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  - angle of attack 

  - side-slip angle 

  - specific heat ratio 

  - first coefficient of dynamic (shear) viscosity  

bulk  - coefficient of bulk viscosity  

  - second coefficient of viscosity  

  - heat conduction coefficient  

  - vector of auxiliary variable 

h  - approximated auxiliary variable solution 

,L R

h h    approximated auxiliary solution for left and right state 

, ,    - reference coordinates 
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mean  - mean free path  
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internal  - specific internal energy per unit mass 

potential  - specific potential energy per unit mass 
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 n
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c  - calortropy production 

Normalized  - normalized factor 
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  - bounded domain of the body 

h  - approximated domain 
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k  - space of polynomial functions of degree at most k 
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st
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xJ 
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,
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ˆ ˆ ˆ, ,x y z

vis vis vis    - viscous  spectral radii 
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GLLKn  - gradient length local based Knudsen number 

N  - composite number 

maxB  - Bird’s breakdown parameter 

maxKn  - Boyd’s breakdown parameter 

M - Mach number 

Re - Reynolds number 

Pr - Prandtl number 

Ec - Eckert number 

n - normal vector 
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v - particle velocity 

u - bulk velocity vector 

u, v, w - Cartesian components of velocity vector 
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J - Jacobian matrix 

n - number density (molecule per unit volume) 

d - molecular diameter 

T - overall temperature 

wT  - wall temperature 

p - pressure 

P  - mean pressure 

BK  - Boltzmann constant 

AN  - Avogadro number 

gasR  - gas constant 

ijmnC  - fourth-order viscosity coefficient tensor 

bulkf  - ratio of bulk viscosity to shear viscosity 

m - molecular mass 

totalE  - total energy 

kineicE  - kinetic energy 

internalE  - internal energy 

potentialE  - potential energy 

viberationalE  - vibrational energy 

I - moment of inertia 

j, j - angular momentum, magnitude of angular momentum 

pC   - specific heat at constant pressure 

vC  - specific heat at constant volume 

s - viscosity index number 

C - peculiar velocity 

ˆ, ,totalH h h  - total enthalpy, specific enthalpy, enthalpy density 

P - pressure tensor 

Q - heat flux vector 

, ,x y zQ Q Q  - heat flux components 

, ,x y zT T T  - temperature components 

I - unit tensor 
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rotE  - average rotational energy density 

 , ,f tv r  - single particle distribution 

 0 , ,f tv r  - equilibrium distribution function 

cf  - nonequilibrium canonical distribution function 
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 n
h  - molecular expression for moments 

 n
  - kinematic term arising from hydrodynamic streaming effect 

1stq  - first-order dissipation term  

2ndq  - second-order dissipation term 

1k  - first cumulant expansion 

R̂  - Rayleigh-Onsager dissipation function 

S  - face vector 

, ,x y zS S S  - components of face vector 

ˆ ˆ ˆ, ,  x y zS S S    - Projections of the control volume 
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hU  - approximated solution of conservative variables 

BCU  - boundary state variable 

,L R

h hU U  - approximate solution for left and right states 

inv
F  - inviscid flux function 

vis
F  - viscous flux function 

EN  - number of elements 

FN  - number of faces 

kN  - number of basis functions 
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, b

auxiliary auxiliaryH H  - numerical auxiliary flux, numerical boundary auxiliary flux  

, b

inviscid inviscidH H  - numerical inviscid flux, numerical boundary inviscid flux  

, b

viscous viscousH H  - numerical viscous flux, numerical boundary viscous flux  

M - mass matrix 
1

M  - inverse of mass matrix 
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Abbreviation  

DG - Discontinuous Galerkin 

FD - Finite difference 
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SD - Spectral difference 

SV - Spectral volume 

CFL - Courant–Friedrichs-Lewy number 

RK - Runge-Kutta 

RKDG  Runge-Kutta discontinuous Galerkin 

TVB - Total variation bounded 

TVD - Total variation diminishing 

BR1 - First Bassi-Rebay scheme 

BR2 - Second Bassi-Rebay scheme 

DOF - Degree of freedom 

LDG - Local discontinuous Galerkin 

MPI - Message passage interface 

SPMD - Single program multiple data 

NSF - Navier-Strokes-Fourier 
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NF - Navier-Fourier 

NCCR - Nonlinear coupled constitutive relations 
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Abstract 

 

Development of a 3D discontinuous Galerkin method for the second-order 

Boltzmann-Curtiss based hydrodynamic models of diatomic  

and polyatomic gases 

                                                           

                                                         Satyvir Singh 

                                                         Department of Mechanical and Aerospace Engineering 

                                                        Graduate School, Gyeongsang National University 

                                                        Supervised by Prof. Rho Shin Myong 

 

 

It is well known that in conventional approach, description of diatomic and polyatomic 

gases is basically the same as the monatomic gas; that is, it is based on the physical laws of 

conservation (mass, momentum, and energy), with the modified ratio of specific heats, and in 

conjunction with the first-order constitutive laws, the two-century-old so-called Navier-

Stokes-Fourier equation based on a critical assumption made by Stokes in 1845 that the bulk 

viscosity vanishes. While the Stokes’s hypothesis is certainly legitimate in the case of 

monatomic gases like argon, there is ever increasing evidence that now indicates that this is 

not the case for non-monatomic gases—like nitrogen (or air) and carbon dioxide—that are far 

from local thermal equilibrium. Therefore, the study of thermal non-equilibrium effects of 

diatomic and polyatomic gas flow is extremely important. 

The general interest of the present study is to explore the suitable and proper master kinetic 

equations for describing diatomic and polyatomic gases and to develop computational methods 

to solve these kinetic equations. First, on the basis of Eu’s generalized hydrodynamics and 

Myong’s balanced closure, the second-order constitutive laws are derived from the Boltzmann-

Curtiss kinetic equation for diatomic (and linear polyatomic) molecules. Then the topology of 
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the second-order nonlinear coupled constitutive relations in phase space is investigated for 

elementary flow situations like compression, expansion, and velocity shear. Lastly, a 

theoretical and computational attempt is made to highlight the rotational non-equilibrium 

effects in polyatomic gases by investigating the strong interaction of two important non-

equilibrium phenomena in polyatomic gases –compressive shock structure and velocity-shear 

of the vortex—using the second-order constitutive laws. 

In this study, discontinuous Galerkin (DG) methods were first employed for solving the 

Euler system in order to obtain the solution of the one- and two-dimensional Riemann 

problems. The basic structure of this hyperbolic system, such as contact discontinuity, shock 

wave, and rarefaction wave, were studied numerically. Although modern DG method has been 

successfully applied for solving the Euler equation, the validity of the Euler equation is 

restricted to an equilibrium state, and it is not valid for non-equilibrium flows.  

In order to investigate non-equilibrium gas flows, a new set of DG methods based on mixed 

DG-framework is developed for solving the first-order Navier-Fourier and second-order 

Boltzmann-Curtiss based equations. The final judgment on the accuracy of the computational 

models is obtained through a rigorous study of verification and validation. The first-order and 

second-order Boltzmann-Curtiss based models are compared with the solution of DSMC and 

experiments by considering various problems. DG methods are comprehensively verified and 

validated for steady-state and unsteady transient flow problems as well as smooth and stiff 

solutions of the conservation laws. The analytical solutions of first-order and second-order 

Boltzmann-Curtiss based model in the shock wave structure are considered as a verification 

study on conservative, primitive and non-conservative variables. A self-contained summary of 

numerical implementation of various limiters, numerical flux functions, and boundary 

conditions is provided for the pedagogical purpose.  
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Also, the three-dimensional Maxwell velocity slip and Smoluchowski temperature jump 

boundary conditions are provided for arbitrary geometries. Efficient numerical methods for 

solving non-linear implicit algebraic equations arising from the second-order Boltzmann-

Curtiss based constitutive relations are described, and the solutions of the constitutive relations 

are analyzed in detail. 

The computational cost of the first-order Navier-Fourier and second-order Boltzmann-

Curtiss based solvers is investigated in the serial and parallel frameworks. It was shown that 

the computational cost of the second-order Boltzmann-Curtiss based solver behaves 

nonlinearly concerning the number of elements, due to the dependence of the number of 

iterations of the second-order Boltzmann-Curtiss based solver on the flow structure and the 

degree of thermal non-equilibrium. Finally, a super-parallel performance of a mixed explicit 

discontinuous Galerkin method was reported for the second-order Boltzmann-Curtiss based 

nonlinear coupled constitutive models of rarefied and microscale gases. 
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Abstract in Korean 

 

Boltzmann – Curtiss 기반의 이원자 · 다원자 기체에 관한 2차 정확도 

유체역학 모델을 위한 3D 불연속 Galerkin 기법 개발 

                                                          

                                                                                 사티비르 싱 

                                                                                 경상대학교 공과대학 

                                                                                 기계항공공학부 항공우주공학 전공 

                                                                                 지도교수: 명 노 신  

 

기존의 이원자 및 다원자 기체에 관한 접근 방식은 단일원자 기체와 기본적으로 

동일한 것으로 알려져 왔다. 즉, 비열비가 수정된 보존(질량, 운동량, 에너지) 물리 

법칙에 기초하고 있으며, 1 차 정확도 구성 법칙과 함께 Bulk 점성을 무시하는 Stokes 

가정에 근거하여 2 세기 전(1845 년)에 유도된 이른바 Navier-Stokes-Fourier (NSF) 식을 

그 근간으로 한다. Stokes 가정은 아르곤과 같은 단일원자 기체의 경우는 확실히 

정당화되지만. 국소 열 평형과 거리가 먼 비단일원자 기체 (질소, 또는 공기, 

이산화탄소)에는 그렇지 않다. 따라서 이원자와 다원자 기체 흐름의 열 비평형 효과에 

대한 연구는 매우 중요하다. 

본 연구에서는 이원자와 다원자 기체를 설명하는 적절한 마스터 운동 방정식을 

연구하고 이에 기초한 수학적 지배 방정식에 관한 전산기법을 개발하는 것이다. 첫째, 

Generalized Hydrodynamics 와 Balanced Closure 이론을 기반으로 이원자 및 선형 다 원자 

기체에 관한 2 차 정확도 구성 법칙을 Boltzmann-Curtiss 운동 방정식으로부터 유도한다. 

위상 공간에서의 비선형 결합 구성 관계식에 관한 Topology 를 압축, 팽창 및 속도 
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전단류와 같은 기본 흐름의 경우에 대해 분석한다. 다음으로 다원자 기체의 회전 비평 

형 효과를 강조하기 위해 다원자 기체의 중요한 두 가지 비평형 현상(충격파 내부 

구조와 와류 내부의 속도 전단) 사이의 강한 상호 작용을 이론 및 전산계산을 통해 

분석한다. 

또한 본 연구에서는 먼저 1 차원과 2 차원의 Riemann 문제 해를 구하기 위해 Euler 

시스템에 불연속 Galerkin (DG) 법을 적용하였다. 이 쌍곡선 시스템의 기본 구조 (접촉면, 

불연속 충격파, 팽창파)를 수치적으로 연구하였다. 최신 DG 기법은 Euler 방정식을 푸는 

데 성공했지만, Euler 방정식의 타당성은 평형 상태에 한정되므로 비평형 유동에는 

유효하지 않다. 

비평형 기체 유동을 분석하기 위해 1 차 NF 와 2 차 Boltzmann-Curtiss 방정식을 풀기 

위한 Mixed 기법 기반의 새로운 DG 기법을 개발하였다. 계산 모델의 정확도에 관한 

최종 결정은 검증의 엄격한 검토를 통해 얻을 수 있다. 1 차 및 2 차 Boltzmann-Curtiss 

모델을 다양한 문제에 적용한 다음 DSMC 의 계산과 실험 결과와 비교하였다. DG 법을 

정상 상태 및 비정상 상태의 천이 유동 문제, 보존법칙의 Smooth 및 Stiff 문제를 대해 

검증하였다. 보존적, 비보수적인 변수의 검증 연구를 위해 충격파 구조에 대한 1 차 및 2 

차 Boltzmann-Curtiss 모델의 해석 해를 고려하였다. 다양한 Limiter, 수치 Flux 함수, 경계 

조건의 수치 구현 기법을 요약하였다. 

또한 임의의 기하학적 형상에 적용이 가능한 삼차원 Maxwell 미끄럼 및 

Smoluchowski 온도 점프 경계 조건을 개발하였다. 2 차 Boltzmann-Curtiss 모델에 기초한 

구성 관계식에서 나타나는 비선형 음함수 형태의 대수 방정식을 효율적인 계산하는 

방법을 기술하였다. 
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1 차 NF 와 2 차 Boltzmann-Curtiss 기반 Solver 의 계산 비용을 직렬 및 병렬 컴퓨터 

시스템에 대해 분석하였다. 2 차 Boltzmann-Curtiss 기반 Solver 는 반복 수치기법에서 

나타나는 반복 횟수가 유동 특성과 열적 비평형도에 따라 달라지기 때문에 계산 격자 

수에 대해 비선형 거동을 나타내었다. 결론적으로 희박 및 마이크로 스케일 기체에 관한 

2 차 정확도 Boltzmann-Curtiss 모델 기반의 비선형 결합 구성 관계식에 대해 불연속 

Galerkin 코드는 초 병렬 특성을 보여주었다. 
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Chapter 1. Introduction  

 

"Thinking should become your capital asset, no matter whatever ups and downs you come 

across in your life."                                                           

                                                                                         - A.P.J Abdul Kalam (1931-2015)  

 

 

1.1 Objective 

When the flow deviates from equilibrium state, the classical continuum description of 

fluid may not provide accurate information about the flow. Hence, application of kinetic 

theory, Boltzmann-Curtiss kinetic equation, or methods based on simplified kinetic theory 

are necessary to describe the flow with an acceptable level of accuracy. This work is 

motivated to elaborate the diatomic and polyatomic gas flows at equilibrium and far-from-

equilibrium states using classical and non-classical constitutive relations derived from the 

Boltzmann-Curtiss equation kinetic, so-called Boltzmann-Curtiss based models. The 

Boltzmann-Curtiss based models considered in the present study are derived from Eu’s 

hydrodynamics equations [1-6]. The resulting highly non-linear partial differential 

equations are solved using advanced mathematical and computational methods. 

Along with the aforementioned objective, an attempt is made to describe the 

computational schemes used for solving Boltzmann-Curtiss based models at a deep level. 

Accordingly, detailed information on the development of a modal DG method for one-, 

two-, and three- dimensional systems and application of various boundary conditions are 

provided. As the DG method is still under development and most of the available books on 

this topic focus on the mathematical aspect, I aim to provide a self-contained material with 

a comprehensive explanation on both numerical and mathematical aspects of the DG 

methods to help researchers in the development of advanced high-order numerical schemes. 
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1.2 Contents of the thesis  

This thesis is organized into following chapters. In Chapter 1, the objective of the 

present thesis and its contents are presented. Chapter 2 covers the fundamental of the 

kinetic theory including the classification of flow regimes, bulk viscosity with its 

applications, definition of microscopic and macroscopic properties based on density 

distribution, description of Boltzmann kinetic equation as well Boltzmann-Curtiss kinetic 

equation and Direct Simulation Monte Carlo (DSMC) method. In Chapter 3, derivation of 

Boltzmann-Curtiss based constitutive models, numerical methods for solving algebraic 

constitutive relations, and the description of the physical phenomena of the Boltzmann-

Curtiss constitutive models are delivered.  

In Chapter 4, development of the modal discontinuous Galerkin methods for one-

dimensional, two-dimensional, and three-dimensional systems is presented. A summary of 

available high-order CFD methods and categories of spectral methods is reviewed. Later, 

the efficient discretization of a problem in space and time based on discontinuous Galerkin 

formulation is discussed in detailed. Also, a detailed explanation of the discretization of 

inviscid and viscous flux functions, implementation of various boundary conditions as well 

as positivity preserving and Berth Jespersen limiters are provided.  

In Chapter 5, solutions of zero- and first-order Boltzmann-Curtiss based hydrodynamic 

models for multi-dimensional problems are provided using a modal DG method. Various 

benchmark problems are solved, and their numerical results are compared with experiment, 

exact and other numerical solutions. In Chapter 6, the modal DG Solver is employed for 

solving the second-order Boltzmann-Curtiss based hydrodynamics model for one-

dimensional and two-dimensional rarefied and microscale gas flow problems. And, the 

numerical results are compared with exact, experimental and DSMC method. Chapter 7 

deals with the solution of the second-order Boltzmann-Curtiss based hydrodynamic model 
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for three-dimensional flow problems, and results are compared with experimental data. 

Chapter 8 provides detailed information on parallelization of DG solvers using single program 

multi data (SPMD) parallel programming methods. The computational costs of both solvers 

using serial and parallel solvers based on Boltzmann-Curtiss models are discussed. Finally, 

Chapter 9 summarizes all the important findings from the present research work and proposes 

an outlook on further research works. The basics of vector and tensor theory, derivation of 

conservation laws and constitutive equations, three-dimensional form of second-order 

Boltzmann-Curtiss based constitutive equations, quadrature rule for numerical integration, a 

flow chart of developed in-house 3D-DG solver and basics of aerodynamics theory are 

provided in appendices, followed by a list of references. 
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Chapter 2. Basics of gas kinetic theory 

       

"Imagination is more important than knowledge."        

                                                                                              - Albert Einstein (1879-1955)  

 

In this chapter, we first review the elementary gas kinetic theory of monatomic, 

diatomic and polyatomic (linear) gases and introduce the nonequilibrium phenomena and 

bulk viscosity. Then, we shall discuss the classical Boltzmann-Curtiss kinetic equation, 

which is the fundamental governing equation for processes in dilute gases. We will also 

discuss one of its direct consequences and standard method — the direct simulation Monte 

Carlo (DSMC) method. Also, we shall deal with the moments of Boltzmann-Curtiss kinetic 

equation.  

2.1 Gas flow regimes classification 

2.1.1 Flow regimes based on Knudsen number 

   The study of nonequilibrium gases has been treated as a fundamental and challenging 

research topic in last few decades. The flow of gases at high altitudes, in porous media, in 

microscale thermo-fluidic devices, in vacuum technology and microelectromechanical 

systems (MEMS) are of great importance due to their tremendous technological and 

scientific applications [7, 8],  thereby requires a very good understanding of gases in non-

equilibrium conditions. The major indicators of nonequilibrium in above cases are high 

Mach and high Knudsen numbers. Mach number (M) can be defined as the ratio of fluid 

flow speed and sound speed. The deviation of gases from its local equilibrium state can be 

characterized by Knudsen number (Kn) which is usually measured the degree of rarefaction 

[9, 10]. Typically it is defined as the ratio of the particle molecular mean free path ,mean
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the average distance that a gas particle travels between successive collision,  to the 

characteristic length scale of flow L,  

.mean
mean

L


   

(2.1) 

Generally, the value of Knudsen number is served as the primary parameter to determine 

the degree of rarefaction and the degree of validity of Boltzmann-based models. Figure 2-1 

predicts the classification of gas flow regimes based on the value of the Knudsen number. 

 

Figure 2-1. Flow regime classification based on Knudsen number. 

Normally, the gas flow regime is characterized as continuum or hydrodynamics flow 

regime 3(for 10 ),Kn   slip flow regime 3 1(for10 10 ),Kn   transition flow regime 

1(for10 10),Kn   and free molecular regime (for 10)Kn  [11]. However, this 

classification has been used widely in gas dynamics community. It may not be suitable for 

categorizing gas flow regimes in natural form. Also, there is a requirement of at least two 

parameters for describing a gas flow in continuum fluid dynamics [12]. Therefore, the flow 

may be classified based on Reynolds number as well the flow velocity. In order to elaborate 

the gas flows in all flow regimes from equilibrium to highly non-equilibrium states, it may 

be re-categorized the flow regimes based on the level of deviation from the equilibrium 

state.  

2.1.2 Flow regimes based on Tsien’s parameter 

 In 1946, Tsien [13] suggested a Knudsen number based not on a typical body dimension 

L but the thickness  of the boundary layer on the body. Thus  

0

0

Kn

L







 0

Kn

L







Hydrodynamic

regime

Slip

regime

Transition

regime

Free Molecular

regime310 110 10
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.Kn



  

(2.2) 

For a flat plate flow whose length L, the boundary layer thickness is related with Reynolds 

number ReL  defined as 

,Re ,Re Re.
Re

L

L L


  


 
   

u u
 

(2.3) 

 Here,  is the gas density, u is the bulk flow velocity, and  is the viscosity coefficient. 

Thus, the Knudsen number Kn  based on the thickness   can be represented regarding 

freestream Mach (M) and Reynolds (Re) numbers: 

.
Re Re

M M
Kn






    

(2.4) 

 

Figure 2-2. Flow regime classification based on Tsien’s parameter. 

The non-dimensional parameter ReM  may be referred as Tsien’s parameter. The flow 

regime classification based on Tsien’s parameter is illustrated in Figure 2-2. The larger 

value of Tsien’s parameter indicates a higher degree of rarefaction and a larger distance 

from an equilibrium state as shown in Figure 2-2. The flow regime classification based on 

Tsien’s parameter may be characterized as continuum flow regime for Re 0.01,M  slip 
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flow regime for 0.01 Re 1,M  rarefied flow regime for 1 Re 10,M  and free-

molecular flow regime for Re 10.M   Tsien’s parameter reduces to the ordinary 

Knudsen number defined in Eq. (2.1) for free-molecular flow. 

2.1.3 Estimation of mean free path 

According to gas kinetic theory, the gas molecules move in a vessel with large velocities 

even at room temperature. These molecules are considered as particles having finite and 

small size. As a result, the molecules moving in the space of vessel containing it collide 

with each other. The collision between these molecules of a matter is known as a molecular 

collision. However, collisions are supposed to be elastic.  

The gas molecules are constantly moving in all directions at various speeds. They 

frequently collide with each other. Therefore, their speeds and directions change. Since 

these molecules exert no force upon one another except at collision, they move in straight 

lines with constant speed between two successive collisions. So, the path of a single 

molecule is a series of short zig-zag paths of different lengths. These are called the free 

paths of the molecule, and their mean is called mean free path. Hence, the mean free path 

mean is the average distance travelled by a molecule between two successive collisions with 

other molecules.  

For an ideal gas, the mean free path mean  is a function of number density n (molecules 

per unit volume), and the size of molecules d (d being the diameter of the molecule):  

2

1
.

2
mean

n d



  

(2.5) 

The relationship between pressure p, temperature T, and the number density n is defined as  

,Bp nK T  (2.6) 
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where BK  is the Boltzmann constant which is ratio of gas constant gasR  and Avogadro 

number AN  i.e. 

A

.
gas

B

R
K

N
  

(2.7) 

Using the relations (2.6) and (2.7), the mean free path can be represented as 

2
.

2

B
mean

K T

d p



  

(2.8) 

2.2 Thermal nonequilibrium phenomena and bulk viscosity  

2.2.1 Thermal nonequilibrium phenomena  

A gas particle can have various energy modes, including translational, rotational and 

vibrational modes. A translational mode is described by the random motion of gas particles. 

In addition to a translational mode, diatomic and polyatomic gas particles can also possess 

an internal mode, due to the rotation of atoms around an axis, as well as the vibration of 

atoms along an inter-nuclear axis. The internal modes of diatomic and polyatomic gases—

the rotational and vibrational modes―are closely related to thermal non-equilibrium.  

The rotational energy is easily excited at room temperature and ubiquitous across whole 

flow conditions. However, in many gas flow problems, the rotational non-equilibrium 

effect can be neglected because the relaxation time of rotational energy is extremely short 

and the equilibrium of rotational mode is usually easy to reach. In the other word, the 

rotational non-equilibrium effect become important when the flow problem is relevant to 

small time scale which is comparable to the relaxation time of rotational energy. The effect 

of vibrational non-equilibrium becomes relevant only in gas flows where the temperature 

is greater than the vibrational excitation temperature; for example, 1000°K. For this reason, 

in the study of diatomic and polyatomic gases, the excitation of vibrational degrees of 

freedom is usually neglected. 
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The rotational non-equilibrium effect can be simply accounted for by introducing the 

excess normal stress associated with bulk viscosity.  The so-called bulk viscosity has a long 

history, not only in compressible gas dynamics, but also in fluid dynamics in general. For 

example, the two-century old Navier-Stokes-Fourier equation (called NSF hereafter) is 

considered to be the de facto mathematical equation for every possible flow problem, 

including compressible gas dynamics. The NSF theory is built upon a critical assumption 

of the constitutive equations, introduced by Stokes [14] in 1845, that the bulk viscosity 

vanishes, 

2 2
0,  equivalently .

3 3
bulk          

(2.9) 

Here ,  and bulk    represent the bulk viscosity, the second coefficient of viscosity and 

the shear viscosity of the fluid, respectively. The Stokes’s hypothesis, mathematically 

expressed as (2.9), assumes that the dilatational term ( )u  plays no role in the level of 

the constitutive equation of viscous stress, even though it may play a significant role in the 

level of conservation laws in general, like compressible gas flows.   

Further, the origin of bulk viscosity is often attributed to pure phenomenological 

observation, such as interpreting it as the dissipation mechanism during a change in volume 

at a finite rate, rather than resorting to a fundamental microscopic kinetic theory. 

While the Stokes’s hypothesis is certainly legitimate in the case of monatomic gases 

like argon, there is ever increasing evidence that now indicates that this is not the case for 

non-monatomic gases [15-17] —like nitrogen (or air), methane, and carbon dioxide—that 

are far from local thermal equilibrium. Examples of such cases include the inner structure 

of strong shock waves, hypersonic entry into the Mars atmosphere, which consists mostly 

of carbon dioxide, the effects of bulk viscosity on the stability of the early universe, and 

the bulk viscosity of suspensions [18-20]. 
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It should also be noted that from room temperature acoustic attenuation data, the bulk 

viscosity for carbon dioxide is known to be three orders of magnitude larger than its shear 

viscosity, indicating it has a highly dispersive nature which is dependent on frequency. In 

fact, in a recent experimental study [15] in 2016 on the role of dilatational (longitudinal 

acoustic) waves in a second-mode instability in the laminar-to-turbulence transition in 

hypersonic boundary layers, it was observed that, for a real diatomic gas, the growth and 

decay of the second mode is accompanied by a dilatation process which leads to about a 

50% increase in dilatation dissipation, in comparison with the Stokes’s hypothesis. 

2.2.2 Bulk viscosity derivation from conventional theory 

Consider a constant velocity field without the gravity. In this situation, the stress tensor 

  is independent from position vector r, and the fluid possesses neither the shearing 

motion nor the shear stresses. Therefore, the stress tensor   can be written [21, 22] as 

constant .  I  (2.10) 

Since the normal stress is independent of an orientation of the surface that is given by 

normal vector n. This is the case for the stress due to the hydrostatic pressure p, which 

varies with r but not with n. Then, Eq. (2.10) can be written as 

.p  I  (2.11) 

Here, by convection, compressive stress is negative here producing the minus stress. A 

fluid motion with a nonzero velocity gradient will possess normal stresses that are not equal 

to the negative of the hydrostatic pressure. We now subtract the hydrostatic pressure term 

from   to obtain the viscous stress tensor  , 

( ) .p p    I I   (2.12) 

The viscous stress tensor   is nonzero only if the fluid possesses a non-zero relative 

motion.  It can be related to the rate-of-strain tensor (rate-of-deformation tensor). Any 



 

11 

 

second-order tensor can be written as the sum of symmetric and antisymmetric tensors. 

Then the velocity gradient u  can be written as 

.u = +   (2.13) 

The symmetric tensor   called the rate-of-strain tensor, is given by 

 
1 1

,
2 2

T ji
ij

j i

uu

x x


              

u u  
(2.14) 

while, the anti-symmetric part of u  is the rotation tensor denoted by   

 
1 1

.
2 2

T ji
ij

j i

uu

x x


             

u u   
(2.15) 

Thus Eq. (2.13) can be written as 

d d .  u = r + r   (2.16) 

Eq. (2.16) is associated with a solid body rotation and does not contribute to the viscous 

stress tensor  .  This means that   can only depend on the rate-of-strain tensor  . This 

tensor, however, is symmetric with six independent components. These components can 

be further subdivided into those producing a shearing motion and dilatation strain.  This 

later strain is given by the trace of   i.e. 

Tr ( ) .ii  u  (2.17) 

For Newtonian fluids, two assumptions are considered—one is linear relation between   

and   and second is isotropic condition (assumptions of linearity and isotropy). Each 

tensor   has nine scalar components. The linear assumption means that each   

component is proportional to the nine components of  . Hence, there are 
43 81  scalar 

coefficients that relate two tensors. These coefficients are the components of a fourth order 

tensor. With a subscript notation, the linear relation is given by 

,ii ijmn mnC   (2.18) 

 where ijmnC  is called the fourth-order viscosity coefficient tensor. The most general form 

of an isotropic fourth-order tensor is given by 
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A B C ,ijmn ij mn im jn in jmC          (2.19) 

where, A, B, and C are only coefficients remaining out of the original 81. Then relation 

(2.18) can be written as 

 A B C

A B C .

ij ij mn im jn in jm mn

ij mn ij ji

       

   

  

  
 

(2.20) 

Since   is symmetric, this further simplifies to  

 
 

A B C

A B C .

ij ij mn im jn in jm mn

ij mn ij

       

  

  

  
 

(2.21) 

Now introducing the notation  and   for the first (shear) and second viscosity 

coefficients respectively: 

 
1

B C , A.
2

     
(2.22) 

Therefore, the relation (2.21) becomes 

2 ,ij ij mm ij      (2.23) 

which can be written in tensor form as 

 2 .  u I    (2.24) 

From the relations (2.12) and (2.24), we have 

  2 .p     u I    (2.25) 

This relation can be written in Cartesian form as 

.
ji k

ij ij ij

j i k

uu u
p

x x x
    

  
         

 
(2.26) 

We emphasize that these equations are restricted to the Newtonian fluid. In case of 

incompressible flow, = 0 u  i.e., there is no role of second viscosity coefficient   in an 

incompressible flow. For describing the role of   for a compressible flow, we define the 

mean pressure P  as the negative one-third of the sum of the trace of stress tensor   i.e.  

 11 22 33

1 2
,

3 3
bulkP p p     

 
           

 
u u  

(2.27) 

where the bulk viscosity coefficient bulk is defined as 
2

.
3

bulk     Replacing the value 

of   in term of bulk  Eq. (2.24) becomes 
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     2
2 ,bulk   u u I   (2.28) 

where    2
u represents the traceless symmetric part of u defined by 

       2 1 1
.

2 3

T       
 

u u u u I  
(2.29) 

 The term   also known as rate-of-shear tensor provides the viscous stresses associated 

only with a shearing motion. Consequently, the bulk viscosity term provides the viscous 

stresses due to the dilatational motion. The shear and dilatational stresses are caused by the 

attractive and repulsive forces between molecules and the collision relaxation of the 

rotational and vibrational energy modes of polyatomic molecules, respectively.  As can be 

seen from Eq. (2.28), the viscous tensor has an isotropic part and a deviatoric part.  By 

recalling decomposition (2.25), we get the following expression for the complete stress 

tensor, 

      2
2 .bulkp      u I u   (2.30) 

2.2.3 Physical interpretation of bulk viscosity 

The physical interpretation of the bulk viscosity in a gas flow is associated with the 

relaxation of internal, rotational and vibrational, modes of polyatomic molecules. It is well 

known from kinetic theory and experiments that bulk viscosity is zero for a monatomic gas 

[23]. At room temperature, diatomic gases such as 2 2O , N ,CO, and NO,  are fully excited 

rotationally but possess negligible vibrational excitation.  As a consequence, only rotation 

contribution to ,bulk  and the bulk viscosity ratio bulk bulkf    is of unity order i.e. 

  .bulkf O   The number of collisions required for rotational energy equilibration is 

about 4 or 5, whereas vibrational energy relaxation typically requires thousands of 

collisions. Consequently, when the vibration mode(s) is partly or fully excited, bulkf  is large 

compared to unity. For example, at room temperature, 2CO has a value of about 2000 [24].  
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The magnitude of this difference between rotational and vibrational relaxation is justified 

by the kinetic theory [25]. The physical interpretation for the bulk viscosity in dense gas 

or liquids are different from that of a simple molecular collision relaxation process.  For 

instance, the bulk  is proportional to the   at relatively large density values [26]. 

 

Figure 2-3. Physical paramters of monatomic, diatomic and polyatomic gases. 

Physically, the bulk viscosity provides a damping of volumetric vibrations such as 

might occur during sound absorption. In fluid dynamics, bulk viscosity which plays a 

central role is related to the number of collisions or time, required for the molecules to 

achieve internal, vibrational and rotational equilibrium. In present work, we only focus on 

the rotational contribution to the bulk viscosity. In traditional fluid dynamics theory, the 

rotational modes of energy are always considered in equilibrium with the translational and 

completely neglects other internal energy modes. Although there is voluminous literature 

in gas dynamics and fluid mechanics for the description of transport properties like shear 

viscosity and specific heat, there is no significant data for the bulk viscosity. A few 

theoretical and experimental explanation for bulk viscosity has been done [17, 24, 27-32]. 
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These studies are limited to some specific molecules and temperature ranges. The data 

available in the literature of bulk viscosity of ideal gases tells us that the bulk viscosity 

ratio bulkf  has a variation in temperature and usually has a local maximum. It may be noted 

that the bulk viscosity treatment has been the subject of controversy for quite some time 

[16, 32, 33].  

