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Abstract: The rotational mode of molecules plays a critical role in the behaviour of diatomic and 

polyatomic gases away from equilibrium. In order to investigate the essence of the non-equilibrium 

effects, the shock-vortex interaction (SVI) problem was investigated by employing an explicit modal 

discontinuous Galerkin method. In particular, the first- and second-order constitutive models for 

diatomic and polyatomic gases derived rigorously from the Boltzmann-Curtiss kinetic equation were 

solved in conjunction with the physical conservation laws. As compared with a monatomic gas, the 

non-equilibrium effects result in a substantial change in flow fields in both macroscale and microscale 

shock-vortex interactions. Specifically, the computational results showed three major effects of 

diatomic and polyatomic gases on the shock-vortex interaction; (i) the generation of third sound 

waves and additional reflected shock waves with strong and enlarged expansion, (ii) the dominance of 

viscous vorticity generation, (iii) an increase in enstrophy with increasing bulk viscosity, related to the 

rotational mode of gas molecules. Moreover, it was shown that there is a significant discrepancy in 

flow fields between the microscale and macroscale shock-vortex interactions in diatomic and 

polyatomic gases. The quadrupolar acoustic wave source structures, which are typically observed in 

macroscale shock-vortex interactions, were not found in any microscale shock-vortex interactions. 

The physics of the shock-vortex interaction was also investigated in detail to examine vortex 

deformation and evolution dynamics over an incident shock wave. A comparative study of first- and 

second-order constitutive models was also conducted for enstrophy and dissipation rate. Finally, the 

study was extended to the shock-vortex pair interaction (SVPI) case to examine the effects of pair 

interaction on vortex deformation and evolution dynamics. 
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I. INTRODUCTION 

A gas particle can have various energy modes, including translational, rotational and vibrational 

modes. Translational mode is described by the random motion of gas particles. In addition to a 

translational mode, diatomic and polyatomic gas particles can also possess an internal mode, due to 

the rotation of atoms around an axis, as well as the vibration of atoms along an inter-nuclear axis. The 

internal modes of diatomic and polyatomic gases—the rotational and vibrational modes―are closely 

related to thermal non-equilibrium.  

Among internal modes, the rotational mode is easily excited at room temperature, making it 

ubiquitous across whole flow conditions. In contrast, the vibrational mode becomes relevant only in 

gas flows where the temperature is greater than the vibrational excitation temperature; for example, 

1000°K. For this reason, in the study of diatomic and polyatomic gases, the excitation of vibrational 

degrees of freedom is usually neglected. 

The rotational non-equilibrium effect can be simply accounted for by introducing the excess 

normal stress associated with bulk viscosity.  The so-called bulk viscosity has a long history, not only 

in compressible gas dynamics, but also in fluid dynamics in general. For example, the two-century old 

Navier-Stokes-Fourier equation (called NSF hereafter) is considered to be the de facto mathematical 

equation for every possible flow problem, including compressible gas dynamics. The NSF theory is 

built upon a critical assumption of the constitutive equations, introduced by Stokes
1
 in 1845, that the 

bulk viscosity vanishes, 

             
2 2

0, equivalently .
3 3

b          
       (1) 

Here , and b    represent the bulk viscosity, the second coefficient of viscosity and the shear 

viscosity of the fluid, respectively. The Stokes’s hypothesis, mathematically expressed as (1), assumes 

that the dilatational term  u  plays no role in the level of the constitutive equation of viscous stress, 

even though it may play a significant role in the level of conservation laws in general, like 

compressible gas flows. 



3 

 

Further, the origin of bulk viscosity is often attributed to pure phenomenological observation, such 

as interpreting it as the dissipation mechanism during a change in volume at a finite rate, rather than 

resorting to a fundamental microscopic kinetic theory. 

While the Stokes’s hypothesis is certainly legitimate in the case of monatomic gases like argon, 

there is ever increasing evidence that  now indicates that this is not the case for non-monatomic 

gases
2-4

—like nitrogen (or air), methane, and carbon dioxide—that are far from local thermal 

equilibrium. Examples of such cases include the inner structure of strong shock waves, hypersonic 

entry into the Mars atmosphere, which consists mostly of carbon dioxide, the effects of bulk viscosity 

on the stability of the early universe, and the bulk viscosity of suspensions.
5-7

  

It should also be noted that, from room temperature acoustic attenuation data, the bulk viscosity for 

carbon dioxide is known to be three orders of magnitude larger than its shear viscosity, indicating it 

has a highly dispersive nature which is dependent on frequency. In fact, in a recent experimental 

study
2
 in 2016 on the role of dilatational (longitudinal acoustic) waves in a second-mode instability in 

the laminar-to-turbulence transition in hypersonic boundary layers, it was observed that, for a real 

diatomic gas, the growth and decay of the second mode is accompanied by a dilatation process which 

leads to about a 50% increase in dilatation dissipation, in comparison with the Stokes’s hypothesis. 

In a similar context, the interaction between shock waves and vortical flows has received 

considerable attention in gas dynamics and aeroacoustics. Studies include the enhancement of fuel-air 

mixing in combustion,
8
 helicopter blades operating at supercritical speeds,

9
 the shock noise generation 

in the design of advanced jet engines,
10

 combustion instability,
11

 and so on. In such flows, when a 

number of shock waves interact with vortices, the coupling between them dominates the flow field 

and produces a complicated flow pattern. Because of this complexity, a disturbance is generated 

which propagates along with the shock waves, resulting in a distortion phenomenon between the 

shock waves and vortices. The interaction alters or destroys the shock waves and the vortical flow 

structure. 

The shock-vortex interaction (called SVI hereafter) has been the subject of extensive study, since it 

is one of the most simplified models of the interaction between shock waves and vortical flows. Over 
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the last few decades, significant efforts have been devoted to interpreting the physical phenomena of 

SVI through experiments, theoretical analysis, and numerical simulations.  

Among these, Hollingsworth and Richards
12

 carried out an early experiment and showed that SVI 

produces a cylindrical acoustic wave, consisting of alternating compression and rarefaction regions 

around the circumference. Later, the circumferential pressure distribution of the acoustic wave was 

measured by Dosanjh and Weeks.
13

 A linear theory was proposed by Ribner
14

 for describing the 

sound production mechanism and its quadrupolar nature in SVI.  Ellzey et al.
15

 investigated 

numerically SVI and found two acoustic waves with a quadrupolar nature. Subsequently, Inoue and 

Hattori
16

 identified a third acoustic wave generated in planar SVI. Grasso and Pirozzoli
17

 examined 

the interaction of a shock wave with a cylindrical vortex and investigated the dependence of shock 

distortion and vortex compression on the shock and vortex strength.  Later, Zhang et al.
18

 conducted a 

numerical study of a SVI with a strong vortex and found the multistage features of acoustic shock 

waves. Recently, multiple acoustic waves, quadrupolar in nature and successively out of phase, were 

captured in a numerical simulation of SVI by Chatterjee and Vijayraj.
19

  

In addition, studies of the shock-vortex pair interaction (called SVPI hereafter) have been carried 

out to better understand the nature of more complicated shock flow interactions. However, the study 

of SVPI has been very limited compared to SVI, due to the complexity associated with the physics of 

the SVPI problem, including shock wave distortion, shock focusing and the different mechanisms of 

sound generation.
16, 20-22

   

Interestingly, most of the earlier theoretical and computational studies have investigated the SVI 

and SVPI problems at the macroscale (macro hereafter) where the thermal non-equilibrium effects are 

assumed to be negligible. Basically, these studies are based on compressible Euler or NSF equations, 

which are derived from the Boltzmann kinetic equation with the assumption of thermal-equilibrium 

and near thermal-equilibrium, respectively. Moreover, virtually all the previous studies are based on 

the Stokes’s hypothesis in which the rotational mode of diatomic and polyatomic gases is completely 

ignored in the level of constitutive equations of viscous stresses and heat flux. 

There are a few studies available on microscale (micro hereafter) SVI in thermal non-equilibrium. 

Koffi et al.
23

 conducted numerical simulations using the direct simulation Monte Carlo (DSMC) 
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method to characterize the mutual interactions of planar shocks with a micro-vortex. It was shown 

that, for the limited Mach and Knudsen numbers studied, the viscous attenuation of the vortex was 

found to dominate the gas flow in the micro SVI. Recently, Xiao and Myong carried out a numerical 

simulation of vorticity generation and vortex deformation in a micro SVI for a monatomic gas.
24

 In 

their study, some unique characteristics were found in the micro SVI; for instance, the absence of a 

quadrupolar acoustic wave structure, which is a major feature of the macro SVI; an increase in the 

dissipation rate during the strong interaction; and a decrease in enstrophy during the weak interaction. 

