tube generated due to shock wave-slip layer interactions
following the shock wave interaction structure. The nomen-
clature for the wave structures follows the previous work of
Li et al.8

In the present work, extended computations are con-
ducted for a more complete understanding of the transition
phenomenon of type V shock interactions,25 along with
theoretical analysis based on the classical two- and three-
shock theories. A geometric criterion for RR↔MR transition
is then proposed and discussed in detail. It is shown that
this proposed criterion, instead of the detachment and
von Neumann criteria, governs the wave pattern transition of
type V shock wave interactions in hypersonic double-wedge
flows.

II. THEORETICAL ANALYSIS

Over a double-wedge geometry, as shown in Fig. 1, a
type V interaction25,26 �see Fig. 2� consists of subsonic and
supersonic flow regions. In the wave configuration, the first
wedge generates an impinging shock wave LSW1 and the
second wedge generates a curved bow shock wave BSW. In
the decelerated flow region post shock wave LSW1, an ob-
lique shock wave LSW2 emanates from the wedge corner.
Different shock wave patterns possibly occurring in a type V
shock interaction are shown in Fig. 1, and the detailed labels
can be found in Fig. 2. It should be noted that although the
wave structures look similar with those given in the previous
work,22,24 one of the differences is that the whole solution
domain instead of the dual-solution domain is of interest in
the present study. The flow features the interaction between
shock waves of opposite families, SW3 and LSW2. Here,
SW3 is a shock wave emanating from the triple-point UTP.
As the second wedge angle �2 increases, the triple point
WTP moves toward the regular interaction point IP, and fi-
nally triggers a RR→MR transition at a critical angle �2cr.

24

Figures 2�a� and 2�b� show the fundamental flow features for
shock interactions of SW3 and LSW2 in which an overall
RR �oRR� and an oMR, respectively, emerge. Six- and
seven-shock patterns22,27 were used to distinguish the above
two different wave configurations. However, such a tax-
onomy is incomplete. If SW5 reflects from the second wedge
surface in an MR type, as shown in Figs. 2�a� and 2�b�, the
front of the wave configurations will be composed of eight
and nine shock waves, respectively. In the present work, only
type V interaction is considered among the possible types of
solutions. The details for the type VI interaction in which all
flows are supersonic and type IV interaction in which LSW2
detaches from the wedge corner can be referred to the work
of Olejniczak et al.26

Pressure-deflection polar diagrams for shock interaction
are applied for the theoretical analysis. Briefly, the shock
polar represents the locus of all flow states that can be ob-
tained by passing through a shock wave of a given flow
Mach number. The entire region behind a planar shock wave
is then represented by a single point on a p−� diagram. The
flow deflection angle � and the pressure ratio � across an

oblique shock wave can be, respectively, related to the Mach
number M ahead of the shock wave and the shock angle � as
follows:

� = ���,M,�� = arctan�2 cot ��M2 sin2 � − 1�
M2�cos 2� + �� + 2

� , �1�

� = ���,M,�� = 1 +
2�

� + 1
�M2 sin2 � − 1� . �2�

Here, � denotes the shock angle, and arcsin�1 /M���
�� /2. With above equations, the pressure jump across a
shock wave can be plotted against the flow deflection angle.

According to the location of the intersection of R3-polar
with R1-polar, the MR wave configuration of SW3 can be
subclassified into three categories. Figure 3 shows three so-
lution possibilities: DiMR, stationary MR �StMR�, and
InMR. Here, StMR at the critical wedge angle �1

St-3 is an
intermediate case where the slipstream parallels the reflect-
ing plane. In other words, the gas flows of region �1�, �4�,
and �4�� in Fig. 3�b� are in the same direction. The defini-
tions of DiMR and InMR were given in Sec. I. An InMR was
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FIG. 1. Fundamental wave configurations of type V shock wave
interactions.
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differently denoted as a wave pattern of a degenerated cross
node by Henderson and Menikoff.28 Such a wave configura-
tion is unstable until appropriate boundary conditions im-
posed from downstream flowfield. It was reported that an
converging-diverging stream tube is essential to bridge the
subsonic flow following the Mach stem of an InMR to the
global supersonic flow.1,8 Here, the nomenclature follows the
work of Li et al.8