2.3 Microscopic properties 

2.3.1 Basic molecular properties 

A gas molecule can be described based on three molecular parameters—molecular 

mass m, molecular velocity v, and effective molecular diameter d [1, 34]. The molecular 

velocity v is the sum of bulk velocity u and peculiar velocity C, i.e., . v u C  There are 

several quantum energy states 
dof  in a molecule based on the internal degrees of freedoms 

of the molecule, 

3 ,dof

mN N    (2.31) 

where 
dof is the degree of freedom, N is the number of gas molecules and mN  is the 

number of independent relations among molecules. For instance, a monatomic gas 

molecule has 3 degrees of freedom ( 3)dof  , since it has only one molecule (N = 1) and 

there is no independent relation i.e. 0.mN   For a diatomic gas molecule, 5,dof   since 

the diatomic gas molecule has 3 translational and 2 rotational degrees of freedom. In case 

of polyatomic gas, 7dof  . The total energy of a system can be written as the sum of 

kinetic, internal and potential energy, 

total kinetic internal potential ,E E E E    (2.32) 

and the specific energy defined as the energy density per unit mass is given as  

total kinetic internal potential.    (2.33) 
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The specific energy and total energy are related through the relations 

total total

V

dV.E    (2.34) 

The kinetic energy of the molecule moving at velocity u is given by: 

2

kinetic

1
.

2
E m u  

(2.35) 

The potential energy is the energy generated due to external forces acting on a unit mass; 

it is realistic to assume that potential energies are conservative and they are negligible since 

the external forces were usually neglected. On the other hand, the internal energy is 

generated due to the inter-molecular interaction of the substance, and it can be split into 

the lower level of energy states; translational, rotational, vibrational, electrical energy 

states. The internal energy modes are defined as a summation of various internal states; 

internal translational rotational vibrational.
dof dof dof dof       (2.36) 

The translational energy of a gas molecule is defined by  

2

translational

1
.

2
E m v  

(2.37) 

The rotational energy of a gas molecule is defined by 

2

rotational

1
,

2
fE I  

(2.38) 

where f  is the angular frequency of rotation about one of the axes, and I is the moment 

of inertia of the molecule about its center of mass, given by  

2 21 2

1 2

,mass

m m
I r r

m m


 
  

 
 

(2.39) 

where 1 2,m m  are the masses of the atoms that form the molecule, r is the atomic separation, 

and  1 2 1 2mass m m m m    denotes the reduced mass of the molecule. The magnitude of 

the molecule’s angular momentum about its center of mass is represented by  

,fL I  (2.40) 
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which classically can have any value. According to Quantum mechanics, the angular 

momentum of the molecule has the value 

 1 , 0,1,2,3......L J J J    (2.41) 

where J  is an integer called the rotational quantum number and ,
2

h


  h being the 

Planck constant. Combining the Eqs. (2.38), (2.40), and (2.41) the rotational energy of the 

molecule is given by 

 
2

2

rotational

1
1 , 0,1,2,3......

2 2 2
f

L
E I J J J

I I
      

(2.42) 

The vibrational energy of a gas molecule is given by 

vibrational

1
, 0,1,2,3....

2
vibE hf 

 
   
 

 
(2.43) 

Here,   is an integer called the vibration quantum number, and vibf  the frequency of 

vibration for the system is defined by 

1
,

2

spring

vib

mass

k
f

 
  

(2.44) 

where springk  is the effective spring constant.  

2.3.2 Gas properties 

For an ideal gas, the temperature is related to the pressure p and density  by the ideal gas 

law:  

,gasp R T  (2.45) 

while, the internal energy of the gas is simply function of temperature only, i.e. 

 internal internal ,E E T which is defined by 

internal ,vE C T  (2.46) 

where, vC is the specific heat at constant volume. The gases that obeys Eqs. (2.45) and 

(2.46) are called calorically or thermally perfect gas. The specific enthalpy of the gas is 

defined by 
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,ph C T  (2.47) 

where pC is called the specific heat at constant pressure. By the ideal gas law results: 

.p v gasC C R   (2.48) 

The equation of state of a polytropic gas turns out to depend only on the ratio of the specific 

heats: 

.
p

v

C

C
   

(2.49) 

In terms of internal degree of freedom, the specific heat ratio of a gas molecule can be 

defined as  

5 2
1 .

3 3

dof

dof dof




 


  

 
 

(2.50) 

The mass of unit molecule and the ordinary gas constant can be defined as 

, ,
gas B

gas

A

W K
m R

N m
   

(2.51) 

where AN denotes the Avogadro number and gasW  is the molecular weight of the gas. The 

Prandtl number Pr can be calculated using Eucken’s formulation as  

4
Pr .

9 5







 

(2.52) 

The transport properties of a gas can be defined based on the models which are used for 

describing the inter-molecular potential forces. In case of power-law model which is a 

short-range repulsive inter-molecular model, the first coefficient of viscosity   and the 

thermal conductivity can be defined as 

  2

, ,

15
with  ,

2 5 2 7 2

1 2
, .

Pr 2 1

s s

ref ref

ref ref

B ref

ref

ref

ref p

ref

T T

T T

mK T

d s s

C
s

   









   
       

   


 

  


 

 

(2.53) 
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The s denotes the viscosity index and  represents the exponent of the inverse power law 

for the gas-particle interaction.  

2.3.3 Phase density distribution 

In kinetic theory, the state of a gas is described by a distribution function  , ,f tv r   such 

that the number of particles in a phase space element, dvdr at time t is given by 

 , , ,dN f t d d v r v r  (2.54) 

where, N is the number of molecules. The integration of  , ,f tv r  in phase space is equal 

to a number of molecules in the physical space: 

 , , .f t d N

  

  

   v r v  
(2.55) 

The phase density distribution function  , ,f tv r  is the central quantity in kinetic theory.  

2.4 Macroscopic properties  

All the macroscopic quantities for diatomic gases can be obtained based on the phase 

density distribution function  , ,f tv r . Therefore, in this section, several important and 

commonly used definitions in this thesis are defined for simplicity, clarity and helpful to 

readers. 

2.4.1 Density 

The density which is the first macroscopic variable is obtained as 

   , , , ,m f t mf t d
  

  

    v r v r v,  
(2.56) 

where the symbol     represents the integration over v-space i.e.   

d

  

  

     v  
(2.57) 
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2.4.2 Velocity 

Velocity or mass velocity, momentum density, and the mean peculiar velocity are 

represented as 

   
1

, , , ,f t f t d
n

  

  

    u v v r v v r v,  
(2.58) 

   , , , ,m f t m f t d
  

  

    u v v r v v r v,  
(2.59) 

     

   

 

, , , ,

, , , ,

, ,

m f t m f t

m f t m f t

mf t  

 

 

  

C v r v u v r

v v r u v r

u v r u = u u = 0.

 

 

 

 

(2.60) 

2.4.3 Temperature 

Generally, the thermodynamic temperature is known as temperature which can be defined 

based on the equation of states for an ideal gas (2.45), 

translational2
,

3gas gas

ep
T

R R
   

(2.61) 

where translationale  denotes translational energy density. Also, the temperature quantity can 

be written in terms of probability distribution function as 

 22 1
, ,

3 2gas

T mC f t d
R

  

  

    v r v.  
(2.62) 

In case of diatomic and polyatomic gases, the temperature quantity can be measured for 

each state of the energy level as 

translational translational
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

 

 

 

(2.63) 
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The overall temperature value in non-equilibrium condition can be calculated on weighted 

averaging formulation as  

translational translational rotational rotational vibrational vibrational
overall

translational rotational vibrational

.
dof dof dof

dof dof dof

T T T
T

  

  

 


 
 

(2.64) 

It may be noted that the temperature specifies the collective thermal state of matter 

comprising the system and quantifies the physiological perception of coldness and hotness 

of the body [1]. It is a notion intimately connected with heat and its transfer between bodies 

in contact.  The temperature of a body is quantified if a thermometer is put in thermal 

equilibrium with the body in question. When the thermometer is standardized to a universal 

scale, the temperature of the body is given by an absolute temperature.  

2.4.4 Energy 

The macroscopic internal energy, total energy, and enthalpy for an ideal gas can be defined 

in thermodynamic equilibrium condition as 

internal internal ,vE e C T    (2.65) 

 

total kinetic internal potential

2

height

1
0 ,

2
v

E E E E

C T gh  

  

   u
 

 

(2.66) 

2

total total

1
.

2
v

p p
H E C T 

 
    u  

(2.67) 

The total energy can be determined through the probability distribution function as  

   2 2

total

1 1
, , , ,

2 2
E m f t m f t d

  

  

    v v r v v r v.  
(2.68) 

The internal energy state can also be represented based on ensemble averaging and the first 

moment of single particle probability distribution functions as  

   2 2

internal

1 1
, , , , .

2 2
rot rotE mC H f t mC H f t d

  

  

   
      

   
  v r v r v  

(2.69) 
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2.4.5 Pressure tensor 

Pressure tensor, so-called stress tensor, is a flux tensor which expresses the transport of 

momentum by the motion of thermal (peculiar) velocity. As the momentum of thermal 

velocity is a vector quantity, the pressure tensor is a second rank tensor given by 

   , , , ,m f t m f t d

  

  

    P CC v r CC v r v.  
(2.70) 

where C is the peculiar velocity. The pressure tensor P is decomposable into three 

components: hydrostatic pressure, excess trace part, and traceless part.  

  .p   P I   (2.71) 

Here, I is the unit second-rank tensor, p is the hydrostatic pressure,  is the excess trace 

part (excess normal stress), and   is the traceless part (viscous stress tensor).  

2.4.6 Viscous stress tensor 

Viscous stress tensor can be defined as the traceless part of the symmetric pressure tensor. 

   
 21

Tr .
3

  P I P P  
(2.72) 

It can be defined based on the moments of distribution function as 

 
 

   
 

 
2 2

, , , ,m f t m f t d

  

  

    CC v r CC v r v.  
(2.73) 

Where  
 2

CC denotes the traceless part of the thermal velocity production tensor CC  

defined in Eq. A.32 (Appendix A).  

2.4.7 Excess normal stress 

Excess normal stress   can be defined as the excess trace part of the symmetric pressure 

tensor P, 

 
1

Tr .
3

p   P  
(2.74) 

The statistical mechanical formula for    is given as, 
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   
1

Tr , , .
3

m p f t
 

   
 

CC v r  
(2.75) 

2.4.8 Hydrostatic pressure 

In kinetic theory, the hydrostatic pressure is convecntionally defined [35, 36] as 

 
1

Tr .
3

p   P  
(2.76) 

However, this definition of hydrostatic pressure is not valid for all fluids since the stress 

tensor is a non-equilibrium quantity. Although the definition (2.76) is true in case of dilute 

gases (i.e., monatomic gas) and it provides zero bulk viscosity i.e. 0 or 0.bulk     But 

this definition (2.76) is not true for dense fluids (for example, diatomic and polyatomic 

gases). Therefore, the hydrostatic pressure requires a more careful definition in kinetic 

theory. According to B.C. Eu [1], “Hydrostatic pressure is an isotropic average of the 

virial tensor over the local equilibrium distribution which in the case of a dilute monatomic 

gas is given by the formula 

   01
Tr , , .

3
p m f t CC v r  

(2.77) 

where  0 , ,f tv r  denotes the equilibrium distribution function”. In case of dense fluids the 

virial tensor includes contributions from the intermolecular forces in addition to the kinetic 

part .mCC  

 

2.4.9 Heat flux vector 

Heat flux vector is a flux vector which expresses the transport of energy of all states of the 

molecules by the motion of thermal (peculiar) velocity. The heat flux vector for a diatomic 

and polyatomic gas reads as, 

 

 
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rot
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mC H mh f t

mC H mh f t d
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 
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 

 
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(2.78) 
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Here, ĥ  denotes the enthalpy density defined by  

5ˆ ,
2

B roth k T E
m

   
(2.79) 

with
rotE  for the average rotational energy density 

 , , .rot rotE H f t  v r  (2.80) 

 

2.5 Classical Boltzmann kinetic equation 

In kinetic theory, a gas is defined as a collection of many interacting particles. In such 

a microscopic scale where the collective dynamics of particles describes the macroscopic 

state of gas, an appropriate kinetic equation is required to precisely describe the underlying 

micro-dynamics.  

The Boltzmann kinetic equation that connects the regime of dynamics with that of 

thermodynamics has been a milestone in the development of theoretical physics. For 

describing the kinetics of gas, Boltzmann [37] introduced a probabilistic description for the 

evolution of a single-particle distribution which anticipated atomistic scattering concepts. 

Let  , ,f tv r  denotes the single particle distribution function where v, r, and t 

represents the particle velocity, position and time, respectively. The distribution function 

 , ,f tv r  allows the probability of finding a particle in the range of dv v v and 

dr r r  at time t. At infinitesimally small time interval dt, the change in distribution 

function in small control volume dvdr located at phase space  ,v r  can be written as 

external ,v

f
f f d d dt

t

 
    

 
v F v r  

(2.81) 

where the higher-order terms of order  2O t  are neglected and 
external

F denotes the vector 

of external force on unit mass; , v

 
   

 r v
. This expression (2.81) accounts for a 

change in probability distribution function due to the steaming motion of the particle in the 
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phase space. If there is no collision between molecules, the changes in the single particle 

distribution  , ,f tv r  can be interpreted by a single particle Liouville equation which is 

called the collision-less Boltzmann equation defined by 

 , , 0.external

v f t
t

 
    

 
v F v r  

(2.82) 

Single particle Liouville equation does not contract the information of the system but 

preserves the information. It describes the evolution of an incompressible probability fluid. 

However, in reality, the molecules collide each other and probability distribution function 

change inside the control volume of the phase space due to the inter-molecular collision. 

Therefore, it is required to find a relationship between the distribution functions  , ,f tv r  

and  2 2 , ,f tv r   of the colliding molecules.   

The collision operator  2,C f f  is the Boltzmann’s lasting contribution to the kinetic 

theory which is not invariant to the time reversal. It connects the dynamics of the inter-

molecular collisions, the pre-collision-, and post-collision probability density functions such 

that the evaluation of the particle density function in time and phase space can be written as 

   2, , , .external

v f t C f f
t

 
    

 
v F v r  

(2.83) 

The collision operator  2,C f f  depends on the way of approximating the collisional 

effects, and the statistical assumptions were made regarding the correlations of the particles 

in a binary collision. Boltzmann derived a classical form for collision operator  2,C f f  

using Stosszahl ansatz approach, given by 

   
2

2 2 2 2
0 0

, ,rC f f d d dbb f f ff





    v v  
(2.84) 

where 2 and f f  are the distribution functions of colliding molecules (and prime denotes the 

distribution functions after collision); b is the impact parameter of two-body collision 

between particles;   denotes the azimuth angle in collision plane which describes the 
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orientation of the collision plane; and 2r  v v v  represents the relative velocity. Using 

Eqs. (2.83) and (2.84), the classical Boltzmann kinetic equation is given by 

   
2

2 2 2
0 0

, , .external

v rf t d d dbb f f ff
t




 

       
 

  v F v r v v  
(2.85) 

The Boltzmann kinetic equation is well-known in kinetic theory for monatomic gas such 

as Argon. It has been considered as a proper nonlinear equation for studying rarefied gas 

flows. It can interpret the inter-molecular collisions and can describe the statistical behavior 

of molecules. However, solving the Boltzmann kinetic equation directly is not an easy task, 

and usually, the analytical solution is limited to simple geometries due to the presence of 

the large number of independent variables in the equation, and the complexity and non-

linearity of the collisional term. 

2.6 Classical Boltzmann-Curtiss kinetic equation 

In 1981, Curtiss designed a thermodynamically consistent extension of the Boltzmann 

equation to dilute rigid diatomic gases which is known as namely, the Boltzmann-Curtiss 

kinetic equation [3, 38, 39]. The mathematical expression of this kinetic equation looks 

rather similar to the Boltzmann of monatomic gases, contains more terms about the 

molecular rotation. 

Consider the diatomic molecule having a moment of inertia I and an angular momentum 

j. The orientation of the angular momentum is specified by the polar angles   and   and 

its magnitude is defined by j. Since the orientation of the molecules is described by Euler 

angles ,  and    Therefore, polar angles of angular momentum j is chosen as 

, .      Also, =   is the azimuth specifying the orientation of the molecule in the 

plane perpendicular to the j  vector. The unit vector of the body axis is denoted by  

ˆ (sin cos ,sin sin ,cos )    R with polar angles  and .   Then the Boltzmann-
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Curtiss kinetic equation for the diatomic molecule can be expressed with the presence of 

external force [3] as 

   2+ , , , , , .r f t C f f
t


 
   

 
v L v r j  

(2.86) 

Here, the subscript 2 refers to the second molecule; f represents the distribution function; 

v is the particle velocity; r is the particle position and rL  is the internal Liouville operator 

defined by  

  ,r B

j

I 

 
   

 
L j

j
  

(2.87) 

Where B  is the vector of angular frequency of precession of the angular momentum due 

to the presence of external force. The  2,C f f  denotes the collision integral of the binary 

interaction among the particles and it is given by the expression 

 

  

2 2 2 2

2 2 2 2

,

, , , ,

r r

r r

C f f d d d d d

v f f ff

  

   

    

 

     v v v

v j j j j
 

(2.88) 

where the asterisk denotes the post-collision value; 2r  v v v denotes the relative 

velocity, sind j dj d d d      denotes the solid angle of scattering;  2 2, , , ,r r  v j j v j j

represents the collision cross section. In present work, it is assumed that there is no external 

force which leads 0.B  Then the Boltzmann-Curtiss kinetic equation (2.86) can be 

expressed as  

   2+ , , , , , .
j

f t C f f
t I




  
   

  
v v r j  

(2.89) 

According to Curtiss, the distribution function f depends primarily on the free molecular 

constants of motion and it does not depend on azimuthal angle   i.e. on the phase of the 

rotational motion and depends only weakly on the coordinate r so that one may neglect this 

dependence over distances of the order of molecular dimensions. The conservation laws of 
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conserved variables, and the evolution equations for non-conserved variables such as the 

stress vector, excess normal stress, heat flux, can be derived by defining the following 

velocity moments and then calculating their time derivatives with the help of the 

Boltzmann-Curtiss kinetic equation. 

 

2.7 Direct Simulation Monte Carlo method 

Monte Carlo (MC) method was initially served around sixty years ago to study statistical 

mechanics and to integrate highly nonlinear integrals statistically. Despite the fact that MC 

is a very powerful method, it cannot demonstrate the evaluation of a system. An alternative 

for studying the microscopic behavior of materials is to use the molecular dynamic (MD) 

method which is a deterministic approach [40, 41]. However, it is a very costly and it is 

usually being used for simulating very small scale problems such as nano-materials, nano-

tubes, and microsystems. Bird tried to overcome the difficulties in MD method by 

employing MC method inappropriate way [42]. As a result of that, the direct simulation 

Monte Carlo (DSMC) was introduced to study the molecular behavior of the rarefied and 

non-equilibrium flow [43].  

DSMC is inherently a probabilistic method in which a large number of real particles are 

represented by one simulated particle. The cost of DSMC simulation is considerably less 

than molecular dynamic method. The capability and the simplicity of the DSMC method 

persuade many researchers to utilize it as the standard solver for studying non-continuum 

gas flows. It has been used to study various applications, such as micro gas flows, material 

processing, acoustics, high-speed gas flows, and gas mixing [44-48].  

The conventional DSMC algorithms consider gases as a group of the finite number of 

particles and describe the phase of the system by calculating the position and velocity of 

the particles. The continuous motion and collision of the gas particles are discretized within 
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a small time step, ∆t, and they are described in two consecutive and decoupled steps: 

movement and collision. These stages are equivalent to the advection and the collision term 

of the Boltzmann kinetic equation, respectively. In each time step ∆t, the particles move 

based on their own velocities throughout the gas flow without considering the interaction 

with other particles. Subsequently, if any particle reaches a boundary, the proper action 

according to the type of boundary condition is taken into account, and the particle positions 

are updated. Afterwards, the collision step is simulated by utilizing a Markov process in 

the collision cell during a given time interval. Therefore, the collision pairs are chosen 

randomly from particles within the same collision cell, and the collision probability is 

calculated based on kinetic theory. Successful collisions are identified using acceptance-

rejection method, and finally, the post-collision properties are calculated regarding the 

employed inter-particle potential model.  

Generally, the movement phase is deterministic and does not involve any noticeable 

difficulties, while the collision phase is a probabilistic process. Collision process is 

composed of three important steps; counting the number of collisions, pair collision 

selection, and calculating the post-collision properties using inter-particle potential. In 

order to obtain an acceptable efficiency and accuracy in collision process, four features 

should be considered simultaneously: the computational efficiency, physical accuracy, 

reliability and implementing the collision step in the easiest way. Therefore, numbers of 

assumptions and simplifications should be taken into account. These assumptions or 

simplifications led to set up some requirements for physical parameters. For instance, time 

step should be selected small enough so that a particle just travels a fraction of collision 

cell length within a time step. The number of particles should be large enough to quantify 

the number of binary collisions among the particles during a given interval more accurately. 
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Finally, in order to minimize the statistical uncertainty and estimate the mean value of the 

estimators, the probability sampling process is added to the DSMC process [49, 50]. 

In fact, DSMC can be considered as a statistical solution of the Boltzmann equation in 

the case that the infinite number of particles are used and time step and grid size tending to 

zero [51]. However, Boltzmann kinetic equation cannot elaborate all aspects of DSMC 

approach [52]. The ability of the simulating the internal energy modes, chemical reactions, 

and thermal radiations make DSMC more interesting for researchers. The statistical 

behavior of DSMC brings the ability to model the real hydrodynamic fluctuations [53] in 

high-density conditions, although it can be considered as a drawback of the method due to 

produce undesirable statistical fluctuation in low-speed flow regimes. The biggest issue 

with DSMC method is that it is too expensive when the degree of non-equilibrium is low. 

This encouraged researcher to use moment-based methods for simulation of low speed or 

slightly deviated flows from equilibrium conditions.  

 

2.8 Moments of Boltzmann-Curtiss kinetic equation 

2.8.1 Collisional invariants 

The Boltzmann-Curtiss collisional integral (2.88) has a special property that it provides 

to a vanishing integral of a collisional invariant quantity. Consider the integral 

   2, ,I d C f f   v  (2.90) 

Substituting of the explicit expression for  2,C f f  from Eq. (2.88), we get 

 

   

2 2 2

2 2 2 2, , , , .

r r

r r

I d d d d d d

v f f ff

  

   

     

  

      v v v v

v j j j j
 

(2.91) 

Since subscripts are dummy indices, they may be interchanged, and the interchange leaves 

 I   invariant. Then Eq. (2.91) can be written in the form 
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 
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(2.92) 

 The collision process involved in Eq. (2.92) is    2 2, , . v v v v  On reversal of the 

collision process, we get 

 

   

2 2 2

2 2 2 2 2

1

2

, , , .

r r
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   

       
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v j j v j , j

 

(2.93) 

On adding both Eqs. (2.92) and (2.93) side by side and dividing the result by 2, we obtain 

 

   

2 2 2

2 2 2 2 2 2

1

4

, , , , .

r r

r r

I d d d d d d

f f ff

  
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      
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(2.94) 

If the quantity  is conserved in collision, then 

2 2 0,       (2.95) 

and the integral  I  vanishes identically: 

  0.I    (2.96) 

Such quantity is called a collision invariant. If the particles are structureless, there are three 

collisional invariants obeying the relations: mass, momentum, and energy.  

2.8.2 Conservation laws 

Since the collisional integral vanishes for mass, momentum, and energy of a molecule, 

it is easy to derive the conservation laws based on Boltzmann-Curtiss kinetic equation 

(2.89). Defining the macroscopic quantity 21
, ,

2
rotm m mC H

 
  
 

u  and multiply it into 

Eq. (2.89) and integrating over velocity space. Then simplifying the equations by 

considering that   depends only on the particle position and time, i.e.  , tr  leads to the 

differential form of the conservation of mass, momentum, and energy as can be followed 

by Appendix B, 
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   

0 0

0 .

0total total

p
t

E E p

 

 

 

      
       

            
                

u

u uu I I

u I u + Q

  

(2.97) 

where totalE is the total energy; ,   and  Q  are the viscous stress tensor, excess normal 

stress and heat flux vector which are not defined still now. It must be emphasized that the 

conservation laws are the exact consequence of Boltzmann-Curtiss kinetic equation, and 

they are valid for all degree of non-equilibrium. Only after some approximation in the 

derivation of ,   and  Q , they become approximate.  In next chapter, non-conservative 

variables and the way to obtain an approximate constitutive relation for these variables are 

discussed in detail.  
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Chapter 3. Boltzmann-Curtiss based 

hydrodynamic models 

 

“I believe all complicated phenomena can be explained by simpler scientific principles.”   

-  Linus Pauling (1901-1994) 

 

In the previous Chapter, it was shown that the average of an extensive macroscopic 

quantity f  could be obtained by taking the first moment of a distribution function times 

the microscopic quantity   . v  It was shown that the conservation laws can be obtained 

from the moment of Boltzmann-Curtiss equation without extra efforts for solving collision 

integral. However, the conservation laws remain open until some expressions for non-

conserved variables are defined. In this chapter, it is assumed that the external forces are 

negligible and the gas consists of non-reacting diatomic molecules. The moment methods 

are applied to Boltzmann-Curtiss kinetic equation, and the extended hydrodynamic 

equations for non-conserved variables are derived. Afterwards, these exact but open 

equations are approximated based on Eu’s closure, and Myong’s balanced closure and then 

various Boltzmann-Curtiss based models are obtained.  

3.1 The moment method 

The general evolution equation for non-conserved variables can be obtained by 

multiplication of Boltzmann-Curtiss equation (2.89) with    n
h v and subsequent 

integration over velocity space yields 

         2, .
n n n nf j f

h h f h h C f f
t I 

 
   

 
v  

(3.1) 
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Here the collisional term is not zero, and it is denoted by 
     2, .
n n

h C f f  As we need 

to investigate over velocity, we have to convert the molecular velocity into peculiar 

velocity and then bring it together with distribution function f as 

            

   
.

n n n n n

n n

j
h f f h h f f h h f

t t I

j
f h

I





  
     

  


 



v v



 

(3.2) 

The Eq. (3.2) can be simplified as follows, 

             
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 
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 
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(3.3) 
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(3.4) 
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(3.6) 
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(3.7) 
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(3.8) 

Using the definition of substantial time derivative, we have  
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       

 
.

n n n n

n

D D j
h f h f h f f h

Dt Dt I 
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(3.9) 

Using the mass conservation law, the general evolution equation (3.9) becomes 

 

     
.

n

n n n
h fD D j

h f f h
Dt Dt I


 

 
             

 

C C   

(3.10) 

This general evolution equation can be written [3, 39] as 

       ˆ ,
n n n nD

h
Dt

       
(3.11) 

where  
,

n
 the flux of  

 n
h f , denotes the high-order moments, 

 n
  represents the 

kinematic term arising from hydrodynamic streaming effect and 
 n

  is the dissipation 

term which accounts for energy dissipation accompanying the irreversible process. These 

terms are defined by 

 
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(3.12) 

As we are interested in derivation of first few leading high-order moment equations, let’s 

set the molecular expression to be equal to the definition of viscous stress tensor, excess 

normal stress and heat flux vector, such that 

   
 

 

 

21

2 2

3 2
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1
,

3

1 ˆ .
2

rot

h m

p
h mC

n

h mC H mh



 

 
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(3.13) 
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Using the general evolution equation (3.11), and the respectively molecular expression 

(3.13), the constitutive relation for shear stress tensor, excess normal stress and heat flux 

vector can be obtained (see Appendix C) as,  

    
 

 
   2 2

2 2 ,
D

p
Dt




 
         

 
u u

 
   

(3.14) 
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(3.15) 

       

 

:

.

P

p

p

D d
p C T

Dt dt

C T

 


 
           

 

      

Q

Q

Q u
u I

Q u

 



 

(3.16) 

The conservation law introduced in Section (2.8.2), together with extended hydrodynamics 

equations can be written in a complete and compact form,  
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(3.17) 

Here ( ) ( ) ( ), , and     Q   are the higher-order moment terms with the thermal 

velocity that can be seen from Eq. (3.12). It is clear that the higher-order moment terms 

and the intergo-differential collisional terms are not yet defined properly appearing in Eq. 

(3.17), therefore, these moment equations are still open. While there are several ways to 

close this system, we are going to use Eu’s closure for closing this system of equations.  
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3.2 Eu’s generalized hydrodynamic equations  

In Eu’s theory [1], the kinetic theory of fluids is intimately connected to irreversible 

thermodynamics. The second law of thermodynamics is employed as a guiding principle 

for studying the fluid motion and in particular, in high thermal non-equilibrium state. The 

beginning point of this method is the balance equation for the calortropy ̂  which is 

different from the Boltzmann entropy,  

     ˆ , ln , , , , 1 , , , , .c

Bt k f t f t      r v r j v r j  (3.18) 

Here the non-equilibrium canonical distribution function cf represents the 

thermodynamic branch of the solution of the Boltzmann-Curtiss kinetic equation f. By 

differentiating the local calortropy density ̂  with time and combining it with the 

Boltzmann-Curtiss equation, the following equation can be obtained: 

  
ˆ

ln 1 ln ,c c

B B c

d d
k f f k f f

dt dt
 

 
       

 
C C


 

(3.19) 

where  2ln , .c

c Bk f C f f    According to Eu’s theory [3], the nonequilibrium 

canonical distribution function for diatomic gas can be expressed in the exponential form 
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(3.20) 

where, Normalized is the normalization factor defined as 
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(3.21) 

where C is the peculiar velocity of the gas particle defined by , C v u  where v and u 

being the particle velocity and the average bulk velocity, respectively; n is the number 

density; T is the temperature; rotH denotes the rotational Hamiltonian of the molecule; m 

is the molecular mass; BK  is the Boltzmann constant; and  
,

n
X unknown macroscopic 

quantities, are the conjugate variables to the molecular expressions for moment, 
 

.
n

h In 
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physical perspective, this exponential form is the only form that satisfies the additive 

property of the calortropy and calortropy production, all of which are in the logarithmic 

form. On the other hand, in mathematical perspective, it guarantees the non-negativity of 

the distribution function regardless of the level of approximations. It may be noticed that 

the number of moments goes to infinity as shown in Eq. (3.20).  This is in contrast with 

common practice in considering only the first 13th moments for monatomic gas and the 

first 14th moments for diatomic as well as simple polyatomic gases from the outset in the 

formulation of the theory.  For simplicity, after dropping the superscripts c in the 

distribution function, it may be written in short notation for the exponent [54] as 

       0
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(3.22) 

With further introducing of notations and dimensionless variables  
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(3.24) 

The calortropy production can be expressed as  
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(3.25) 

or simply 
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(3.26) 

This mathematical expression is suitable for so-called cumulant expansion, and it may be 

expressed in the form of  
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(3.27) 

This mathematical expression (3.27) guarantees the positivity of the calortropy production 

regardless of the level of approximations. In addition, when the distribution functions (3.22) 

is inserted into the definition of calortropy production, the dissipation term is shown to be 

directly related to the calortropy production ,c   
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(3.28) 

Now the explicit form of the dissipation term 
 n

 can be derived from Eqs. (3.27) and 

(3.28) by calculating the first reduced collision integral 1  in terms of  
,

n
X as x

performing in 1  consists of a sum of various moments, 
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1
,

n n
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the definition      
, etc.,

n n n
h h h


  2

1 may be expressed as a quadratic form of 

2 and ,X X   
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(3.29) 

On rearranging of the terms it may become 

     2

1 12 2
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,
n nl l

n l

X R X



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(3.30) 

where  
12

nl
R  are scalar coefficients made up of collision bracket integrals of 

 n
h  and  

2

l
h  

for an isotropic system of dilute gases. After comparing Eqs. (3.27), (3.28), and (3.30), 
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then the dissipation term 
 n

 can be derived as, 
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(3.32) 

The unknown conjugate variables 
 n

X  can be achieved by generalizing the equilibrium 

Gibbs ensemble theory – providing the relationship between thermodynamic variables and 

the partition functions —to nonequilibrium processes. Such nonequilibrium generalization 

was developed by Eu [1] and it may be summarized here 
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(3.33) 

After then, 
 n

X can be calculated in terms of the macroscopic flux 
 n

h f  by solving the 

differential equation (3.33). The leading order approximate solutions are known to be 

     1 2 33
, , .
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(3.34) 
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Finally, the moment equation for the general type of molecules (3.14)-(3.16) can be written 

by replacing the collisional term with Eq. (3.32) as  
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(3.37) 

Remarks, the system of Eqs. (3.35)-(3.37) are still exact to the original Boltzmann-Curtiss 

equation, since the number of terms in dissipation series goes to infinity, and the kinematic 

high-order term is not yet approximated. Nevertheless, Eqs. (3.35)-(3.37) are in suitable 

shape for balance treatment in approximating the kinematic high-order term on the left-

hand side, and the dissipation term on the right-hand side.  

There are some criticisms found in Eu’s closures. One of these criticisms is too 

simplistic treatment of high-order term. In Eu’s closure, the high order term 
 

  is 

assumed to be zero i.e. 
 