At the microscale, the primary criterion used to measure the degree of non-equilibrium phenomena 

is the local Knudsen number, which is the ratio of mean free path to characteristic length. Previous 

studies have revealed that the classical description of NSF, or of Navier-Fourier (NF hereafter) 

without the Stokes’s hypothesis based on first-order Boltzmann-based constitutive model, is only 

valid in flows near equilibrium, and is questionable in flows not-so-near equilibrium. As a 

consequence, simple modification of the NSF (or NF) theory using transport coefficients cannot solve 

the present bottleneck in the study of gas flows far from equilibrium.  

In order to deal with this situation, a non-classical theory based on algebraic second-order 

Boltzmann–Curtiss-based constitutive relations for monatomic, diatomic, and polyatomic gases was 

developed by Myong.
25,26

 Starting from the original Eu’s generalized hydrodynamics,
27,28

 the second-

order constitutive models were developed from the viewpoint of the moment method applied to the 

Boltzmann-Curtiss kinetic equation
29

 and the so-called balanced closure.
26

 These second-order 

constitutive models for diatomic gases were validated by investigating compressive shock dominated 

gas flow
25

 and velocity-shear dominated force-driven Poiseuille gas flow.
30

  

In this study, encouraged by these developments, we aim to investigate the problem of the non-

equilibrium effects of diatomic and polyatomic gases on SVI based on the second-order constitutive 

model of the Boltzmann-Curtiss kinetic equation. To the best knowledge of the authors, no attempt 

has been made in the past to investigate the non-equilibrium effects of the rotational mode in diatomic 

and polyatomic gases (at micro as well as macro levels) on the SVI problem. Further, the present 

study may be regarded as the first theoretical and computational attempt to investigate the strong 

interaction of two important non-equilibrium phenomena in diatomic and polyatomic 
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gases―compressive shock structure and velocity-shear of the vortex―using the fundamental 

microscopic Boltzmann-Curtiss kinetic theory and subsequent second-order constitutive equations, 

without resorting to pure phenomenological theory. 

Toward this goal, we consider in depth the Boltzmann-Curtiss kinetic equation
25

 for diatomic and 

polyatomic gases and derive the second-order constitutive equations for non-conserved variables as 

well as the conservation laws of conserved variables. The non-equilibrium effects of diatomic and 

polyatomic gases on the SVI problem are then studied systematically to highlight the differences, in 

comparison with the monatomic gas case. A comparative study of macro and micro SVI is also 

conducted to characterize the complicated flow fields. Additionally, the evolution dynamics of micro 

SVI are analysed for deeper understanding of the non-equilibrium effects of diatomic and polyatomic 

gases. Finally, the study is extended to the SVPI case in order to examine the effects of pair 

interaction on vortex deformation and evolution dynamics. 

 
FIG.1. Schematic diagram of the flow model for single and vortex pair cases. 
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II. PROBLEM DEFINITION AND COMPUTATIONAL MODELS FOR 

THE SVI PROBLEM 

A. Problem definition 

A schematic diagram of the flow model used to simulate a shock wave interacting with a single 

vortex and a vortex pair is depicted in Fig. 1. The computational domain was designed to be 

rectangular  , .l r b ux x x y y y     Two computational domains with different sizes were used in 

the present work; one was a domain with a size of 0.0008 mr lx x   , 0.0008 mu ly y    used 

for simulating the micro SVI cases; the other one was a domain with a size of 0.1 m,r lx x    

0.1 mu ly y    used for simulating the macro SVI cases. Here, a moving shock wave and 

clockwise-rotating stationary vortices are considered. The shock wave moves from left to right with 

respect to the initial shock wave in the computational domain.  

The location of the centre of the single vortex in the SVI was set to be (0, 0), while the location of 

the centre of the two vortices in the SVPI were set to be  0, 2d . The initial separation distance of 

the two vortices d was set to be 0.0002 m for the micro SVPI and 0.02 m for the macro SVPI.  

A vortex was formed by selecting a composite vortex as the initial flow.
23,31

 
 
The composite vortex 

model consists of two regions; an inner core region and a surrounding region where the velocity 

gradually approaches zero. The rotational centre of the vortex is initially stationary, and the velocity 

distribution between the core radius 
1r  and outer radius 

2r  is determined before starting a simulation. 

In this flow, the maximum tangential velocity is found in the core radius while the tangential velocity 

outside the outer radius  2r r  is set to zero. Inside the core  1 ,r r  the velocity goes linearly to 

zero at 0.r   The size of the core radius 
1r  has a significant effect on the flow field. Therefore, we 

considered a core radius from 8  to 1000  with a step of 2 . From now on, the symbol 

6( 6.26 10 m)   represents the mean free path at the initial condition. 

The tangential velocity distribution of a clockwise-rotating vortex is defined as follows, 
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 (2) 

where u  is the azimuthal component of velocity, and mu  denotes the maximum tangential velocity. 

The temperature and the pressure in the quiescent field surrounding the vortex were also selected. 

Inside the vortex, the pressure, the density and the energy were determined by balancing the pressure 

gradients with the centripetal force which is equivalent to solving the following system, 

2

,  ,  ,
udp p

K p RT
dr r




 


     

       (3) 

where   is the specific heat ratio of gas, R is the gas constant, K is a constant,   is the density, p is 

the pressure, and T is the temperature. From the last two equations, it is straightforward to deduce that 

the pressure and density fields inside the vortex satisfy  

1

1 1

1 1

1 1

, .
T T

p p
T T



 

 
    

    
   

 

       (4) 

Using above equations, we can obtain the temperature from the following ordinary differential 

equation 

2
1

.
udT

dr R r






  

       (5) 

This equation together with equation (4) allows us to compute the pressure and density distribution 

inside the vortex. 

In general, the flow fields generated by interactions between the shock wave and vortices are 

largely affected by three flow parameters: the Mach numbers of the incoming shock wave and rotating 

vortex, 
sM  and 

vM , respectively, as defined by the maximum tangential velocity of the vortex, and 

the core radius 
1r . In this work, these flow parameters were chosen to demonstrate the effects of the 

shock wave, vortex strength and vortex size on the interaction. The Mach numbers of the incoming 

shock wave 
sM  were selected to range from 1.5 to 3.5 with a step of 0.5, while the Mach numbers of 

vortex 
vM  ranged from 0.6 (weak vortex) to 1.0 (strong vortex). The baseline case for our 
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computation was an incoming shock Mach number of 2.0,sM   a vortex Mach number of 0.8,vM   

and a vortex core radius 
1 10r   and 1000  with 

2 12 .r r  In the SVPI simulations, both of the 

vortices were assumed to have equal strength and the same clockwise-rotating direction. 

B. The second-order constitutive model for diatomic and polyatomic gases 

1. Boltzmann-Curtiss kinetic equation for diatomic and polyatomic gases and the exact 

conservation laws 

The Boltzmann-Curtiss kinetic equation for diatomic (and linear polyatomic) molecules with a 

moment of inertia 
mI   and an angular momentum j can be expressed

29
 as the following when there is 

no external field, 

                , , , , ,
m

j
f t R f

t I




  
    

  
v v r j  

       (6) 

where , , , ,f jv r  and  R f  represent the distribution function, the particle velocity, the particle 

position, the azimuthal angle associated with the orientation of the particle, the magnitude of the 

angular momentum vector j, and the collision integral, respectively.  When the angular momentum of 

the molecule related to the rotational mode is ignored, the Boltzmann-Curtiss kinetic equation 

recovers the original Boltzmann kinetic equation for a monatomic gas 

   , , ,f t C f
t

 
   

 
v v r  

      

where  C f  represents the Boltzmann collision integral of the interaction between two particles. 

There are two different sets of macroscopic variables; the conserved variables  , , Eu    and the 

non-conserved variables  , , , Q  where u is the velocity vector, E is the total energy density, while 

, , Q represent the shear stress tensor, the excess normal stress, and the heat flux, respectively. 

These variables can be defined by a statistical formula  

                
,

k k
h f          (7) 
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where the angular bracket denotes the integration over the variables v and .j  The  k
h  indicates the 

molecular expressions for moments. The leading elements of the set of the conserved and non-

conserved variables are defined as
27

,  
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       (8) 

with the molecular expressions corresponding to this set  

             

     
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 

v

CC C

 

       (9) 

where m is the molecular mass, C = v – u is the peculiar velocity of the molecule, n is the number 

density per unit mass, ĥ  is the enthalpy density per unit mass, and 
2 2rot mH j I is the rotational 

Hamiltonian of the particle. The viscous stresses   and   are related to the stress tensor P through 

the relation 

              p   P I          (10) 

Here, I is the unit second rank tensor,
Bp nk T RT   is the equation of state. The symbol T denotes 

the overall temperature related to both translational and rotational energy. The symbol  
 2

A  denotes 

the traceless symmetric part of the second-rank tensor A, 

              
   
2 1 1

Trace .
2 3

t  A A A I A  
       (11) 

The conservation laws of mass, momentum, and total energy for diatomic and polyatomic gases 

can be derived directly from the Boltzmann-Curtiss kinetic equation by noting that the molecular 

expressions for conserved variables (9) are collision invariants and thus there is no dissipation term, 

i.e.    1,2,3
0R f  . After differentiating the statistical definition of the conserved variables with 

time and combining them with the Boltzmann-Curtiss equation, the following conservation laws, all 

of which are an exact consequence of the Boltzmann-Curtiss kinetic equation, can be derived,
25, 27
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       (12) 

In this expression (12), the symbol E denotes the total energy which can be defined as,  

 

1 1
.