If �1��1
St-3, the point of intersection between R3 and R1

locates along the left-hand branch of R1-polar. For a given
�1, three criteria, as shown in Fig. 4�a� divides the theoretical
solution of the interaction between LSW2 and SW3 into four
solution domains. R2

D, R2
St, and R2

vN, respectively, denote the
loci for LSW2 corresponding to the detachment criterion
��2

D�, stationary criterion ��2
St�, and von Neumann criterion

��2
vN�.8 Here, �2

D��2
St��2

vN. On the contrary, the point of
intersection between R3 and R1 locates along the right-hand
branch of R1-polar if �1��1

St-3. The relevant criteria for this
case are shown in Fig. 4�b� where �2

D��2
vN��2

St.
For the shock wave interaction between LSW2 and

SW3, it is well known that only MR is theoretically possible
beyond the detachment criterion �2

D, while only RR is theo-
retically admissible below the von Neumann criterion �2

vN.
Both RR and MR are theoretically possible inside the param-
eter domain ��2

vN,�2
D�, which is referred to as the dual-

solution domain. The series of critical wedge angles which
includes �2

vN, �2
D, �2

St, and �1
St-3 is combined in the �	�−�1�

parameter space, as given by Fig. 4�c� for hypersonic double-
wedge flows with M
=9, �=1.4. Here, 	�=�2−�1. The
whole space can be subdivided into eight sections by the
curves corresponding to the aforementioned criteria.

Figures 5�a�–5�d� illustrate four shock polar combina-
tions for a fixed �1 and �1��1

St-3. Here, the shock polars R
,
R1, and R3 are all identical, while the polar R2 changes with
�2. Note that the intersection point of R1 and R3 indicates a
DiMR, as shown in Figs. 5�a�–5�d�. These four kinds of
shock interaction patterns between LSW2 and SW3, along
with the three critical conditions illustrated in Fig. 4�a�, com-
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FIG. 2. Fundamental wave configurations of type V shock wave
interactions.

-40 -20 0 20 40

0

200

400

600

800

p/
p

θ

R

DiMR

(3,3 )

∞

′

1

θ1

R 3

∞

R

(1)

(a)

-40 -20 0 20 40 60

0

200

400

600

800

p/
p

θ

R

3

(3,3 ) (1)

∞

∞

′

StMRR

St-3
1

R

θ

1

(b)

-40 -20 0 20 40 60
0

100

200

300

400

500

p/
p

(1)
(3,3 )

θ

θ1

R

R3

R1

∞

∞

′

InMR

(c)

FIG. 3. General pressure-deflection polar combinations illustrating theoret-
ical solutions of three types of MR for shock wave SW3: a DiMR, a StMR,
and an InMR, M
=9, �=1.4.
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pose the theoretical solution system consisting of seven cat-
egories of wave configurations.

At a low wedge angle �2��2
vN, the intersection of R2

and R3 polars locates inside R1 polar, which exclusively re-
sults in the theoretical solution of an oRR between LSW2
and SW3, as shown in Figs. 2�a� and 5�a�. This oRR wave
configuration consists of two supersonic RRs �RRsup,

labeled by “�”�. Because both the slip layers emanating
from the triple-point MTP and LTP, as shown in Fig. 2�b�
form a diverging stream tube, the MR solution which is an
oMR�DiMR+InMR� labeled by “�” in Fig. 5�a� is theoreti-
cally impossible. Neither is the subsonic RR �RRsub� labeled
by “�.” Therefore, the solution domain �1� shown in
Fig. 4�c� theoretically allows an oRR wave configuration
exclusively.