0


  by setting 
2

.
3

m f CCC IQ  This closure suffers a 

mathematical inconsistency, since m fCCC is a symmetric tensor, whereas I Q  is non-

symmetric tensor, leading to a contradiction. This inconsistency in Eu's closure was 

eventually overcome by a recent balanced closure developed by Myong in 2014 [54]. 
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3.3 Boltzmann-Curtiss based constitutive models via the 

balance closure 

3.3.1 Zero-order Boltzmann-Curtiss based model 

The zero-order Boltzmann-Curtiss based model (or Euler constitutive relations) is a 

direct consequence of assuming flow in an equilibrium state. As a resultant, density 

distribution function is assumed to be a Maxwellian distribution function. Note that the 

Maxwellian distribution function is defined [10] as 

 
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   
    

   
 

(3.38) 

The statistical formulation of the viscous stress tensor, excess normal stress and the heat 

flux vector using the Maxwellian distribution has simple and exact solution given as; 
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(3.39) 

 

3.3.2 First-order Boltzmann-Curtiss based model 

In the Boltzmann-Curtiss kinetic equation, the left-hand side which demonstrates the 

change of particles due to the collisionless motion of the particles, changes with a time 

scale of the order of 2 .Bnm k TL  On the other side, the right-hand side of Boltzmann-Curtiss 

kinetic equation explains the net change in the number of gas molecules due to inter-

molecular collisions. Basically, it is described by gain minus loss (exp(nonequilibrium)-          

exp(-nonequilibrium))[55], has the time scale of 2 .Bn m k TL  According to Eu [1], the time 

scale of conservative and non-conservative variables are different. The relaxation time of 

non-conserved variables is much shorter than conserved variables and is found in the order 

of 10-10 seconds. Therefore, the evaluation of non-conserved variables near equilibrium 
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state becomes linear and cumulant expansion of collisional term recovers the first-order 

Chapman-Enskog approximation. It is possible to approximate the entropy production and 

consequently non-conservative evolution equations, such that the viscous stress tensor, the 

excess normal stress, and the heat flux vector moment equations are linearized by 

truncating collisional term–considering the first term of cumulant expansion 

      1 1

12 2 1

nBK T
R X q

g



–and approximating transport process.  The approximate dissipation 

terms can be written as 
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(3.40) 

where,   1st 1 1,q k   ,  and bulk k    are the first coefficient of viscosity, the bulk viscosity 

coefficient and the thermal conductivity derived by Chapman-Enskog transport theory. 

According to Eu’s theory, the non-conserved variables change considerably faster than 

conserved variables, and they reach to steady state much earlier than the conserved 

variables. It is valid to simplify the non-conserved equation by omitting the substantial 

time derivative from the equations as, 

    
 

 
 

 

     

     

2 2

1st 1

1st 1

1st 1

2 2 ,

2 2
2 : ,

3 3

.

bulk

p

p p

p
p q k

p
p q k

pC
p C T C T q k

k



  




        

            

           
Q

u u

I u u

Q u Q


  

 

 

 

 

(3.41) 

To close the system of equations (3.41), the high-order moments appearing on the left 

side of above equations must be known. According to Myong’s balanced closure theory 

[54], and a recent summary of his theory [56], the first-order approximation of collisional 
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terms requires the same order of approximation on the left-hand side  of non-conserved 

moment equations. Therefore, not only  



 ,  

 and  


Q
 are required to 

remove from the first-order constitutive relations, but also   
 2

2 u ,  2 :    I u  

and pC T   Q u  are needed to be eliminated for the first-order approximation. 

Because the thermal velocity appeared in their statistical formulations is the order of two 

or more which can destroy the balance assumptions on the equations. As a result, the first-

order linear Boltzmann-Curtiss based model (i.e. Navier-Fourier constitutive relation) is 

given by 
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(3.42) 

3.3.3 Second-order Boltzmann-Curtiss based model 

Previous theoretical and computational studies [57-59] have revealed that the 

fundamental physics in conditions far from thermal equilibrium is significantly different 

from the classical physics governed by the first-order Boltzmann-Curtiss based model are 

valid only in conventional flows near equilibrium. As a consequence, simple modification 

of first-order Boltzmann-Curtiss based model using transport coefficients, or by 

introducing velocity-slip and temperature-jump boundary conditions, cannot solve the 

current bottleneck of problems in the classical first-order (linear uncoupled) laws. 

Ultimately, the problem demands a completely new development of the non-classical 

second-order (nonlinear coupled) laws. 

Recently, independent of the previous continuum approach, a new development has 

been reported on the constitutive equations of gases in a thermal nonequilibrium (rarefied 

and microscale) state from the viewpoint of the moment method applied to the kinetic 

Boltzmann-Curtiss equation [39] and the so-called balanced closure [54]. An important 
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result obtained from these studies is that the number of places for closing the moment 

equations is two –kinematic and collision terms—and thus, the order of approximations in 

handling two terms must be the same, for example, second-order for both kinematic and 

collision terms. Otherwise, in the case of high Mach number shock structure, the kinematic 

(stress-strain) coupling term of quadratic nature will grow far faster than the strain rate 

term due to the destructive interplay, resulting in an imbalance with the first-order 

dissipation term and eventually a blow-up mathematical singularity. Therefore, to go 

beyond the first-order accuracy, one must abandon the simple linear relation in the 

collisional term enjoyed by assuming the simple Maxwellian gas molecule, which was once 

considered a nice-to-have mathematical coincidence. 

As a result of the balanced closure, a second-order nonlinear coupled constitutive 

relation expressed in a mathematically implicit “sinh” form, which is an exact consequence 

of the Boltzmann-Curtiss equation of diatomic and polyatomic gases within the second-

order accuracy, can be derived [39]as 
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(3.43) 

In this expansion, the second-order dissipation term 2nd ,q  and the first cumulant expansion 

term 1k , are given in hyperbolic sine form and a Rayleigh dissipation function, respectively, 
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(3.44) 

These algebraic second-order Boltzmann-Curtiss based relations, so-called nonlinear 

coupled constitutive relations (NCCR), can be solved using an appropriate numerical 
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method while the conserved variables remain constant during the evaluation process. The 

remaining task is to solve this algebraic nonlinear system of equations (3.43) beside the 

conservation of laws using an appropriate numerical method. 

3.4 Governing equations for numerical simulation 

The conservation laws in three-dimensional form, provide a system of five differential 

equations including mass, momentum and energy equations. However, the number of 

unknown field variables is fourteen, namely, , , , , , , ,  and .p T E u Q  

 

Figure 3-1. A glance of Boltzmann-Curtiss based consitutive models up to second order. 

The non-conservative variables  , ,   Q can be read from the second-order 

Boltzmann-Curtiss based constitutive relations which is introduced in Figure 3-1. The 

thermodynamic state variables — density, pressure, and temperature — can be obtained 

from the equations of states. In dilute gas conditions, mean molecular spacing  1/3n   
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is much bigger than molecular diameter d. Therefore, the gas is assumed to be calorically 

perfect that behaves ideally, 

 
1

1 .
2

B totalp nK T E 
 

    
 

uu  
(3.45) 

where BK  is the Boltzmann constant, n is the number density, and p vC C   is the 

specific heat ratio. In addition to 14 field unknown variables, there are few more unknown 

which are related to the microscopic gas properties, so-called transport coefficients; the 

first coefficient of viscosity , the coefficient of bulk viscosity ,bulk  the coefficient of 

thermal conductivity ,  and the second coefficient of viscosity .  They may be calculated 

from either inter-molecular force relations or Chapman-Enskog relations.  

3.4.1 Conservative form of the conservation laws 

The  dimension conservation laws for diatomic and polyatomic gases without source 

term can be represented in differential form as, 
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(3.46) 

Here 
 2

U  is a vector of conservative variables – mass per unit volume, momentum 

vector and energy – which are continuously differentiable in the computational domain . 

The 
   2 2inv vis and 

   
 F F are the inviscid and viscous flux functions, 

respectively. The inviscid flux function which is also known as convective flux is related 

to convective transport of macroscopic quantities in the fluid. The viscous flux function 

contains the viscous stresses and heat diffusion terms. 
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3.4.2 Dimensionless form of the governing equations 

In order to study under different conditions around the same geometry and moreover, in 

order to reduce the error due to the finite precision of computers, we have to make sure that 

all the used flow variables are approximate of the same order of magnitude. This process 

can be performed by normalizing the governing equations. There are many different non-

dimensionalization procedures. In this thesis, we are introducing the following variables 

and parameters to make the conservation laws (3.47) in dimensionless form, 
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(3.48) 

Here, the reference parameters, denoted by subscript ref, are defined by using four base 

quantities (mass, length, time and temperature) in MLT unit system as 

2, , , .
ref ref ref ref

ref ref ref ref ref
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u k TL
t E u

u L L

 
   Q  

(3.49) 

Here L denotes the characteristics length, refT denotes w refT T  or ref wT T , where wT  is 

the wall temperature.  Putting dimensionless variables from Eqs. (3.38)-(3.39)  into Eq. 

(3.47) and divide it through by the leading dimensional coefficient resulting dimensionless 

form of the conservation laws for diatomic and polyatomic gas, after dropping the asterisks 

   inv vis , 0,
t


   
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(3.50) 

with the dimensionless form of conservative variables, inviscid, and viscous flux vector 

defined as, 
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(3.51) 

Here the fluid dynamic dimensionless parameters – Mach number M, Reynolds number Re, 

Prandtl number Pr, Knudsen number Kn, composite number ,N  Eckert number Ec – are 

defined as 
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The dimensionless form of the transport equations based on the inverse power-law 

intermolecular model can be read as 

, , ,s s

bulk bulkT f k T      (3.53) 
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

  is the exponent of the inverse power laws.  

The second-order Boltzmann-Curtiss based constitutive relations can be reduced in 

dimensionless form as  
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(3.54) 

Here the caret ^  over a symbol represents a quantity with the dimension of the ratio of the 

stress to the pressure, and, bulkf  denotes the ratio of the bulk viscosity to the shear viscosity. 
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(3.55) 

The values of 1st 1st 1st
ˆˆˆ , , and  Q are the reduced form of the first-order Boltzmann-Curtiss 

based constitutive relations, defined as 
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ˆ ˆ.

bulk

T







  

   

  

u

u

Q



 

 

(3.56) 

The nonlinear coupling factor 2nd
ˆ( )q cR and dimensionless form of the dissipation function

R̂  which was derived from the Rayleigh–Onsager dissipation function [1], given as 
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 

 
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(3.57) 

The constant c defined in Eq. (3.57) has a value between 1.0138 (Maxwellian) and 1.2232 

( 3   ), where   is the exponent of the inverse power law for the gas-particle interaction 

potential and  denotes the gamma function.  

In the rest part of present work, non-dimensional equations are utilized, and the asterisk 

symbol is omitted in order to condense the notations. To solve equations using advanced 

numerical methods. A numerical method for solving algebraic constitutive relations is 

provided in the next subsections of this chapter. 
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(a) Argon (fbulk=0) (b) Nitorgen (fbulk=0.8) (c) CO2 (fbulk=1000) 

Figure 3-2. Comparison of stress tensor for first-order (top) and second-order (bottom) 

Boltzmann-Curtiss constitutive models. 

 

3.4.3 Topology of the second-order Boltzmann-Curtiss constitutive model  

In order to study the nature of rotational nonequilibrium based on a various range of 

bulk viscosities, the non-conserved variables obtained by the first-order linear constitutive 

model and the second-order Boltzmann-Curtiss based constitute model are compared. The

bulkf values for argon, nitrogen, and carbon dioxide gases are taken 0.0, 0.8, and 1000, 

respectively from Figure 2-3.  

A significant comparison of the non-conservative stress quantity for first-order and 

second-order constitutive models has been made based on various bulk viscosity bulkf  

values as shown in Figure 3-2. It is obvious that the response of the first-order constitutive 

model to the applied stress and thermal forces are linear whereas the second-order 

constitutive model behaves nonlinearly. For first-order linear model, the viscous stress 
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tensor is not a function of thermal force. Therefore, the influence of thermal forces are 

negligible and the stress values are found to be symmetry with respect to the adiabatic line. 

However, in the case of second-order constitutive model – due to strong coupling between 

non-conserved variables through the Rayleigh-Onsager function R̂ – the viscous stress 

tensor is a function of both shear force and thermal force. Thus, stress values are changing 

nonlinearly with respect to thermal forces, although stress tensor is more influenced by the 

stress forces in comparison to the thermal forces. Similarly to the first-order model, the 

monotonicity of the solution is preserved and the solution has symmetrical behavior with 

respect to the adiabatic line. As the bulkf  value increases, the influence of thermal forces 

reduces and the stress forces play a dominant role due to a significant contribution of 

bulkf u in the compression and expression term.  Therefore, the thermal forces become 

weaker and shear forces become stronger at a higher bulkf value.  

The viscous stress tensor is not a function of the thermal force for the first-order linear 

model. The stress values are found to be symmetry with respect to the adiabatic line, and 

they are not influenced by the thermal forces. For the second-order model, the viscous 

stress tensor is a function of the shear forces and the thermal forces due to strong coupling 

between non-conserved variables through the Rayleigh-Onsager dissipation function. The 

stress values are influenced more by the stress forces than the thermal forces. Similarly to 

the first-order model, the monotonicity of the solution is preserved and the solution is 

symmetrical with respect to the adiabatic line while the solution is changing nonlinearly 

respect to the forces. 
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(a) Argon (fbulk=0) (b) Nitrogen (fbulk=0.8) (c) CO2 (fbulk=0) 

Figure 3-3. Comparison of excess normal stress for first-order (top) and second-order 

(bottom) Boltzmann-Curtiss constitutive models. 

 

Figure 3-3 illustrates a comparison between first-order and second-order constitutive 

models based on excess normal stress for various gases. In the case of monatomic gas, the 

role of the excess normal stress is negligible i.e. 0   due to 0.bulkf  Therefore, the 

influence of thermal force and stress force disappear. In the first-order constitutive equation, 

excess normal stress has a similar pattern like stress tensor but different in magnitudes of 

thermal forces (Figure 3-2 and Figure 3-3). In the case of diatomic gases, where 0bulkf  , 

the effect of rotational nonequilibrium is considerable significant due to bulk viscosity. 

When 0.8,bulkf  the excess normal stress does not preserve the monotonicity behavior but 

it contains symmetry behavior along with an adiabatic line. When bulk viscosity increases 

to 1000, the excess normal stress approaches to monotonicity behavior.  
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(a) Argon (fbulk=0) (b) Nitrogen(fbulk=0) (c) CO2 (fbulk=1000) 

Figure 3-4. Comparison of heat flux for first-order (top) and second-order (bottom) 

Boltzmann-Curtiss constitutive models. 

Similar to stress tensor, heat flux plays a vital role in the constitutive model for 

describing the physics of flow behavior. Figure 3-4 shows a comparison between first order 

and second order constitutive models based on heat flux quantity for various gases. In the 

first order constitutive model, the heat flux shows a linear and monotone behavior with 

respect to thermal force while it does not under influence of stress forces. On the other 

hand, the second order model demonstrates the nonlinear behavior of heat flux constitutive 

relations with respect to both forces. It is sensible that at 0,bulkf   the heat flux is affected 

by the thermal force almost twice than the stress forces and a high nonlinearity behavior is 

found near the origin. As the bulk viscosity increases to 0.8,bulkf  the influence of stress 

forces which are far from the origin, is faded and the heat flux is followed an asymmetry 

behavior with respect to the stress-free line. The heat flux cover fully asymmetry and take 

shape like a shark finning at a higher bulk viscosity value, 1000.bulkf   
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(a) Argon (fbulk=0.0) (b) Nitrogen (fbulk=0.8) (c) CO2 (fbulk=1000) 

Figure 3-5. Comparison of Rayleigh-Onsager dissipation parameter for first-order (top) and 

second-order (bottom) Boltzmann-Curtiss constitutive models. 

 

Figure 3-5 illustrates a comparison between computed Rayleigh-Onsager dissipation 

parameter ˆ,R using the first-order and second-order constitutive models based on various 

gases. As it is well known that R̂  implicitly represents the degree of thermal 

nonequilibrium for a process. In the first-order model, at 0.0bulkf   and 0.8,bulkf  the 

dissipation parameter having a circular shape which presents a uniform distribution of 

thermal nonequilibrium along the thermal stress and stress forces in all directions. At 

higher bulk viscosity value 1000,bulkf   the dissipation parameter shows higher thermal 

nonequilibrium effects along stress tensor in comparison of thermal forces. On the other 

hand, in second-order Boltzmann-Curtiss based model, the deviation from equilibrium 

state due to thermal stress forces is not equally distributed. It is shown that the weight of 
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the stress forces on deviation from equilibrium state is more, and the thermal forces are 

considered as a secondary parameter to influence the flow. 

3.5 An analysis on the second-order Boltzmann-Curtiss based 

constitutive model 

3.5.1 One-dimensional compression-expansion constitutive relation 

Considering the one-dimensional shock structure problem for diatomic and polyatomic 

gases in which the flow only evolves in x-direction, the second-order Boltzmann-Curtiss 

based constitutive relations (3.54) can be reduced [39] as, 

   

   
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1 1
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(3.58) 

where  
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R Q
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f

 
    

 
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(3.59) 

The normal stress in y- and z- directions are defined as 
1ˆ ˆ ˆ
2

yy zz xx     due to the 

traceless property of viscous stress tensor. The relation between the xx-component of the 

shear stress and the excess normal stress can be obtained by combining the first two 

equations of (3.58) as,  

 21ˆ ˆ9 4 4 ,
8

bulk xx

bulk

f D
f

      
 

 
(3.60) 

where 

   4 2 2 2ˆ ˆ81 72 16 32 24 16.bulk bulk xx bulk xxD f f f         (3.61) 
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Figure 3-6. Second-order model (diatomic and monatomic) relative to the first-order 

model in the compression-expansion flow. The horizontal and vertical axes represent the 

strain (force) term and the normal stress, respectively (Reproduced with permission from 

Myong [39]).  

Figure 3-6 illustrates the general features of the second-order constitutive relations 

(3.58) for diatomic and polyatomic gases in the one-dimensional compression-expansion. 

The second-order constitutive model gives the asymmetrical behavior of normal stress for 

the rapid expansion and compression of a gas, as shown in Figure 3-6.  Even though the 

details of the second-order constitutive models for monatomic and diatomic and 

polyatomic gases are different, the general patterns remain unchanged. Figure 3-6 shows 

the free-molecular asymptotic behavior with increasing degree of expansion and velocity-

shear, satisfying ˆˆ 1xx   or 0.xx p     Previous studies [39, 54, 60] showed 

that the solutions of the second-order constitutive models were well-posed (existence, 

uniqueness, and continuous dependence on the data) for all inputs on thermodynamic 

forces. 
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3.5.2 One-dimensional shear-velocity constitutive relation 

Considering the one-dimensional shear dominant flow problem where the flow only 

evolves in x-direction, and the temperature gradients are negligible, and velocity 

components are assumed zero in y- and z- directions. The reduced form of the second-order 

Boltzmann-Curtiss based constitutive relations (3.54) can be derived as,  
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   
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(3.62) 

The above mentioned relation (3.62) yields an equation of one variable ˆ
xx and additional 

equation for ̂  as, 
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2
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(3.64) 

where 
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(3.65) 

which follows from the stress constraint 

 
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1/2

23 9ˆ ˆ ˆ ˆ1 1 .
2 2
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(3.66) 

The normal stress in y- and z-directions are defined as ˆ ˆ ˆ
yy zz xx    due to the 

traceless property of viscous stress tensor.  

The general features of the second-order constitutive relations (3.62) for diatomic and 

polyatomic gases in the one-dimensional shear flow are illustrated in Figure 3-7. It is 

obvious that as the shear velocity gradient becomes very large, the shear stresses predicted 

by the second-order constitutive model become very small, compared to the first-order 

constitutive model, as shown in Figure 3-7. Such an asymptotic behavior indicates that the 
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velocity slip phenomenon caused by the non- Newtonian effect can be explained in a very 

simple way. The ultimate origin of this behavior can be traced to the kinematic term – 

specifically, the constraint on the normal ˆ( )yy  and shear ˆ( )xy stress. 

 

Figure 3-7. Second-order model (diatomic and monatomic) relative to the first-order 

model in the shear flow. The horizontal and vertical axes represent the strain (force) term 

and the shear and normal stress, respectively (Reproduced with permission from Myong 

[39]). 

3.6 Numerical Solver of the second-order Boltzmann-Curtiss 

based constitutive relations: iterative method 

The second-order Boltzmann-Curtiss based constitutive relations (3.54) consist of 10 

nonlinear implicit algebraic equations of the non-conserved variables ( , , , ,xx xy xz yy     

, , , , ,yz zz x y zQ Q Q   ) for known 14 variables ( , , , ,p T u v w   ). Owing to the highly 

nonlinear terms, it appears to be daunting task to develop a proper numerical method for 

solving the nonlinear system of equations. In present work, these nonlinear system of 

equations can be solved by the method of iterations based on previous studies [39, 60].  
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In the case of the three-dimensional problems, the stress and heat flux components 

( , , , ,xx xy xz xQ    ) on a line in the physical plane induced by thermodynamic forces 

such as velocity gradients  , , ,x x x xu v w T and temperature gradient  xT can be approximated 

as the sum of three solvers: first on  ,0,0,x xu T second on  0, ,0,0 ,xv  and third on 

 0,0, ,0 .xw Thus the stress and heat flux  , , , ,xx xy xz xQ    in case of x-direction can 

be decomposed as function of  , , ,x x x xu v w T as,  

       1 2 3, , , ,0,0, 0, ,0,0 0,0, ,0 .x x x x x x x xf u v w T f u T f v f w    (3.67) 

The iteration procedures can be designed individually for these solvers as follows. In 

the first solver on  ,0,0,x xu T which represents the compression-expansion of diatomic 

and polyatomic gases, the stress and heat flux  , ,xx xQ   can be determined based on 
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(3.70) 

For the negative 
1st

ˆ
xx and 

1st

ˆ ,xQ the stress and heat flux can be calculated as, 
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Since the equations are invariant under a transformation ˆ ˆ ,x xQ Q only two cases 

satisfying ˆˆ 0xx xQ  are considered. In these expressions, 
1 11

ˆˆˆ , ,xx xQ  are the initial guess 

solution given by the equations 
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(3.72) 

In the second and third solver on shear flow, the ˆ
xx can be obtained for a given 

0

ˆ
xy

through the equation 
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(3.74) 

Noted that, the term nY  is well defined for any bulkf  greater than the critical value 2 3.  

The ̂ and ˆ
xy  can be determined by using Eq. (3.64) and the stress constraint (3.66). 

When  0 2 3,bulkf   the ˆ
xx  can be calculated by replacing the following algorithm,  
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These solvers and their outcomes can be summarized [61] as following  :  
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Similarly, it is possible to evaluate the value of stress and heat flux in other two primary 

directions. In the case of y-direction, the stress and heat flux  , , , ,yx yy yz yQ    on a 

line in the physical plane induced by thermodynamic forces (velocity and temperature 

gradients) can be approximated as the sum of three solvers: 
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Here, 
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In case of z-direction, the decomposed stress and heat flux  , , , ,zx zy zz zQ    can be 

calculated as,  

       1 2 3, , , 0,0, , ,0,0,0 0, ,0,0 .z z z z z y z zf u v w T f w T f u f v    (3.78) 
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After convergence, the converged values are implemented back into dimensionless space 

as 
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3.7 Breakdown parameters  

The continuum (or near-equilibrium) breakdown parameter is essential in quantifying 

the gas flow regions in which the linear Navier-Stokes-Fourier hypothesis is no longer 

valid. There were several breakdown parameters appearing in the literature.  

3.7.1 Bird’s breakdown parameter 

Bird [62] first proposed a semi-empirical parameter based on the spatial derivative of 

flow properties such as density, pressure, temperature or velocity magnitude, for steady 

state expanding flows.  

8

mean d
B M

ds

 


  

(3.80) 

where M is the local Mach number. The spatial gradient along the streamline, can be 

calculated in Cartesian coordinates as follows: 
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(3.81) 

where u, v, and w represents the x-, y- and z-directional velocities, respectively. Moreover, 

if the other flow properties   like the temperature and the velocity, are introduced in order 

to take both viscous effect and heat transfer into account, the following breakdown 

parameters  e.g. , andD V TB B B B can be calculated: 

8

mean d
B M

ds


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


. 

(3.82) 

Then, by considering all the parameters, a breakdown parameters maxB  can be defined by 

 max max , , .D T VB B B B  (3.83) 

In case of steady expanding flows, it was known that the value of B of about 0.05 is a good 

criterion for identifying the near-equilibrium breakdown.  
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3.7.2 Boyd’s breakdown parameter 

However, it was soon recognized that there might be a problem when the Mach number 

approaches to zero at stagnation points. Boyd et al. [63] carried out an extensive numerical 

investigation of one-dimensional normal shock waves and two-dimensional bow shocks 

using DSMC and CFD results in order to determine an appropriate breakdown parameter. 

The gradient length local (GLL) Knudsen number, 

,mean
GLL

d
Kn

dl







 

(3.84) 

where l is some distance between two points in the flow field, was introduced and 

demonstrated to provide a better indication of continuum breakdown than B for 

compression-dominated hypersonic flows. The distance l was taken approximately along 

the line of the steepest gradients in the flow properties. For simplicity, d dl  was 

evaluated by    Then, the parameter is reduced to  
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(3.85) 

Also, by considering all the flow properties, the following breakdown parameter maxKn   

can be derived: 

 max max , , .D T VKn Kn Kn Kn  (3.86) 

It is apparent that there is a direct relationship between Eqs. (3.82) and (3.85);  

cos ,
8

B M Kn


 
. 

(3.87) 

where is the angle between gradient   and the flow direction.  

3.7.3 Rayleigh-Onsagar’s breakdown parameter 

The primary objective of the near-equilibrium breakdown parameter is to quantify the 

gas flow regions according to the breakdown of the linear hypothesis in the Navier-Stokes-

Fourier constitutive relation. Therefore, the problem of finding such a parameter is 
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essentially related to the knowledge of when the (first-order) Newtonian hypothesis breaks 

down, which in turn demands the derivation of the second-order non-Newtonian 

constitutive relation. 

A systematic method to derive the second-order non-Newtonian constitutive relation 

from the Boltzmann-Curtiss kinetic equation was recently developed by Myong [39, 64]. 

According to him, the resulting second-order constitutive relations (3.43) can be 

summarized in steady-state case as follows, 
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(3.88) 

Note that, the first-order cumulant expansion takes a form of hyperbolic sine function 

whose argument is given in terms of a quadratic function. Then the function 1k can be 

shown nothing but the Rayleigh-Onsagar dissipation function R̂ and is readily used to 

identify what regions are expected to derive significantly from near-local equilibrium 

assumption since it measures the level of calortropy production in irreversible process [64, 

65]; 
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(3.89) 

Here, ,N   are the reference values, while , , ,p T Q are the local values. The new near-

equilibrium breakdown parameter (3.89) is shown to avoid the problem in the Bird’s 

parameter that the Mach number approaches to zero at stagnation points. Further, it takes 

both viscous stress and heat transfer into account within a single framework [64].  

The distributions of the near-equilibrium breakdown parameters max max
ˆ, ,B Kn R   based 

on Bird, Boyd and Rayleigh-Onsagar dissipation function are calculated in multi-



 

67 

 

dimensional hypersonic rarefied gas flows around a cylinder. Argon gas is considered as 

working gas for all cases. Figure 3-8 compares the distributions of three near-equilibrium 

breakdown parameters for the first-order (NSF) and the second-order (NCCR) Boltzmann-

Curtiss based constitutive models. It can be noticed that 1) there exist two distinctive 

regions of gaseous compression and expansion in the frontal and rear parts of the cylinder, 

respectively; 2) the level of breakdown parameters is high at the bow shock structure and 

at the rear part of cylinder; and (3) the first-order model in general predicts high than the 

second-order model in the level of parameters. In addition, it can be found that all three 

breakdown parameters produce qualitatively similar results, but new and Bird’s parameters 

predict more similar distributions. 

 
(a) Boyd’s parameter       (b) Boyd’s parameter           (c) Rayleigh-Onsagar’s parameter 

Figure 3-8. Comparison of the breakdown parameters in hypersonic rarefied gas flow 

with M=5.48, Kn=0.5 [64]. 

 

 

  



 

68 

 

Chapter 4. Discontinuous Galerkin method 

 

“Mathematics is the language with which God wrote the universe.” 

                                                                                             — Galileo Galilei (1564-1642) 

 

 

In this chapter, numerical methods for solving the highly nonlinear partial differential 

equations are discussed in details. We first provide the brief summary of available 

numerical methods used in modern CFD, then the literature survey of discontinuous 

Galerkin (DG) method is provided. The space discontinuous Galerkin discretization of the 

compressible Navier-Stokes equations is discussed along with problem definition in DG 

framework, elemental transformation to the computational space, the foundation of basis 

functions, numerical integration, numerical inviscid and viscous fluxes, and numerical 

boundary conditions. Finally, we discuss the crucial part of DG method—implementation 

of limiters.  

4.1 Numerical methods for modern CFD 

4.1.1 Finite difference method 

The Finite difference (FD) method is the oldest and the simplest discretization approach 

for a conservation law based upon the differential form of partial differential equations 

(PDEs) to be solved. In FD method, a discrete approximation is obtained using Taylor 

series expansion approach for the occurring derivatives and replacing the analytical 

derivatives with the discrete ones. It results in a discrete problem that can be solved 

numerically. In this method, a topologically square network of lines is used to construct 

the discretization of the PDEs. There are some excellent references for describing these 

methodologies in [66-69]. 
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The great strengths of the FD method are that, they are easy to program and that they 

are extremely efficient in terms of computational cost. Due to their well-efficiency and 

well-analyzed numerical properties, FD method is often used for numerically sensitive and 

computationally costly problems, such as laminar-turbulent transition [70, 71]. High order 

versions of the FD method are easy to construct since the accuracy of the method is 

determined by the accuracy of the estimation of the discrete derivative [72]. There are some 

major drawbacks of the FD method. For examples, it is mainly applicable for structured 

grids and it is unable to preserve the conservative nature of the governing equations. 

However, this method can be implemented on unstructured grids using the reconstruction 

of a polynomial function [73], but it is a very complex problem for unstructured grids. 

Moreover, a high-order FD method requires smooth and regular grids for geometrically 

complex configurations regarding for stability issues [74]. 

4.1.2 Finite element method 

The main idea behind the finite element (FE) method is somewhat different than the 

finite difference discretization techniques discussed previously. The finite element method 

takes the differential equations, multiply them by an arbitrary test function, and integrate 

them by parts. The approximate solution is constructed as a linear combination of the so-

called basis (ansatz) functions, which are the piecewise polynomials. The choice of the 

basis and test function space adjudicates upon which type of FE method is obtained. There 

are some typical versions of FE methods: the Galerkin, Petrov-Galerkin, and Least-squares 

[75]. The finite element methods can be classified into two main classes of schemes, 

continuous and discontinuous methods. In contrast to the continuous finite element method, 

the discontinuous method needs no global continuity requirement for ansatz and test 

functions leading to the frequently-used term discontinuous finite element method. The 
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approximation space is not a subspace of the continuous solution space. In other words, the 

element is nonconforming. 

For the convection-dominated Navier-Stokes equations, the continuous FE method 

typically produces oscillations which can be handled by adding artificial dissipation terms 

to the formulation. There are various techniques for selecting the stabilization terms. In the 

streamline upwind Petrov-Galerkin [76] method, a stabilizing term is added in the weak 

formulation. As a result, it creates an upwind effect by weighting more heavily the upwind 

stream nodes within each element. A variety of other methodologies have been proposed 

to provide additional stability to the convection terms, monotone discrete systems and ease 

of implementation. A disadvantage of the conforming FE discretization compared to FD 

and FV is, that if explicit discretization in time is used, a coupled system of equations has 

to be solved for every time step. This is due to the coupling of the degrees of freedom at 

cell interfaces, where continuity requirements have to be fulfilled.  

4.1.3 Finite volume method 

The finite volume (FV) method is very famous numerical scheme in the CFD 

community. The FV method is based on the integral formulation of the conservation laws. 

In contrast to FD method, the FV method evaluates the fluxes through the discretization 

element boundaries. There are various views for selecting numerical fluxes. An upwind 

method is a very popular approach to convection-dominated problems [77, 78], where the 

flux choice is based on characteristics of wave propagation. 

The higher order versions of the FV method are generally obtained with the help of a 

so-called reconstruction procedure [79, 80], whereas an intermediate higher-order solution 

is constructed out of the piecewise constant element data of adjacent cells. The cells, which 

are included in the reconstruction, are depicted as the reconstruction stencil of the method. 

The problem with high-order FV methods working on unstructured grids is, that the 
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reconstruction stencil (especially in 3D) becomes extremely large [81] and the resulting 

scheme would be extremely complex to program, and more importantly, would be 

expensive in terms of CPU time. In general, real high-order is only achieved on relatively 

smooth and regular grids. A further drawback is, that due to the increased stencil, such a 

scheme is not suited for efficient parallelization because the stencil is quite large for the 

reconstruction and consequently a lot of information has to be exchanged between the 

parallel nodes. The same holds for high order FD methods. To conclude, in principle, FV 

methods are approved schemes for the simulation of flows around complex geometries, but 

a fundamental problem is to construct a high order scheme working on unstructured grids. 