2 1

p
E

 
  


u u  

       (13) 

After the following dimensionless variables and parameters are introduced, 
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(14)      

where the subscript r stands for the reference state, L denotes the characteristic length, pc  denotes the 

heat capacity per mass at constant pressure, , ,  b k   are the Chapman-Enskog shear viscosity, the 

bulk viscosity, and the thermal conductivity, respectively, the non-dimensional conservation laws for 

diatomic and polyatomic gases (with the asterisks omitted for notational brevity) can be written as,
25
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(15)      

Here, the dimensionless parameters such as Mach number (M), Reynolds number (Re), Eckert number 

(Ec) and Prandtl number (Pr) can be defined as 

  2,  Re ,  1 ,  Pr .rp rr r r

r rr

cu u L
M Ec M

kRT





      

(16)      

 The specific heat ratio   is assumed to be 5/3 for argon gas, 7/5 for nitrogen gas, and 1.289 for 

methane gas. The value of the Prandtl number (Pr) may be calculated through Eucken’s relation 

4
Pr

9 5
.







 

(17)      
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In the present work, the speed of sound before the shock wave was chosen to be the reference velocity 

ru , resulting in M = 1. Nonetheless, the reference Mach number M is retained in the non-dimensional 

equations to show its role in the formulation. In addition, the core radius of the vortex 
1r  was used as 

the reference length L. 

2. First-order Boltzmann-Curtiss-based (Navier-Fourier) constitutive model 

After differentiating the statistical definition of the non-conserved variables    4,5,6 4,5,6
h f   

with time and combining them with the Boltzmann-Curtiss equation, the following first-order 

Boltzmann-Curtiss-based constitutive model of the shear stress tensor, the excess normal stress, and 

the heat flux vector can be obtained; 

 
(2)

2 , , .b k T          u u Q  (18)      

Once the Stokes’s hypothesis (1) is applied, that is, 0b  , the first-order NF constitutive equations 

(18) are reduced to the well-known linear NSF constitutive equations. It should be noted that these 

first-order linear relations were obtained after very crude approximations; all kinematic terms except 

for the thermodynamic force term were neglected in the moment equations and the collision-related 

dissipation terms  (4,5,6)R f  were linearized. In these expressions, the following Chapman-Enskog 

linear transport coefficients can be employed 

, , ,s s

b bT f k T      (19)      

where s stands for the index of the inverse power laws of gas molecules, given as 

 

1 2
.

2 1
s


 


 

(20)      

Here the parameter  is the exponent of the inverse power laws for the gas particle interaction 

potentials. The value of s was assumed to be 0.81 for argon gas, 0.78 for nitrogen, and 0.84 for 

methane gas.
32

 The factor 
b bf    is the ratio of the bulk viscosity to the shear viscosity. Its value 

can be determined using a sound wave absorption measurement. The
bf  values for argon, nitrogen and 

methane gases were considered to be 0.0, 0.8 and 1.33, respectively, based on experiments.
33
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3. Second-order Boltzmann-Curtiss-based constitutive model 

Similarly, the second-order constitutive model can be derived by first differentiating the statistical 

definition of the non-conserved variables  4,5,6
  with time and then combining them with the 

Boltzmann-Curtiss kinetic equation. However, it turned out that the derivation of the second-order 

constitutive model is extremely difficult, mainly due to two fundamental issues; the so-called closure 

problem and accurate treatment of the dissipation terms  (4,5,6)R f , both of which have remained 

unsolved for several decades.  

In order to accurately calculate the dissipation terms while making the underline theory compatible 

with the second law of thermodynamics, Eu in 1980 proposed a canonical distribution function in the 

exponential form, instead of the usual polynomial form, after recognizing the logarithmic form of the 

non-equilibrium entropy production.
28

 On the other hand, Myong in 2014 proposed a new closure 

theory from a keen observation of the fact that, when closing open terms in the moment equations 

derived from the kinetic equation, the number of places to be closed was two (movement and 

interaction), rather than one (movement only), having been misled by the Maxwellian molecule 

assumption in the previous theory.
26

 Therefore, the order of approximations in handling the two 

terms—kinematic (movement) and dissipation (interaction) terms—must be the same; for instance, 

second-order for both terms. 

Once these tenets—the Eu’s cumulant expansion based on the canonical distribution function in 

the exponential form to the explicit calculation of the dissipation term, and the aforementioned new 

balanced closure—are applied to the moment equations and after the second-order approximation, the 

following second-order constitutive model can be derived from the Boltzmann-Curtiss kinetic 

equation
25,28

 

 

 
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(21)      
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Here the caret (^) over a symbol represents a quantity with the dimension of the ratio of the stress to 

the pressure. Note that the relationships in the second-order Boltzmann-Curtiss-based constitutive 

model are nonlinear and a coupled function of the velocity and temperature gradients. The values of 

0 0
, , and 

0Q  are determined by the Newtonian law of shear and bulk viscosity, and the Fourier law 

of heat conduction, respectively, 

 
(2)

0 0 02 , , .b k T          u u Q  (22)      

All terms in equations (21) are normalized by introducing proper variables and parameters,  

2

ˆˆˆ ˆ, , , 2 ,
/ (2 )

/ 2 1 1
Kn ,  .

Re Pr /

r r
δ

r r

N N N N

p p p pT

u L M
N M

p Ec T T

   


  




        

   


Q
Q u u 

 

(23)      

The second-order nonlinear coupling factor 2nd
ˆ( )q cR  and the Rayleigh-Onsager dissipation function R̂  

are given by 

2

2nd

2 2 ˆ ˆˆ .
ˆsinh( )ˆ ˆ ˆ ˆ( ) ,   :

ˆ
b

f

cR
q cR R

cR


    Q Q


   

(24)      

Here  5 3 2.     The constant c, which is given by    
1/2

2 2
5 12 4 ,c A

       has a value 

between 1.0138 (Maxwellian) and 1.2232 ( 3 ); for instance, 1.018 for the nitrogen gas molecule.
25

 

The tabulated values of  2A   are available in the literature.
34

 Note also that, once 2nd
ˆ( )q cR  is taken 

first-order, that is, 
1 1stq  , and all coupled terms in the right hand side are neglected, the constitutive 

models (21) exactly recover the NF models (18) or (22). 

Figure 2 illustrates the general features of the second-order constitutive relations (21) for diatomic 

and polyatomic gases in the one-dimensional compression-expansion and shear flows. The second-

order constitutive model gives the asymmetrical behaviour of normal stress for the rapid expansion 

and compression of gas, as shown in Fig. 2(a).  Even though the details of the second-order 

constitutive models for monatomic and diatomic and polyatomic gases are different, the general 

patterns remain unchanged. As the shear velocity gradient becomes very large the shear stresses 

predicted by the second-order constitutive model become very small, compared to the first-order 
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constitutive model, as shown in Fig. 2(b). Interestingly, Figs. 2(a) and (b) show the free-molecular 

asymptotic behaviour with increasing degree of expansion and velocity-shear, satisfying 

ˆˆ 1xx  or 0.xx p    Previous studies
25,26,35

 showed that the solutions of the second-

order constitutive models were well-posed (existence, uniqueness, and continuous dependence on the 

data) for all inputs on thermodynamic forces. 

 
FIG.2. Constitutive relations for monatomic and diatomic gases in (a) compression - expansion flow, 

and (b) shear flow. The horizontal axis represents the thermodynamic force by velocity 

gradient 0
ˆ , while the vertical axis represents the normal stress ˆ . (Reproduced with permission from 

“A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows,” 

Journal of Computational Physics, 195, 655(2004). Copyright 2004 Elsevier Publication) 

 

C. The numerical method based on an explicit modal discontinuous 

Galerkin method 

The conservation laws (15) in conjunction with both first-order and second-order constitutive 

models, (18) and (21), are solved by an in-house mixed explicit structured discontinuous Galerkin 

(DG) method implemented in the serial platform, extended from the method originally developed for 

a monatomic gas by Xiao and Myong.
24, 36

 The domain is decomposed using linear quadrilateral 

elements, and the scaled Legendre basis functions are employed for elements. The Gauss-Legendre 

quadrature rule was implemented for both the volume and the boundary integrations, and the local 

Lax–Friedrichs (LLF) flux was applied for inviscid terms, while the BR1 scheme
37

 was employed for 

the auxiliary and viscous fluxes at elemental interfaces. A polynomial expansion of third-order 

accuracy was used to approximate solutions in the finite element space, and the third-order total 
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variation diminishing Runge-Kutta (TVD-RK) scheme was used for the time integration. To eliminate 

the spurious numerical fluctuations of the solutions, the nonlinear total variation bounded (TVB) 

limiter proposed by Cockburn and Shu was used.
38

 

The right and left boundaries of the computational domain were set as an outflow condition, and as 

the moving shock Mach number and the associated thermodynamic condition specified by the 

Rankine-Hugoniot relations, respectively. The upper and lower boundaries were set based on flow 

conditions: before and after the shock wave. Since the shock wave is moving, the upper and lower 

boundaries are updated in every time step. The initial quiescent state surrounding the vortex had a 

pressure of 1013 Pa and a temperature of 273°K. In this study, three gases—argon, nitrogen and 

methane—are considered. 