As a increased wedge angle �2
vN��2��2

St, the shock po-
lar combination is shown in Fig. 5�b�. The intersection point
of R2 and R3 locates outside R1 polar. The MR, an
oMR�DiMR+InMR�, becomes theoretically admissible be-
cause of the converging stream tube assembled between its
both slip layers. The RRsup is also a theoretical solution,
while the RRsub solution is still theoretically impossible un-
til special boundary conditions is imposed downstream of the
interaction point. When �2

St��2��2
D, both oMR�DiMR

+DiMR� and RRsup are theoretical solutions, as shown by
Fig. 5�c�. It is clear that only MR can occur if �2

D��2 as can
be seen in Fig. 5�d�. Therefore, dual solutions are permitted
in the solution domains �2� and �3� shown in Fig. 4�c�, while
only oMR is allowed in domain �4�.

It should be noted clearly that the above analysis is only
based on the theoretical relationship of R2 and R3 polars. In
fact, at the wedge angles of �2 shown in Figs. 5�a� and 5�b�,
the overall shock interaction pattern should be type VI in-
stead of type V. The criterion for type V↔VI transition,
�2

V↔VI, is less than the maximum deflection angle of the free-
stream flow. Type V↔VI transition is not considered in the
present study and can be referred to a previous numerical
study.26

Analogously, Figs. 6�a�–6�d� illustrate four shock polar
combinations for a fixed �1 and �1��1

St-3. Neither of the
wave configurations, oMR�InMR+InMR� and oMR�InMR
+DiMR�, respectively, given in �a� and �b�, is theoretically
admissible. In general, single solution either of an oRR or of
an oMR wave configuration is theoretically reasonable in
domains �5�, �6�, and �8�, as shown in Fig. 4�c�.

III. COMPUTATIONS ON RR^MR TRANSITION

As stated by Henderson and Menikoff,28 the local down-
stream boundary conditions can affect the solution due to the
fact that the wave pattern, in steady state, must be compat-
ible with the global flow. In this section, solutions which are
different from the theoretical solutions were explained by
computations. The flow condition downstream of the inter-
action structure varies with the set of angle in a double-
wedge geometry. The flow domain of the present interest is
shown in Fig. 7 for the inviscid interaction of hypersonic
flows and double-wedge geometries. The shock wave inter-
action phenomena depend on the relevant parameters which
are, under the inviscid flow hypothesis, the freestream Mach
number M
, the ratio of the specific heats �, the wedge
length ratio L2 /L1, and the wedge angles �1 and �2. The
geometric dimensions are normalized by the first wedge
length, L1. The computational domain surrounded by the
dashed-dotted lines, as shown in Fig. 7 is used for computa-
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FIG. 4. Critical conditions of �2: �a� �1��1
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tional cheapness. Here, the vertical distance of the first lead-
ing shock wave to the wedge corner can be analytically de-
fined as

H

L1
=

sin��1 − �1�cos��1 − �1�
cos��2 − �1�

, �3�

where �1 is the shock angle over the first wedge. In addition,
the ratio L2 /L1 is set to be 0.6 cos �2 unless otherwise state-
ment. It should be noted that such a selected domain cannot
be used for computations with relative large �2 where the
upper triple-point, UTP, of the interaction structure may go
beyond the left boundary.

It should be noted that thermal and chemical nonequilib-
rium will be excited under the hypersonic flow mechanism.
This brings much more complexity and computational cost
to the numerical simulations. For simplicity and conciseness,
the flow medium is simplified as a perfect gas with �=1.4.
The nonequilibrium and dissipative effects are out of the
scope of the present computational study. For numerical al-
gorithms in the present study, Euler equations are spatially
discretized using the second-order dispersion controlled dis-
sipative �DCD� scheme.29,30 The principle of DCD is to sup-
press nonphysical oscillation across strong discontinuities by
making use of the intrinsic dispersion characteristics of the

modified equations instead of adding artificial viscosity. A
third-order Runge–Kutta scheme is used for temporal inte-
gration. Uniform supersonic flows with a given Mach num-
ber, M
 and M1, are imposed on the left boundary, while a
supersonic outflow condition is set on the right boundary.
Upper boundary is treated as nonreflecting interfaces, while a
slip condition is imposed on the wedge surface.