4.1.4 High order spectral method 

In recent years, the high order numerical methods in computational fluid dynamics 

(CFD) have been widely used to effectively resolve complex flows that particularly require 

highly accurate treatment, such as wave propagation problems, vortex-dominated flows 

including high-lift configurations and flows over blunt bodies, flows with complex shock 

interactions, transitional flow over airfoils, as well as large eddy simulate on and direct 

numerical simulation of turbulence, all of which are difficult to simulate appropriately via 

classical low-order methods whose use in academia and industry remains widespread up 

to the present date.  

A class of schemes especially efficient for practical CFD applications are the so-called 

spectral/hp methods. Regarding the terminology, in a broad sense, the so-called “spectral" 

methods are those in which the numerical solution is represented by series of (modal) 

functions. In general, the solution accuracy enhances when the number of such modal 

functions is increased. In some approaches, the entire domain is represented by a single 

mesh element and the solution is represented entirely by one (large) function series. For 
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general applications, however, the hp methods are preferred, where the domain of interest 

is divided into a number of elements of typical size h and the solution within each element 

is represented individually through a local function series, normally consisting of a 

polynomial of maximum degree p. 

The choice of the polynomial space function is the main feature that distinguishes high-

order methods from finite difference and finite volume methods. Spectral hp methods can 

be classified based on the definition of the polynomial space (ansatz) function into several 

categories including; discontinuous Galerkin (DG), spectral difference (SD), spectral 

volume (SV), and flux reconstruction (FR) approach. An excellent reference for the 

explanation of spectral methods is [80]. 

4.2 Discontinuous Galerkin method  

The discontinuous Galerkin Method is probably the famous and most developed high-

order accurate method for arbitrary type grids. It is now emerging as a new class of methods 

in the field of the numerical solution of partial differential equations representing 

conservation laws. It was originally developed by Reed and Hill [82] in 1973 for a steady 

conservation law, namely the neutron transport problem. In 1978, this method was first 

time used for unsteady advection laws by Van Leer [83]. Le Saint and Raviart [84] in 1975, 

first analyzed DG for linear hyperbolic problems, derived a priori error estimates and 

proved rates of convergence.  A major contribution to the development of the Runge-Kutta 

DG (RKDG) methods for linear and nonlinear hyperbolic conservation laws were made by 

Cockburn and Shu [85-88]. The RKDG method is an essentially high-order Finite Element 

method using ideas of the high-order Finite Volume method, such as exact or approximate 

Riemann solvers to evaluate numerical fluxes, in order to handle discontinuities at the cell 
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interfaces. A more comprehensive historical overview of DG methods can be found in a 

review article by Cockburn et al.[89].  

From the last decades, the development of DG has gradually shifted to convection-

diffusion problems. The RKDG method was recently extended to handle convection-

diffusion systems by Cockburn and Shu [90]. Bassi and Rebay demonstrated the high-order 

accurate DG discretization for the compressible Euler and Navier-Stokes equations [91, 

92]. Motivated by pioneering work of Bassi and Rebay for compressible Navier-Stokes 

equations, various approaches for the discretization of the diffusion equation were 

developed. These include the local DG (LDG) approach [93], interior penalty (IP) 

approach[94], and Baumann and Oden (BO) approach[95]. An interesting overview and 

study within a unifying framework of all these approaches can be found in Arnold et al.[96], 

where their consistency, stability, and order of accuracy are discussed. The order of 

accuracy of all these approaches for the diffusion equation is limited to p + 1, with p the 

degree of the solution polynomials. The local DG approach developed by Cockburn and 

Shu provides the stability and convergence with error estimates. The LDG approach may 

handle higher order ( 2 ) derivatives such as the viscous second order terms in the Navier-

Stokes equation.  Recently, Dumbser et al. [41] introduced the ADER-DG approach, which 

couples the ADER [89] with the spatial DG approach. With the aid of ADER, they 

developed arbitrary high-order schemes for hyperbolic conservation laws not only in space 

but also in time. 

Many other researchers made significant contributions to the various aspect of DG 

methods. A quadrature-free DG formulation was investigated by Atkins and Shu [97]. An 

analysis based on the wave propagation properties of the DG method was performed by 

Hu et al. [98]. A simplified treatment of curved wall boundaries for the Euler equations 

with the DG method was proposed by Krivodonova and Berger [99]. A significant 
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contribution in space-time implicit DG methods for hyperbolic conservation laws were 

done by Lowrie et al. [100], Van der Vegt and its co-authors [101-103]. In the area of DG 

method based turbulent flow simulations, a very little experience has been gained to till 

date. Collis performed a numerical study of DG for the simulation of turbulent flows with 

the aid of direct numerical simulation (DNS) [104]. The application of DG to the Reynolds-

Averaged-Navier-Stokes (RANS) equations has only been reported by Bassi and Rebay 

[105]. For closure of the RANS equations, they use the fully coupled k   turbulence 

model equations. Later, Bassi and Rebay extended their solution algorithm, where 

reliability conditions were added to the   equation in order to increase the numerical 

robustness of the method [106]. 

4.3 Problem definition in DG framework 

In order to construct a DG discretization system for  dimension conservation laws 

(3.50), let’s consider a bounded domain   with boundary  . The boundary is 

decomposed into a region of Dirichlet boundary D  and a region of Neumann boundary 

N  i.e., D N    , 
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(4.1) 

where Dg  and Ng  are the boundary operators derived from the boundary conditions. 

These operators can be a function of information either at one side or both sides of the 

boundary interfaces. The
2U  is the vector of conservative variables; 

inv ( 2) F  

is the inviscid flux tensor; and 
vis ( 2) F is the viscous flux tensor. 
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Since the spatial discretization of governing equation (4.1) cannot be accomplished 

with the standard DG method due to the presence of higher order derivatives in viscous 

terms. Therefore, a mixed DG formulation developed by Xiao and Myong [58, 107] is 

employed to discretize the governing equation. In this formulation, an auxiliary variable 

vector   is introduced to handle the second-order derivatives in viscous stress and heat 

flux. Therefore, the auxiliary variable vector  can be defined as the derivative of either 

primitive or conservative variables U. In order to apply the mixed DG formulation, Eq. 

(4.1) can be rewritten as a coupled system for U and  as 

   inv vis

0,

, 0.
t

 



    

U

U
F U F U

 

 

(4.2) 

It may be noticed that the introduction of an extra set of equations for the auxiliary variables 

leads to additional computational cost that is the main drawback of the mixed DG 

formulations.  

In FEM-based methods, auxiliary variables are only utilized as an intermediate step in 

the derivation of the discretized system. Later, they will eliminate it by reforming the 

equations from the flux formulation to the primal formulation. Nonetheless, unfortunately, 

it is not possible to eliminate the auxiliary system for solving high-order Boltzmann-based 

models in which viscous fluxes are a nonlinear and implicit function of the conservative 

variables and their derivatives. Thus, in present work, instead of reformulating the 

governing equations in primal (bilinear) form, the mixed-DG formulation is utilized and 

auxiliary equations are solved besides the primary equations. 

4.3.1 Discontinuous Galerkin spatial discretization 

In order to discretize the coupled system of equations (4.2), the domain  can be 

approximated by h  such that h   as 0.h   Accordingly, the approximated domain 

h  is tessellated into a collection of EN  arbitrary non-overlapping elements e  such that 
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 .h e   In present thesis, the discretization elements e  are lines in one-dimensional, 

triangles/rectangular in two-dimensional and tetrahedrons in three-dimensional spaces.  

The boundaries of every element e  are divided into two parts: interfaces-oriented 

boundaries e

F  and element-oriented boundaries e

B .  The collection of the interfaces and 

boundary faces of the tessellated domain h  are denoted by  and h hI , respectively. 

, ,
j j

e e

h h

e e

h F h B

j j
e e

I
   
   

      

(4.3) 

where 
j

e

F denotes the thj  face of the local element e . Consider the finite element space 

(broken space) hV  defined by 

    
2 2

2 : ,
e

k

h h h h e e hL 
 


            V  

(4.4) 

for some polynomial degree 0,k  being  k

e  the space of polynomial functions of 

degree at most k on the element e  and  2

hL   represents the space of functions, which 

are squared Lebesgue integrable over the approximated domain .h  

If the space of the polynomial functions are defined appropriately in a standard region, 

the numerical solution in local element e  can be expressed in terms of a polynomial field 

that accumulates the multiplication of local degree of freedoms with corresponding 

polynomial functions of degree k as, 

     

   

1

1

, ,

.

k

e e

k

e e

N
k

kh h
k

N
k

kh h
k

t U t b

b







 





U x x

x x

 

 

(4.5) 

Here the expansion coefficients  e

k

h
U t and e

k

h
 denote the degree of freedom of the 

numerical solution and of the test function in an element ,e  respectively, and kN  denotes 

the number of basis functions required for approximating the smooth and continuous 
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solution inside the space of the polynomial functions. The 1kN   basis functions  kb x  are 

a base for the polynomial functions .k
The exact solution of the conservative variables 

and their derivatives can be approximated by the numerical solution obtained in every 

element as follows 

     

     

1 2

1

1 2

1

, , ,

.

E

E

E

E

N
Ne

h h h h h
e

N
Ne

h h h h h
e

t U t U U U




      

       

U x U x

x x 

 

 

(4.6) 

 

4.3.2 Elemental formulation  

Taking the product of the conservation laws with vector  and the auxiliary equations 

with tensor   and then integrating over the solution domain, we obtain its weighted 

residual form 

 

   inv vis

0,

, 0.

d

d
t





    

  

       
 





U

U
F U F U

 

 

(4.7) 

Now we perform integration by parts using Gaussian divergence theorem on the advection 

and viscous term and we get the basic form of the DG approach for the system of 

conservation law – the weak formulation of the problem (4.2), 

   

   

inv inv

vis vis

0,

, , 0,

d d d

d d d
t

d d


  

  

 

        

  

         
 

          


  

  

 

U n U

U
F U n F U

F U n F U

 

 

(4.8) 

where n represents the outward normal vector. Splitting the volume integral over h  into 

sum of the integrals over the local elements e  and using the divergence theorem, Eq. 

(4.8) leads to the elemental formulation of the governing equations as 
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   

   

inv inv

vis vis

0

0.

e e e
e

e e e

e

e e

e e e

e e e

e e

d d d

d d d
t

d d

  


  



 

           
   

              

    


       
 

   

  


 

U n U

U
F U n F U

F U n F U

 

 

(4.9) 

Here ed  denotes the boundaries of the local element.  

The solution U inside each element is approximated by a linear combination of the test 

function . In addition, if we choose the same discontinuous test functions and ansatz 

functions for the solution of the auxiliary variable   as for the solution U itself i.e.

  = ,h h kb   x we obtain the following semi-discrete system of k equations for the 

generic element e : 

    

    

inv vis

inv vis

0,

,

, 0.

e e e

e e

e

k h e k h e k h e

k h e k h h h e

k h h h e

b d b d b d

b d b d
t

b d

  

 



          

 

     


       


  

 



U n U

U F U F U n

F U F U

 

 

(4.10) 

The system of equations introduced in Eq. (4.10) is not solvable since the degree of 

freedom related to every element is not linked to the degree of freedoms in another element 

of .h  Thus, establishing a weak inter-element connection though introducing an 

appropriate monotone numerical fluxes at interfaces and boundaries of elements e  is 

essential to obtain an approximate spectral solution.  

4.3.3 Weak DG formulation 

In order to handle the discontinuities occurring in the boundary integral of Eq. (4.10), 

we have to approximate the physical fluxes using the following numerical fluxes such as 
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 

   

   

inv

vis

, ,

, ,

, , , , .

e e

e e

e e

L R

k h e k auxiliary h h e

L R

k h e k inviscid h h e

L L R R

k h h e k viscous h h h h e

b d b d

b d b d

b d b d

 

 

 

    

    

       

 

 

 

U n H U U n

F U n H U U n

F U n H U U n

 

 

(4.11) 

Here the ( ) and ( )L R   notation is used to indicate the trace value taken from the interior 

and exterior of the element, respectively. If we split the element boundary integrals into 

inner face integrals and domain boundary face integrals, we finally arrive at the mixed 

weak DG formulation of the conservation laws (4.2) on the local element e : 

 

 

    

 

\

\

,

, 0,

, , , ,

,

e

e

e
e

e

e

k h e

L R

k auxiliary h h e

e

b L R

k auxiliary h h e k h e

e

k h e

L R L L R R

k inviscid h h viscous h h h h e

e

b L R

k inviscid h h visco

b d

b d

b d b d

b d
t

b d

b



 


 



 

 

  

       






     

 



 

  



 



H U U n

H U U n U

U

H U U H U U n

H U U H   

    inv vis

, , ,

, 0.

e

e

b L L R R

us h h h h e

e

k h h h e

d

b d

 

















    


      






U U n
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(4.12) 

The resulting formulation is called a two-step mixed-DG method in which the test functions, 

accordingly to Galerkin method are chosen to equal to the basis (ansatz) functions.  In 

mixed DG method, the auxiliary equations are initially solved at beginning of every step, 

then the gradients of primary variables eh
  are updated based on the global solutions eh

U

at current time step. Afterwards, the primary system is solved, using the values of eh


obtained from step one. 

All the boundary conditions are be imposed in a weak manner. We construct an exterior 

boundary state  , ,b L

h h BCU U U  which is a function of the interior state L

hU and the known 
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physical boundary data .BCU Hence the numerical boundary flux is computed as 

 , ,b L

h h BCU U U  

 

 

 

, ,

, ,

, , , .

b L b

auxiliary auxiliary h h

b L b

inviscid inviscid h h

b L L b b

viscous viscous h h h h





  

H H U U

H H U U

H H U U

 

 

(4.13) 

In this work, we implemented the approximate Riemann solvers of Lax-Friedrich solver 

for inviscid numerical flux .inviscidH  Moreover, the choice of the fluxes auxiliaryH  and viscousH

is the crucial part of the weal formulation for DG methods for higher order derivatives, 

since there is no counterpart or experience from the Finite Volume method. Therefore, the 

choice of numerical fluxes auxiliaryH  and viscousH for different approaches has been adopted 

from the theoretical and numerical studies of purely diffusive model problems.  

All the integrals appearing in the elemental equations are calculated by means of 

numerical quadrature rule with a number of integration points consistent with the accuracy 

required. By assembling all the elemental information in Eq. (4.12), it leads to a system of 

ordinary differential equations (ODEs) in time which can be written as 

( )
d

dt


U
M R U  

(4.14) 

where M is the mass matrix, U is the global vector of the degree of freedom, and R is the 

residual vector.  The elements of mass matrix is defined as 

.k j
E
b b d M  (4.15) 

In case of orthogonal basis functions 

0, ,k j
E
b b d k j   M  (4.16) 

Thus the elemental mass matrices possess diagonal form. 
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4.4 Elemental transformation to computational space 

4.4.1 One-dimensional elemental transformation  

For one-dimensional problems, the local element e  are equally spaced 1i ix x x    

and the space coordinate x in element e is linked to the local spatial coordinate   in a 

standard element  1,1 ,st

e   see Figure 4-1, under the affine sub-parametric 

transformation  : st

e e eT    defined by 

1

2 1, .i
e

i i

x x
x

x x





   


 

(4.17) 

The Jacobian of this transformation is given by 

.
2

x x




 
 


x
J 

 
(4.18) 

The inverse of the transformation 
1 : st

e e eT    is given by 

1

1 1
, .

2 2

st

i i ex x x
 



 
     

(4.19) 

In addition, the space coordinate x in element e may be transformed to the local spatial 

coordinate   in a standard element  0,1 ,st

e  as defined in Figure 4-2, under the affine 

sub-parametric transformation : st

e e eT   , 

1

, .i
e

i i

x x
x

x x





  


 

(4.20) 

In this case, the Jacobian of this transformation can be evaluated as 

.
x

x





  


x
J 

 
(4.21) 

While the inverse of the transformation 
1 : st

e e eT    is given by 

  1 21 , .st

ex x x        (4.22) 
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Figure 4-1. Transformation from physical line elment to computational standard 

element in interval [-1,1]. 

 

Figure 4-2. Transformation from physical line elment to computational standard 

element in interval [0,1]. 

4.4.2 Two-dimensional elemental transformation  

Rectangular element 

A reference or standard rectangular element 
st

e  is defined using a local Cartesian 

coordinate system    , 1,1    as defined in Figure 4-3. The reference (standard) 

rectangular element can be mapped from the computational space  ,   to an arbitrary 

rectangular element in the physical space  ,x y  under the linear transformation 

: st

e e eT   defined by 

   

   

1 2

1 2

1
1 1 ,

2

1
1 1 ,

2

x x x

y y y

 

 

     

     

 

(4.23) 
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where        1 1 2 2 3 3 4 4, , , , , , and ,x y x y x y x y  are the physical coordinates of the vortices 

of e . The Jacobian of this mapping is given by 

 

 
2 1 rectangle

2 1

0, 1 1
A ,

0, 4 4
e

x xx y

y y 


  
   

  
x

J 
 

(4.24) 

where 
rectangleAe is the area of the rectangle element e . The inverse of the transformation 

1 : st

e e eT     is given by 

 

 

1 2

1 2

1
2

1
2

x x x
x

y y y
y





  


  


 

(4.25) 

where 2 1 2 1, and .x x x y y y        

Triangular element 

A reference triangle can be mapped from the physical space  ,x y to computational 

space  ,  with the linear transformation : st

e e eT    

 

 

1 2 3

1 2 3

1 ,

1 ,

x x x x

y y y y

   

   

    

    
 

(4.26) 

while the Jacobian of the transformation is given by 

 

 
     1 2 3 2 3 1 3 1 2

,
2 .

,
tri

x x

x y
J x y y x y y x y y

y y

 

 

 

 

  
         

 

 

 

(4.27) 
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Figure 4-3. Transformation from physical rectangular elment to computational standard 

rectangular element in interval [-1,1]. 

 

Figure 4-4. Transformation from physical triangular element to computational triangular 

element in interval [0,1]. 

Here, tri  is the area of physical triangle element which is given by 

     

1 1

2 2

3 3

1 2 3 2 3 1 3 1 2

1
1

1
2

1

1
.

2

tri

x y

x y

x y

x y y x y y x y y

 

       

 

(4.28) 

The inverse transformation from computational space to physical space 
1 : st

e e eT    is 

given by 
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   

   

3 1 1 3 3 1 1 3

1 2 2 1 1 2 2 1

1

1
.

x y y y x x x y x y
J

x y y y x x x y x y
J





       

       

 

(4.29) 

 

Figure 4-5. Transformation from physical tetraherdral element to computational 

tetraherdral element in interval [0,1]. 

 

4.4.3 Three-dimensional elemental transformation  

A tetrahedral element in physical space  , ,x y z  can be transformed to a canonical 

reference tetrahedral in a computational space  , ,    system under the linear mapping 

: st

e e eT     as shown in Figure 4-5. The coordinate transformation    , , , ,x y z   

is given as 

  , , | 0 1; 0 1 ; 0 1 ,                    (4.30) 

such that  

   

   

   

1 2 3 4

1 2 3 4

1 2 3 4

, , 1 ,

, , 1 ,

, , 1 .

x x x x x

y y y y y

z z z z z

        

        

        

      

      

      

 

 

(4.31) 

The Jacobian of the transformation is given as  
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(4.32) 

The inverse transformation    , , , ,x y z    is given as 
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(4.33) 

Note that, tet is the volume of real tetrahedral in xyz-system 
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With respect to the coordinate transformation into the computational space  , ,   , we 

have 

,xdxdydz J d d d     (4.35) 

 and the transformation gradients of the form 
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(4.36) 

 

4.5 Foundation of basis functions 

The choice of the basis functions is ambiguous and has a little contribution to the 

accuracy, but no effect on the overall results of the DG method. Both orthogonal and non-

orthogonal basis functions have been used. Apart from being orthogonal and non-

orthogonal, basis function may be modal and nodal. In this thesis, we employed modal 

basis function, with increasing order of accuracy, higher order polynomials are included in 

the approximation which are in hierarchical nature. It means that 0 1 2,
kNb b b     are included 

along with the 1kNb   basis functions in 1kN   order approximation. With the modal 

expansion, the position of the degree of freedom e

k

h
U in the reference domain is not 

important. The approximation solution can be defined in terms of modal expansion as, 

     
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where,  kb x is the Jacobi polynomials. The alternate of modal basis functions are the 

nodal basis functions, which apart from increasing the mode of polynomial, increase the 

nodes on which to evaluate the degree of freedom. Nodal basis functions are not 

hierarchical meaning the basis functions for an 1kN   accuracy cannot be constructed from 

the 0 1 2,
kNb b b     basis functions. Also the reconstruction of the approximate solution is 

different. In nodal basis function, the position of the degree of freedom e

k

h
U in the reference 

domain is important as a particular node corresponds to a particular basis function. Hence 

information about the position of the degree of freedom is stored in the solution array. In 

term of nodal expansion, the approximation solution can be defined as, 
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(4.38) 

where  kl x is the Lagrangian polynomials defined as 
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(4.39) 

In the present thesis, we use orthogonal Jacobi polynomials  ,

nP   which is also called 

hypergeometric polynomials. These are defined as the polynomial solutions of the Strum-

Liouville problem which can be given as 
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(4.40) 

In the interval  1, 1 , the Jacobi polynomials can be expressed as 
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(4.41) 

The Jacobi Polynomials have the orthogonal property 
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The Legendre polynomials  0,0 ,nP   which are a generalisation form of the Jacobi 

polynomials (by setting 0   ) can be given by 
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(4.43) 

 

 

Figure 4-6. Number of required basis (polynomial) functions up to 5th order. 

 

4.5.1 Number of required basis functions 

The total number of required basis function for a reconstruction of a complete set bases 

of order p is a function of degree p and dimension :  

 
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k
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p k
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(4.44) 

For instance, the number of required basis function of order p in arbitrary-dimension is 

given by 
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(4.45) 

Figure 4-6 provides the required number of basis functions for one-dimensional, two-

dimensional and three-dimensional discontinuous Galerkin method.  

 

Figure 4-7. Modes of one-dimensional Legendre basis functions up to 5th order. 

 

 

Figure 4-8. Modes of one-dimensional scaled Legendre basis functions up to 5th order. 
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4.5.2 Basis functions for one-dimensional problem 

Due to different features as orthogonality and recursive formula, Legendre polynomials 

are mainly used. In one-dimensional DG method, Legendre polynomials are used as the 

basis functions such as,  

 0,0 .i ib P   (4.46) 

The one-dimensional Legendre basis functions up to 5th order are defined in Eq. (4.47) and 

their modes are given in Figure 4-7  
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The scaled Legendre polynomials are defined as: 
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(4.48) 

The one-dimensional scaled Legendre basis functions    i nb   up to 5th order are 

given in Eq. (4.49) and their modes are plotted in Figure 4-8. 
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4.5.3 Basis functions for two-dimensional problem 

4.5.3.1 Basis functions for rectangular elements  

An orthogonal basis for the rectangular element can be constructed as a tensor product 

of the so-called principal function defined as  
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(4.50) 

where  i  and  j  are the scaled Legendre polynomials. With the definitions of the 

principal functions 
a

i and ,b

j  the rectangular basis functions are constructed as their 

tensor product 

     , .a b

k i jb        (4.51) 

The two-dimensional scaled Legendre basis functions for rectangular element up to 4th 

order are defined in Eq. (4.52) and their modes are represented in Figure 4-9. 
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(4.52) 
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Figure 4-9. Complete scaled Legendre polynomial space, based on Pascal’s triangle, for 

full standard rectangular expansion up to 4th order. 

 

 

Figure 4-10. Complete scaled Legendre polynomial space, based on Pascal’s triangle, 

for full standard triangular expansion up to 4th order. 
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4.5.3.2 Basis functions for triangular elements 

An orthogonal basis for the triangle can be constructed as a generalized tensor product 

of the so-called principal functions defined as 
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(4.53) 

The basis functions for the standard triangle element are defined using the principle 

functions as 
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(4.54) 

The two-dimensional hierarchical basis functions for the standard triangle element up to 

4th order are defined in Eq. (4.55) and their modes are presented in Figure 4-10. 
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(4.55) 
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4.5.4 Basis functions for three-dimensional problem 

An orthogonal basis for the tetrahedral element can be constructed as a generalized 

tensor product of the so-called principal functions defined as 
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(4.56) 

The basis functions kb  for the standard tetrahedral element are defined in terms of the 

principle functions as 

   
2 2

, , 1 1 1 2 .
1 1

a b c

k i ij ijkb
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       

     
 

(4.57) 

The three-dimensional hierarchical basis functions for tetrahedral element up to second-

order are given as: 
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(4.58) 

 

4.5.5 Derivatives of basis functions 

In case of one-dimensional problems, the basis functions are defined as 

    .k kb x b x   (4.59) 
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Then the derivatives of the basis function in the computational domain are given by 

.k kb b

x x





  


  
 

(4.60) 

In case of two-dimensional problems, the basis functions kb  are defined as 

      , , , , .k kb x y b x y     (4.61) 

Then the derivatives of the basis function in the computational domain are given as 
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(4.62) 

In case of three-dimensional problems, the basis function kb  is defined as 

        , , , , , , , , z , , .k kb x y z b x y          (4.63) 

Then the derivatives of the basis function in the computational domain are given as 
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(4.64) 

4.5.6 Evaluation of mass Matrix 

In section (4.3), the elemental mass matrix M is introduced. The integration required 

for the elements M is performed in the three-dimensional computational domain 
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(4.65) 

Here x
J   denotes the transformation Jacobian. Since, the orthogonal basis function are 

employed in present work, therefore, the constant ijC  can be defined as 
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  
 

(4.66) 

 

 

Figure 4-11. A plot of the computed mass matrix for complete orthogonal polynomial 

space up to 4th order for full tetrahedral expansion. 

 

4.6 Numerical integration in computational domain  

In many cases, it is not possible to integrate the expression in closed form. Therefore 

numerical integration must, therefore, be utilized. If one is using sophisticated elements, it 

is almost always necessary to use numerical integration. Similarly, if the application is 

complicated, e.g., the solution of a nonlinear ordinary differential equation, then even 

simple one-dimensional elements can require numerical integration. Many analysts have 

found that the use of numerical integration simplifies the programming of the element 

matrices. This results from the fact that lengthy algebraic expressions are avoided and thus 

the chance of algebraic and/or programming errors is reduced. There are many numerical 
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integration methods available. Only those methods commonly used in finite element 

applications will be considered here. 

In discontinuous Galerkin weak formulation (4.12), the surface and volume integrals 

are needed to be a weighted approximated as a weighted summation of function evaluation 

at a number of points. The choice of quadrature rule limits the order of DG method, 

therefore, choosing an appropriate numerical integration method is essential to obtain 

highly accurate DG solutions. 

4.6.1 Numerical integration in one-dimensional space 

The Gaussian quadrature of order qN  for the standard interval  1, 1  is given as 

follows: 

   
1

11

,
qN

i i

i

f d f   


  
(4.67) 

where i  and i  are the Gaussian quadrature points and weights, respectively. Noted that 

a Gaussian quadrature using qN  points may provide the exact integral if  f   is a 

polynomial of order 2 1qN   or less. The Gaussian quadrature points and weights of order 

qN  in interval  1, 1  are provided in Table E.1 (9.2.4Appendix E). In addition the 

numerical integration of a polynomial function  f  on a reference line of unit length 

 0, 1 is approximated as  

   
1

10

.
qN

i i

i

f d f   


  
(4.68) 

The quadrature points and weights of the unit reference line in interval  0, 1  are provided 

in Table E.2 (9.2.4Appendix E).  Figure 4-12 shows the distribution of the Gauss-Legendre 

quadrature points inside and over the one-dimensional master element.  
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Figure 4-12. Number of required quadrature points for integrating inside and over one-

dimensional master element for (a) p=0, (b) p=1, and (c) p=2 order of space polynomials. 

4.6.2 Numerical integration in two-dimensional space 

Integration on standard quadrilateral (square) element   , : 1 , 1stQ         

usually relies on tensor product of the one-dimensional Gaussian quadrature formulas 

defined in Eq. (4.67). Thus, the application of Eq. (4.67) to a two-dimensional integral on 

a standard quadrilateral element on    1,1 1,1    yields the approximation  

     
1 1

1 11 1

, , , ,
q q

st

N N

i j i j
Q

i j

f d d f d d f          
  

     
(4.69) 

where ,i j   the quadrature are points and ,i j   are the weights of the respective 

quadrature points of order .qN   Figure 4-13 shows the distribution of the Gauss-Legendre 

quadrature points inside and over the two-dimensional master triangular element. 

 

Figure 4-13. Number of required quadrature points for integrating inside and over the 

two-dimensional master triangular element for (a) p=0, (b) p=1, and (c) p=2 order of 

space polynomials. 

In case of two-dimensional standard triangle (unit triangle) element 

  , : 0 , , 1stT           integration may be calculated by using tensor product-type 
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Gaussian quadrature formula, but it may be less efficient [108].  The integration of the 

standard triangular element on    0,1 0,1  can be evaluated by symmetric quadrature 

formula defined in [108, 109] as 

     
11

10 0

1
, , , ,

2

q

st

N

i i i
T

i

f d d f d d f



          




      
(4.70) 

where  ,i i   are the quadrature points located inside the standard triangle, i  are the 

normalized weights with respect to the triangle area and 
qN  is the number of quadrature 

points. Noted that the resulting quadrature should use as less as a possible number of 

quadrature points to achieve as high as possible accuracy, we also would like the quadrature 

points to possess some kind of symmetry. The typical points for symmetric quadrature 

rules on the unit triangle are provided in Table E.3 (9.2.4Appendix E). Figure 4-14 shows 

the distribution of the Gauss-Legendre quadrature points inside and over the two-

dimensional master rectangular element. 

 

Figure 4-14. Number of required quadrature points for integrating inside and over the 

two-dimensional master rectangular element for (a) p=0, (b) p=1, and (c) p=2 order of 

space polynomials. 
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Distribution of all quadrature points 

 

Distribution of surface quadrature points 

 

Distribution of volume quadrature points 

 

 

Figure 4-15 Number of required quadrature points for numerical integration in a 

three-dimensional tetrahedron element for (a) p=0, (b) p=1, and (c) p=2 order of 

space polynomials. 

4.6.3 Numerical integration in three-dimensional space 

In present work, we are using the standard tetrahedral (unit tetrahedral) element 

  , , : 0 , , , 1stTet              for three-dimensional simulations. The 

integration of the standard tetrahedral element may be evaluated by symmetric quadrature 

formula defined in [108, 110] as 
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(4.71) 

The symmetric quadrature points for a unit tetrahedral element are given in Table E.4 

(9.2.4Appendix E). Figure 4-15 shows the distribution of the symmetric quadrature points 

inside and over the surface in the three-dimensional master tetrahedral element. 

4.7 Initialization of DG solver  

Let the initial condition be defined in the physical space   as 

   0,0 U x U x  (4.72) 

Replacing the left-hand side with the approximation solution 

   0,0h U x U x  (4.73) 

where, as previously defined 

     
1

,
pN

h i i

i

t t b


U x U x  
(4.74) 

Casting this into the weak form, multiplying Eq.  (4.73) by the test function and integrating 

over the element of the domain 

       0,0h i ib d b d
 

   U x x U x x  (4.75) 

From the Eqs. (4.74) and (4.75), we get  

         0

1

0
pN

i i j i

i

b b d b d
 



 
    

 
 U x x U x x , 

(4.76) 

factoring out the degree of freedom, 

         00i i j ib b d b d
 

    U x x U x x  (4.77) 

 where the integral on the left-hand side of Eq. (4.77) is the mass matrix 
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    .i jb b d


 M x x  (4.78) 

Thus, finally the initialization becomes 

     0

1
0 .i ib d


 U U x x

M
 

(4.79) 

 

4.8 Time discretization of the problem 

The spatial discretization of the governing Eq. (4.14)  with discontinuous Galerkin 

method results to a system of semi-discrete ordinary differential equation in time 

( ),
d

dt


U
M R U  

(4.80) 

where M is the mass matrix, U is the global vector of the degree of freedom, and R is the 

residual vector. In our present work, explicit time scheme of the solution is performed with 

high-order strong stability preserving (SSP) Runge-Kutta methods that preserve the 

monotonicity of the spatial discretization in any norm or semi-norm coupled with first-

order forward Euler time stepping. The explicit third-order  accurate SSP Runge-Kutta 

method proposed by Shu and Osher [111] is employed, 
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(4.81) 

where 
1

M  is the inverse of the mass matrix.  

4.8.1 Time step calculation 

The time step value t  for nonlinear system of differential equations can be given by 

   
.