D. Important physical quantities in the SVI problem 

1. Sound pressure 

The sound pressure defined below is used to examine the basic structure of vortex deformation; 

,s

s

p p
p

p


   

(25)      

where p is the local pressure and sp  is the pressure after the shock wave. 

2. Rayleigh-Onsager dissipation function 

The Rayleigh-Onsager dissipation function is used to measure the degree of non-equilibrium in flow 

fields; 

22 2 ˆ ˆˆ .ˆ ˆ ˆ:
b

f
R

 
   Q Q   

(26)      

3. Vorticity 

The vorticity plays a vital role in understanding the interaction of a vortex with the shock wave. It 

can be defined as 
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.z

v u

x y

 
  

 
 

(27)      

4. Enstrophy evolution 

The physical phenomena of vorticity generation or attenuation during the interaction can be 

explained by monitoring the time evolution of the enstrophy. The time evolution of the enstrophy can 

be defined as the area integral of the square of the vorticity in the flow field,
23

 

   2

A

Enstrophy , , ,zt x y t dxdy


   (28)      

where A is the area of the computational domain. 

5. Dissipation rate evolution 

The viscous effects of diatomic and polyatomic gases can be investigated by introducing the area-

weighted dissipation rate of kinetic energy  

   
A

Dissipation rate , , .t E x y t dxdy


   (29)      

Here  , ,E x y t  denotes the

 

dissipation rate per unit volume and is defined as 

    ,( , , ) xx xx xy xy yx yx yy yyE x y t S S S S          (30)      

where ij is the viscous shear stress,  is the excess normal stress and ijS  is the strain rate defined 

as .ij i jS u x    

6. Vorticity transportation  

The transport equation of vorticity can describe the dominant physics in the SVI since it contains 

several physically distinctive quantities.
23,31

 The transport equation of vorticity can be written as the 

following in the two dimensional case, 

   

2
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1 1 1 1
.
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z
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t x y x y y x

y x y x x y

 
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   

         
        

         

        
            

         

 

(31)      
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There are three important dynamic processes for the vorticity component, ;z  (i) vorticity generation 

through the dilatation strain rate, (ii) baroclinic generation through the interaction of pressure and 

density gradients, and (iii) viscous vorticity generation through the viscous effects. The net area-

weighted vorticity generation is defined as 

 
A

Net vorticity , , .zx y t dxdy
t







 

(32)      

 The net area-weighted dilatational vorticity generation is computed as follows: 

 
A

Dilatational vorticity , , .z

u v
x y t dxdy

x y


  
    

  
  

(33)      

The net area-weighted baroclinic vorticity generation is given as 

 
2

A

1
Baroclinic vorticity , , .

p p
x y t dxdy

x y y x

 




    
  

    
  

(34)      

 

The net area-weighted viscous vorticity generation is expressed as 

   
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A
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1 1
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1 1
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     
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



 

(35)      

 

III. GRID REFINEMENT STUDY AND VALIDATION OF THE 

NUMERICAL CODE 

A. Grid refinement study 

To evaluate the quality of the computational results, a grid refinement study was carried out by 

computing a macro SVI test case with 11.5, 0.8, 1000s vM M r     for nitrogen gas. A sequence of 

grids was considered: 100 100, 200 200, 400 400,  and 800 800.  The density contours of the 

macro SVI at 1000 nanoseconds were compared in Fig. 3. In addition, the density and pressure 

profiles at center-line of the domain for constant y and x were shown in Fig. 4 to demonstrate the grid 

sensitivity. The results show that there is no significant difference between the results obtained with 

the 400 400,  and 800 800 grids, implying that the 800 800 grids were very close to asymptotic 

range. Based on this finding, all the computations were carried out on 800 800 grids. 
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100 100 200 200

400 400 800 800  

FIG. 3. Grid refinement study: density contours in macro SVI with 11.5, 0.8, 1000 ,s vM M r     

and 0.8bf  at 1000 ns.t   
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FIG. 4. Grid refinement study: density (upper) and pressure (below) profiles at center-line of 

domain in macro SVI with 11.5, 0.8, 1000 ,s vM M r     and 0.8bf  at 1000 ns.t   

 

B. Validation of the numerical code 

In order to verify the reliability and accuracy of the present computational model and numerical 

DG solver, we compared the computational results with the experimental data of Dosanjh and 

Weeks,
39

 the theoretical results of Ribner,
14

 and the computational results of Ellzey et al.
15

 and Inoue 

and Hattori.
16

 The conditions for this benchmark case were set based on the experimental study of 

Dosanjh and Weeks
39

; 1.29, 0.39, 1.4.s vM M      

Figure 5 shows a comparison of the circumferential distributions of the pressure amplitude defined 

as  2 ,p sp p p  where 2, ,and p sp p p denote the peak pressure of the precursor, the peak pressure of 

the second sound, and the pressure behind the shock wave, respectively. As seen from Fig. 5, the 

present result is very close to both the computational results of Ellzey et al.
15

 and Inoue and Hattori.
16
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This indicates that the present numerical code is able to compute the flow-fields in macro SVI 

accurately.  
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FIG. 5. First-order (Navier-Fourier) constitutive model validation: circumferential distribution of 

the pressure amplitude in macro SVI (air). 
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FIG. 6. Second-order Boltzmann based constitutive model validation: time evolution of area-

weighted enstrophy in micro SVI (argon gas). 

 

In order to further check the present second-order Boltzmann-Curtiss-based constitutive model, 

three different cases of micro SVI investigated by Koffi et al.
23

 were considered. Argon gas in its 

quiescent state surrounding the vortex at an initial temperature of 273 K and an initial pressure of 
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1013 Pa was considered. The core radius varied from 8  to 12 . In Fig. 6, the time of the enstrophy 

is compared with the DSMC results. It can be seen from Fig. 6, that the present results, including the 

general trend of the enstrophy change with time, are found very close to the DSMC study of Koffi et 

al.,
23

  which used argon molecules, variable hard sphere (VHS) inter-particle model, 25 particles in 

each cell, and time step size of 92 10 .  

IV. RESULTS OF EFFECTS OF DIATOMIC AND POLYATOMIC 

GASES ON THE SVI, AND DISCUSSION 

In this section, we investigate the physics of the macro and micro SVIs in diatomic and polyatomic 

gases, in particular, in relation to the non-equilibrium effects. Emphasis is placed on the sound 

generation mechanism, vorticity transport, enstrophy evolution, and dissipation rate evolution. Three 

types of vortices were chosen for extensive studies, including a transonic vortex with 1.0vM   

followed by two types of subsonic vortices with 0.6vM  and 0.8.vM   For the given vortex Mach 

number, the core radius increases from 8  to 1000  with a step of 2 .  The incident shock Mach 

number sM increases from 1.5 to 3.5 with a step of 0.5. Three gases were considered to investigate the 

non-equilibrium effects of diatomic and polyatomic gases; argon ( 0.0bf  ), nitrogen ( 0.8bf  ), and 

methane ( 1.33bf  ). A road map of the simulation cases for the SVI is presented in Fig. 7. 

1/8

1/10

1/12

1/14

1/16

1/1000

1.5 2.0 2.5 3.0 3.5
sM

Kn : All possible cases

: Present cases

 
FIG. 7. Road map of simulation cases of present SVI study with 

0.6,0.8,1.0;vM  and 0.0, 0.8, 1.33bf  . 
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A. Sound generation mechanism in the SVI for diatomic and polyatomic 

gases 

The sound generation mechanism is considered the most interesting phenomena in the SVI. To 

understand this phenomenon, we conducted an extensive investigation on the time evolution of sound 

pressure in the macro and micro SVIs of diatomic and polyatomic gases. 