Several computations for a hypersonic flow with
M
=9 are shown in Figs. 8�a�–8�d� for different pairs of �1

and �2 in the vicinity of RR↔MR transitional conditions. In
the first two cases, �1 is less than �1

St-3 and the related theo-
retical analysis are shown in Figs. 4�a� and 5. The rest cases
are all for �1��1

St-3 and the corresponding theoretical analy-
sis can be found in Figs. 4�b� and 6.

Figures 8�a1�–8�a3� are for the interaction of a M
=9
hypersonic flow with a double-wedge-like geometry where
�1=10°. With a slight increase in �2 from 40.2° to 40.5°, the
interaction of LSW2 and SW3 undergoes RR→MR
transition prior to the corresponding detachment criteria,
�2

D=41.3°. It was ever reported that the transition can be
advanced by the collision between WTP and IP.1,24 Here,
LSW2 and SW3 denote the shock waves emanating from the
wedge corner and the upper triple point UTP, respectively.
The detailed explanation about the wave structure can be
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found from Fig. 2. Such a mechanism for the advanced
RR→MR transition is obvious for the cases shown in Figs.
8�b�–8�d�. However, the shock wave SW5 reflects over the
wedge surface as a RR in Fig. 8�a1�. Therefore, the advanced
transition mechanism must be different. It was found that
RR→MR transition is relatively easy to be triggered by flow
disturbance in the vicinity of the symmetric reflection condi-
tion compared with an asymmetric reflection.24 Figure 9
shows the shock polar combination for the shock interaction
over a double-wedge geometry with �1=10°, �2=40.2°.
Here, both of the R2 and R3 polars are close to the symmetric
line of R1 polar. Moreover, the RRsup solution labeled by
symbol “�” approaches to the sonic point, which is labeled
by “�,” of R2 polar. The specified conditions24 are satisfied
in this case and the RR→MR transition occurs due to the
numerical disturbance generated as �2 slightly increases.
Hereafter, this mechanism for advanced transition is referred
to as a disturbance-induced transition �DIT�. It should be
noted that the maximum pressure load on the second wedge
surface increases from 271p
 to 329p
 during the transition
mentioned above. Significant change of force and heating
loads when shock wave pattern varies among types VI, V,
and IV interactions has been exposed by previous

research.21,25,26 Here, both wave patterns shown in Figs.
8�a1�–8�a3� are type V interactions according to Edney’s
classification.28

The transition for �1=15° occurring between �2

=41.65° and 42.2° is accompanied by an oscillation process
of the wave pattern, as shown by Figs. 8�b1� and 8�b2�.
Figure 8�b2� shows a transient wave pattern featuring an
oMR. The unsteady solution results in an oscillating load at a
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FIG. 7. Flow geometry and the simplified computational domain.
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high frequency over the wedge surface which can cause vital
damages to the high-speed vehicles.21,27 However, the oscil-
lation phenomenon seems to be dependent on the numerical
techniques and grid resolution. Wave configurations of oMR
and oRR can alternate during an oscillation period in a pre-
vious computational study27 where a W-modification of God-
nuv’s scheme and relatively coarse mesh were used. In the
present study, the applied shock capturing scheme is
DCD29,30 scheme. In a computation using a coarse grid, com-
puted wave configuration can switch between oRR and oMR
solutions during an oscillation period, which is similar with
findings of the above-mentioned work. The unsteady peak
value of pressure along the wedge surface varies between
750p
 and 1130p
 within an oscillating period. On the con-
trary, the oscillating wave configuration maintains an oMR
type when mesh of high density is used. The maximum sur-
face pressure, 960p
, is less than the former. It is also inter-
esting to note that oscillation phenomenon accompanying the
RR→MR transition can only be found for �1=15° in the
present series of computation. Inside the transitional domain
�2= �40.2° ,40.5°� for �1=10°, the computed wave patterns
are all steady. Most interestingly, the wave pattern starts to
oscillate at a larger wedge angle �2=43°. However, the
solution should be theoretically unique and well defined as
an oMR configuration because �2=43° ��2

D for case of
�1=10°. This suggests that the mechanism behind the
oscillation phenomenon having nothing to do with the
RR→MR transition.