ˆ ˆ ˆ ˆ ˆ ˆ
I

I x y z x y z

inv inv inv vis vis vis
I I

t CFL
C


 

      
 

(4.82) 
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Here, CFL is the Courant–Friedrichs-Lewy condition  1 .CFL   The inviscid spectral 

radii are defined as 

 

 

 
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(4.83) 

and the viscous spectral radii are given by 

 

 

 

2

2

2

4ˆ max , ,
3 Pr

4ˆ max , ,
3 Pr

4ˆ max , .
3 Pr

x

x

vis

y

y

vis

z

z

vis

S

S

S

 

 

 

 

 

 

  
    

  

  
    

  

  
    

  

 

(4.84) 

Here, the C denotes the constant parameter that is set to be zero for zero-order Boltzmann-

Curtiss based model; 2 for first-order Boltzmann-Curtiss based model; and 4 for second- 

order Boltzmann-Curtiss based model. The variables ˆ ˆ ˆ, ,and ,x y zS S S    illustrate the 

projections of the control volume on the , and y z x z x y    planes, respectively. These 

may be defined as 

1 1 1

1 1 1ˆ ˆ ˆ, , ,
2 2 2

F F FN N N
x y z

x y zJ JJ
J J J

S S S S S S
  

         
(4.85) 

where , andx y zS S S  denote the x-, y- and z-component of the face vector .S S n  The 

FN  denotes the number of faces of local element.   

4.9 Numerical flux functions 

Due to the discontinuous space and individual elements, the numerical flux function 

provides the necessary communication of flow information between elements on the “left” 

and “right” sides of a given interface. Traditionally, with the local element e and 
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corresponding outward unit normal traditionally designated as the L-side and the neighbor 

element is designated as the R-side. At a minimum, the numerical flux function must satisfy 

the consistency relations 

   

   

, ,

, , .

h h h

L R R L

h h h h



 

H U U H U

H U U H U U
 

(4.86) 

For the viscous flux function treatment, various schemes exist which are provided in depth-

discussion by Arnold [112]. In this thesis, we employed first Bassi-Rebay scheme (BR1) 

for viscous flux treatment. In this scheme, a central discretization is proposed for the 

auxiliary as well as the viscous fluxes: 

   

      vis vis

1
, ,

2

1
, , , , , .

2

L R L R

auxiliary h h h h

L L R R L L R R

viscous h h h h h h h h

 

     

H U U U U

H U U F U F U

 

(4.87) 

On the other hand, the inviscid flux normal trace is constructed with the theory of the Finite 

Volume (FV) method—well known Riemann problem. Many choices exist in literature, 

such as Lax-Friedrichs, Roe, van Leer, Harten-Lax-van Leer, exact Godunov and many 

others. However, in contrast to FV methods, the particular choice of flux function becomes 

less important for at least two reasons. First, the interface integral does not carry the entire 

burden for the element update. Second, the inter-element solution jumps become 

increasingly small at an exponential rate with increasing order of the DG approximating 

space. Therefore, due consideration must be given to the sophistication, difficulty of 

implementation, and cost of computation. It turns out that the Lax-Friedrichs flux performs 

quite well compared to other traditional and more complex functions. The function is given 

by 

       inv inv

max

1 1
, ,

2 2

L R L R L R

inviscid h h h h h h   
 

H U U F U F U U - U  
(4.88) 

where max  is the spectral radius (maximum eigenvalue) of the flux Jacobian  
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


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F
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(4.89) 

along the direction n normal to the edge and is equal to: 

max .sound soundC C     V n V  (4.90) 

Here, soundC  is the sound speed.  

4.10 Numerical boundary conditions 

According to the flow conditions which have to be found at specific regions of the 

computational domain, the appropriate boundary conditions have to implement to the system 

of the governing equations. The numerical implementation of the boundary conditions is tricky 

and it demands special attention. The accuracy of the simulation, the rate of residual 

convergence, and stability of the numerical solver are strongly dependent on the 

implementation of the boundary conditions. 

All boundary conditions may be imposed weakly. For this purpose, we construct an exterior 

boundary state variable  , ,b L

h h BCU U U which is a function of interior state 
L

hU  and the known 

physical boundary data .BCU  

4.10.1 Far-field boundary 

Two requirements must be satisfied in numerical implementation of the far-field boundary 

conditions: first, the cutting of the physical domain should not have any considerable effect on 

the flow solution as compared to the unbounded domain and second, any outgoing noise should 

have no influence on the flow field. Inadequate truncation of the domain can lead to a severe 

slowdown of steady-state convergence rate. This issue is more sensible in the simulation of 

subsonic and transonic flow problems which are naturally elliptic and parabolic. 

Based on the concept of characteristics variables, all information are transported into the 

computational domain along the characteristics waves when the incoming flow is supersonic. 

Therefore, all eigenvalues have the similar sign, and boundary operator is solely defined based 

on conservative variables at boundary side as 
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(4.91) 

where the subscript   denotes the free-stream values. In addition, the numerical flux functions 

— auxiliary, inviscid, and viscous – can be approximated as 
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b L b
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(4.92) 

 

4.10.2 Inviscid wall boundary 

In case of an inviscid flow, the fluid slips over the surface and it does not penetrate into 

the wall. Since there is no friction force, the velocity vector must be tangent to the surface 

e.g., there is no flow normal to the surface, i.e.  

0, u n  (4.93) 

where u is the velocity of flow on the boundary, and n is the unit outer normal vector on 

the boundary. The inviscid flux function is computed by adjusting the wall velocity to have 

zero normal component. While the viscous and auxiliary flux function are zero by default.  

 2 ,

L

b L L

h

L LE





 
 

   
  
 

U u u n n  

 

(4.94) 

and 

 

 

 
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, , , 0.
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auxiliary auxiliary h h

b L b

inviscid inviscid h h
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viscous viscous h h h h

 

 
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H H U U

H H U U

H H U U

 

 

(4.95) 
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4.10.3 No-slip viscous wall boundary 

In no-slip wall where a viscous fluid passes a solid wall, the relative velocity between a 

solid wall and fluid attachment to the surface is assumed to be zero. Therefore, the physical 

velocity on the solid should be defined such that,  

0.b solid u u  (4.96) 

The solid temperature should be given explicitly if the wall boundary maintains the 

temperature. However, if heat flux vector is prescribed at wall, the normal heat flux on the 

wall should be defined as 

.solid bq = n q  (4.97) 

 For Navier-Fourier (NF) equations where Fourier law is employed for calculating heat 

flux vector, the normal gradient of temperature on the surface must set zero for adiabatic 

wall boundary condition as,  

.
L

b

i

i

T
T n

x


 


n  

(4.98) 

The most straight forward method to define no-slip boundary condition is to use following 

relations for adiabatic wall  

 11
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b L L b L

h h h h
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
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 

  
 
 
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U

U U n

 

 

(4.99) 

and 
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4.10.4 Viscous slip wall boundary 

4.10.4.1 Langmuir velocity slip and temperature jump boundary 

The velocity slip and temperature jump boundary conditions on the surface are 

necessary for the studying the rarefied and microscale gas flows. Among the various slip 
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models, the Langmuir slip model based on the physical adsorption isotherm can be 

employed to model the slip effects[55, 113]. This boundary condition is considered that 

not only recovers the predictability but also facilitates a hydrodynamic treatment of the 

entire density regime with a single formalism. This present method takes the interfacial 

gas—surface molecule interaction into account. A fraction   0 1    of molecules 

reaching thermal equilibrium with wall can be expressed in dimensional form, as 

, for monatomic gas,
1

, for diatomic gas,
1

slip

slip

slip

slip

p

p

p

p















 

 


 

(4.101) 

where p is the surface pressure and the parameter
slip depends on the wall temperature wT  

as well as interfacial interaction parameters. By considering the gas-surface molecular 

interaction process as a chemical reaction, the parameter 
slip can be expressed as,  

2

1
exp ,

32

ref

slip

w B w ref

T De

c T k T p Kn

 


 
  

 
 

(4.102) 

where c is the gas constant of the exponent of the inverse power law of the particle 

interaction potential, 
refp and 

refT  are reference pressure and temperature, Kn is the global 

Knudsen number, and De   is the heat of adsorption, for example, 5,255De J mol for 

Ar-Al molecular interaction model. The velocity slip and temperature jump boundary 

conditions in the Langmuir model are determined according to the fraction, ,  

 

 

1 ,

1 .

w g

w gT T T

 

 

  

  

u u u
 

(4.103) 

Here, u is velocity vector, wu  is the wall velocity vector, 
gu and 

gT  are the gas velocity 

vector and temperature at the reference location. 
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4.10.4.2 Maxwell slip wall boundary 

In 1879, Maxwell proposed a velocity slip boundary condition known as Maxwell 

velocity slip boundary condition[114, 115]. In this boundary condition, he related the 

tangential gas velocity slip 
slipu  to the tangential shear stress 

tangential  and the tangential 

heat flux
tangentialQ . This slip boundary condition can be expressed in tensor form [115] as, 

 
tangential tangential

Pr 12 3

4

v mean
slip wall

v p

 

  

 
    

 
u u Q  

(4.104) 

where the tangential shear stress 
tangential  and the tangential heat flux 

tangentialQ  are defined 

at the surface as,  

 tangential tangential .  n S, Q = Q S    (4.105) 

Here,   and Q is the stress tensor and the heat flux vector along the surface; n denotes 

unit outward normal vector; tensor S which defined as    S I n n , removes normal 

components at any non-scalar field, for example, velocity, so that slip only occurs in the 

tangential direction to the surface. The symbol I denotes the identity tensor and 

represents the dyadic product between two vectors defined in equation (A.18) of 

9.2.4Appendix A; Pr is the Prandtl number; and wallu is the wall velocity. The tangential 

momentum accommodation coefficient is denoted by  0 1v v   which determines the 

proportion of the molecules reflected from the surface purely diffusely or purely specularly 

according to  1v   and 0,v   respectively. In the notation given in Eq. (4.105), the 

Maxwell velocity slip boundary condition becomes, 

   
 

 
Pr 12 3

.
4

v mean
slip wall

v p

 

  

 
           

 
u u n I n n Q I n n  

(4.106) 

Generally, the stress tensor   and heat flux Q are defined for Newtonian fluid as  
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(4.107) 

Using Eq. (4.107), the Maxwell slip boundary condition, (4.106) becomes as  

 

 

 

 
 

 

 

2

1 2 3

2

1 2 3

2

1 2 3

2

2

2

1

2
1

1

1 Q Q Q

Pr 13
Q 1 Q Q ,

4

Q Q 1 Q

x x y x z

v mean
s w y x y y z

v

z x z y z

x x x y y x z z

y x x y y z zy

z x x z y y z z

n n n n n

n n n n n

n n n n n

n n n n n

n n n n n
p

n n n n n

  

 
  

 
  





   
  
        
  
    
 

   
 


     
 
    
 

u u

 

(4.108) 

where 
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2

3

xx x xy y xz z

yx x yy y yz z
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n n n
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   

   

 

(4.109) 

4.10.5 Symmetry boundary 

Symmetry boundary condition should guarantee no flux across the boundary. To satisfy 

this condition; the velocity normal to the symmetry plane must be zero; the gradients of 

scalar quantities normal to the boundary, and the gradient of tangential velocity on the 

boundary must be zero. It is also necessary that the gradient of normal velocity along the 

boundary vanishes. The summary of these conditions can be written in form of 

mathematical relation as 

    

     

0,

0,

0,

t

t

 

       

       

n U

n u n u I n n

u n I n n u n

 

(4.110) 

where t denotes a tangential vector to the symmetry boundary. 
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4.10.6 Outflow boundary 

If the outgoing flow is a supersonic flow, the sign of all eigenvalues is same and all 

characteristics waves leave the computational domain. Considering behavior of the 

characteristics waves, the boundary operator can be defined as, 

 11
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.

L

b L L

h

L L

b L L b L

h h h h
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


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  
 
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U U n

 

 

(4.111) 

The numerical inviscid, viscous and auxiliary flux functions can also be approximated as   
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H H U U

H H U U

H H U U
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4.11 Implementation of limiters 

4.11.1 Positivity preserving limiter 

   In DG scheme, numerical solutions may lead to negative density and pressure during 

the time marching. But, physically, the density and the pressure should be positive. 

Therefore, the positivity preserving limiter is needed to enforce positive pressure and 

density at every element. Recently, Zhang and Shu proposed [116] positivity preserving 

limiters for compressible Euler equations on rectangular meshes in DG method and also, 

extended this method to unstructured triangular meshes [117]. According to Zhang and 

Shu, the solution coefficients are limited in such a way, so that the accuracy is maintained 

for smooth solutions while the DG scheme remains conservative and limiting for positivity 

of density and pressure is performed locally at each element. 
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The first step is to limit the density field at every element. So, start with defining a small 

value  13min 10 , , p  based on the mean value of the computed density and pressure 

in the target cell. Then, the positivity of density checks by computing and finding the 

minimum value of density, min  looping over the quadrature points in the local elements. 

The limited coefficient 1  is then evaluated as 

1

min

min ,1
 


 

 
  

 
 

(4.113) 

The high order components of the density variable are then limited by   

         0

0 1

1

, .
k

i

h j j i

i

t U t U t  


  U x x x  
(4.114) 

The second step is to preserve the pressure at each local element. This requires the scaling 

of all high order moments of the solution of all conservative variables with 2 . For 

computing the value of 2 , it requires to solve the quadratic equation 

 1 , 0 1.p t t t      UW  (4.115) 

where W is the mean solution and U is the conservative variables with limited density 

solution. Then, pick the minimum value of t among all the quadrature points as 2.  The 

limited coefficient  2 1 2min ,t t  . The high order components of conservative variables 

are limited by 

         0

0 2

1

,
k

i

h j j i

i

t U t U t  


  U x x x  
(4.116) 

 

4.11.2 The Barth Jespersen limiter 

In the context of DG methods, a slope limiter is post-processing filter that constraints a 

polynomial basis function to stay within certain bounds. Barth and Jespersen [118] 

proposed an algorithm based on the unstructured grid for piecewise-linear data. Given a 
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cell average 
h cU U  and the gradient   ,

c
U the goal is to determine the maximum 

admissible slope for a constrained reconstruction of the form,  

      , 0 1, .h c e c e ec
        U x U U x x x  (4.117) 

Bath and Jespersen define the correction factor e  so that the final solution values at a 

number of control points i ex  or in one of its neighbors a  having a common 

boundary with .e  That is, 

 min max , .e i e i  U U x U  (4.118) 

Due to linearity, the solution hU  attains its extrema at the vertices ix of the cell .e  To 

enforce condition (4.118), the correction factor e  is defined as  
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(4.119) 

where       h c cc
    U x U U x x  is the unconstrained solution value at ix .  
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Chapter 5. Solutions of zero and first-order 

Boltzmann-Curtiss based hydrodynamic models 

 

“All of physics is either impossible or trivial. It is impossible until you understand it, and 

then it becomes trivial.”                                                    

                                                                                         — Ernest Rutherford (1871-1937) 

 

 

This chapter is devoted to a series of applications for laminar flows based on zero-order, 

and first-order Boltzmann-Curtiss based hydrodynamic models i.e. Euler, and Navier-

Fourier are provided. This chapter is divided into three sections based on one-dimensional, 

two-dimensional and three-dimensional benchmark problems. In case of one-dimensional 

problems, the different Riemann test cases are assessed within DG framework and 

compared to the exact solutions. In case of two-dimensional problems, the different 

inviscid Riemann test cases—double Mach reflection, forward facing step, shock-vortex 

interaction and bubble-shock interaction, are simulated for checking solver accuracy. 

Finally, in three-dimensional problems, various Riemann benchmark are simulated. A 

subsonic flow past a sphere is simulated at 
o0   and validated with experimental results. 

Finally, a transonic flow over a G400 aircraft is simulated with angle of attack, 
o0 .   
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5.1 One-dimensional problems 

5.1.1 One-dimensional Riemann problem 

The test cases introduced by Toro[119] are well suited and often used as first test cases 

for the validation of inviscid CFD codes because exact solutions can easily be found for 

the respective problems. These test cases are performed for capturing the wave 

configurations. The computational domain is  0,1   and 200 points are considered for 

all simulations. All cases are initial value problem (IVP), characterized by discontinuous 

conditions for flow variables which are prescribed in Figure 5-1. 

 

Figure 5-1. Initial conditions of various one-dimensional Riemann test cases. 

The ratio of specific heats is 1.4,   and the initial discontinuity is located at 0.5x   for 

these problems. The Zero Gradient boundary condition is employed.  The exact solution of 

these problems can be found in [119]. The density, pressure, and velocity distributions for 

the exact solutions and numerical solutions are presented in Figure 5-2 and Figure 5-3. We 

observed that the numerical solutions of these Riemann problems are in good agreement 

with the exact solution.  
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Figure 5-2. One-dimensional Riemann problem: Sod shock tube problem (left): the 

density, pressure, velocity distribution contours at t=0.25, and Lax shock tube problem 

(right): the density, pressure, velocity distribution contours at t=0.14. 
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Figure 5-3. One-dimensional Riemann problem: 123 problem (left): the density, 

pressure, velocity distribution contours at t=0.15, and blast wave problem (right): the 

density, pressure, velocity distribution contours at t=0.012. 
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5.2 Two-dimensional problems 

5.2.1 Two-dimensional double Mach reflection problem 

The double Mach reflection problem is a standard test problem for shock capturing 

schemes. It originated by experimental and numerical studies of reflections of planar shock 

waves from wedges. This problem was extensively studied by Woodward and Colella for 

the inviscid flow [120]. In this problem, the shock wave has a strength with Mach number 

of 10, which is initially positioned at 0,x   and hits a 
030  ramp with the x-axis. The initial 

pre-shock and post-shock conditions is   

 
 

 

8,8.25,0,116.5 , if 0.25 0
, , ,

1.4,0,0,1 ,              if    0 3.0.

x
u v p

x


  
 

 

 
(5.1) 

The computational domain is    0.25,3 0,1 ,    and the implemented boundary 

conditions (inflow, outflow and reflected wall) are shown in Figure 5-4.  

 
 

Figure 5-4. Two-dimensional double Mach refelction problem: computational domain 

and intial configuration. 

The final simulation time is considered as 0.2.t  The post-shock condition is imposed 

from 0.25x    to 0x   whereas a reflecting boundary condition is enforced from 0x 

to 3.0x   at the bottom. For the top boundary condition, the fluid variables are defined as 
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to exactly follow the evolution of the Mach 10 shock wave. The inflow and outflow 

conditions are imposed for the left and right side of the computational domain. The density 

distributions with mesh size 1/150h   are shown in Figure 5-5. This modal DG scheme 

resolves the flow structure under the Mach stem clearly.  

 
 

Figure 5-5. Two-dimensional double Mach reflection problem: density distribution 

contours at t=0.2. 

 

 

 
 

Figure 5-6. Two-dimensional forward facing step problem: computational domain. 
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(a) t=0.5 sec 

 
(b) t=1.0 sec 

 
(c) t=2.0 sec 

 
(d) t=3.0 sec 

 
(e) t=4.0 sec 

Figure 5-7. Two-dimensional forward facing step problem: density contours at various 

time step. 
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5.2.2 Two-dimensional forward facing step problem 

The forward facing step problem which is also known as Mach reflection problem was 

also proposed by Woodward and Colella [120] for the inviscid flow. The computational 

domain is        0,3 0,1 0.6,3 0,0.2    as shown in Figure 5-6, which is covered by 

unstructured triangular mesh. The Mach step is located at 0.6x   with height 0.2 in the 

tunnel. Initially, a right-moving flow with Mach 3 is imposed in the whole computational 

domain. The reflective boundary conditions are applied on the upper and along the walls 

of the tunnel, and inflow and outflow boundary conditions are imposed at the entrance and 

the exit. The corner of the step is the center of a rarefaction fan, which is a singularity point. 

For minimizing this numerical error generated at corner, the meshes near the corner are 

refined. The density distributions with 1/ 200h  at various times are presented in Figure 

5-7. It may be noted that the resolution is improved with this mesh refinement, especially 

for the slip line started from the triple point.  

5.2.3 Two-dimensional shock-vortex interaction problem 

In this test case, we are considering the interaction of a vortex with a steady shock wave. 

The shock-vortex interaction (SVI) problem proposed by Rault [121], is a good benchmark 

problem for a high order numerical scheme. It is usually followed by a complex flow 

pattern with both smooth features and discontinuous waves. The computational domain is

   0,2 0,1 , and a normal strong shock wave with Mach sM  is located at 0.5,x   as 

shown in Figure 5-8.  

The flow is from the left to the right direction. The upstream state of the pre-shock 

region is given by    , , , 1, ,0,1su v p M   and the downstream value in the post-shock 

region are computed through the Rankine-Hugoniot condition. A composite vortex, 
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rotating clockwise direction, is initially located at    , 0.25,0.5c cx y  with an angular 

velocity  

2

2 2

                                  if  ,

           if   ,   

0                                        if  .

m

m

r
u r a

a

a b
v u r a r b

a b r

r b







 

     
  

 



 

(5.2) 

Here, mu  is the maximum tangential velocity,     
2 2

c cr x x y y      is the distance 

from the vortex core  , ,c cx y and the radii of the inner and the outer annular region are 

given as    , 0.075,0.175 .a b   The strength of the vortex is measured by ,vM  where 

v mM u a  and a is the sound speed calculated from the upstream flow condition. Inside 

the vortex, the density and pressure are the functions of the temperature (T) and the 

upstream state of the normal shock.  

1

1 1

0 0

0 0

, ,
T T

p p
T T



 

 
    

    
   

 

(5.3) 

where the temperature at the left state of 0T  is calculated by the ideal gas law p RT  

with gas constant 1.R   The temperature inside the vortex is obtained after solving the 

ordinary differential equation 

 2
1

.
v rdT

dr R r






  

(5.4) 

In the present computation, we are considering two different simulation problem: weak 

SVI with 1.2 and 0.5s vM M   and strong SVI with  1.5 and 0.7.s vM M   The 

computed solutions of these two test cases are presented in Figure 5-9 and Figure 5-10.  
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Figure 5-8. Two-dimensional shock-vortex interaction problem: computational domain. 

 

  

(a) Vorticity contours (b) Density contours 

Figure 5-9. Two-dimensional shock-vortex interaction problem: computed (a) vorticity 

and (b) density distribution contours with shock Mach =1.2, Vortex Mach =0.5 at t=2.5. 

 

  

(a) Vorticity contours (b) Density contours 

Figure 5-10. Two-dimensional shock-vortex interaction problem: computed (a) vorticity 

and (b) density distribution contours with shock Mach =1.5, Vortex Mach =0.7 at t=2.5. 
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5.2.4 Two-dimensional shock-bubble interaction problem 

The developed DG solver is applied to the prediction of shock-bubble interaction (SBI) 

problem. The schematic diagram of the SBI problem is illustrated in Figure 5-11. The 

computational domain is    0,3 0.5,0.5 .     The diameter of the bubble is 0.5.D  and 

it is centered at    , 1.75,0 .c cx y   A left running shock wave is initially located at 

2.5.x   The initial value of post-shocked region is  , , ,u v p  1.38, 0.39,0,1.57  , the 

initial flow condition of bubble is    , , , 0.138,0,0,1.0 ,u v p  and the flow condition of 

the pre-shocked region is    , , , 1.0,0,0,1.0 .u v p   The right boundary is set to be inflow; 

and the other boundaries, namely, left, upper and bottom are set to be outflow. For the 

numerical simulation, we have considered 1000 1000  points over rectangular meshes. 

 
 

Figure 5-11. Two-dimensional shock-bubble interaction (SBI) problem: schematic 

diagram of computational domain. 

 The numerical schlieren images for the flow field evolution at various time steps are 

reported in Figure 5-12.  The density and velocity of the post-shocked region are 

determined from the Rankine-Hugoniot jump condition. 
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(a) t=0.0 ms 

 
(b) t=1.0 ms 

 
(c) t=2.0 ms 

 
(d) t=3.0 ms 

 
(e) t=4.0 ms 

 
(f) t=5.0 ms 

 
(g) t=6.0 ms 

Figure 5-12. Two-dimensional shock-bubble interaction (SBI) problem: schlieren 

images for flow field evolution at various times.  
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5.3 Three-dimensional problems 

5.3.1 Three-dimensional Sod shock tube problem 

The shock tube problem or Sod problem introduced by Gary A. Sod in 1978 [122] is 

frequently used to test the accuracy of computational methods. An analytical solution is 

infact available, therefore, it is possible to compare numerical results with it and understand 

the strengths and weaknesses of the scheme implemented. A shock tube consists of a pipe 

with rectangular cross-section filled with a fluid (or a gas) with a diaphragm splitting the 

tube into two halves as shown in Figure 5-13. The diaphragm is numerically simulated as 

a discontinuity in different fluid conditions (temperature, pressure, and density) across that 

specific surface. Generally, the left side of the tube has higher values for the fluid 

properties. Given such initial conditions, the system is allowed to evolve in time. Two 

waves are generated and can be seen in all the physical variables. A shock wave will move 

towards the right (low-pressure region), and a refractive wave will move to the left (high-

pressure region). A contact discontinuity (moving towards the right side) separates the two 

regions and is visible in density and temperature (or energy) only as shown in Figure 5-14. 

 
Figure 5-13. Three-dimensional Sod shock tube problem: schematic diagram and initial 

configuration. 
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Figure 5-14. Three-dimensional Sod shock tube problem: produced different waves after 

broken diaphragm.  

In present work, the classical Sod shock tube on a one-dimensional unstructured mesh 

to assess the ability of the numerical methods to capture one-dimensional simple wave is 

considered as a standard benchmark problem. We select a computational domain, defined 

by      0,1 0,0.1 0,0.01 .   The unstructured tetrahedral mesh are used for our 

computations and contains 98801 tetrahedral elements with mesh size 0.01.h   It provides 

an equivalent one-dimensional resolution of 100 elements. The Dirichlet boundary 

conditions are imposed in x-direction, whereas the periodic boundary conditions are 

imposed in y and z directions. The initial condition is defined as follows: 

 
 

 

1,0,0,0,1 ,                if    0.5
, , , w,

0.125,0,0,0,0.1 ,         if    0.5.

x
u v p

x



 



 
(5.5) 

The ratio of specific heats is 1.4   and the initial discontinuity is located at 0.5.x   The 

computed final time is considered at t = 0.2 sec. The computed density and pressure 

distributions for the Sod shock tube problem in three-dimension, two-dimension and one-

dimension representation are shown in Figure 5-15. The x-component of the computed 

density and pressure distributions are compared with the exact solutions and found in good 

agreement as shown Figure 5-15 (bottom) 
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Density distribution Pressure distribution 

Figure 5-15. Three-dimensional Sod shock tube problem: the computed density (left) 

and pressure (right) distributions in three-dimensional view (upper); two-dimensional 

view (middle) and one-dimensional profiles (bottom) at t=0.2. 
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Figure 5-16. Three-dimensional Riemann 123 problem: the computed density (left) and 

pressure (right) distributions in three-dimensional view (upper); two-dimensional view 

(middle) and one-dimensional profiles (bottom) at t=0.15. 
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5.3.2 Three-dimensional 123 problem 

The next validation test case, so-called the Riemann 123 problem, has a solution 

consisting of two strong rarefactions and a trivial stationary contact discontinuity; the 

pressure is very small (close to vacuum) and this can lead to difficulties in the iteration 

scheme to find pressure numerically.  This benchmark problem is also useful in assessing 

the performance of numerical methods for low-density flows [123]. 

For the numerical simulations, we select a computational domain, defined by 

     0.5,0.5 0.03,0.03 0,0.01 .     The unstructured tetrahedral mesh are used for our 

computations and contains 22318 tetrahedral elements with mesh size 0.01.h   It provides 

an equivalent one-dimensional resolution of 100 elements. The Dirichlet boundary 

conditions are imposed in x-direction, whereas the periodic boundary conditions are 

imposed in y and z directions. The initial condition is defined as follows: 

 
 

 

1, 2.0, 0.0, 0.0, 0.4 for 0,
, , , ,

1.0, 2.0, 0.0, 0.0, 0.4 otherwise 0.

x
u v w p

x


 
 



 
(5.6) 

The ratio of specific heats is 1.4   and the initial discontinuity is located at 0.x   The 

computed final time is considered at t = 0.15 sec. The computed density and pressure 

distributions for the 123 problem in three-dimension, two-dimension and one-dimension 

representation are shown in Figure 5-16. The x-component of the computed density and 

pressure distributions are compared with the exact solutions and found in good agreement 

as shown in Figure 5-16 (bottom). 

5.3.3 Three-dimensional explosion problem 

To validate the present numerical scheme in three spatial dimensions, we have 

considered a spherical explosion problem. This problem is important, as it involves the 

propagation of the waves which is not aligned with the Cartesian grid.  
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Figure 5-17. Three-dimensional explosion problem: initial configuration at t = 0 sec. 

 
Figure 5-18. Three-dimensional explosion problem: the computed density contours at t 

= 0.2 sec. 

The computational domain is the one-eighth of a sphere whose radius is one. The problem 

setup represents a multi-dimensional extension of the classical Sod problem [122], with 

initial conditions  

 
 

 

1,0,0,0,1 ,                       for  ,
, , , ,

0.125,0,0,0,0.1              for  ,

r R
u v w p

r R



 



 
(5.7) 
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where 
2 2 2r x y z    is the radial coordinate, while 0.5R   denotes the radius of the 

initial discontinuity. The computational domain consists of the fine grid with a huge mesh 

898,582 unstructured tetrahedral. Figure 5-17 illustrates the initial configuration of the 

explosion problem, while the computed density contours at 0.2t   have been reported in 

Figure 5-18.  Since the problem is spherically symmetric, the reference solution can be 

obtained solving an equivalent one-dimensional PDE in the radial direction with geometric 

source term [119]. 

5.3.4 Three-dimensional double Mach reflection problem 

The next benchmark problem in the three-dimensional simulation is the double Mach 

reflection problem which is first extensively studied by Woodward and Colella [120] for 

the inviscid flow. This is one of the most well-known benchmark problems for high-

resolution shock-capturing schemes. For this problem, the computational domain is 

     0.3,3 0,2 0,0.05 ,      and a solid wall lies at the bottom of the computational 

domain starting from 0.x   The unstructured tetrahedral mesh are used for our 

computations and contains 1023663 tetrahedral elements with mesh size 0.01.h   This 

test problem involves a strong moving shock with Mach 10 in a perfect gas with 1.4   

which hits a ramp at 30 degree with x-axis. The initial and post-shock conditions are 

 
 

 

8.0, 8.25, 0.0, 0.0, 116.5 for 0.0,
, , , ,

1.0, 0.0, 0.0, 0.0,1.0 for 0.0. 

x
u v w p

x



 



 
(5.8) 

The final simulation time is considered as 0.2.t  The post-shock condition is imposed 

from 0.25x    to 0x   whereas a reflecting boundary condition is enforced from 0x 

to 3.0x   at the bottom. For the top boundary condition, the fluid variables are defined as 

to exactly follow the evolution of the Mach 10 shock wave. The inflow and outflow 
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conditions are imposed on the left and right side of the computational domain. The 

computed density distributions are shown in Figure 5-19. 

 

 

Figure 5-19. Three-dimensional double Mach reflection problem: computed density 

contours. 

 

5.3.5 Three-dimensional forward facing step problem 

Another classical three-dimensional benchmark problem for high-resolution shock-

capturing discontinuous Galerkin scheme consists in the forward facing step problem, also 

called the Mach 3 wind tunnel test.  It has also been proposed originally by Woodward, 

and Collela [120]. The computational domain is given by 

       0,3 0,1 \ 0.6,3 0,0.2    which consists 1251048 unstructured tetrahedral meshes. 

The initial condition is a uniform flow at Mach number M = 3 moving to the right. In 

particular, the flow variables      , ,0 1, , ,0 1 , , ,0 3,x y p x y u x y   

   , ,0 0, , ,0 0v x y w x y   are employed at initial conditions.   The ratio of specific heats 

is set to 1.4.   Simulations are carried out until t = 3.0 sec. Reflective boundary 
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conditions are applied on the upper and lower boundary of the domain and inflow/outflow 

boundary conditions are applied at the entrance/exit. At the corner of the step, there is a 

singularity, which is properly resolved with the second-order modal DG scheme using grid 

refinement.  The computed density distributions with second order modal three-

dimensional DG method are depicted in Figure 5-20. One can observe that the second-

order scheme provides a much better resolution of the physical instability and roll up of 

the contact line compared to the standard second order scheme. This indicates that the use 

of higher order schemes may be appropriate to enhance resolution and to reduce numerical 

viscosity for small-scale turbulent structures. 

 

Figure 5-20. Three-dimensional forward facing step problem: computed density 

contours. 

 

5.3.6 Three-dimensional transonic flow over a G400 aircraft 

The test case of a transonic gas flows past a complete G400 aircraft at a free stream 

Mach number M = 0.84 and an angle of attack of 
o0  is chosen in order to assess the 

performance of the three-dimensional modal DG method in computing complex geometric 

configurations. In this test case, laminar flow is considered in contrast to turbulent flow, as 

it is the smooth flow of a fluid over a surface. Moreover, engineers want to design aircraft 
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with the laminar flow over their wings to make them more aerodynamic and efficient. Here, 

the G400 configuration includes the fuselage, wings, horizontal and vertical tails and two 

jet engines. For numerical simulations, the unstructured tetrahedral grids are used, 

containing 2,010,878 elements and 366,684 grid points. In present test case, the full aircraft 

is modeled, as shown in Figure 5-21. The computed pressure coeffiecient value, the 

pressure contours on the wing and the streamlines over the aircraft are shown in Figure 

5-22, Figure 5-23 andFigure 5-24, respectively. 