1. Sound generation mechanism in the macro SVI 

Figure 8 displays the time evolution of sound pressure in the macro SVI with conditions 

12.0, 0.8, 1000 ,s vM M r    and 1.33.bf  The symbol ‘+’ denotes the compression region while 

‘-’ presents the rarefaction region.  As the incident shock wave interacts with the outer flow field of 

the clockwise-rotating composite vortex, the lower and upper portions of the incident shock wave are 

diffracted around the vortex. The two diffracted shocks, a fast diffracted shock (FD) and a slow 

diffracted shock (SD), are connected by the refracted shock (RF), which passes through the vortex 

core, as shown in Fig. 8(a). A rarefaction region appears in the upper portion where the shock 

propagation is promoted by the vortex velocity, while a compression region appears in the lower 

portion where the shock propagation is deterred by the vortex velocity. As a result, a precursor is 

generated first, as seen in Fig. 8(a). As the interaction develops, the incident shock wave passes 

though the vortex core and is distorted into an S shape, as shown in Fig. 8(b). New rarefaction and 

compression regions appear outside of the compression and rarefaction regions, respectively. This 

process of interaction shows that the precursor changes from an initially dipolar to a quadrupolar 

nature consisting of compressions and rarefactions along the circumferential direction. 

Figure 8(c) shows that, when the incident shock wave passes through the vortex flow field, a Mach 

reflection configuration is generated with two reflection shocks MR1 and MR2, which propagate 

upward and downward, respectively. Because of the clockwise rotation of the vortex, both the 

strength and propagating velocity of MR2 is larger than that of MR1. At the same time, a second 

acoustic wave appears behind the precursor, which also displays a quadrupolar nature. The Mach stem 

MS accelerates relative to the two incident shocks waves SW1 and SW2, and the shock front again 

becomes approximately planar as shown in Fig. 8(d). A shocklet type shock wave C1 is also observed 
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at the opposite side of vortex core which merges with the planar shock front part as seen in Figs. 8(e) 

and 8(f). Further, another two reflection shocks MR3 and MR4 are formed, moving upward and 

downward, respectively. Finally, a third sound wave with a quadrupolar nature is generated by the 

compressed vortex, as shown in Fig. 8(f). 

 

 
FIG. 8. Time evolution of sound pressure for macro SVI with 12.0, 0.8, 1000 ,s vM M r    and 

1.33.bf   

 

2. Sound generation mechanism in micro SVI 

Figure 9 displays the time evolution of sound pressure in the micro SVI with conditions 

12.0, 0.8, 10 ,s vM M r    and 1.33.bf   As the incident shock wave interacts with the outer flow 

field of the micro vortex, the lower and upper portion of the shock wave are diffracted slowly around 

the vortex, as seen in Fig. 9(a). One rarefaction region is developed in the upper and lower portions of 



25 

 

the incident shock wave. When the incident shock wave approaches the vortex core, a compression 

region is generated between the two rarefaction regions.  

Also, a Mach stem MS and two reflected shock waves MR1 and MR2 are formed, as shown in Fig. 

9(b). Later, as the incident shock wave passes through the vortex core, new rarefaction and 

compression regions appear outside the rarefaction regions in the upper portion of the shock wave, as 

shown in Fig. 9(c). Because the vortex rotates in a clockwise direction, the deformed incident shock 

wave SW1 moves upward and one compression region is developed near the upper side of the vortex 

core, as shown in Fig. 9(d). For the same reason, the strength of reflected shock wave MR2 is stronger 

than that of MR1.  Further, two additional shock waves MR3 and MR4 are formed and one rarefaction 

region comes out near the vortex core, as demonstrated in Fig. 9(e). This rarefaction region moves 

upward near the compression region and a second sound wave is generated, as seen in Fig. 9(f).  

 
FIG. 9. Time evolution of sound pressure for macro SVI with 12.0, 0.8, 10 ,s vM M r    and 

1.33.bf   
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Overall, the results show that the micro SVI has an evolving pattern of sound pressure similar to 

the macro SVI. However, due to the enhanced viscous dissipations in the micro SVI, the pattern is 

much more smeared, including the incident, reflected and newly formed shock waves. For a similar 

reason, it was observed that the quadrupolar acoustic wave structures, which are typical in the macro 

SVI, disappear in the micro SVI.  

From Ribner’s linearized theory of SVI
14

 which predicts the quadrupolar acoustic wave in a macro 

SVI, the pressure jump varies around the vortex and generates a quadrupole field. The interaction also 

causes a 1 r potential flow around the vortex core and the pressure of this potential flow field can be 

expressed as 

1/2

m 1~ .
V

u r
p

at

 
 
 

 
(36)      

Here V is the upstream velocity of the shock. The expression (36) conforms that when the radius of 

the vortex core 
1r  is very small, the pressure jump is greatly weakened in the micro SVI. As a result, 

the quadrupolar acoustic wave disappears in the micro SVI. 

B. Effects of diatomic and polyatomic gases on the macro and micro SVIs 

Here we investigate the effects of diatomic and polyatomic gases on the macro and micro SVIs. 

For this purpose, we selected three gases: monatomic argon  0.0 ,bf   diatomic nitrogen  0.8 ,bf   

and linear polyatomic methane  1.33 .bf   We basically considered two types of the SVI problem: 

macro SVI with 1 1000 ,  0.8,vr M   and micro SVI with 1 10 ,  0.8vr M  for 1.5, 2.0.sM   

1. Sound pressure 

Figure 10 displays the effects of diatomic and polyatomic gases on the sound pressure in macro 

and micro SVIs at time t = 1000 ns. Due to the strong shock vortex interaction, a Mach reflection 

configuration is developed in all cases. In the monatomic case ( 0.0bf  ) it is observed that a second 

sound wave and two reflected shock waves, MR1 and MR2, are generated in the macro SVI, as seen 

in Fig. 10(a). In addition, a small shocklet type wave C1 appears at the opposite side of the vortex 
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core and near a compression region. When the 
bf  value increases to 0.8, two additional reflected 

shock waves, MR3 and MR4, are formed and the shocklet wave C1 becomes larger in comparison 

with the monatomic case, as shown in Fig. 10(b).  

 

FIG. 10. Effects of diatomic and polyatomic gases on macro SVI with 12.0, 0.8, 1000s vM M r     

(top) and micro SVI with 12.0, 0.8, 10s vM M r    (bottom): sound pressure at 1000ns.t   

 

Moreover, the strength of reflected shock waves is stronger than that of the reflected shock waves 

in the monatomic case. This difference is possibly due to the substantial contribution of the 

dilatational term appearing in the constitutive relations for the diatomic and polyatomic gases.  As the 

bf  value increases further to 1.33, an additional (third) sound wave is generated, as shown in Fig. 

10(c).  The expansion region of the sound waves becomes larger with increasing bf . It is also 

observed that the size of the shocklet wave C1 increases and begins to merge with the reflected shock 

waves of a quadrupolar nature.  

On the other hand, the sound pressure pattern in the micro SVI is notably different from the macro 

SVI. First, the quadrupolar acoustic wave structure, which is the main feature of the macro SVI, is no 
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longer observed in the micro SVI. Second, no shocklet type waves exist in the micro SVI. 

Nevertheless, faster propagation of the incident shock wave with increasing 
bf  (equivalently, 

decreasing  ) was observed in both the macro and micro SVIs, since the shock propagation speed is 

affected by the specific heat ratio of the gases, regardless of the macro or micro condition. 

 

FIG. 11. Effects of diatomic and polyatomic gases on macro SVI with  1.5, 0.8,s vM M   

1 1000r  (top) and micro SVI with 11.5, 0.8, 10s vM M r     (bottom): vorticity contours at 

1000ns.t   

 

2. Vorticity distribution 

Figures 11-12 illustrate the effects of the diatomic and polyatomic gases on the vorticity 

distribution in the macro and micro SVIs for 1.5, 2.0sM   at time t=1000 ns. It can be easily 

observed that there are significant differences in vorticity distribution for the different gases after the 

interaction. For instance, as already explained in the subsection on sound pressure, two additional 

reflected shock waves, MR3 and MR4, are clearly formed in the macro SVI in the case of diatomic 
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and polyatomic gases. Furthermore, in the macro SVI, two branches of slip lines (SL1 and SL2) 

emanating from the vortex core are formed and it becomes strong with increasing Mach number and 

becomes weak with increasing 
bf value. 

(a) Argon gas, 0.0bf  (b) Nitrogen gas, 0.8bf  (c) Methane gas, 1.33bf   

FIG. 12. Effects of diatomic and polyatomic gases on macro SVI with  2.0, 0.8,s vM M   

1 1000r  (top) and micro SVI with 12.0, 0.8, 10s vM M r     (bottom): vorticity contours at 

1000ns.t   

 

In the present simulations, a composite vortex has negative vorticity in its core and positive 

vorticity on the outside, so that the total circulation produced by the regions may be zero. After the 

interaction, the vortex is deformed in a horizontally stretched form in the macro SVI, while it remains 

in a circular shape and is squeezed in the longitudinal direction in the micro SVI.  