As shown in Figs. 8�c� and 8�d�, the critical values of �2

for RR→MR transition are amid �44.2°,44.4°� and
�45.2°,45.4°� for 22.5° and 27°, respectively. From these
cases it is clear that the shock wave SW5 reflects from the
second wedge surface as an MR before and after RR→MR
transition. Therefore, the maximum surface pressure does not
change significantly during the transition process, which is
around the normal shock pressure corresponding to R2

polar. The mechanism for the advanced RR→MR transition
for these cases is the collision between the triple point
WTP and the intersection point IP as mentioned above. Fig-
ure 10�a� shows the geometric parameters, while the
RR→MR transition occurs when h1�� ,M
 ,�1 ,�2 ,L2 /L1�
=h2�� ,M
 ,�1 ,�2 ,L2 /L1�. Hereafter, it is referred to as a geo-
metric transition criterion �GTC� of RR→MR in hypersonic
double-wedge flows.

The GTC and the DIT �only for the case when M
=9
and �1=10°� are combined in Fig. 10�b� on the �	� ,�1�
parameter space. Here, symbol “�” denotes computed
RR→MR transition point for M
=9, while symbol “�” is
for the M
=12 hypersonic double-wedge flow. The corre-
sponding theoretical criteria as illustrated in Sec. II, �1

St-3,
�2

vN, �2
St, and �2

D, are additionally plotted by solid lines for
M
=9 and dashed lines for M
=12 for direct comparison.
The oMR solution for the interaction of LSW2 and SW3
when �1=22.5°, �2=44.4°, and M
=9 locates inside the so-
lution domain �6�, as labeled in Fig. 4�c�, and the corre-
sponding shock polar combination is shown by Fig. 6�b�.
This suggests a theoretical solution of an oMR�InMR
+DiMR� in which the slip layers form a diverging stream
tube. Moreover, the computed solution for �1=27°, �2

=45.4°, and M
=9 corresponds to an oMR�InMR+InMR�
wave configuration according to theoretical analysis, as
shown in Fig. 6�a�. This type of wave configuration should
be theoretically impossible8 because that the diverging
stream tube cannot match the local subsonic flow down-
stream the Mach stem �i.e., MS2, see Fig. 2� to the global
supersonic flow. Therefore, additional boundary conditions
should be imposed downstream of the interaction to stabilize
such a theoretically unstable oMR�InMR+InMR� wave pat-
tern. In Figs. 8�c2� and 8�d2�, the reflected shock wave SW6
impinges on the slip layer SL3 and re-reflected as a series of
expansion waves. The impingement and sequential interac-
tions of the expansion waves make SL3 turn upwards. In
consequence, SL2 and SL3 assemble a converging stream
tube serving as the physical mechanism leading to a steady
wave pattern in an oMR�InMR+DiMR� or an oMR�InMR

(d1) (d2) (d3)

(c1) (c2) (c3)

(b1) (b2) (b3)

(a1) (a2) (a3)

FIG. 8. Computed wave configurations: �1=10°, �a1� �2=40.2°, �a2�
�2=40.2° →40.5°, �a3� �2=40.5° →40.2°; �1=15°, �b1� �2=41.65°, �b2�
�2=42.0° →42.2°, �b3� �2=41.3° →41.1°; �1=22.5°, �c1� �2=44.2°, �c2�
�2=44.2° →44.4°, �c3� �2=44.0° →43.8°; �1=27°, �d1� �2=45.2°, �d2�
�2=45.2→45.4°, and �d3� �2=45.2° →45.0° �M
=9, �=1.4, grid
651�551�.
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FIG. 9. Shock polar combination for �1=10°, �2=40.2° showing a shock
interaction in the vicinity of symmetric reflection condition ��: sonic point�.
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+InMR� �Ref. 1� wave configuration. The theoretical criteria
change significantly for M
=12 �dashed lines� compared
with those for M
=9 �solid lines�, as shown in Fig. 10�b�.
However, the computed RR→MR transition changes
slightly with the free-stream flow Mach number implying a
weak correlation between the proposed GTC and M
.