 

Figure 5-21. Three-dimensional transonic flow over a G400 aircraft: computational 

domain with tetrahedral unstructured grids.  

 

 

Figure 5-22. Three-dimensional transonic flow over a G400 aircraft: computed Cp 

value.  
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Figure 5-23. Three-dimensional transonic flow over a G400 aircraft: pressure contours 

on wing.  

 

 

Figure 5-24. Three-dimensional transonic flow over a G400 aircraft: computed 

streamlines. 

 

5.3.7 Three-dimensional subsonic viscous flow past a sphere 

A viscous flow past a sphere at a freestream Mach number of 0.3, and an angle of attack

o0 ,  and a Reynolds number of 118 is considered in this benchmark problem. This problem 

has been studied both experimentally [124] and numerically [125]. An adiabatic wall is 

assumed in this benchmark problem. Figure 5-25 shows the computational grid used in this 

test case, consisting of 98,000 tetrahedral elements, and 25344 grid points.  
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(a) Global view (b) Close up view near sphere surface 

Figure 5-25. Three-dimensional subsonic viscous flow past a sphere: computational 

domain with unstructured tetrahedral mesh with 98,000 elements and 25,344 grid points. 

 

  

(a) Present computational results (b) Experimental results 

Figure 5-26. Three-dimensional subsonic viscous flow past a sphere: computed 

streamlines of the flow field (left) and from experiment (right) at Mach =0.3, Re=118 

and AoA=0 degree. 

The computational streamlines obtained by the modal DG (P=2) method are compared 

with experimental streamlines in Figure 5-26, where steady separation bubble is readily 

observed in both plots and the size of the separation region in the computation agrees very 

well with that of the experiment. The computed Mach contours and streamlines in the flow 

field at different Reynolds numbers 25.5 and 133 with Mach =0.3 are shown in Figure 5-27. 

The numerical results show that at low Reynolds number, the viscous effects are important 

in a large area. A small recirculating zone (or vortex ring) develops close to the rear 
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stagnation points at about Re=25.5, as shown in Figure 5-27 (a). With further increase in 

the Reynolds number, this recirculating zone or wake expands, as shown in Figure 5-27 

(b). 

  

(a) Mach =0.3, Re=25.5 (b) Mach =0.3, Re=133 

Figure 5-27. Three-dimensional subsonic viscous flow past a sphere: computed Mach 

contours and streamlines at Mach =0.3, (a) Re=25.5, and (b) Re=133. 
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Chapter 6. Solution of second-order Boltzmann-

Curtiss based hydrodynamic models: 1D and 2D 

problems  

 

“Dream is not that which you see while sleeping it is something that does not let you sleep”                                                                                                                                     

                                                                                         -A.P.J. Abdul Kalam (1931-2015)  

 

In case that flow deviates from local thermal equilibrium state, application of the moment 

method into the classical Boltzmann-Curtiss equations leads to Boltzmann-Curtiss based 

models where the non-conservative variables are being linearly or nonlinearly proportional 

to the gradient of the velocity (strain rate) and temperature (thermal strain rate) state 

variables. The objective of this chapter is to measure the level of accuracy of the 

Boltzmann-Curtiss based models. Therefore, solutions of the Boltzmann-Curtiss based 

models are compared with each other, the solution of the DSMC method, and experimental 

data. Firstly, One-dimensional shock structure is simulated using Boltzmann-Curtiss based 

model and the results are compared with experiments. Then the flow over a cylinder is 

studied in detail. Then, a comparative analysis of different slip boundary conditions is 

provided using Navier-Fourier (i.e., first-order Boltzmann-Curtiss-based) equation. Finally, 

a flow over a sphere is simulated using modal DG method. 

6.1 One-diemensional compression dominant problem: shock 

structure 

The shock wave structure is one of the most fundamental problems in kinetic theory of 

gases and it is considered as a major stumbling block for theoreticians for the last decades 

[126-132]. For example, it has a big impact on the overall flow patterns around hypersonic 
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aerospace vehicles at high altitude [133]. The stationary shock wave structure problem is 

defined as very thin (order of mean free path; in other words, Knudsen number close to 1.0) 

stationary gas flow region between supersonic and subsonic downstream. The upstream 

and downstream states, denoted by the subscripts 1 and 2, respectively, are determined by 

the so-called Rankine-Hugoniot condition: 
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(6.1) 

For comparison of various results of shock structure, the following parameters are very 

useful. The inverse of the shock density thickness  1 ,  and the shock temperature-

density separation   ,s  which measures the separation between density and temperature 

profiles are defined as 

 

   

max2 1

1 1
,

0.5 0.5 ,s

d

dx

x x T



  






      

 

(6.2) 

where   and T  are the normalized density and temperature profiles defined as 

1 1

2 1 2 1

, .
T T

T
T T

 


 

 
 

 
 

(6.3) 

The central position 0x   is defined as the location where the local variables (i.e. density, 

temperature, velocity) becomes equal to the arithmetic average of the upstream and 

downstream variables. 

The density solution of viscous shock structure for argon gas ( 0bulkf  ) and nitrogen gas 

( 0.8bulkf  ) with four different Mach stream conditions are shown in Figure 6-1 and Figure 
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6-2, respectively. The zero-order solutions are way off from the experiment, while the 

quasi-linear hydrodynamic model, the first-order and the second-order Boltzmann-Curtiss 

based models can predict the shock density profile moderately for all Mach flow conditions. 

It is also shown that the difference between first-order solution and experiments become 

noticeable for high Mach number flows, while second-order Boltzmann- Curtiss based 

solution is very close to the experiments. 

  
(a) Mach =1.55 (b) Mach =3.8 

  
(c) Mach =6.5 (d) Mach =9.0 

Figure 6-1. One-dimensional shock structure problem: normalized density profile for 

argon gas at four different flow stem Mach numbers. 
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(a) Mach =1.53 (b) Mach =2.0 

  
(c) Mach =6.1 (d) Mach =10.0 

Figure 6-2. One-dimensional shock structure problem: normalized density profile for 

nitrogen gas at four different flow stem Mach numbers. 

 

The shock density thickness is known as one of the important parameters on the accuracy 

of the models, therefore, the solution of Boltzmann-Curtiss based models for argon gas and 

nitrogen gas are compared with experimental data [134]. It is obvious from Figure 6-3 that 

second-order Boltzmann-based method can precisely capture the shock-density thickness 

for all Mach number regimes. 
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(a) Argon gas (b) Nitrogen gas 

Figure 6-3. One-dimensional shock structure problem: computed inverse shock density 

thickness profile for (a) argon, and (b) nitrogen gas. 

 

6.2 Two-dimensional hypersonic flow past a cylinder 

To demonstrate the capability of the second-order Boltzmann-Curtiss based 

constitutive model, a viscous compressible flow past a cylinder is simulated for both 

hypersonic rarefied [135] and low-speed microscale [136].  The two-dimensional DG code 

was validated for various benchmark problems of viscous compressible gas flow. A 

monatomic argon gas with Pr=2/3 and s=0.75 was chosen as the working gas. In our 

previous studies [58, 137], the numerical results were compared with the DSMC method. 

Unstructured triangular grid with approximately 90,000 computation cells refined with a 

ratio of 1.06 near the wall to capture the physics is used for the DG simulations. The far-

field boundary condition was imposed on the outer boundary of the computational domain 

while the Langmuir boundary condition [57,126, 127] was applied to the solid wall. The 

power law model was used for calculating the transport properties [60]. On the other hand, 

in the DSMC simulation, the VHS inter-particle collision model and the fully diffusive 

wall boundary condition were implemented. Approximately 2,000,000 particles were used 
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with at least 50 particles per each cell. The time step and the cell size were set one-tenth of 

mean collision time and one-fifth of the free-stream mean free path, respectively[138]. 

  
(a)  (b) 

Figure 6-4. Validation of second-order Boltzmann-Curtiss based model (NCCR) with 

the DSMC in density distribution for (a) M = 5.48, Kn = 0.05, and (b) M = 0.1, Kn = 0.1 

[58, 137]. 

In Figure 6-4, a comparison of the DG code with DSMC solutions for rarefied and 

microscale gas flow around a circular cylinder is shown for both cases of high-speed 

rarefied (M=5.48, Kn=0.05) and low-speed microscale (M=0.1, Kn=0.1) problems. The 

results show that the numerical solutions of the second-order Boltzmann-Curtiss based 

constitutive model are in close agreement with the simulated solutions of DSMC. In the 

high-speed case, the flow consists of a compressive bow shock structure, a stagnation 

region near the frontal part of the cylinder, and a gaseous expansion region near the rear 

part of the cylinder. The density remains initially constant in the free-stream region and 

then experiences a rapid change across the bow shock wave, whose value is very close to 

the theoretical prediction given by the Rankine–Hugoniot relations. Further, the shock 

thickness and general flow pattern are very similar. In the low-speed case, the flow consists 

of smooth compression and stagnation regions near the frontal part of the cylinder, and a 
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modest expansion region near the rear part of the cylinder. The solution of second-order 

Boltzmann-Curtiss based constitutive model is smooth in the low-speed regime, whereas 

the DSMC solution contains non-negligible statistical fluctuations. 

   

(a) Kn=0.005 (b) Kn=0.05 (c) Kn=0.5 

Figure 6-5. Comparison of normalized density contours for the first-order and the 

second-order Boltzmann-Curtiss model at Mach=5.48 with various Knudsen numbers. 

 

   

(a) Kn=0.005 (b) Kn=0.05 (c) Kn=0.5 

Figure 6-6. Comparison of Mach contours for the first-order and the second-order 

Boltzmann-Curtiss model at Mach=5.48 with various Knudsen numbers. 

The two-dimensional DG solver is applied to simulate the hypersonic flow (Mach=5.48) 

around a circular cylinder from the continuum regime (Kn=0.005) to transition regime 

(Kn=0.5) at argon gas [137]. The first-order Boltzmann-Curtiss model results are compared 

with the second-order Boltzmann-Curtiss model results for three different Knudsen 

numbers (Kn) in Figure 6-5 and Figure 6-6. The contours show that the flow fields vary 

significantly as the Knudsen number increases from 0.005 to 0.5. At Kn = 0.005, the 
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discrepancies between the first order and the second-order Boltzmann-Curtiss model 

results turn out to be negligible, as shown in Figure 6-5(a) and Figure 6-6(a). As the 

Knudsen number increases to 0.05, however, non-negligible deviations begin to appear, as 

seen in Figure 6-5(b) and Figure 6-6(b). As the Knudsen number increases further to 0.5, 

well within the transition regime, significant deviations are present all over the flow field, 

as shown in Figure 6-5(c) and Figure 6-6(c). There are two distinctive regions of 

compression and expansion in the frontal and rear parts of the cylinder, respectively. A 

most notable difference is the structure of the stand-off shock wave in the frontal parts; a 

thicker and broader shock structure in the second-order Boltzmann-Curtiss model in 

comparison with the first-order Boltzmann-Curtiss model. 

   

(a) Kn=0.005 (b) Kn=0.05 (c) Kn=0.5 

Figure 6-7. Comparison of the degree of non-equilibrium contours for the first-order and 

the second-order Boltzmann-Curtiss model at Mach=5.48 with various Knudsen 

numbers. 

Further, from the contours of the degree of thermal nonequilibrium measured by the 

Rayleigh–Onsager dissipation function (3.57) as described in Figure 6-7, significant 

deviations from the LTE assumption can be observed in the compressive bow shock region 

and the expansive rear part of the cylinder. Because of this, most of the gaps between the 

first-order and the second-order Boltzmann-Curtiss models are observed in these regions. 

It can also be noted that the degree of gaseous expansion near the rear part of the cylinder 

predicted by the first-order Boltzmann-Curtiss model is considerably higher than that of 
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the second-order Boltzmann-Curtiss model. This over-estimation of the degree of thermal 

non-equilibrium in the first-order Boltzmann-Curtiss model may explain the poor 

performance of the first-order Boltzmann-Curtiss model in high Knudsen and Mach 

number flows. 

  
(a) (b) 

Figure 6-8. Pressure coefficient distribution around a cylinder at various Knudsen 

numbers for (a) the first-order, and (b) the second-order Boltzmann-Curtiss models 

[137]. 

 

  
(a) (b) 

Figure 6-9. Normalized wall shear stress distribution around a cylinder at various 

Knudsen numbers for (a) the first-order, and (b) the second-order Boltzmann-Curtiss 

models [137]. 

Figure 6-8 illustrates the pressure coefficient distributions around the cylinder 

predicted by the first-order Boltzmann-Curtiss model and the second-order Boltzmann-
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Curtiss model at three different Knudsen numbers. The pressure coefficient values 

estimated by the second-order Boltzmann-Curtiss model at Kn = 0.5 is considerably 

different from that of NSF, since the degree of thermal non-equilibrium is non-negligible 

in one-eighth of the frontal part of the cylinder. Figure 6-9 shows a comparison of the 

distribution of the normalized wall shear stress around the cylinder predicted by the first-

order Boltzmann-Curtiss model and the second-order Boltzmann-Curtiss model. A 

significant reduction in viscous shear stress across the surface of the cylinder is observed 

for the second-order Boltzmann-Curtiss model, in particular, in the case of Kn = 0.5 in the 

transition regime. This is due to the shear-thinning property of the second-order 

Boltzmann-Curtiss model in comparison with the second-order Boltzmann-Curtiss model 

as shown in Figure 3-7, that is, smaller effective viscosity at high Knudsen number. 

6.3 Two-dimensional hypersonic flow over a rectangular block 

The next two-dimensional test case is conducted to investigate the effects of the inflow 

Knudsen number (Kn) on hypersonic nonequilibrium rarefied flows over a rectangular 

block. The free stream flow consists of argon gas  0bulkf   with Mach number of 5.48 

(flow speed of 525.59 m/s), an angle of attack o30 ,  a temperature of 26.6 K and four 

various free-stream Knudsen numbers 0.0001, 0.01, 0.1, and 1.0 in continuum to transition 

regimes. The wall temperature of the block is considered as 293.15 K. Figure 6-10 shows 

contours of Mach number, normalized density, and streamlines for the second-order 

Boltzmann-Curtiss model at various Knudsen numbers. The contours show that the flow 

fields vary significantly as the Knudsen number increases from 0.001 to 1.0. It is shown 

that in the case of Kn=0.0001, which corresponds to the continuum regime, a strong 

detached bow shock is developed starting from the front of the rectangular block and 

extending to both  
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(a) Kn=0.0001 

   
(b) Kn=0.01 

   
(c) Kn=0.1 

   
(d) Kn=1.0 

Figure 6-10. Mach contours (Left), normalized density contours (middle), and 

streamlines (right) over a rectangular block for the second-order Boltzmann-Curtiss 

based model at Mach=5.48, AoA=30 degree with various Knudsen numbers. 
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sides symmetrically. In the shock wave region, the velocity decreases sharply from 

hypersonic to subsonic. 

With the increase of the value of Kn, the flow gets closer to the slip regime. At the same 

time, the disturbed flow-field gradually expands outward and the shock layer becomes 

thicker, while the detached distance gets larger and the shock intensity gets weaker. When 

Kn reaches to transition regime (Kn=0.1), the shock wave almost disappears and the 

velocity diminishes slowly from the free-stream value to zero on the surface. Meanwhile, 

the inner flow-field structure shrinks to the front part of the rectangular block, and a large 

arc-expansion region is formed. When Kn rises continually, it belongs to the transitional 

flow regime and free-molecular flow regime. 

6.4 Shock-vortex interaction problem  

The interaction between shock waves and vortical flows has received considerable 

attention in gas dynamics and aeroacoustics. It includes the fuel-air mixing enhancement 

in the combustion [139], helicopter blades operating at supercritical speeds [140], the 

‘shock noise’ generation in the design of advanced jet engines [141], combustion instability 

[142], and so on. In such flows, when a number of shock waves interact with vortices, the 

coupling between them dominates the flow field and yields a complicated flow pattern. 

Due to this complexity, the disturbance is generated which propagates along with shock 

waves and brings out a distortion phenomenon between shock waves and vortices. The 

interaction alters or destroys the shock waves and the vortical flow structure. 

The shock-vortex interaction (called SVI hereafter) has been the subject of extensive 

study, since it is one of the most simplified models of the interaction between shock waves 

and vortical flows. Over the last decades, the significant efforts have been devoted to 

interpret the physical phenomena for SVI through experiment, theoretical analysis, and 

numerical simulations. Hollingsworth and Richards[143] carried out an early experiment 
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and showed that SVI produces a cylindrical acoustic wave, consisting of alternating 

compression and rarefaction regions around the circumference. Later, the circumferential 

pressure distribution of the acoustic wave was measured by Dosanjh and Weeks [144]. A 

linear theory was proposed by Ribner [145] for describing the sound production 

mechanism and its quadrupolar nature in SVI.  Ellzey et al.[146] investigated numerically 

SVI and found two acoustic waves in a quadrupolar nature. Subsequently, Inoue and 

Hattori [147] identified a third acoustic wave generated in planar SVI. Grasso and Pirozzoli 

[148] examined the interaction of a shock wave with a cylindrical vortex and investigated 

the dependence of shock distortion and vortex compression on the shock and vortex 

strength.  Later, Zhang et al.[149] conducted a numerical study on SVI with strong vortex 

and found the multistage features of acoustic shock waves. Recently, the multiple acoustic 

waves, quadrupolar in nature and successively out of phase, were captured in the numerical 

simulation of SVI by Chatterjee and Vijayraj [150]. 

In this study, encouraged by these developments, we aim to investigate the non-

equilibrium effects of diatomic and polyatomic gases on SVI problem based on the second-

order constitutive model of the Boltzmann-Curtiss kinetic equation. To the best knowledge 

of authors, no attempt has been made in past to investigate the non-equilibrium effects of 

the rotational mode in diatomic and polyatomic gases (at micro besides macro levels) on 

SVI problem. Further, the present study may be regarded as the first theoretical and 

computational attempt of investigating the strong interaction of two important non-

equilibrium phenomena in diatomic and polyatomic gases―compressive shock structure 

and velocity-shear of the vortex―on the basis of a fundamental microscopic Boltzmann-

Curtiss kinetic theory and subsequent second-order constitutive equations, without 

resorting to pure phenomenological theory. 
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6.4.1 Problem definition  

A schematic diagram of the flow model for the simulations of a shock wave interacting 

with a single vortex is depicted in Figure 6-11. The computational domain is prescribed to 

be rectangular  , .l r b ux x x y y y     Two computational domains with different sizes 

are used in this work; one is a domain with size of 0.0008 m,r lx x  

0.0008 mu by y   used for simulation of micro SVI cases; the other one is a domain 

with size of 0.1 m,r lx x   0.1 mu by y    used for simulation of macro SVI cases. 

Here, a moving shock wave and clockwise-rotating stationary vortices are considered. The 

shock wave moves from left to right with respect to the initial shock wave in the 

computational domain. The location of the centre of vortex is prescribed to be (0, 0) in the 

computational domain. 

 

Figure 6-11. Schematic diagram of the flow model for shock-vortex interaction problem. 

A vortex is formed by prescribing its initial flow to be that of a composite vortex [121, 

151]. The composite vortex model consists of two regions; an inner core region and 

surrounding region where the velocity gradually approaches to zero. The rotational centre 

of the vortex is initially stationary and a velocity distribution between a core radius 1r  and 

an outer radius 2r  is prescribed before starting a simulation. In this flow, the maximum 
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tangential velocity is found at the core radius while the tangential velocity outside the outer 

radius  1r r  is set to zero. Inside the core  1 ,r r  the velocity goes linearly to zero at 

0.r   The size of the core radius 1r  has a significant effect on the flow field. Therefore, 

we consider the core radius from 8  to 1000  with a step of 2 , where from now on the 

symbol 6( 6.26 10 m)    represents a mean free path at initial condition. 

The tangential velocity distribution of clockwise-rotating vortex is defined as follows, 
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(6.4) 

where u  is the azimuthal component of velocity, and mu  denotes the maximum tangential 

velocity. The temperature and the pressure in the quiescent field surrounding the vortex are 

also prescribed. Inside the vortex, the pressure, the density and the energy are determined 

by balancing the pressure gradients with the centripetal force as defined in equations (5.3)-

(5.4). 

In general, the flow fields generated by interactions between the shock wave and 

vortices are largely affected by the three flow parameters; the Mach number of incoming 

shock wave and rotating vortex, sM  and vM  defined by the maximum tangential velocity 

of vortex, and the core radius 1.r  These flow parameters are chosen to demonstrate the 

effects of shock wave, vortex strength and vortex size on the interaction. The Mach number 

of incoming shock wave sM  is considered from 1.5 to 3.5 with a step of 0.5, while the 

Mach number of vortex vM  ranges from 0.6 (weak vortex) to 1.0 (strong vortex). The 
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baseline case for our computation is an incoming shock Mach number of 2.5,sM   a 

vortex Mach number of 1.0vM   and vortex core radius 1 10r   and 2 12 .r r  

6.4.2 Important physical quantities in SVI Problem 

6.4.2.1 Sound pressure 

The sound pressure defined below is used to examine the basic structure of vortex 

deformation; 

,s

s

p p
p

p


   

(6.5) 

where p is the local pressure and sp  is the pressure after shock wave. 

6.4.2.2 Rayleigh-Onsager dissipation function 

The Rayleigh-Onsager dissipation function is used to measure the degree of non-

equilibrium in flow fields; 

22 2 ˆ ˆˆ .ˆ ˆ ˆ:
bulk

f
R

 
   Q Q   

(6.6) 

6.4.2.3 Vorticity 

The vorticity plays a vital role in deeper understanding of the interaction of a vortex 

with the shock wave. It can be defined as 

.z

v u

x y

 
  

 
 

(6.7) 

6.4.2.4 Enstrophy evolution 

The physical phenomena of vorticity generation or attenuation during the interaction 

can be explained by monitoring the time evolution of the enstrophy. The time evolution of 

the enstrophy may be defined as the area integral of the square of the vorticity in the flow 

field [151], 

   2

A

Enstrophy , , ,zt x y t dxdy


   (6.8) 
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where A  is the area of computational domain. 

6.4.2.5 Dissipation rate evolution 

The viscous effects of diatomic and polyatomic gases may be investigated by 

introducing the area-weighted dissipation rate of kinetic energy  

   
A

Dissipation rate , , .t E x y t dxdy


   (6.9) 

Here  , ,E x y t  denotes the dissipation rate per unit volume and is defined as 

     ,( , , ) xx xx xy xy yx yx yy yyE x y t S S S S          (6.10) 

where 
ij is the viscous shear stress,  is the excess normal stress and 

ijS  is the strain rate 

defined as .ij i jS u x    

6.4.2.6 Vorticity transportation  

The transport equation of vorticity can describe dominant physics in SVI as it contains 

several physically distinctive quantities [121, 151]. The transport equation of vorticity can 

be written as; in two dimensional case, 
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(6.11) 

There are three important dynamic processes for the vorticity component, ;z  (i) vorticity 

generation through the dilatation strain rate, (ii) baroclinic generation through the 

interaction of pressure and density gradients, and (iii) viscous vorticity generation through 

the viscous effects. The net area-weighted vorticity generation is defined as 

 
A

Net vorticity , , .zx y t dxdy
t






  
(6.12) 

The net area-weighted dilatational vorticity generation is computed as follows: 
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
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(6.13) 

The net area-weighted baroclinic vorticity generation is given as 
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(6.14) 

The net area-weighted viscous vorticity generation is expressed as 
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(6.15) 

 

 

Figure 6-12. Grid refinement study: density contours in macro SVI. 
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Figure 6-13. Grid refinement study: density (upper) and pressure (below) profiles at 

center-line of computational domain in macro SVI. 

 

6.4.3 Grid refinement and validation of numerical solver 

To evaluate the quality of the computational results, a grid refinement study is carried 

out by computing a macro SVI test case with 12.0, 0.8, 1000s vM M r     for argon gas. 

A sequence of grids is considered: 100 100, 200 200,400 400   and 800 800.  Density 

contours of macro SVI at 1000 nanosecond are compared in Figure 6-12. In addition, the 

density and pressure profiles at center-line of computational domain are plotted for various 

grid points as shown in Figure 6-13. The results show that there is no significant difference 

between results obtained by 400 400. and 800 800. grids, implying that 800 800. grids 
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are very close to asymptotic range. Based on this finding, all the computations are carried 

out on 800 800. grids. 

 
Figure 6-14. First-order Botlzmann-Curtiss constitutive model (Navier-Fourier) 

validation: circumferential distribution of the pressure amplitude in macro SVI (Air gas). 

 

In order to verify the reliability and accuracy of present computational model and 

numerical DG solver, we compared the computational results with the experimental data 

of Dosanjh and Weeks [152], the theoretical result of Ribner [145], and the computational 

results of Ellzey et al.[146] and Inoue and Hattori [147]. The conditions for this benchmark 

case are set based on the experimental study of Dosanjh and Weeks [152]; 

1.29, 0.39, 1.4.s vM M     Figure 6-14 shows the comparison of the circumferential 

distributions of the pressure amplitude defined as  2 ,p sp p p  where 
2, , and p sp p p

denote the peak pressure of the precursor, the peak pressure of the second sound, and 

pressure behind the shock wave, respectively. As seen from Figure 6-14, the present result 

is very close to both the computational results of Ellzey et al.[146] and Inoue and Hattori 

[147]. This indicates that the present numerical code is able to compute the flow-fields in 

macro SVI accurately.  
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Figure 6-15. Second-order Boltzmann-Curtiss based constitutive model validation: time 

evolution of area-weighted enstrophy in micro SVI (Argon gas). 

In order to further check the present the second-order Boltzmann-Curtiss-based 

constitutive model, three different cases of micro SVI investigated by Koffi et al.[151] are 

considered. Argon gas in its quiescent state surrounding the vortex at an initial temperature 

of 273 K and an initial pressure of 1013 Pa is considered. The core radius varies from 8  

to 12 . In Figure 6-15, the time of the enstrophy is compared with the DSMC results. It 

can be shown that the present results, including the general trend of the enstrophy change 

with time, were found very close to the DSMC results. 

6.4.4 Effects of diatomic and polyatomic gases on SVI 

In this section, we investigate physics of macro and micro SVI in diatomic and 

polyatomic gases, in particular, in relation to the non-equilibrium effects. Emphasis is 

placed on sound generation mechanism, vorticity transport, enstrophy evolution, and 

dissipation rate evolution. Three types of vortices are chosen for extensive studies 

including transonic vortex with 1.0vM   followed by two types of subsonic vortices with 

0.6vM  and 0.8.vM   For given vortex Mach number, the core radius increases from 

8  to 1000  with a step of 2 .  The incident shock Mach number sM  increases from 1.5 
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to 3.5 with a step of 0.5. Three gases are considered to investigate the non-equilibrium 

effects of diatomic and polyatomic gases; argon  0.0 ,bulkf  nitrogen  0.8bulkf  , and 

methane  1.33bulkf  . 

 
Figure 6-16. Time evolution of sound pressure for macro SVI. 

6.4.4.1 Sound generation mechanism in SVI for diatomic and polyatomic gases 

A. Sound generation mechanism in macro SVI 

Figure 6-16 displays the time evolution of sound pressure in the macro SVI with 

conditions 12.0, 0.8, 1000 ,s vM M r    and 1.33.bulkf  The symbol ⊕ denotes the 

compression region while ⊖ presents the rarefaction region.  As the incident shock wave 

interacts with the outer flow field of the clockwise-rotating composite vortex, the lower 

and upper portions of the incident shock wave are diffracted around the vortex. Two 
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diffracted shocks, fast diffracted shock (FD) and slow diffracted shock (SD) are connected 

by the refracted shock (RF), which passes through the vortex core as shown in Figure 6-16 

(a). A rarefaction region appears in the upper portion where the shock propagation is 

promoted by the vortex velocity, while a compression region appears in the lower portion 

where the shock propagation is deterred by the vortex velocity. As a result, a precursor is 

generated first as seen in Figure 6-16(a). With development of interaction, the incident 

shock wave passes though the vortex core and is distorted into S shape, as shown in Figure 

6-16(b). New rarefaction and compression regions appear outside of compression and 

rarefaction regions, respectively. This process of interaction shows that the precursor 

changes from the initially dipolar to quadrupolar nature consisting of compressions and 

rarefactions along the circumferential direction. 

Figure 6-16(c) shows that, when the incident shock wave passes through the vortex 

flow field, a Mach reflection configuration with two reflection shocks MR1 and MR2 

which propagate upward and downward, respectively, is generated. Because of the 

clockwise rotation of the vortex, both the strength and propagating velocity of MR2 is 

larger than that of MR1. At the same time, a second acoustic wave appears behind the 

precursor, which also displays a quadrupolar nature. The Mach stem MS accelerates 

relative to the two incident shocks waves SW1 and SW2, and the shock front again 

becomes approximately planar as shown in Figure 6-16(d). A shocklet type shock wave C1 

is also observed at the opposite side of vortex core which merges with the planar shock 

front part as seen in Figure 6-16(e) and Figure 6-16(f). Further, another two reflection 

shocks MR3 and MR4 moving upward and downward, respectively, are formed. Finally, a 

third sound wave with a quadrupolar nature is generated by the compressed vortex as 

shown in Figure 6-16(f). 
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Figure 6-17. Time evolution of sound pressure for micro SVI. 

B. Sound generation mechanism in micro SVI 

Figure 6-17 displays the time evolution of sound pressure in the micro SVI with 

conditions 12.0, 0.8, 10 ,s vM M r    and 1.33.bulkf   As the incident shock wave 

interacts with the outer flow field of the micro vortex, the lower and upper portion of the 

shock wave are diffracted slowly around the vortex as seen in Figure 6-17(a). One 

rarefaction region is developed in upper and lower portions of the incident shock wave. 

When the incident shock wave approaches to the vortex core, a compression region is 

generated between two rarefaction regions. Also, a Mach stem MS and two reflected shock 

waves MR1 and MR2 are formed as shown in Figure 6-17(b). Later, as the incident shock 

wave passes through the vortex core, new rarefaction and compression regions appear 

outside the rarefaction regions in the upper portion of shock wave, as shown in Figure 
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6-17(c). Because the vortex rotates in clockwise direction, the deformed incident shock 

wave SW1 moves upward and one compression region is developed near the upper side of 

vortex core, as shown in Figure 6-17(d). For the same reason, the strength of reflected 

shock wave MR2 is stronger than that of MR1.  Further, two additional shock waves MR3 

and MR4 are formed and one rarefaction region comes out near the vortex core, as 

demonstrated in Figure 6-17(e). This rarefaction region moves upward near the 

compression region and a second sound wave is generated, as seen in Figure 6-17(f).  

Overall, the results show that the micro SVI has similar evolution pattern of sound 

pressure with the macro SVI. However, due to enhanced viscous dissipations in micro SVI, 

the pattern is much more smeared including the incident, reflected and newly formed shock 

waves. For the similar reason, it was observed that the quadrupolar acoustic wave 

structures, which are typical in the macro SVI, disappear in the micro SVI. From the 

Ribner’s linearized theory of SVI [145] which predicts the quadrupolar acoustic wave in 

macro SVI, the pressure jump varies around the vortex and generates a quadrupole field. 

The interaction also causes a 1 r potential flow around the vortex core and the pressure of 

this potential flow field can be expressed as  

1/2

m 1~ .
V

u r
p

at

 
 
 

 
(6.16) 

Here V is the upstream velocity of the shock. The expression (6.16) conforms that, when 

the radius of the vortex core 1r  is very small, the pressure jump is greatly weakened in the 

micro SVI. As a result, the quadrupolar acoustic wave disappears in the micro SVI. 

6.4.4.2 Effects of diatomic and polyatomic gases on the macro and micro SVI 

Here we investigate the effects of diatomic and polyatomic gases on the macro and 

micro SVI. For this purpose, we select three gases: monatomic argon  0.0 ,bulkf   
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diatomic nitrogen  0.8 ,bulkf   and linear polyatomic methane  1.33 .bulkf   We 

consider basically two types of the SVI problem: macro SVI with 1 1000 ,  0.8,vr M   

and micro SVI with 1 10 ,  0.8vr M   for 1.5, 2.0,  3.0.sM   

 

Figure 6-18. Diatomic and polyatomic gas effects on macro SVI (top) and micro SVI 

(bottom): sound pressure contours. 

A. Sound Pressure  

Figure 6-18 displays the effects of diatomic and polyatomic gases on the sound pressure 

in macro and micro SVI at time t = 1000 ns. Due to the strong shock vortex interaction, a 

Mach reflection configuration is developed in all cases. It is observed in monatomic case 

( 0.0bulkf  ) that a second sound wave and two reflected shock waves MR1 and MR2 are 

generated in the macro SVI, as seen in Figure 6-18(a). In addition, a small shocklet type 

wave C1 appears at the opposite side of the vortex core and near a compression region. 

When the bulkf  value increases to 0.8, two additional reflected shock waves MR3 and MR4 
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are formed and the shocklet wave C1 becomes larger in comparison with the monatomic 

case, as shown in Figure 6-18(b). Moreover, the expansion of reflected shock waves is 

stronger than that of reflected shock waves in monatomic case. This difference is maybe 

due to the substantial contribution of the dilatational term appearing in constitutive 

relations for diatomic gases.  As the bulkf  value increases further to 1.33, an additional (third) 

sound wave is generated as shown in Figure 6-18(c). The expansion region of the sound 

waves becomes larger with increasing bulkf . It is also observed that the size of the shocklet 

wave C1 increases and begins to merge with reflected shock waves of quadrupolar nature. 