In the macro SVI with small 
bf  value, it is observed that the inner core of the vortex with negative 

vorticity is stretched and the outer annular region with positive vorticity begins to detach from the 

inner core, as shown in Figs. 11(a) and 12(a). This stretching is more pronounced for large
bf  values, 

as seen from Figs. 11(b)(c) and 12(b)(c). It was also found that, with increasing 
bf  value, the domain 
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of negative vorticity increased, due to enhanced vorticity generation. For a shock Mach number of 1.5, 

as depicted in Fig. 11, due to weak shock strength, weak reflected shock waves are observed and the 

vortex core is less deformed in both the macro and micro SVIs.  On the other hand, for shock Mach 

number 2.0, the vortex core is completely disrupted, in particular, in diatomic and polyatomic gases, 

as shown in Figs. 12(b)(c). 

 

FIG. 13. Effects of diatomic and polyatomic gases on macro SVI with  2.0, 0.8,s vM M   

1 1000r  (top) and micro SVI with 12.0, 0.8, 10s vM M r     (bottom): degree of non-equilibrium 

contours at 1000ns.t   

 

3. Degree of thermal non-equilibrium 

Figure 13 shows the effects of diatomic and polyatomic gases on the degree of thermal non-

equilibrium in macro and micro SVIs at time t=1000 ns. The thermal non-equilibrium parameter R 

defined in (26) was calculated in order to examine what regions could be expected to deviate 

significantly from the local equilibrium state during the interaction. As expected, it was observed that 
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the degree of thermal non-equilibrium is very high in the micro SVI case compared with the macro 

SVI.  

In general, the macro SVI shows a low degree of deviation from thermal equilibrium, and the 

deviation is mostly confined inside the shock and vortex regions. In contrast, the micro SVI is 

significantly affected by the non-equilibrium process in all types of gases, and the deviation occurs 

inside a much broader domain. It is apparent that the non-equilibrium process associated with the 

micro SVI affects a large portion of the flow field.  

This result confirms the essence of the difference between the macro and micro SVI. Moreover, by 

comparing Figs. 12 and 13, it can easily be noticed that, while both the vorticity and the non-

equilibrium parameter based on the Rayleigh-Onsager dissipation function can describe the essential 

features in the macro SVI quite effectively, the non-equilibrium parameter is much more effective 

than the vorticity in the case of the micro SVI. 
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FIG. 14. Effects of diatomic and polyatomic gases on (a) macro SVI 

with 12.0, 0.8, 1000 ,s vM M r     and (b) micro SVI with 12.0, 0.8, 10s vM M r    : time 

evolution of enstrophy. 

 

4. Evolution dynamics 

Figure 14 illustrates the effects of diatomic and polyatomic gases on the time evolution of 

enstrophy in the macro and micro SVIs. It can be seen that the enstrophy during the interaction is 
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substantially enhanced with increasing 
bf  value in both the macro and micro SVIs. However, a 

different pattern of enstrophy evolution is observed in the macro and micro SVIs.  

In the macro SVI, the enstrophy increases until 400 ns and then remains fairly constant, as shown 

in Fig. 14(a). On the other hand, in the micro SVI, the enstrophy decreases rapidly until 250 ns and, 

after that, it increases briefly at 250-350 ns. Then it decreases slowly for the remainder of the 

interaction, as shown in Fig. 14(b).  

The effects of diatomic and polyatomic gases can be further examined through the time evolution 

of the dissipation rate, shown in Fig. 15. It can be seen that the effect of the rotational mode in gases 

on the dissipation rate is reversed, depending on the macro or micro condition. Figure 15(a) indicates 

there is an increase in the dissipation rate with increasing 
bf  value in the macro SVI, whereas Fig. 

15(b) shows the opposite trend for the micro SVI, a decrease in dissipation rate with increasing
bf  

value. 
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FIG. 15. Effects of diatomic and polyatomic gases on (a) macro SVI 

with 12.0, 0.8, 1000 ,s vM M r     and (b) micro SVI with 12.0, 0.8, 10s vM M r    : time 

evolution of dissipation rate. 

 

5. Summary of macro and micro SVIs in diatomic and polyatomic gases 

Several major effects of diatomic and polyatomic gases on the shock-vortex interaction were 

identified; for example, the generation of additional reflected shock waves MR3 and MR4 were 
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observed in both the macro and micro SVIs for non-monatomic gases. A significant increase in 

enstrophy was also observed with increasing bf  value in both the macro and micro SVIs. Furthermore, 

the macro and micro SVIs showed distinct flow field features.  

It is interesting to note that the quadrupolar acoustic wave structure, which is an essential 

phenomenon in the macro SVI, was not observed in any case of micro SVI.  

Finally, the degree of thermal non-equilibrium was found to be very high in the micro SVI in 

comparison with the macro SVI, and consequently the non-equilibrium parameter is much more 

effective in describing the essential features in the micro SVI. 

TABLE I. Simulation cases for flow pattern and vortex deformation (nitrogen). 

Cases Shock Mach (Ms) Vortex Mach (Mv) Core radius (r1) 

1 1.5 1.0 8λ 

2 1.5 1.0 12λ 

3 2.5 1.0 8λ 

4 2.5 1.0 12λ 

 

C. Characteristics of micro SVIs in diatomic and polyatomic gases 

1. Vortex deformation through a shock wave 

Vortex deformation by incident shock wave is a basic flow feature of the micro SVI. To analyse 

this physical phenomenon, four cases were selected, as summarized in Table I. These cases were 

chosen to demonstrate the effects of shock wave strength and vortex size on the interaction, and they 

may be considered as representative of the micro SVI. The first two cases involve a relatively weak 

shock wave, a vortex  1.5, 1.0s vM M  , and different vortex sizes 
1 8 , 12 .r    In contrast, the 

last two cases involve a strong shock wave, a vortex  2.5, 1.0s vM M  , and different vortex sizes 

1 8 , 12 .r    Nitrogen gas, a major component of air, was considered as a representative diatomic gas 

for the study of the micro SVI.  
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1(a) =1.5, 8sM r  1
(b) =1.5, 12

s
M r 

1
(c) =2.5, 8

s
M r 

1(d) =2.5, 12sM r 
 

FIG. 16. Vortex deformation in micro SVI: sound pressure contours with =1.0.vM  

 

Figure 16 shows four snapshots of the sound pressure contours generated in the micro SVI with 

different incoming shock Mach numbers and vortex sizes. The positive value of the sound pressure 

denotes the compression region, whereas the negative value denotes the rarefaction region. The results 

show that five regions, two rarefication and three compression regions, are generated after the 

interaction in all cases. These regions are strongly dependent on the strength of the incoming shock 

wave. For example, the first two cases 1 and 2 produce three weak compression regions, while the last 

two cases 3 and 4 produce three strong compression regions, which are located between the two 

rarefaction regions. It can also be observed that stronger compression and rarefaction regions are 

produced at larger vortex sizes. It is interesting to note that the quadrupolar acoustic wave structure, 

which is the prime feature in the macro SVIs, is not found in any case of micro SVI. 
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The results show that vortex deformation produced by an incident shock wave is strongly 

dependent on the strength of the interaction. In this context, the information about the vorticity 

evolution during the interaction may be very helpful. It can be obtained by examining the evolution 

dynamics of the net production and dissipation of vorticity. 

2. Evolution dynamics of micro SVIs  

Figure 17 displays the time evolution of enstrophy and dissipation rate for all cases 1 - 4. A 

substantial attenuation of enstrophy with time is found in all cases, as shown in Fig. 17(a). The results 

show that the first two cases 1 and 2 with a weak shock wave produce an enstrophy pattern that is 

different from the last two cases 3 and 4 which have a strong shock wave. It may be noted that the 

shock wave in cases 1 and 2 starts to interact actively with the vortex around 200 ns and completes 

around 600 ns. Moreover, a monotonic decrease in enstrophy is found throughout the interaction 

process.  
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FIG. 17. Vortex deformation in micro SVI: time evolution of (a) enstrophy and, (b) dissipation rate 

with =1.0.vM  

 

On the other hand, in cases 3 and 4, a brief increase in enstrophy is observed during the interaction 

process (250-400 ns). This difference can also be confirmed in the time evolution of the dissipation 

rate as shown in Fig. 17(b). The dissipation rate in cases 1 and 2 remains relatively constant over time 
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during the entire weak interaction process, whereas the dissipation rate in cases 3 and 4 experiences a 

substantial increase during the strong interaction process.  
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FIG. 18. Vortex deformation in micro SVI: time evolution of  (a) net vorticity, (b) net dilatational 

vorticity, (c) net baroclinic vorticity and, (d) net viscous vorticity with =1.0.vM  

 

The reason behind this gap may be that the viscous stress dominates the flow structure during the 

interaction.
40

 Strong interaction with a high shock Mach number or a large vortex size causes strong 

viscous effects and a large dissipation rate, whereas weak interaction with a low shock Mach number 

or small vortex size yields weak viscous effects and a low dissipation rate. This is one of the major 

features of the micro SVI in diatomic nitrogen gas, and is also in qualitative agreement with the 

conclusion for a monatomic gas.
24
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 The results of the enstrophy and the dissipation rate show that their evolution dynamics are 

strongly dependent on the strength of the interactions. Therefore, in order to obtain a better 

understanding of the physics of the interaction, we conducted a detailed study of the vorticity 

transportation during the interaction.  