According the hysteresis phenomenon exposed by previ-
ous work,5–18 the MR→RR transition takes place at the
von Neumann condition, �2

vN, if the wedge angle is gradually
decreased from above detachment condition, �2

D. As shown
in Fig. 8�a3�, the MR→RR transition occurs at the same DIT
criterion for RR→MR transition at �1=10°. For the rest
cases �b3�–�d3�, however, hysteresis phenomenon occurs
during the wave configuration transition. When �1=15°, the
hysteresis is accompanied by oscillation of oMR wave pat-
terns as �2 decreases from 42.2°. MR→RR transition occurs
at �2=41.1°, which is still far above the corresponding
von Neumann condition, �2

vN=34.4°, but below the corre-
sponding GTC criterion. For the following cases when
�1=22.5° and 27°, slight hysteresis phenomenon is also
found but without oscillation of wave patterns.

It should be noted that the numerical RR↔MR transi-
tion angles depend on the wedge length ratio L2 /L1. Figure
11 shows the numerical schlieren obtained on a lager domain

of twice length, i.e., L2 /L1=1.2 cos �2 compared with that
obtained on the above used domain, as an example. An ob-
lique shock wave, OSW, travels upstream during the con-
verging process, as shown in Fig. 11�a�. The moving shock
wave/shear layer interaction incurs instability to the shear
layer, SL1, which propagates upstream and finally affects the
RR→MR transition. The reason to use the computational
domain with L2 /L1=0.6 cos �2, corresponding to x=0.6, in
the computations shown in Fig. 8 and the lower part of Fig.
11�b� is to ensure that �1� the sonic line as plotted by the
dashed line in Fig. 11�b� completely stays inside the domain,
and �2� the shock wave/shear layer interaction always keeps
away from the domain.

IV. CONCLUSIONS

Following a previous study, in this paper, detailed theo-
retical analysis and computations are conducted for
RR↔MR transition of the type V shock wave interaction in
hypersonic double-wedge flows. A geometric criterion for
RR↔MR transition along with the behind shock wave dy-
namics is well explained through simulations. As the wedge
angle approaching the geometric criterion for a given hyper-
sonic flow, the triple point of a local MR emanating from the
second wedge surface collides with the intersection point of
an oRR configuration. Such a collision is followed by a tran-
sition of the latter to an oMR configuration. In addition, dis-
turbance induced transition is also computationally predicted
in the vicinity of symmetric reflection which lies inside the
dual-solution domain. Both kinds of transition mechanisms
can take place prior to the theoretical detachment criterion
based on classical two- and three-shock theories. Further-
more, the RR→MR transition can be advanced at the geo-
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FIG. 10. �a� Geometric parameters and �b� computed geometric criterion of
RR↔MR transition for �=1.4, M
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=12, respectively.

FIG. 11. Numerical schlieren, �a� a transient flow structure during converg-
ing process from the computation on a large domain, �b� converged solu-
tions from a larger domain �upper half�, and a smaller domain �lower half�
�M
=9, �1=22.5°, �2=43.0°�
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metric criterion where an oMR solution is absolutely disal-
lowed by theory. The computations also show that the
transition may result in huge changes of pressure and heating
loads along the wedge surface if occurring inside the dual-
solution domain. On the contrary, the changes are insignifi-
cant if the transition occurs below the corresponding von
Neumann criterion. A theoretical solution for the computa-
tionally proposed geometric criterion may be worked out for
further generalization in the future.
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