On the other hand, the sound pressure pattern in the micro SVI is notably different from 

the macro SVI. First, the quadrupolar acoustic wave structure, which is the main feature of 

the macro SVI, is no longer observed in the micro SVI. Second, there exist no shocklet 

type waves in the micro SVI. Nevertheless, faster propagation of incident shock wave with 

increasing bulkf  (equivalently, decreasing  ) is observed in both of macro and micro SVI, 

since the shock propagation speed is affected by the specific heat ratio of gases, regardless 

of macro or micro condition. 

B. Vorticity distribution  

Figure 6-19 illustrates the effects of diatomic and polyatomic gases on the vorticity 

distribution in macro and micro SVI for 2.0sM   at time t=1000 ns. It can be easily 

observed that there are significant differences in vorticity distribution for different gases 

after interaction. For instance, as already explained in the subsection of sound pressure, 

two additional reflected shock waves MR3 and MR4 are clearly formed in the macro SVI 

in case of diatomic and polyatomic gases. Furthermore, in the macro SVI, two branches of 

a vertical wave (SL1 and SL2) emanating from the vortex core are formed and it becomes 

strong with increasing Mach shock number, but becomes weak with increasing bulkf  value. 
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Note that this (vorticity and density related) wave was completely unseen in any of sound 

pressure contours.   

 

Figure 6-19. Diatomic and polyatomic gas effects on macro SVI (top) and micro SVI 

(bottom): vorticity contours. 

In present simulations, a composite vortex has negative vorticity in its core and 

positivity vorticity in the outside so that the total circulation produced by the regions may 

be zero. After the interaction, the vortex is deformed in horizontally stretched form in 

macro SVI, while it remains in circular shape and is squeezed in the longitudinal direction 

in micro SVI. In macro SVI with small bulkf  value, it is observed that the inner core of the 

vortex with negative vorticity is stretched and the outer annular region with positive 

vorticity begins to detach from the inner core, as shown in Figure 6-19(a). This stretching 

is more pronounced for large bulkf  values as seen from Figure 6-19(b)(c). It is also found 

(a) Argon gas, 0.0bf  (b) Nitrogen gas, 0.8bf  (c) Methane gas, 1.33bf 
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that, with increasing bulkf  value, the domain of negative vorticity increases, owing to an 

enhanced vorticity generation.  

 

Figure 6-20. Diatomic and polyatomic gas effects on macro SVI (top) and micro SVI 

(bottom): degree of thermal non-equilibrium contours. 

 

C. Degree of thermal non-equilibrium  

Figure 6-20 shows the effects of diatomic and polyatomic gases on the degree of thermal 

non-equilibrium in macro and micro SVI at time t=1000 ns. The thermal non-equilibrium 

parameter R defined in (6.6) is calculated in order to examine what regions are expected to 

deviate significantly from the local equilibrium state during interaction. As expected, it is 

observed that the degree of thermal non-equilibrium is very high in micro SVI case 

compared with macro SVI. The macro SVI shows in general low degree of deviation from 

thermal equilibrium and the deviation is mostly confined inside the shock and vortex 

regions. In contrast, the micro SVI is significantly affected by non-equilibrium process in 

(a) Argon gas, 0.0bf  (b) Nitrogen gas, 0.8bf  (c) Methane gas, 1.33bf 
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all type of gases and the deviation occurs inside much more broader domain. It is apparent 

that non-equilibrium process associated with the micro SVI affects large portion of the 

flow field. This result confirms the essence of the difference between macro and micro SVI. 

Moreover, by comparing Figure 6-19 and Figure 6-20, it can easily be noticed that, while 

both of the vorticity and the non-equilibrium parameter based on the Rayleigh-Onsager 

dissipation function can describe the essential features in macro SVI quite effectively, the 

non-equilibrium parameter is much more effective than the vorticity in case of micro SVI. 

 

Figure 6-21. Diatomic and polyatomic gas effects on macro SVI (top) and micro SVI 

(bottom): time evolution of enstrophy. 

D. Evolution dynamics  

Figure 6-21 illustrates the effects of diatomic and polyatomic gases on the time evolution 

of enstrophy in macro and micro SVI. It can be seen that the enstrophy during interaction 

is substantially enhanced with increasing bulkf  value in both of macro and micro SVI. 

However, a different pattern of enstrophy evolution is observed in macro and micro SVI. 

In macro SVI, the enstrophy increases until 400 ns and then remains fairly constant, as 

shown in Figure 6-21(a). On the other hand, in micro SVI, the enstrophy decreases rapidly 

until 250 ns and, after that, it increases briefly in 250-350 ns. Then it decreases slowly for 
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the remainder of interaction, as shown in Figure 6-21(b). The effects of diatomic and 

polyatomic gases can be further examined through the time evolution of dissipation rate in 

Figure 6-22. It can be noticed that the effect of rotational mode in gases on the dissipation 

rate is reversed depending on macro or micro conditions. Figure 6-22(a) indicates an 

increase in dissipation rate with increasing bulkf  value in macro SVI, whereas Figure 6-22(b) 

shows the opposite trend in case of micro SVI, a decrease in dissipation rate with increasing

bulkf  value. 

 

Figure 6-22. Diatomic and polyatomic gas effects on macro SVI (top) and micro SVI 

(bottom): time evolution of dissipation rate. 

E. Summary of macro and  micro SVI in diatomic and polyatomic gases 

Several major effects of diatomic an polyatomic gases on shock-vortex interaction were 

identified; for example, generation of additional reflected shock waves MR3 and MR4 

observed in both macro and micro SVI for non-monatomic gases. A significant increase in 

enstrophy is also observed with increasing bulkf  value in both macro and micro SVI. 

Furthermore, the macro and micro SVI show distinct flow field features. It is interesting to 

notice that the quadrupolar acoustic wave structure, which is essential phenomenon in 

macro SVI, is not observed in any case of micro SVI. Finally, the degree of thermal non-
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equilibrium is found very high in micro SVI in comparison with macro SVI and 

consequently the non-equilibrium parameter is much more effective in describing the 

essential features in micro SVI. 

TABLE I. Simulation cases for flow pattern and vortex deformation (nitrogen). 

Cases Shock Mach 

(Ms) 

Vortex Mach 

(Mv) 

Core radius (r1) 

1 1.5 1.0 8λ 

2 1.5 1.0 12λ 

3 2.5 1.0 8λ 

4 2.5 1.0 12λ 

 

6.4.5 Characteristics of micro SVIs in diatomic and polyatomic gases 

6.4.5.1 Vortex deformation through a shock wave  

Vortex deformation by incident shock wave is a basic flow feature of the micro SVI. To 

analyse this physical phenomenon, four cases were selected, as summarized in Table I. 

These cases were chosen to demonstrate the effects of shock wave strength and vortex size 

on the interaction, and they may be considered as representative of the micro SVI. The first 

two cases involve a relatively weak shock wave, a vortex  1.5, 1.0 ,s vM M  and 

different vortex sizes 1 8 , 12 .r    In contrast, the last two cases involve a strong shock 

wave, a vortex  2.5, 1.0s vM M  , and different vortex sizes 1 8 , 12 .r    Nitrogen gas, 

a major component of air, was considered as a representative diatomic gas for the study of 

the micro SVI.  

Figure 6-23 shows four snapshots of the sound pressure contours generated in the micro 

SVI with different incoming shock Mach numbers and vortex sizes. The positive value of 

the sound pressure denotes the compression region, whereas the negative value denotes the 

rarefaction region. The results show that five regions, two rarefication and three 
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compression regions, are generated after the interaction in all cases. These regions are 

strongly dependent on the strength of the incoming shock wave. For example, the first two 

cases 1 and 2 produce three weak compression regions, while the last two cases 3 and 4 

produce three strong compression regions, which are located between the two rarefaction 

regions. It can also be observed that stronger compression and rarefaction regions are 

produced at larger vortex sizes. It is interesting to note that the quadrupolar acoustic wave 

structure, which is the prime feature in the macro SVIs, is not found in any case of micro 

SVI. 

 

Figure 6-23. Vortex deformation in micro SVI: sound pressure contours with =1.0.vM  

The results show that vortex deformation produced by an incident shock wave is 

strongly dependent on the strength of the interaction. In this context, the information about 

1(a) =1.5, 8sM r  1
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s
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the vorticity evolution during the interaction may be very helpful. It can be obtained by 

examining the evolution dynamics of the net production and dissipation of vorticity. 

 

Figure 6-24. Vortex deformation in micro SVI: time evolution of (a) Enstrophy and, (b) 

dissipation rate with =1.0.vM  

6.4.5.2 Evolution dynamics of micro SVIs  

Figure 6-24 displays the time evolution of enstrophy and dissipation rate for all cases 1-

4. A substantial attenuation of enstrophy with time is found in all cases, as shown in Figure 

6-24(a). The results show that the first two cases 1 and 2 with a weak shock wave produce 

an enstrophy pattern that is different from the last two cases 3 and 4 which have a strong 

shock wave. It may be noted that the shock wave in cases 1 and 2 starts to interact actively 

with the vortex around 200 ns and completes around 600 ns. Moreover, a monotonic 

decrease in enstrophy is found throughout the interaction process.  

On the other hand, in cases 3 and 4, a brief increase in enstrophy is observed during the 

interaction process (250-400 ns). This difference can also be confirmed in the time 

evolution of the dissipation rate as shown in Figure 6-24(b). The dissipation rate in cases 

1 and 2 remains relatively constant over time during the entire weak interaction process, 

whereas the dissipation rate in cases 3 and 4 experiences a substantial increase during the 

strong interaction process.  
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Figure 6-25. Vortex deformation in micro SVI: time evolution of  (a) net vorticity, (b) 

net dilatational vorticity, (c) net baroclinic vorticity and, (d) net viscous vorticity with

=1.0.vM  

The reason behind this gap may be that the viscous stress dominates the flow structure 

during the interaction [153]. Strong interaction with a high shock Mach number or a large 

vortex size causes strong viscous effects and a large dissipation rate, whereas weak 

interaction with a low shock Mach number or small vortex size yields weak viscous effects 

and a low dissipation rate. This is one of the major features of the micro SVI in diatomic 

nitrogen gas, and is also in qualitative agreement with the conclusion for a monatomic gas 

[153]. 
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The results of the enstrophy and the dissipation rate show that their evolution dynamics 

are strongly dependent on the strength of the interactions. Therefore, in order to obtain a 

better understanding of the physics of the interaction, we conducted a detailed study of the 

vorticity transportation during the interaction.  

Figure 6-25 illustrates the net vorticity and three components of vorticity transportation 

for cases 1-4. The results show that the net vorticity and all components reach significant 

values during the interaction and diminish shortly after passing the vortex. It can be 

observed that, during the interaction, viscous vorticity generation is the most dominant 

mechanism, followed by dilatational vorticity and baroclinic vorticity generations. In 

addition, the viscous effects play a more dominant role in the interaction for strong shock 

waves (cases 3 and 4), resulting in a significant increase in the dissipation rate, as shown 

in Figure 6-25(b). 

6.4.5.3 Comparison of first- and second-order constitutive models in the SVI problem 

Figure 6-26 and Figure 6-27 illustrate a comparison between the first- and second-order 

constitutive models for a micro SVI. For this purpose, we selected three different incoming 

shock Mach numbers: 1.5, 2.5, 3.5
s

M  with the same vortex Mach number 1.0vM   and 

the vortex radius 1 10r  . Figure 6-26 shows that the flow field structures (sound pressure 

contours) in the first- and second-order constitutive models are non-negligibly different, in 

particular, for high shock Mach numbers. It may be noted that the second-order constitutive 

model produces stronger compression and rarefaction regions than the first-order 

constitutive model. The similar pattern was found in the time evolution of the enstrophy 

and dissipation rates shown in Figure 6-27. While a notable difference was found in the 

enstrophy, the difference was much more pronounced in the dissipation rate. At a high 

shock Mach number 3.5,
s

M  the increase in the dissipation rate was 2600 Pa m2/s in the 
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first-order constitutive model, while the increase was drastically reduced to 1200 Pa m2/s 

in the second-order constitutive model, as shown in Figure 6-27(b). At a low shock Mach 

number 1.5,
s

M   the increase was found to be 100 Pa m2/s in the first-order constitutive 

model, while it became negligible in the second-order constitutive model. 

 
Figure 6-26. Comparison of  first-order (upper) and second-order (bottom) constitutive 

models on micro SVI: sound pressure contours with different incoming shock Mach 

number and 11.0, 10 .vM r    

Figure 6-28 illustrates a comparison between the first-order constitutive models 

(standard Navier-Stokes-Fourier and Navier-Fourier without Stokes’s hypothesis) and 

second-order constitutive model for a polyatomic (methane) gas on micro SVI with 

12.0, 0.8, 10 .s vM M r     It is observed that the standard Navier-Stokes-Fourier model 

predicts more degree of thermal non-equilibrium in comparison to Navier-Fourier and 

second-order models. It can be observed that the standard Navier-Stokes-Fourier model 

predicts higher degree of thermal non-equilibrium in comparison with the Navier-Fourier 

and second-order models. 

(a) =1.5sM (b) =2.5sM (c) =3.5sM
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Figure 6-27. Comparison of first-order and second-order constitutive models for 

diatomic (nitrogen) gas on micro SVI: time evolution of  (a) enstrophy and, (b) 

dissipation rate with 11.0, 10 .vM r    

 

 

Figure 6-28. Comparison of the classical first-order Navier-Stokes-Fourier, first-order 

Navier-Fourier and second-order models for polyatomic (methane) gas on micro SVI: 

degree of non-equilibrium contours with 12.0, 0.8, 10s vM M r    . 

6.4.5.4 Summary of characteristics of the micro SVI 

The general flow field in a micro SVI, including vortex deformation and the 

compression and rarefaction regions, is highly dependent of the strength of the incoming 

shock wave and vortex, and the size of vortex. During the interaction, the viscous vorticity 

generation was found to be the most dominant factor in the net vorticity transportation 

process, followed by the generation of dilatational vorticity and baroclinic vorticity. 
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Finally, the first- and second-order constitutive models yielded a significant difference 

in the time evolution of enstrophy and dissipation rate in the micro SVI, especially for high 

shock Mach numbers. 
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Chapter 7. Solution of second-order Boltzmann-

Curtiss based hydrodynamic models: 3D problems 

 

“Dream is not that which you see while sleeping it is something that does not let you sleep”                                                                                                                                     

                                                                                         -A.P.J. Abdul Kalam (1931-2015)  

 

 

This chapter is devoted to demonstrate the capability of the second-order Boltzmann-

Curtiss based constitutive model for three-dimensional real-life aeronautical applications. 

We first conduct a numerical investigation for analyzing effects of no-slip and slip 

boundary conditions on the hypersonic flow past a sphere.  Then, the solution of the first-

order and second-order constitutive models for hypersonic gas flows over a sphere are 

provided in transition regime. A laminar supersonic gas flows over a flat plate is simulated 

for second-order constitutive model. Finally, the three-dimensional hypersonic gas flows 

around a suborbital re-entry vehicle, IXV is investigated.  

 

7.1 Hypersonic flow over a sphere: effect of slip boundary 

condition 

One of the challenging issues in the simulation of rarefied flows using continuum 

method is to model slip effect accurately. In order to study slip boundary effects, it is 

necessary to make sure that the no-slip boundary condition is prescribed accurately. 

Hypersonic flow over a three-dimensional sphere at Mach 5.48 and Knudsen number 

0.0001 is considered as the 3D benchmark problem. The computational domain consists 

546,702 unstructured tetrahedral elements. A comparison between no-slip and viscous slip 

boundary conditions is shown in Figure 7-1. The second-order Maxwell velocity slip 

boundary condition is performed as a viscous slip boundary condition. The numerical 
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results indicate that the velocity slip effect is dominant and no wake appears in case of slip 

boundary condition.  

 

  

(a) No slip boundary (b) Viscous Slip boundary (Maxwell) 

Figure 7-1. Hypersonic flow over sphere: slip boundary effects at M = 5.48, Kn=0.0001.  

 

7.2 Hypersonic flow over a sphere: second-order Boltzmann-

Curtiss solutions 

The numerical results obtained for second-order Boltzmann-Curtiss model using the 3D 

DG method are compared with the solution of first-order Boltzmann-Curtiss model at 

Mach of 5.48 and Knudsen number of 0.1. Argon gas with 0bulkf   is performed for the 

numerical simulations. The computed Mach contours of hypersonic flow past a sphere are 

shown in Figure 7-2.  
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(a) First-order model (b) Second-order model 

Figure 7-2. Computed Mach contours of hypersonic flow over sphere: a comparison 

between first-order and second-order Boltzmann-Curtiss based constitutive models at 

Mach=5.48, Kn = 0.1. 

 

7.3 Three-dimensional supersonic flow over a flat plate  

We choose the supersonic flow over a flat plate with zero pressure gradient as a next 

test case. It is intended to assess the accuracy of the numerical solution obtained by the 

modal 3D-DG scheme for high Reynolds number flow.  The laminar boundary layer over 

a unit flat plate is considered. In this case, the free-stream Mach number is 4.37, and the 

Reynolds number is 
65.0 10 .  The unstructured tetrahedral meshes are used to compute the 

flat plate boundary layer as shown in Figure 7-3. The computational domain contains 

428053 number of tetrahedral elements and 80058 grid points. Argon gas is considered as 

working gas. The computed Mach number contours for the second-order constitutive 

model in 3D laminar flow over the flat plate are presented in Figure 7-4. 

 

 

 



 

182 

 

 

Figure 7-3. Three-dimensional supersonic gas flows over a flat plate problem: 

computational domain with unstructured tetrahedral elements.  

 

(a) Mach contours in 3D view 

 

(b) Mach contours in 2-D view 

Figure 7-4. Three-dimensional supersonic gas flows over a flat plate problem: Mach 

contours with M=4.36 and
6Re 5.0 10 .   
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Figure 7-5. Three-dimensional hypersonic flow past a re-entry vehicle: computational 

domain with unstructured tetrahedral meshes. 

 

7.4 Three-dimensional hypersonic gas flow past a re-entry 

vehicle  

The next benchmark case is considered as three-dimensional hypersonic gas flows past 

a suborbital re-entry vehicle, Intermediate eXperimental Vehicle (IXV) of the European 

Space Agency (ESA). The computational domain consists 978,445 number of unstructured 

tetrahedral elements as shown in Figure 7-5. The flow conditions for the hypersonic case 

are Mach =5.0, Kn = 0.2 and two different angles of attack (AoA) =15 and 45 degrees. The 

numerical simulations are performed on argon gas with 0.0.bulkf    Comparisons of the 

computed Mach number contours are presented in Figure 7-6. The numerical result shows 

that there is no much substantial difference between numerical solutions of the first-order 

and second-order constitutive models, since the degree of thermal non-equilibrium is not 

high. However, it can be noticed from the Mach contours that some non-equilibrium effects 

begin to show up in the bow shock structure and in the rear part of the vehicle where the 

rapid expansion occurs. Besides these findings, the current results demonstrate that the 

three-dimensional numerical simulations of the second-order constitutive model are 
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possible for hypersonic rarefied flows like re-entry vehicles with complex geometrical 

configuration.   

 

 

Figure 7-6. Three-dimensional hypersonic flow past a re-entry vehicle: computed Mach 

contours for first- and second-order Boltzmann-Curtiss based constitutive models at 

Mach =5.0 and Kn=0.2 and AoA =15 degree (upper) and AoA =45 degree.   

 

 

 

 

 

 

 

 

0(a) First-order model (AoA=15 )
0(b) Second-order model (AoA=15 )

0(c) First-order model (AoA=45 ) 0(d) Second-order model (AoA=45 )
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Chapter 8. Parallelization of DG Solver 

 

“Dream is not that which you see while sleeping it is something that does not let you sleep.”                                                                                                                                     

                                                                                         -A.P.J. Abdul Kalam (1931-2015)  

 

 

One of the challenging issues in the discontinuous Galerkin (DG) methods is the higher 

computational cost compared with the traditional finite volume method (FVM) for a given 

set of grids. As mentioned before, the compact form of DG discretization makes it ideally 

suited for the implementation on parallel computers due to its local nature. In this chapter, 

we cover our parallelization strategy into the DG program design process from the 

beginning on, which enormously reduces the later coding complexity. We use the Message 

Passing Interface (MPI) library for parallel communication, which guarantees maximal 

flexibility for parallel programming. In the following the methodology—|domain 

decomposition, data structures and communication of the parallelization is presented. In 

the present chapter, the main focus is on the computational cost of the modal DG method 

for solving the conservation laws in conjunction with the first-order and second-order 

constitutive laws. The computational cost of the Navier-Stokes-Fourier (NSF) and second-

order Boltzmann-Curtiss based model is investigated in the serial and parallel frameworks 

[137]. 

8.1 Background 

The DG method is compact and highly parallelizable due to the local nature of the 

discretization. The solution is approximated independently in each element, where inter-

element data sharing is only needed among the face neighbor elements (elements sharing 

a common face) to calculate numerical fluxes. Therefore, inter-process communication is 

only required between the corresponding neighboring processes for the computations at 
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partition boundary faces (i.e., faces having their left and right elements with different 

processes). In this study, a single program multiple data (SPMD) parallel model using a 

message-passing-interface (MPI) library was employed to parallelize the present mixed 

modal explicit DG method. The MPI library guarantees the maximal flexibility of the 

parallel programming, portability and scalability of the distributed memory parallel 

architectures [154]. A shell program was developed to unify all the parallel processing 

steps, as illustrated in Figure 8-1.  

 

Figure 8-1. Illustration of unified shell program for parallel processes. 

The software setup including MPICH (i.e., a high performance and widely portable 

implementation of the MPI standard) and 64-bit compilers with double precision accuracy 

was used for all the floating point operations. Moreover, a Linux cluster sharable among 

multiple users was established using Intel Xenon processors with ten cores at each node. 

This cluster is equipped with eighty cores interconnected by dual port Gigabit Ethernet. 

The steps in the parallelization of the DG solver for rarefied gas flows including domain 

decomposition, communication process, merging of sub-domains and parallel performance 

measurements are described in the following sub-sections. 

8.2 Domain decomposition 

Mesh partitioning is the first step in the parallel programming, where the computational 

domain is decomposed into several sub-domains and then individual sub-domains are 

assigned to each processor. Decomposition of the domain into several sub-domains was 
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done using open source software, ParMETIS [155]. ParMETIS is an MPI-based parallel 

library that implements a variety of algorithms for computing fill-reducing orderings of 

sparse matrices, and partitioning of the unstructured graphs. It decomposes the given mesh 

such that each processor has approximately the same number of elements, which balances 

the load for the processors and the number of links cut by the decomposition is minimized. 

This feature is crucial to minimizing communication among the processors [155]. After the 

decomposition of the domain, the partitioned results, including the node and element 

connectivity information, are assigned to the processors. The sub-domains generated by 

ParMETIS for the case of flows around a sphere shown in Figure 8-2. 

 

Figure 8-2 Tetrahedral mesh partition using ParMETIS; different colors represent sub-

domains owned by different processors. 

8.3 Communication process 

The current parallel solver is based on a single program, multiple data (SPMD), which 

executes the same program in all processors with different data. The SPMD model can 

manage the processors to conditionally execute only certain parts of the program. Therefore, 

some of the processors may not necessarily need to execute the entire program. In this 

study, the parallelization was achieved without compromising the serial algorithm for the 
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purpose of higher parallel performance. Moreover, the present parallel algorithm allows 

the MPI communications to completely overlap with the computations. This type of 

algorithm is usually referred to as hiding communication behind computation, which is 

easier to achieve in explicit time marching schemes [156] as summarized in Figure 8-3.  

 

Figure 8-3. Flow chart of DG parallel algorithm. 

The point-to-point communication methodology of MPI was used such that the 

message passing operation may only occur between two different processors. While one 

processor is performing a send operation, the other processor performs a matching receive 

operation. There are various types of send and receive routines that are available in MPI 

point-to-point communication. Either blocking or non-blocking routines are often used in 

the SPMD model due to their flexibility and for the sake of implementation. Both 

communication methods use a buffer to avoid data loss and confusion during the 
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transmission of data from one processor to another. Hence, data will be copied to the buffer 

before it is received by the partner processor. A buffer is a region of memory storage 

designed to temporarily store data during the communication process. 

 

Figure 8-4 Data communication through Gaussian quadrature points for (a) DG 

piecewise constant scheme, and (b) DG higher-order approximation (data package is the 

solution information). 

 

Figure 8-5 Non-blocking communication pattern (Isend and Irecv block diagram). 

In the blocking send and receive routines, the send routine will only return (block) after 

the completion of communication. Hence, computations cannot be done by the respective 

processors involved in communication until the process is completed. On the contrary, non-

blocking communication functions return immediately (i.e., do not block) even if the 

communication is not finished. While using non-blocking communications, care should be 

taken to use the proper wait comment, to see whether the communication has finished or 
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not. Non-blocking communications are primarily used to overlap computation with 

communication and exploit possible performance gains. 

The communication module of the DG solver starts working by sending data (adjacent 

to partition boundaries) to neighbor partitions and this is followed by receiving data from 

a corresponding neighbor. These communications should be repeated for each of the 

Gaussian quadrature points on the element boundaries. However, the number of Gaussian 

quadrature points will increase with the increasing order of accuracy of the DG 

approximation. As a result, the amount of data communication will also increase as the DG 

order of accuracy increases, as shown in Figure 8-4. 

Non-blocking sending and receiving were used in the parallelization in order to save 

processor waiting time and avoid deadlock. Therefore, the application of MPI_CHECK 

and MPI_WAIT was essential to confirm the completion of communication without data 

loss. These operations were started by calling standard MPI routines, MPI_ISEND and 

MPI_IRECV. Furthermore, the MPI_WAITALL routine was used to ensure the 

completion of the communication process. The block diagram of the DG communication 

algorithm is shown in Figure 8-5. Once communication was completed, the data received 

from the neighboring processors were used for further computations. 

8.4 Merging of sub domains 

During the parallel computations, all the partitioned sub-domains execute the same DG 

solver with respective data inputs and solve the flow fields in their local domain [137]. 

After the solution converges, each of the processors plots its solution for post-processing 

purposes. However, it is noticeable in Figure 8-6(a) that the results are visually not smooth 

at the boundaries of the sub-domains due to biased interpolation of the solution, and as a 

result of not considering all vertex neighborhoods for interpolations. A merging subroutine 

was devised for better post-processing of the solutions of parallel computations. In this 
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subroutine, all subdomain results were exported into a unified single domain for the 

purpose of better visualization. The DG approximate solutions are sought in the finite 

element space and thus the solution at any point inside the computation cell can be 

calculated by summing up the product of moment of the solution and basis function. 

Although each element contains its own solution, all the solutions are needed to be 

interpolated to the node for post processing software like TECPLOT. Otherwise, the biased 

interpolation that does consider all the neighbors of the node can result in very poor 

visualization as demonstrated in Figure 8-6(a). In order to avoid such shortcoming, the 

merging of sub-domains was performed for post processing after terminating parallel 

processing, as shown in Figure 8-6(b). In this process, as the spatial polynomial function 

is defined in least square space and the solution in each element is calculated locally, the 

results are irrespective of the number of processors. 

  
(a) (b) 

Figure 8-6. Merging of the sub-domains for post-processing of the solutions: pressure 

contour of unified merged domain. 

8.5 Parallel performance measurement 

The measurement of parallel computation is essential for assessing the efficiency and 

applicability of the parallel solver. Generally, parallel performance is measured by relative 

speed-up, relative efficiency or scalability [157]. The definition of speed-up (Sp) was 
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established by Amdahl’s law [158]. According to this law, it is a metric for the relative 

improvement in performance when executing a task. However, speed-up can be used more 

generally to show the effect of any performance enhancement. The relative speed-up is 

given by 

,s
p

p

t
S

t
  

(8.1) 

where Sp is speed-up, ts and tp denote the elapsed time taken by a single processor and p 

processors, respectively. Relative efficiency (E) is a metric of the utilization of the 

resources of the improved parallelized system read as  

.
pS

E
p

  
(8.2) 

A performance analysis indicates the level of speed-up and efficiency of the parallel 

solver. Speed-up of the code varies with the increase in the number of processors for a 

fixed problem size. Linear speed-up usually remains less than p, and efficiency lies 

between 0 and 1. In ideal cases, elapsed time taken by p processors is equal to tp = t1/p, 

relative speed-up is equal to Sp = p, and relative efficiency is equal to E =1.  

8.6 Computational cost of Boltzmann-Curtiss based models 

The computational cost of Boltzmann-Curtiss based constitutive models measured 

empirically using serial modal DG solvers for various cases with different numbers of 

elements are shown in Figure 8-7. It can be seen that the computational cost of second-

order model does not change linearly with respect to the number of elements either for 

piecewise constant or piecewise linear polynomial approximations. In fact, the numerical 

experiment shows that the computational cost of the second-order Boltzmann-Curtiss 

based model increases exponentially with the increasing number of elements, and it is 

higher than that of the first-order model for all cases. Moreover, the computational cost of 
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the piecewise linear DG approximation is considerably higher than that of the piecewise 

constant approximation as expected. This is because, for higher-order DG approximation, 

extra efforts are needed to obtain the solution at added Gaussian quadrature points on the 

element interfaces, and inside the volume of the elements. 

 
(a) 

 
(b) 

Figure 8-7 Computational cost of solving (a) the first-order Boltzmann-Curtiss 

constitutive relations, and (b) the second-order Boltzmann-Curtiss constitutive relations 

[137]. 

 

8.7 Parallel performance of Boltzmann-Curtiss based models 

Figure 8-8 illustrates the speed-up of the piecewise constant and piecewise linear DG 

approximations for elements ranging from 4,000 to 200,000, and with a range of processors 

from 1 to 64. The plots indicate that the speed-up increases almost linearly as the number 

of processors increases, and the speed-up is enhanced in the case of piecewise linear 

approximation.  Figure 8-9 shows the relative efficiency of the parallel code for piecewise 

constant and piecewise linear DG approximations, respectively. The communication 
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overload increases as the number of processors increases, and, as a result, the required run-

time for communication between processors becomes comparable to the computational 

time of the simulations, for cases with a smaller number of elements. Hence, the speed-up 

and parallel efficiency are higher for cases with larger numbers of elements (200,000) and 

processors (64). Moreover, the speed-up of the piecewise linear polynomial expansion is 

substantially higher than that of the piecewise constant scheme due to the reduction in 

communication overload between processors in comparison with the numerical 

computation overload. Overall, the present results demonstrate that the piecewise linear 

DG schemes are highly parallelizable and a better choice for parallelization. 

  
(a) (b) 

Figure 8-8 Parallel speed-up,
pS  for the first-order Boltzmann-Curtiss constitutive 

model with (a) DG piecewise constant, and (b) DG piecewise linear scheme [137]. 

Figure 8-10 depicts the rate of cost reduction in the parallel second-order and first-order 

Boltzmann-Curtiss based solvers. In the ideal case, the first-order Boltzmann-Curtiss based 

solver approaches a linear reduction of computational cost, which is compatible with the 

Amdahl’s law [158]. On the other hand, very surprisingly, the computational cost of the 

second-order Boltzmann-Curtiss based solver reduces much faster, almost exponentially, 

as the number of processors increases. This super-parallel performance is due to the 
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nonlinear behavior of the cost of the second-order Boltzmann-Curtiss based solver, which 

demands less computational effort for smaller numbers of elements, as illustrated in Figure 

8-9(b). Therefore, decomposing the domain into several sub-domains will boost the 

convergence rate. Put another way, the extra cost incurred from the iterative solver on 

implicit algebraic the second-order Boltzmann-Curtiss based constitutive model becomes 

negligible for the parallel computations with larger processors. Finally, Figure 8-10 shows 

the normalized computational cost of the parallel second-order and first-order Boltzmann-

Curtiss based solvers for different numbers of processors. It is obvious that the cost of the 

second-order Boltzmann-Curtiss based solver reduces with a much higher rate than that of 

the first-order Boltzmann-Curtiss based solver, for both the piecewise constant and 

piecewise linear approximations. It is also shown that the cost rate of the first-order 

Boltzmann-Curtiss based solver decreases slowly with the increasing number of processors, 

and may approach to a constant rate earlier than the second-order Boltzmann-Curtiss based 

solver.  

  
(a) (b) 

Figure 8-9 Parallel relative efficiency, E for the first-order Boltzmann-Curtiss 

constitutive model with (a) DG piecewise constant, and (b) DG piecewise linear scheme. 
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(a) (b) 

Figure 8-10. Comparison of the cost reduction between the first-order and second-order 

Boltzmann-Curtiss constitutive model parallel solvers with argon gas [137]. 
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Chapter 9. Conclusion and future works 

 

 
“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”   

- Albert Einstein (1879-1955) 

 

9.1 Conclusion of present thesis 

The research work reported in this thesis is focused on the computational study of 

nonequilibrium transport phenomena based on Boltzmann-Curtiss based constitutive 

models for diatomic and polyatomic gases. Starting from Eu’s moment equations for 

diatomic and polyatomic gases derived in the framework of irreversible thermodynamics, 

the origin of the Boltzmann-Curtiss based models, in particular, the second-order models 

based on the balanced closure, was described in detail. It was shown that application of 

these constitutive models in conjunction with the conservation laws provides valuable 

insight into the study of gas flows, while their computational cost may be considerably 

higher than conventional classical first-order linear constitutive relations. The complete set 

of the constitutive models for one-dimension, two-dimension, and three-dimension flows 

were provided, and their characteristics were investigated for a wide range of the 

thermodynamic forces, viscous stress and heat flux. Interestingly, it has been shown that 

the computational cost of the second-order Boltzmann-Curtiss based model can be 

significantly reduced by employing parallel algorithms, owing to a super-parallel 

performance of the nonlinear coupled constitutive solver of the second-order Boltzmann-

Curtiss based model. 