Figure 18 illustrates the net vorticity and three components of vorticity transportation for cases 1-4. 

The results show that the net vorticity and all components reach significant values during the 

interaction and diminish shortly after passing the vortex. It can be observed that, during the interaction, 

viscous vorticity generation is the most dominant mechanism, followed by dilatational vorticity and 

baroclinic vorticity generations. In addition, the viscous effects play a more dominant role in the 

interaction for strong shock waves (cases 3 and 4), resulting in a significant increase in the dissipation 

rate, as shown in Fig. 17(b). 

3. Effects of interaction parameters on micro SVIs  

Interaction parameters—the incident shock Mach number, vortex Mach number, and vortex size—

play a critical role in SVI. Therefore, we conducted a detailed investigation of the effects of these 

interaction parameters on micro SVIs. 

a. Effect of incoming shock Mach number 

To demonstrate the effects of the incoming shock Mach number in the micro SVIs, three different 

shock Mach numbers, 1.5, 2.5, and 3.5,
s

M   were selected with the same vortex Mach number 

1.0,vM   and vortex radius 1 10r  . The sound pressure contours for different incoming shock Mach 

numbers are depicted in Fig. 19.  

It can be observed that the high shock Mach number causes a stronger interaction between the 

shock and vortex. A strong interaction in the high shock Mach number case tends to deter the 

diffusion of the expansion wave generated by the vortex. It may be noted that the strength of the 

compression and rarefaction regions varies with the shock Mach number at the same vortex Mach 

number and vortex size. Eventually, the high shock Mach number reduces the size of the vortex 
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region while intensifying the compression and rarefaction regions. Moreover, the high shock Mach 

number tends to break the siege boundary formed by the vortex, as shown in Figs. 19(b) and 19(c).  

(a) =1.5sM (b) =2.5sM (c) =3.5sM  

FIG. 19. Effect of incoming shock Mach number in micro SVI: sound pressure contours with 

11.0, 10 .vM r    
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FIG. 20. Effect of incoming shock Mach number in micro SVI: time evolution of (a) enstrophy and, 

(b) dissipation rate with 11.0, 10 .vM r    

 

The effects of incoming shock waves can be further examined through the evolution dynamics of 

the enstrophy and dissipation rate, which show qualitatively different trends for different shock Mach 

numbers, as shown in Fig. 20. The results show that an enstrophy increase was observed during 

interactions for high shock wave cases 3.5
s

M   and 2.5
s

M  , whereas an enstrophy decrease was 

observed for the low shock wave case 1.5
s

M  .  
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Furthermore, with increasing shock Mach number, the increase in the dissipation rate during 

interaction is enhanced. For example, the increase in the dissipation rate was 1100 Pa m
2
/s for 

3.5,
s

M   while it was reduced to 250 Pa m
2
/s for 2.5.

s
M   

b. Effect of vortex Mach number 

To analyse the effects of the vortex Mach number in micro SVIs, three different vortex Mach 

numbers, 0.6, 0.8, 1.0,vM  were selected with the same shock Mach number 2.5
s

M  and vortex 

radius 1 10r  . It may be observed from Fig. 21 that increasing the vortex Mach number strengthens 

the shock wave-vortex interaction as well as the expanding vortex. Therefore, interaction with a high 

vortex Mach number produces stronger compression and rarefaction regions.  

These vortex Mach number effects can be further analysed using the time evolution of the 

enstrophy and dissipation rate, as summarized in Fig. 22. It can be observed that the enstrophy 

increase is enhanced with increasing vortex Mach number. During the interaction, a considerable 

increase in enstrophy was observed for higher vortex Mach numbers, while a very small enstrophy 

increase was observed for low vortex Mach numbers. In addition, with increasing vortex Mach 

number, the increase in the dissipation rate during the interaction was significantly enhanced. For 

example, the increase was approximately 190 Pa m
2
/s for 0.6vM  , while it increased to a very high  

250 Pa m
2
/s for 1.2vM  . 

(a) =0.6vM (b) =0.8vM (c) =1.0vM  

FIG. 21. Effect of vortex Mach number on micro SVI: sound pressure contours 

with 12.5, 10 .sM r    

 



40 

 

Time (ns)

E
n

s
tr

o
p

h
y

(1
0

6
m

2
s

-1
)

0 200 400 600 800
0

0.5

1

1.5

2

M
v
=0.6

M
v
=0.8

M
v
=1.2

Time (ns)

D
is

s
ip

a
ti

o
n

R
a

te
(1

0
3
P

a
m

2
s

-1
)

0 200 400 600 800
0.1

0.15

0.2

0.25

0.3

M
v
=0.6

M
v
=0.8

M
v
=1.2

(a) (b)
 

FIG. 22. Effect of vortex Mach number on micro SVI: time evolution of (a) enstrophy and, (b) 

dissipation rate with 12.5, 10 .sM r    

 

c. Effect of vortex size 

To investigate the effects of vortex size in micro SVIs, three different cases were 

selected, 1 8 , 12 , 16 ,r    with the same shock Mach number 2.5
s

M  and vortex Mach number 

1.0.vM   It can be seen in Fig. 23 that, with increasing vortex size, the pressure gradient at the core 

of the vortex increased significantly, leading to more distinguishable sound pressure contours. In 

addition, the results confirm that the size of the vortex plays a substantial role in the time evolution of 

the enstrophy and dissipation rate, as illustrated in Fig. 24. It can be observed that the increase in 

enstrophy is enhanced with increasing vortex size during the interaction. Therefore, a substantial 

enstrophy increase was observed in the large vortex 
1 1( 12  and 16 ),r r   while a negligible 

enstrophy increase was observed in a small vortex 
1( 8 ).r   Moreover, the increase in the dissipation 

rate during the interaction was enhanced with increasing vortex size. For example, the increase was 

found to be 200 Pa m
2
/s for 

1 8 ,r   while it increased to 280 Pa m
2
/s for 

1 16 .r   
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1(a) =8r  1(b) =12r  1(c) =16r   

FIG. 23. Effect of vortex size on micro SVI: sound pressure contours with 2.5, 1.0.s vM M   
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FIG. 24. Effect of vortex size on micro SVI: time evolution of (a) enstrophy and, (b) dissipation rate 

with 2.5, 1.0.s vM M   

 

4. Comparison of first- and second-order constitutive models in the SVI problem 

Figures 25-26 illustrate a comparison between the first- and second-order constitutive models for 

diatomic (nitrogen) gas in a micro SVI. For this purpose, we selected three different incoming shock 

Mach numbers: 1.5, 2.5, 3.5
s

M  with the same vortex Mach number 1.0vM   and the vortex radius 

1 10r  . Figure 25 shows that the flow field structures (sound pressure contours) in the first- and 

second-order constitutive models are non-negligibly different, in particular, for high shock Mach 

numbers. It may be noted that the second-order constitutive model produces in general stronger 
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compression and rarefaction regions than the first-order constitutive model. The similar pattern was 

found in the time evolution of the enstrophy and dissipation rates shown in Fig. 26. It was observed 

that the time evolution of the enstrophy and dissipation rates in the first- and second-order constitutive 

models were also considerably different, especially for high shock Mach numbers as shown in Fig. 26. 

While a notable difference was found in the enstrophy (the second-order constitutive model producing 

a higher enstrophy), the difference was much more pronounced in the dissipation rate. At a high shock 

Mach number 3.5,
s

M  the increase in the dissipation rate was 2600 Pa m
2
/s in the first-order 

constitutive model, while the increase was drastically reduced to 1200 Pa m
2
/s in the second-order 

constitutive model, as shown in Fig. 27(b). At a low shock Mach number 1.5,
s

M   the increase was 

found to be 100 Pa m
2
/s in the first-order constitutive model, while it became negligible in the second-

order constitutive model. 

(a) =1.5sM (b) =2.5sM (c) =3.5sM  

FIG. 25. Comparison of  first-order (upper) and second-order (bottom) constitutive models for 

diatomic (nitrogen) gas on micro SVI: sound pressure contours with different incoming shock Mach 

number and 11.0, 10 .vM r    
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FIG. 26. Comparison of first-order and second-order constitutive models for diatomic (nitrogen) gas 

on micro SVI: time evolution of  (a) enstrophy and, (b) dissipation rate with 11.0, 10 .vM r    

Figure 27 illustrate a comparison between the first-order constitutive models (standard Navier-

Stokes-Fourier and Navier-Fourier without Stokes’s hypothesis) and second-order constitutive model 

for a polyatomic (methane) gas on micro SVI with 12.0, 0.8, 10 .s vM M r     It can be observed 

that the first-order model predicts in general higher degree of thermal non-equilibrium in comparison 

with the second-order model. It can be also noted that there is a non-negligible difference between the 

standard Navier-Stokes-Fourier and Navier-Fourier without Stokes’s hypothesis models. 

