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For the Mach reflection �MR� of symmetric shock waves of opposite families, only the wave
configuration of an overall Mach reflection �oMR� consisting of two direct Mach reflections
�DiMR+DiMR� is theoretically admissible. For asymmetric shock waves, an oMR composed of a
DiMR and an inverse Mach reflection �InMR� is possible if the two slip layers assemble a
converging-diverging stream tube, while an oMR including two inverse Mach reflections �InMR
+InMR� is absolutely impossible. In this paper, an overall Mach reflection configuration with
double inverse MR patterns is computationally confirmed using the computational fluid dynamics
technique. The aerodynamic mechanism behind such an abnormal wave pattern is illustrated.
Classical two- and three-shock theories are also applied for the theoretical analysis. © 2009
American Institute of Physics. �DOI: 10.1063/1.3073006�

The shock wave interactions have significant impacts on
the performance and reliability of a supersonic/hypersonic
aircraft or a winged space shuttle during its re-entry flight.
The study on shock interactions can be traced back to 1878
when Ernst Mach found two well known shock wave reflec-
tion configurations: a regular reflection �RR� and a Mach
reflection �MR�, which consists of a Mach stem, an incident
shock, a reflected shock, and a slip layer. von Neumann1

introduced the criteria for the RR↔MR transition of sym-
metric shock waves: the von Neumann and detachment cri-
teria. Theoretically, MR is impossible below the former,
while RR is inadmissible beyond the latter. Both RR and MR
are admissible between the criteria. Related research can still
be found in the recent literature.2–6

In the present work, an abnormal MR configuration of
asymmetric shock waves is computationally confirmed over
a double-wedge geometry �Fig. 1� posed in a hypersonic
flow. Such an overall Mach reflection �oMR� configuration,
which is theoretically impossible,7,8 consists of two inverse
Mach reflections �InMRs� and is denoted as oMR�InMR
+InMR�. In an InMR the slip layer and the reflection plane
form a diverging stream tube. On the contrary, in a direct
Mach reflection �DiMR� they form a converging stream tube.
The physical mechanism behind such an oMR�InMR
+InMR� is found to be the diverging-converging-diverging
stream tube generated due to shock wave-slip layer interac-
tions following the oMR. Numerical studies on the similar
problem were conducted elsewhere.2,3,6,9,10 However, the ex-
istence of an abnormal oMR�InMR+InMR� wave configura-

tion, to the best of our knowledge, has never been reported
until the present work.

Figure 2 schematically shows the MR configuration for
two shock waves of opposite families. The previous studies
reached a conclusion that an overall MR configuration,
which is composed of two DiMRs, i.e., oMR�DiMR
+DiMR�, is the only theoretically admissible solution for a
symmetric MR when �1=�2. An oMR�InMR+DiMR� will
be possible only if the two slip layers �marked by s1 and s2�
assemble a converging-diverging stream tube for an asym-
metric reflection ��1��2�.7,8 Here, the converging-diverging
stream tube can bridge the locally subsonic flow downstream
of the Mach stem �denoted by m� with the overall supersonic
flow. The wave pattern in Fig. 2 presents an oMR�DiMR
+DiMR�, while in Fig. 3 an oMR�InMR+DiMR� is con-
firmed by an inviscid computational fluid dynamics �CFD�
computation.

The two slip layers of an oMR�InMR+InMR� wave pat-
tern form a diverging stream tube that cannot provide that
“bridge.” However, as stated by Henderson and Menikoff,11

the local downstream boundary conditions can affect the
solution due to the fact that the wave pattern, in steady state,
must be compatible with the global flow. The flow domain of
the present interest is shown in Fig. 1 for the inviscid inter-
action of hypersonic flows and double-wedge geometries.
The shock wave interaction phenomena depend on the
relevant parameters, which are, under the inviscid flow hy-
pothesis, the freestream Mach number M�, the ratio of the
specific heats �, the wedge length, and the wedge angles
�1 and �2. The geometric dimensions are normalized by the
first wedge length, L1. The computational domain sur-
rounded by the dashed-dotted rectangle as shown in Fig. 1 is
used for computational cheapness. The distance of the first
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leading shock wave to the wedge corner can be analytically
defined as

H

L1
=

sin��1 − �1�cos��1 − �1�
cos��2 − �1�

, �1�

where �1 is the shock angle over the first wedge.
For numerical algorithms in the present study, Euler

equations for a perfect gas with �=1.4 are spatially dis-
cretized using the second-order dispersion controlled dissipa-
tive �DCD� scheme.12,13 The principle of DCD is to suppress
nonphysical oscillation across strong discontinuities by mak-
ing use of the intrinsic dispersion characteristics of the modi-
fied equations instead of adding artificial viscosity. A third-
order Runge–Kutta scheme is used for temporal integration.
Pressure-deflection polar diagrams for shock interaction are
also applied for the theoretical analysis. Briefly, the shock
polar represents the locus of all flow states that can be ob-
tained by passing through a shock wave of a given flow
Mach number. The entire region behind a planar shock wave

is then represented by a single point on a p-� diagram. The
flow deflection angle � and the pressure ratio � across an
oblique shock wave can be respectively related to the Mach
number M ahead of the shock wave and the shock angle � as
follows:

� = ���,M,�� = arctan�2 cot ��M2 sin2 � − 1�
M2�cos 2� + �� + 2

� , �2�

� = ���,M,�� = 1 +
2�

� + 1
�M2 sin2 � − 1� . �3�

Here, � denotes the shock angle, and arcsin�1 /M���
�� /2. With the above equations, the pressure jump across a
shock wave can be plotted against the flow deflection angle.
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FIG. 2. Sketch of a MR configuration.
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FIG. 3. CFD confirmation of an oMR�InMR+DiMR� reflection configura-
tion �grid: 1601�1601�.
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FIG. 4. �a� Shock polar combination. �b� The computed wave configuration
�M�=9, �1=27°, �2=45°, and grid: 651�551�.
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FIG. 1. Flow geometry and the simplified computational domain.
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The first case is for the interaction of a M�=9 hyper-
sonic flow with a double-wedge-like geometry, where �1

=27° and �2=45°. The shock polar combination, along with
the computational wave configuration, is shown in Fig. 4.
The von Neumann and detachment criteria7 corresponding to
fixed flow conditions of �1� and �3,3�� are additionally plot-
ted as the dashed lines in Fig. 4�a�. Here, LSW1 and LSW2
denote the leading shock waves emanating from both edges,
respectively. SL denotes the slip layer initiates from a triple
point, while MS and BSW denote a Mach stem and a bow
shock wave. The detailed explanation about the wave struc-
ture can be found in a former article.9 It is not surprising that
the shock waves of opposite families, LSW2 and SW3, go on
a regulation interaction at point �4� because �2 is smaller than
the corresponding von Neumann criterion �2

vN. This is proven
by both the shock polar analysis and the computation. It
should be noted that the computational pressure field in re-
gion �3��, as shown in Fig. 4�b�, is slightly nonuniform due
to the complex interaction of shock waves in the presence of
subsonic zone, i.e., region �3�. However, the nonuniformity
is insignificant �2%–3% in pressure� and does not essentially
influence the results.

After slightly increasing the wedge angle �2 to 45.5°, the
shock polar combination does not change much. The shock
loci R2 and R3� still intersect inside the R1 polar. Therefore,
the solution of the shock interaction between LSW2 and
SW3 should theoretically be a regular reflection as denoted
by points �4� and �5,5�� on the polar combination. However,
the computation, as plotted in Fig. 5�b�, finally comes around
to a MR as given by the solution series �4,4��, �5,5��, �6,6��
on the shock polar combination in Fig. 5�a�. It is the triple
point of the local MR wave pattern connecting to the wall in
Fig. 4�b� that collides with the regular interaction point �4�
and changes it into a MR. The mechanism of the advanced
RR→MR transition can be found in an early study.10 Most
surprisingly, the solutions �4,4�� and �5,5�� correspond to an
oMR�InMR+InMR� wave configuration which should be
theoretically impossible.7 The further computation on a grid
of higher density reaches the same wave pattern, as shown in
Fig. 5�c�, which indicates grid independence. Kelvin–
Helmholtz instability14 of slip layer is captured in the far
field and has an insignificant influence on the shock wave
interaction pattern. Here, the iterative convergence is consid-
ered to be achieved if the maximum pressure along the
wedge surface and its location remain stationary within a
certain iterations.

The pair of slip layers, i.e., SL2 and SL3 as shown in
Fig. 5�b� or Fig. 5�c�, assembles a diverging stream tube
slightly downstream of the Mach stem MS2 of the
oMR�InMR+InMR� wave configuration. Therefore, addi-
tional boundary conditions should be imposed downstream
of the interaction to stabilize such a theoretically unstable
wave pattern. In Fig. 5�b� or Fig. 5�c�, the reflected shock
wave SW6 impinges on the slip layer SL3 and makes the
latter turn upward. At the same time, shock wave SW4 is
reflected from slip layer SL1 and sequentially turns SL2
downward. In consequence, SL2 and SL3 move close to each
other and assemble a converging stream tube. Further, the
expansion fan �EF� turns SL2 upward and let the stream tube

diverge again. Finally, the resulted diverging-converging-
diverging steam tube between SL2 and SL3 serves for the
physical mechanism for a steady abnormal wave pattern of
oMR�InMR+InMR�.

In conclusion, an abnormal wave configuration with a
pair of inverse MRs which is theoretically inadmissible has
been confirmed by CFD computations. The physical mecha-
nism behind it includes two steps of wave dynamics. First,
the RR→MR transition is advanced by a transverse wave
emanating from a triple point impinging off the wedge sur-
face. Consequently, the resulted MR wave configuration is
stabilized by the converging stream tube formed in virtue of
the shock wave-slip layer interaction from the downstream
field. Computations indicate that this exceptional wave pat-
tern can only occur inside a very small scope of wedge angle
for a given freestream flow Mach number. A validation ex-
perimental work may be needed to confirm the new finding
in the future.
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FIG. 5. �a� Shock polar combination and the computed wave configurations:
�b� grid 651�551 and �c� grid 1001�901 �M�=9, �1=27°, and �2=45.5°�.
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