Navier-Stokes-Fourier ( =0)bf Navier-Fourier ( =1.33)bf Second-order model ( =1.33)bf  

FIG. 27. Comparison of the classical first-order Navier-Stokes-Fourier, first-order Navier-Fourier and 

second-order models for polyatomic (methane) gas on micro SVI: degree of non-equilibrium contours 

with 12.0, 0.8, 10s vM M r    . 
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5. Summary of characteristics of the micro SVI 

The general flow field in a micro SVI, including vortex deformation and the compression and 

rarefaction regions, is highly dependent of the strength of the incoming shock wave and vortex, and 

the size of vortex. During the interaction, the viscous vorticity generation was found to be the most 

dominant factor in the net vorticity transportation process, followed by the generation of dilatational 

vorticity and baroclinic vorticity. 

For strong interactions with a high shock Mach number or large vortex size, a significant increase 

in the dissipation rate was observed due to the generation of viscous vorticity, resulting in an increase 

in enstrophy. For weak interactions with low shock Mach number or small vortex size, where the 

viscous vorticity generation remains negligible, a small increase in the dissipation rate was observed, 

causing a reduction in enstrophy throughout the interaction process.  

The study of the effects of the interaction parameters confirmed that the shock Mach number, the 

vortex Mach number and the vortex size determine the strength of the interaction and the change in 

dissipation rate during the interaction. For example, the enstrophy increase or decrease depends on 

these parameters; it increases with increasing shock and vortex Mach numbers and vortex size. 

Further, there is a momentary rise in the evolution of enstrophy in such cases.  

Finally, the first- and second-order constitutive models yielded a significant difference in the time 

evolution of enstrophy and dissipation rate in the micro SVI, especially for high shock Mach numbers. 

D. Physics of SVPI in diatomic and polyatomic gases 

In this subsection, we present the computational results of the shock-vortex pair interaction (SVPI) 

for diatomic and polyatomic gases. A clockwise-rotating vortex pair parallel to the incident shock 

wave was considered. 

1. Effects of diatomic and polyatomic gases on macro and micro SVPIs 

As was done with the SVI, we investigated the effects of diatomic and polyatomic gases on macro 

and micro SVPIs. We considered two types of SVPI problem: the macro 

( 2.0,sM  10.8, 1000vM r   ) and micro ( 12.0, 0.8, 10s vM M r    ) cases. Figure 28 displays 

the vorticity contours of the macro and micro SVPIs at time t=1000 ns for three different gases. In the 
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figure, triple points are denoted by (T1, T1’ and T2, T2’); reflected shock waves are denoted by (MR1, 

MR1’; MR2, MR2’; and MR3, MR3’) and slip lines are denoted by (SL1, SL1’; and SL2, SL2’). 

Since the vortices are very strong, the coupling effect of the vortex pair becomes significant.  

(a) Argon gas, 0.0bf  (b) Nitrogen gas, 0.8bf  (c) Methane gas, 1.33bf   

FIG. 28. Effects of diatomic and polyatomic gases on macro SVPI with  2.0, 0.8,s vM M   

1 1000r  (top) and micro SVPI with 12.0, 0.8, 10s vM M r     (bottom): vorticity contours at 

1000ns.t   

 

The evolution of the coupling process results in an interaction-bridge between the vortices (SV). It 

interacts with the vortex pair before the incident shock waves reaches the vortex pair. It may be noted 

that the intensity of the interaction-bridge at 0bf   is very small (see Fig. 28(a)). With increasing 
bf  

value, this intensity increases, as seen in Fig. 28(b) and 28(c). It is also observed that, at 0,bf   the 

inner core of the vortex pair with negative vorticity is severely stretched and the outer annular region 

with positive vorticity begins to detach itself from the inner core (see Fig. 28(a)). This stretching is 

more pronounced for larger 
bf  values.  



46 

 

The inner core and the outer annular region are stretched even more for 0.8bf   (see Fig. 28(b)) 

and two different structures seem to emerge after interaction at 1.33bf   (see Fig. 28(c)).  On the 

other hand, the vortex in the micro SVPI remains circular in shape without dramatic stretching in the 

macro SVPI, and is squeezed in the longitudinal direction, very similar to the micro SVI (compare 

with Fig. 12). 

 

1(a) =1.5, 8sM r  1
(b) =1.5, 12

s
M r 

1
(c) =2.5, 8

s
M r 

1(d) =2.5, 12sM r   
FIG. 29. Vortex deformation in micro SVPI: sound pressure contours with =1.0.vM  

 

2. Characteristics of the micro SVPI in diatomic and polyatomic gases 

To investigate the flow characteristics of micro SVPIs with regard to the shock strength and vortex 

size, we considered four cases ( 1.5sM   with 1 8 and 12 ,r   and 2.5sM   with 1 8 and 12r   ) 

with the same vortex Mach number 1.0.vM   Again, nitrogen gas was considered as the 

representative diatomic gas for the study of micro SVPIs.  
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Figure 29 illustrates four snapshots of sound pressure contours generated by the micro SVPI with 

different incoming shock Mach numbers and vortex sizes. The results show that the number and 

strength of the compression and rarefaction regions increases as the Mach number of the incoming 

shock wave increases. As was observed with the micro SVI, no quadrupolar acoustic wave structure 

was found for any case of micro SVPI. Moreover, a substantial attenuation of enstrophy in time was 

found in all cases, as shown in Fig. 30(a). In the 1.5sM  case, the dissipation rate remained constant 

over time during the entire interaction, whereas an increase in the dissipation rate was found during 

active interaction in the 2.5sM   case, as shown in Fig. 30(b). 
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FIG. 30. Vortex deformation in micro SVPI: time evolution of (a) enstrophy and, (b) dissipation rate 

with =1.0.vM  

 

V. CONCLUDING REMARKS 

This study focused on an investigation of the non-equilibrium effects in diatomic and polyatomic 

gases experienced by an initially planar shock wave as it interacts with a single vortex (SVI) or vortex 

pair (SVPI). For this purpose, the first-order NSF and NF (without the Stokes’s hypothesis) and 

second-order Boltzmann-Curtiss-based constitutive models for diatomic and polyatomic gases were 

solved in conjunction with the physical conservation laws. The computational models were validated 

by previous experimental, theoretical and computational results for both macro and micro SVIs. 
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The results showed that the rotational mode, and in particular, the bulk viscosity, play a critical 

role in diatomic and polyatomic gases away from equilibrium. The non-equilibrium effects resulted in 

a substantial change in flow fields in both the macro and micro SVIs.  

In particular, some interesting physical features were observed in the diatomic and polyatomic 

gases; for example, the generation of a third sound wave and additional reflected shock waves with 

strong and large expansion. The dominance of generated viscous vorticity and a significant increase in 

enstrophy with increasing bulk viscosity was also observed in the diatomic and polyatomic gases.  

Further, a detailed comparative study of macro and micro SVIs was conducted for sound pressure, 

vorticity and degree of non-equilibrium, the evolution of enstrophy and dissipation rate, and vorticity 

generation. The computational results showed that the macro and micro SVIs have distinct flow field 

features and sound generation mechanisms. It is interesting to note that the quadrupolar acoustic wave 

structure, which was typical in the macro SVI, is no longer observed in any case of micro SVI. Also, 

while vorticity and degree of non-equilibrium can both describe essential features in the macro SVI, 

the non-equilibrium parameter was found to be much more effective than vorticity in the micro SVI. 

The physics of the micro SVI in diatomic and polyatomic gases was studied primarily through the 

vortex deformation and evolution dynamics in enstrophy and dissipation rate over an incident shock 

wave. The results revealed that the general flow field in a micro SVI is highly dependent on the 

strength of the incoming shock wave and vortex, and the size of the vortex. It was also observed that, 

during the interaction, the generation of viscous vorticity—particularly in the diatomic and 

polyatomic gases—remains the most dominant factor in the net vorticity transportation process, 

followed by the generation of dilatational vorticity and baroclinic vorticity. In addition, it was found 

that the first- and second-order constitutive models yielded a significant difference in the time 

evolution of the enstrophy and dissipation rates in the micro SVI, especially for high shock Mach 

numbers. 

The main goal of the present study was to investigate the interaction of two important non-

equilibrium phenomena in diatomic and polyatomic gases―the compression dominated shock wave 

and the velocity-shear dominated vortex―using the fundamental microscopic Boltzmann-Curtiss 

kinetic theory. Since a similar problem arises in turbulent flows interacting with shock waves, the 
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current methodology based on the high-order discontinuous Galerkin method may be extended to the 

computational simulation of shock-turbulence interactions in future investigations. 
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