Further, the discontinuous Galerkin method has been extensively studied as the basic 

numerical scheme for solving the Boltzmann-Curtiss based models. It is shown that the 

DG method is suitable for solving the conservation laws together with the Boltzmann-
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Curtiss based constitutive models. The mixed type DG methods were developed for solving 

one-dimensional, two-dimensional and three-dimensional problems, and they were verified 

for both smooth and stiff flow problems. The solutions of DG method were compared with 

analytical and other numerical solutions, DSMC, and experimental data.  

Several boundary value problems have also been studied using the modal DG method; 

forward facing step flow, double Mach reflection, shock-vortex interaction, bubble-shock 

interaction, one-, two- and three-dimensional Riemann problems, and external flow over a 

cylinder, rectangular box, sphere, IXV vehicle and G400 aircraft. It was found that 

solutions of the second-order Boltzmann-Curtiss based models are always in better 

agreement with DSMC data than the classical first-order linear model and appropriate 

slip/jump boundary conditions remain essential for studying rarefied and microscale gas 

flows. 

9.2 Scope of future works 

After the development of modal discontinuous Galerkin method for the conservation 

laws in conjunction with the first-order and second-order Boltzmann-Curtiss based 

constitutive relations for diatomic and polyatomic gases, the present research work can be 

extended in the following directions as future works: 

9.2.1 Study on various numerical solvers for viscous-dominant problems 

For viscous-dominant problems, the stability of numerical solver may be reduced due 

to the appearance of spurious oscillations near boundaries and discontinuities. Hence, it is 

necessary to further improve the stability of the DG solver for studying viscous-dominant 

problems. Our next step is to develop a three-dimensional local discontinuous Galerkin 

(LDG) and the implemented the second Bassi-Rebay scheme (BR2) scheme in our modal 

DG solver. 
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9.2.2 Vibrational nonequilibrium effects on gas flow problems 

Due to the high temperatures generated by the compression in the inlet and isolator of 

a scramjet engine, the thermal energy of the flow will easily reach levels where there would 

be significant vibrational excitation at equilibrium as shown in Figure 9-1. Shocks and 

turbulent mixing can induce significant nonequilibrium effects owing to the relatively slow 

relaxation of vibrational energy. For example, the vibrational relaxation times of N2 can 

easily exceed the residence time of the flow within a cruise-missile-scale scramjet engine. 

It is not known, however, how significant levels of vibrational non-equilibrium will impact 

turbulent mixing and reaction rates for the case of hydrogen or hydrocarbon combustion. 

Our next step may be towards to investigate the vibrational nonequilibrium effects on gas 

flow problems. 

 
Figure 9-1. Contributions of the specific heat capacity to the temperature and  degrees 

of freedom or modes. 

 

9.2.3 Study of rarefied gas flows between rotating concentric cylinders 

An isothermal gas flow between two concentric rotating cylinders is a classical fluid 

dynamics problem that is explained for the no-slip cases in many literatures [159]. 



 

200 

 

However, under certain rarefied conditions the flow between the cylinders can exhibit 

highly non-intuitive behavior. For example, if the outer cylinder is stationary and the inner 

cylinder is rotating, it is possible for the velocity profile to become inverted, i.e., the 

velocity will increase from the inner to the outer cylinder wall. Therefore, the next step in 

developing more accurate constitutive model may be studied to investigate non-

equilibrium effects associated with the Knudsen layers on the rarefied gas flows between 

two concentric rotating cylinders.  

9.2.4 Unsteady turbulent flow problems 

The study of turbulent nature in flowing fluids is one the most important and curious 

problems in all of classical physics [160, 161]. The most of fluid flows are turbulent, and 

at the same time fluids occur, and in many cases represent the dominant physics, on all 

macroscopic scales throughout the known universe—from the interior of biological cells, 

to circulatory and respiratory systems of living creatures, to countless technological 

devices and household appliances of modern society, to geophysical and astrophysical 

phenomena including planetary interiors, oceans and atmospheres and stellar physics, and 

finally to galactic and even super-galactic scales. And, despite the widespread occurrence 

of fluid flow, and the ubiquity of turbulence, the problem of turbulence remains to this day 

the last unsolved problem of the classical mathematical physics. Some of the key elements 

of turbulence are that it occurs over a large range of length and time scales, at high 

Reynolds number, and is fully three-dimensional and time-dependent. Turbulent flows are 

much more irregular and intermittent in contrast with laminar flow, and turbulence 

typically develops as an instability of laminar flow. For a real (i.e. viscous) fluid, these 

instabilities result from the interactions of the non-linear inertial terms and the viscous 

terms contained in the Navier-Stokes equations, which are very complex due to the fact 

that turbulence is rotational, three-dimensional, and time-dependent. Hence, high-order 
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DG method would be a helpful tool for the investigations on unsteady turbulent flow 

problems that will be our next future research works. 
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 Basics of vector and tensor theory 

 

In this appendix, a basic theory of vector and tensor calculus is provided with mathematical 

definitions [162-164].  

Scalar and vectors 

 Scalar. A scalar refers to a quantity which is characterized by its only magnitude. For 

example, distance, temperature, density, pressure, etc. 

 Vector. A vector represents a physical quantity which is characterized by its direction 

and its magnitude. The length of the vector represents the magnitude, while its direction 

is denoted with the unit vector along its axis. For example, force, velocity, momentum, 

etc. 

Unit vector definition 

 Cartesian coordinate system. Let us consider a Cartesian coordinate system in three- 

dimensional Euclidean space. We will denote the coordinates by 

1 2 3,     ,     x x x y x z    (A.1) 

and the unit vectors so-called, basis vectors in the positive axes 

   1 2 3

1 0 0

, , , , 0 , 1 , 0 .

0 0 1

e e e

      
      

       
            

e = = i j k  

(A.2) 

 Kronecker delta symbol. The scalar product of the basis vectors are 

1, if  

0,         if  
i j

i j
e e

i j


  


 

(A.3) 

These basis vectors form an orthonormal system. This can be written in a compact form 

by defining so called Kronecker delta function ij . Hence 
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1 0 0

0 1 0 .

0 0 1

i j ije e 

 
 

  
 
  

 

(A.4) 

 The cross product of two unit vectors can be performed using a special tensor so called 

the permutation or Levi-Civita tensor. 

1 for even permuations

1 for odd permuations

0       for any repeated index

i j ijk ke e e




   



 

 

(A.5) 

Vector definition and its properties 

 A vector can be defined in three dimensional array. For example,  

 

 

1 2 3

1 2 3

, , ,

v , v , v .

T

T

u u u



u

v
 

 

(A.6) 

 Any vector can be defined in terms of unit vectors as 

1 1 2 2 3 3 1 2 3

1 0 0

0 1 0

0 0 1

i i

i

u e u e u e u e u u u

     
     

      
     
          

u  

 

(A.7) 

 Scalar or inner product of two vectors. The scalar or inner product of two vectors is 

the product of their lengths and the cosine of the smallest angle between them. If  

2 2 2 2 2 2

1 2 3 1 2 3

cos cos ,

where , .

u v

u u u u v v v v

   

       

u v u v

u v
 

 

(A.8) 

 Dot product of two vectors. The dot product of two vectors results in a scalar defined 

as 

1 1 2 2 3 3.i i

i

u v u v u v u v    u v . (A.9) 

 Cross product of two vectors. The cross product of two vectors u and v can be defined 

as 

1 2 3

1 2 3

.u u u

v v v

 

i j k

u v  

 

(A.10) 

The magnitude of cross product u v  can be written as  



 

204 

 

sin , u v u v n  (A.11) 

where n is the unit vector normal to u and v. 

 Dyadic product of two vectors. If u and v are vectors such as  1 2 3, ,
T

u u uu and 

 1 2 3, , .
T

v v vv  Then the dyadic product of u and v is defined by 

 
1 1 1 1 2 1 3

2 1 2 3 2 1 2 2 2 3

3 3 1 3 2 3 3

v v vT

u u v u v u v

u u v u v u v

u u v u v u v

   
   

   
   
      

u v uv . 

 

(A.12) 

 Vector differential operator del. The vector differential operator   (read as del or 

nabla) is defined as 

1 2 3

1 2 3

.i
i i

e e e e
x x x x

   
    

   
  

(A.13) 

 Gradient of scalar function. If   is a scalar function, the gradient of  , denoted by   

is defined as follows 

1 2 3

1 2 3

grad .i

i

e e e e
x x x x

   
 

   
     

   
 

(A.14) 

 Gradient of vector field. If u is a vector field, the gradient of u can be defined in index 

notation as 

grad .i
i j

j

u
e e

x


   


u u  

(A.15) 

This can be written as 

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

grad .

u u u u u u

x x x x y z

u u u v v v

x x x x y z

w w wu u u

x y zx x x

       
           
        

      
        

       
   

       

u u  

 

 

(A.16) 

 Divergence of vector field. If  1 2 3, ,
T

u u uu is the vector field, the divergence of u 

(denoted by u or div u) is defined as 
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31 2

1 2 3

div .i

i i

uu u
e

x x x x

   
       

    
u u u  

(A.17) 

 Dyadic product of normal vectors. If  1 2 3, ,n n nn denotes the normal vector on the 

surface,  the dyadic product n n  may be defined as 

2

1 1 1 2 1 3 1 1 2 1 3

2

2 1 2 2 2 3 2 1 2 2 3

2

3 1 3 2 3 3 3 1 3 2 3

.

n n n n n n n n n n n

n n n n n n n n n n n

n n n n n n n n n n n

  
  

     
     

n n  

 

(A.18) 

 

Tensor definition and its properties 

 A scalar value is a zero-order tensor, and a vector is first-order tensor. Nevertheless, the 

lowest-order tensor which generally describes a tensor characteristics is second-order 

tensor. A second-order tensor ijA  has 9 components, a third order tensor ijkA has 27 

quantities, and fourth-order tensor ijklA  has four indices with 81 components. The most 

useful tensor used in fluid and solid mechanics is the second-order stress tensor which is 

defined as 

11 12 13

21 22 23

31 32 33

.

   
 

   
 
    

Π  

 

(A.19) 

 A second order unit tensor I  can be defined as 

1 0 0

0 1 0 .

0 0 1

 
 


 
  

I  

 

(A.20) 

 The tensor Π  can be defined in terms of unit vectors as 

3 3

1 1

.ij i j

j i

e e
 

 Π Π  
(A.21) 

 The addition of two tensors is a tensor of a the same rank 
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11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

0 0

0 0

0 0

.ij ij

p

p p

p

p

p p

p



     
   

     
   
        

    
 

       
 
     

Π I

 

(A.22) 

 Product of a tensor and a vector. The product of a tensor  and a vector u is a vector 

which is defined as 

11 12 13 1 11 1 12 2 13 3

21 22 23 2 21 1 22 2 23 3

31 32 33 3 31 1 32 2 33 3

. ,

u u u u

u u u u

u u u u

          
     

        
     
               

v Πu  

(A.23) 

which can be also expressed in index notation as  

.i ij jv u   (A.24) 

The product of . .Πu uΠ , therefore, 

1 11 12 13 11 1 21 2 31 3

2 21 22 23 12 1 22 2 32 3

3 31 32 33 13 1 23 2 33 3

. .

u u u u

u u u u

u u u u

          
     

        
     
               

v uΠ  

(A.25) 

 Alternatively, using index notation 

.j i ijv u   (A.26) 

As a result, the traction of stress tensor on normal vector n is defined as 

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

3 31 32 33 31 1 32 2 33 3

.

n n n n

n n n n

n n n n

          
     

        
     
               

t = n    

(A.27) 

 Product of two tensors. The product of two tensors results a tensor of same rank. 

1 1 1

1 2 3

11 12 13

2 2 2
21 22 23

1 2 3

31 32 33

3 3 3

1 2 3

u u u

x x x

u u u

x x x

u u u

x x x

   
 
      

    
                    

 
   

B Π u  

 

(A.28) 
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The index notation of this product is 

ij ik k jB u    (A.29) 

 Inner product of two tensors. The inner product (contraction) of two tensors of second 

rank results a scalar quantity as 

ij ijA BA : B  (A.30) 

The component form of the inner product of two second-order tensor is  

11 11 12 12 13 13 21 21 22 22 23 23

31 31 32 32 33 33.

A B A B A B A B A B A B

A B A B A B

      

 

A : B
 

(A.31) 

 Trace-free part of a symmetrical tensor. The trace-free part of a symmetrical  tensor 

A is given by 

 
(2) 1 1

( )
2 3

T Trace    A A A A I  
(A.32) 

Consequently, the trace-free part of the velocity gradient tensor is defined as 

   
(2) 1 1

.
2 3

T       u u u u I  

(A.33) 

Alternatively, the index notation is given by 

 
(2) 1 1

2 3

ji k
ijij

j i k

uu u

x x x


    
      

      

u  
(A.34) 

The trace-free part of Π u can also be defined as 

 
(2) 1 1

.
2 3

j i l
ik jk ij lkij

k k k

u u u

x x x


  
      

   
u  

(A.35) 

Tensor relations on the surface 

 Tensor relations on the surface.  A traction vector on the surface    S I n n is  a 

second-order tensor which can be defined as 



 

208 

 

 

 

2

1 1 2 1 3

2

2 1 2 2 3

2

3 1 3 2 3

2

1 1 2 1 3

2

2 1 2 2 3

2

3 1 3 2 3

1 0 0

0 1 0 ,

0 0 1

1

1 .

1

n n n n n

n n n n n

n n n n n

n n n n n

n n n n n

n n n n n

  
  

       
     

   
 

       
    

S I n n

S I n n

 

(A.36) 

 Gradient operator to the surface.  The gradient operator tangent to surface cane be 

defined as   .S      I n n S  Accordingly, calculation of field vectors and 

tensors variables on surface can be defined as follows, the gradient of temperature along 

the surface ST T   S  is given by 

 

21
1 1 2 1 3

2

2 1 2 2 3

2 2

3 1 2 3 3

3

1

1 ,

1

T

x
n n n n n

T
T n n n n n

x
n n n n n

T

x

 
 
     
   

              
 
 

S =  

(A.37) 

after multiplication and simplification, it reads as 

 

21
1 1 2 1 3

2

2 1 2 2 3

2 2

3 1 2 3 3

3

1

1 .

1

S

T

x
n n n n n

T
T T n n n n n

x
n n n n n

T

x

 
 
     
   

                
 
 

S =  

(A.38) 

 Tangential velocity on the surface. The tangent velocity on the surface t  u u S  can 

be defined as 

 

 

 

2

1 1 1 2 2 1 3 3

2

2 1 1 2 2 2 3 3

2

3 1 1 2 3 2 3 3

1

1

1

t

n u n n u n n u

n n u n u n n u

n n u n n u n u

   
 
      
 
    
 

u u S =  

(A.39) 
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 Tangential stress vector. The tangent stress vector   n S    on the surface can be 

defined as 

 

2

11 1 12 2 13 3 1 1 2 1 3

2

21 1 22 2 23 3 2 1 2 2 3

2

31 1 32 2 33 3 3 1 3 2 3

1

1 .

1

n n n n n n n n

n n n n n n n n

n n n n n n n n

       
  

          
          

n S    

(A.40) 

Alternatively, it can be written in more specific form as 

 

2

11 1 12 2 13 3 1 1 2 1 3

2

21 1 22 2 23 3 2 1 2 2 3

2

31 1 32 2 33 3 3 1 3 2 3

1

1 .

1

n n n n n n n n

n n n n n n n n

n n n n n n n n

       
  

          
          

n S    

(A.41) 

 

 

 

2

1 1 1 2 2 1 3 3

2

2 1 1 2 2 2 3 3

2

3 1 1 3 2 2 3 3

1

1 ,

1

n n n n n

n n n n n

n n n n n

  

  

  

   
 
    
 
    
 

   

(A.42) 

where 

1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3.

n n n

n n n

n n n







   

   

   

 

(A.43) 

 The Π n n  can be defined as 

2

11 11 11 1 1 2 1 3

2

11 11 11 2 1 2 2 3

2

11 11 11 3 1 3 2 3

: :

n n n n n

n n n n n

n n n n n

    
  

      
       

n n =  

(A.44) 

which can be written in more simplified form as 

2 2

11 1 12 1 2 13 1 3 21 2 1 22 2

2

23 2 3 31 3 1 32 3 2 33 3                   .

n n n n n n n n

n n n n n n n

      

   

Π n n
 

(A.45) 

 The normal heat flux nq  q n  and tangential heat flux vector tq  q S  can be defined 

as 

1 1 2 2 3 3

2

1 1 1 2 1 3

2

2 2 1 2 2 3

2

3 3 1 3 2 3

1

1

1

n

t

q q n q n q n

q n n n n n

q q n n n n n

q n n n n n

   

    
  

       
        

q n =

q S =
 

(A.46) 
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or simply 

  

  

  

2

1 1 1 2 2 1 3 1

2

2 1 1 2 2 2 3 3 2

2

3 1 1 3 2 2 3 3 3

1

1

1 .

t zn q n n q n n q

n n q n q n n q

n n q n n q n q

   

    

   

q = e

e

e

 

(A.47) 

 The normal gradient of velocity vector,  n u  and the normal of the transposed gradient 

of velocity vector,  
T

 n u  can be defined as 

31 1 1 1 2
2 3

1 2 3 1 1 1

1

32 2 2 1 2
2 2 3

1 2 3 2 2 2

3

33 3 3 1 2
2 3

3 3 31 2 3

x

x

x

uu u u u u
n n n

x x x x x x
n

uu u u u u
n n n n

x x x x x x
n

uu u u u u
n n n

x x xx x x

       
    

         
        

                           
    

       

n u  

(A.48) 

 
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1
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3
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3 3 3 1 2 3

T

uu u u u u
n n n
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       

                          
   

        

n u  

(A.49) 

 The dilatation of velocity vector  I u  is defined as 

 

31 2

1 2 3

31 2

1 2 3

31 2

1 2 3

0 0

0 0 .

0 0

uu u

x x x
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x x x
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  
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  

     
   

  
  

   

I u  

(A.50) 

 The dilatation of velocity vector    n I u  is defined as 
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 
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1
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2
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(A.51) 

 The vector   n u S  can be defined as 

 
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(A.52) 

This equation is written in shorten hand form as 

 

 

 

 

2

1 1 1 2 2 1 3 3

2

1 2 1 2 2 1 3 3

2

1 3 1 2 3 2 3 3

1

1

1

n n n n n

n n n n n

n n n n n

  

  

  

   
 
      
 
    
 

n u S =  

(A.53) 

where 
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(A.54) 

 The vector   T
  n u S  can be defined as 
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   

=n u S  

(A.55) 

This above equation can be written in shorten form as 
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(A.56) 

where 
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(A.57) 

 The vector      n I u S  can be calculated as follows 
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(A.58) 

which can be written in shorten hand form as 
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(A.59) 

where 
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(A.60) 
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 Derivation of conservation laws from 

Boltzmann-Curtiss kinetic equation 

 

In this appendix, conservation laws for diatomic and polyatomic gases are derived from 

the Boltzmann-Curtiss kinetic equation based on Eu’s work [1, 3]. The Boltzmann-Curtiss 

kinetic equation for the diatomic and polyatomic gas particles without external body force 

can be read from (2.89) as, 

   1, , , , , .
j

f t C f f
t I




  
   

  
v v r j  

(B.1) 

Let’s define the few of the macroscopic quantities appearing in the balance closure based 

on the statistical mechanical formula as follows: 

 

 

 
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momentum                    :  , , , ,
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 
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2
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stress tesnor                   : , , , ,

shear stress tensor          :  , , , ,  

1
excess normal stress      :  = Tr , , , ,

3

1
heat flux vector              : 

f t

m f t

m f t

p
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n













 
  

 



v r j

P CC v r j

CC v r j

CC v r j

Q



 2 ˆ , , , , .
2

rotmC H mh f t
 

  
 

C v r j

 

(B.2) 

Here the peculiar velocity is defined by . C v u  It is imported to note that  , , , , tv r j

are the independent variables, and whereas the peculiar velocity is not independent from 

space and time. The Boltzmann-Curtiss equation (B.1) can be rewritten in the form of 

peculiar velocity as,  

 1, ,
Df f j f

C f f
Dt I 

 
  

 
C

x
 

(B.3) 

where the substantial time derivative is defined by 
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D

Dt t


  


u  
(B.4) 

According to Curtiss [38], the distribution function f does not depend on the azimuthal 

angle  i.e. on the phase of rotational motion, and it depends only weakly on the gas 

molecule position r so that one may neglect this dependence over distance of the order of 

molecular dimensions.  

Mass conservation  

Multiplication of Boltzmann-Curtiss equation with m   and then subsequent integration 

over velocity space yields 

 1,
f j f

m m f m mC f f
t I 

 
   

 
v  

(B.5) 

Due to conservation of mass collisional integral vanishes, then 

0.
f j f

m m f m
t I 

 
   

 
v  

(B.6) 

The expression (B.6) can be written as 

0,
j f

mf m f m
t I 

 
  

 
v  

(B.7) 

 Using Curtiss’s assumption and statistical definition of density and momentum (B.2), the 

expression (B.7) becomes 

  0.
t





 


u  

(B.8) 

 Momentum conservation  

Multiplication of Boltzmann-Curtiss equation with m  u and subsequent integration 

over velocity space yields 

 1, .
f j f

m m f m m C f f
t I 

 
   

 
v vv v v  

(B.9) 
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where  1, 0m C f f v  due to collision invariant property. Since we need to integrate 

over velocity, therefore we have to convert molecular velocity into peculiar velocity and 

then bring it with f as 

0
j f

m f m f m
t I 

 
  

 
v vv v  

(B.10) 

Using Curtiss’s assumption and  C v u  , the above expression (B.10) can be written as 

0 0m f m f
t


  


v vv  

(B.11) 

where the term m f vv can be simplified as 
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(B.12) 

From the statistical definition of excess normal stress (B.2), we have 
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(B.13) 

With help of (B.13), the expression (B.12) can be re-written as  
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(B.14) 

where the stress tensor P is defined by  p   P I  . Using the statistical definition of 

momentum and (B.14) in (B.11), finally, we have 

    0.p
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 


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(B.15) 
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Energy conservation  

Multiplication of Boltzmann-Curtiss equation with 21

2
rotmC H

 
  
 

and subsequent 

integration over velocity space yields 

 

2 2

2 2

1

1 1

2 2

1 1
, .

2 2

rot rot

rot rot

f
mC H mC H f

t

j f
mC H mC H C f f

I 

   
      

   

   
      

   

v

 

(B.16) 

Using collisional invariant property for conservation of total energy zero i.e. 

 2

1

1
, 0

2
rotmC H C f f

 
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 
 and Curtiss assumption, Eq. (B.16) becomes 
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(B.18) 
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(B.19) 
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Since 0.m f C  Using statistical definition from (B.2), the above equation becomes 
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(B.25) 

Thus all the conservation law (B.8), (B.15) and (B.25) can be written in compact form as 
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(B.26) 

Finally, the compact form of all conservation laws (B.26) can be written in terms of 

substantial time derivative, which are an exact consequence of the Boltzmann-Curtiss 

equation for diatomic and polyatomic gases, as 
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 Derivation of constitutive equations 

from Boltzmann-Curtiss kinetic equation 

 

In this appendix, the constitutive equations for diatomic and polyatomic gases are derived 

from the Botlzmann-Cutiss kinetic equations. In the case of the original Boltzmann-Curtiss 

kinetic equation of a monatomic gas, the derivation of constitutive equations can be found 

in orgional Eu’s work [1] and in Myong’s work [54, 60]. The general evolution equation 

for diatomic and polyatomic gases can be deduced from Boltzmann-Curtiss kinetic 

equation (3.11)  as found in [3, 5, 39] written as 

       ˆ ,
n n n nD

Dt
        

(C.1) 

where 
 

,
n

 the flux of  
 n

f , denotes the high-order moments, 
 n

  represents the 

kinematic term arising from hydrodynamic streaming effect and 
 n

  is the dissipation 

term which accounts for energy dissipation accompanying the irreversible process. These 

terms are defined by 
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(C.2) 

Shear stress balance equation 

For
   

 21
m  CC , where m is the mass of gas molecule and  

 2
 denotes the traceless 

symmetric part, the constitutive equation for shear stress tensor  
 2

m f CC can be 

derived from the general evolution equation (C.1): 
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which can be written as 
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The kinematic term 
 




 can be simplified as  
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(C.5) 

where = m fJ C denotes the diffusion flux which can be neglected for single species 

relation [1] i.e.  = 0.m f J C  Then the constitutive relation for shear stress tensor can 

be written as 
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(C.6) 

 Excess normal stress balance equation 

For
 2 2 3mC p n   , where n is the number density, the constitutive equation for excess 

normal stress  2 3mC p n f   can be derived from the general evolution equation 

(C.1): 

       2 2 2 2ˆ ,
D

Dt
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(C.7) 

which can be written as 
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Here the kinematic term for excess normal stress, 
 

  can be simplified as  
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(C.9) 

which can be simplified based on Eu [1, 6] 
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Thus the constitutive relation for excess normal stress may be written as 
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Heat balance equation 

For
   3 2 ˆ2 rotmC H mh    C , where ˆ,rotH h  denote the rotational Hamiltonian of the 

molecule and the enthalpy density per unit mass, respectively, the constitutive equation for 

heat flux vector  2 ˆ2 rotmC H mh f  Q C can be derived from the general evolution 

equation (C.1): 
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which can be written as 
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Here the kinematic term for heat flux vector 
 


Q

 can be simplified (for this purpose, reader 

may be referred reference [3]) as, 
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(C.14) 

Thus the constitutive relation for heat flux vector may be written as 
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(C.15) 

Finally, the constitutive equations, all of which are an exact consequence of the Boltzmann-

Curtiss equation, can be expressed in compact form: 
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 Three-dimensional form of second-

order Boltzmann-Curtiss based constitutive 

equations 

 

In this appendix, the second-order Botlzmann-Curtiss based consituitve equations for 

diatomic and polyatomic gases which are developed by Myong [39, 54, 60, 65] based on 

original Eu’s work [1, 3] and Myong’s balance closure [54] are expanded into fully three-

dimensional form. The second order Boltzmann-Curtiss based constitutive equations (3.54) 

are given by 
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(D.1) 

where 1st 1st 1st
ˆˆˆ , , and Q are calculated by the Newtonian law of shear and bulk viscosity 

and the Fourier of heat conduction, respectively, 
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Defining the proper parameters such as 
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(D.3) 

Since, ˆ 2
N

p

   u u  leads to
1

ˆ
2

p

N

 
    

 
u u . Thus we get the stress tensor in 

the following form 
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Therefore, the constitute relation (D.1) becomes 
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Thus, the excess normal can be represented as 
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The traceless symmetric part of u i.e.  
 2

u can be expressed in tensor form as 

 
 2 1 1

.
2 3

ji i k
ij

j j i k

uu u u

x x x x




   
     

     

u  

(D.8) 

Then its components are defined, after simplification as  
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u u

u u
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The traceless symmetric part of coupling between shear stress and velocity gradient 

 
 2

u can be expressed as, 

 
 

 
 

 
 

 
 

 
 

2

2

2

2

2

,

,

,

1
,

2

1

2

xx xy xzxx

yx yy yzyy

zx zy zzzz

xx xy yx yy zx zyxy

xxxz

u u u

x y z

v v v

x y z

w w w

x y z

v u v u v u

x x y y z z

w







   
      

   

   
      

   

   
      

   

      
        

      


  



u

u

u

u

u











 
 2

,

1
,

2

xz xy yz xz zz

xy xz yy yz yz zzyz

u w u w u

x x y y z z

w v w v w v

x x y y z z

     
     

     

      
        

      
u
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 where 

1
[

3

].

xx xy xz yx yy yz

zx zy zz

u v w u v w

x x x y y y

u v w

z z z


     

       
     

  
  

  
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Therefore, the full expended component-wise form of second order Boltzmann-Curtiss 

based constitutive relations for diatomic gas is given by 

   2nd

ˆ ˆ ˆ2 1ˆ ˆˆ 1
3 3

ˆ ˆ ˆˆ ˆ ˆ ˆ ,

xx bulk

xx xy xz

u v w
q cR f

x y z

u u u

x y z


    
       

    

   
    

   


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   2nd

ˆ ˆ ˆ2 1ˆ ˆˆ 1
3 3

ˆ ˆ ˆˆ ˆ ˆ ˆ ,

xx bulk

xx xy xz

u v w
q cR f

x y z

u u u

x y z


    
       

    

   
    

   


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   2nd

ˆ ˆ ˆ2 1ˆ ˆˆ 1
3 3

ˆ ˆ ˆ ˆ ,

zz bulk

zx zy zz

w u v
q cR f

z x y

w w w

x y z


    
       

    

   
    

   


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   2nd

ˆ ˆ1ˆ ˆˆ 1
2

ˆ ˆ ˆ ˆ ˆ ˆ1 ˆ ˆ ˆ ˆ ˆ ˆ ,
2

xy bulk

xx xy yx yy zx zy

u v
q cR f

y x

v u v u v u

x x y y z z

  
     

  

      
      

      


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   2nd

ˆ ˆ1ˆ ˆˆ 1
2

ˆ ˆ ˆ ˆ ˆ ˆ1 ˆ ˆ ˆ ˆ ˆ ˆ ,
2

xz bulk

xx xz xy yz xz zz

u w
q cR f

z x

w u w u w u

x x y y z z

  
     

  

      
      

      


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   2nd

ˆ ˆ1ˆ ˆˆ 1
2

ˆ ˆ ˆ ˆ ˆ ˆ1 ˆ ˆ ˆ ˆ ˆ ˆ ,
2

yz bulk

xy xz yy yz yz zz

v w
q cR f

z y

w v w v w v

x x y y z z

  
     

  

      
      

      


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 

 

 

 

2nd

ˆ ˆ ˆˆ ˆ
2

ˆ ˆ ˆ3 ˆˆ ˆ ˆ
2

ˆ ˆ ˆ3 ˆˆ ˆ ˆ
2

ˆ ˆ ˆ3 ˆˆ ˆ ˆ ,
2

bulk

bulk xx bulk xy xz

bulk xy yy bulk yz

bulk xz yz zz bulk

f u v w
q cR

x y z

u u u
f f

x y z

v v v
f f

x y z

w w w
f f

x y z

   
     

   

   
      

   

   
       

   

   
      

   
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     
1st 1st 1st 1st2nd

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ1 ˆ ˆ ˆ ,
2Pr

x bulk x xx x xy y xz z

x y z

Q q cR f Q Q Q Q

u u u
Q Q Q

x y z

       

   
  

   
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     
1st 1st 1st 1st2nd

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ1 ˆ ˆ ˆ ,
2Pr

y bulk y xy x yy y yz z

x y z

Q q cR f Q Q Q Q

v v v
Q Q Q

x y z

       

   
  

   
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     
1st 1st 1st 1st2nd

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ1 ˆ ˆ ˆ .
2Pr

z bulk z xz x yz y zz z

x y z

Q q cR f Q Q Q Q

w w w
Q Q Q

x y z

       

   
  

   
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Here,  

1st 1st 1st

ˆ ˆ ˆ
ˆ ˆ ˆ, , ,x y z

T T T
Q Q Q

x y z
  
  

     
  
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   

   

 
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2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 ˆ ˆˆ ˆˆ ˆ:

2 ˆˆ ˆ ˆ ˆ ˆ ˆ2

2 ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ,

ˆ ˆ ˆsince ,

bulk

xx yy zz xy xz yz x y z

bulk

xx yy xx yy xy xz yz x y z

bulk

zz xx yy

R
f

Q Q Q
f

Q Q Q
f








    


           


            

    

Q Q

=

 
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ˆ ˆ ˆ ˆ ˆ ˆ1 ˆ ˆ ˆ ˆ ˆ ˆˆ [
3

ˆ ˆ ˆˆ ˆ ˆ ].

xx xy xz yx yy yz

zx zy zz

u v w u v w

x x x y y y

u v w

z z z


     

       
     

  
  

  

 

(D.15) 

 

 

 

  



 

227 

 

 Quadrature points for numerical 

integration 

In this appendix, the quadrature points for numberical integration are provided in one-, 

two- and three-dimensional spaces [109, 110, 165].  

Table E.1: Gaussian quadrature points and weights for line in [-1, 1] space  

Order (p) Points (
qN )      

1 1 0.0000000000000000 2.0000000000000000 

2 2 -0.5773502691896257 

0.5773502691896257 

1.0000000000000000 

1.0000000000000000 

3 3 -0.7745966692414834 

0.0000000000000000 

0.7745966692414834 

0.5555555555555556 

0.8888888888888888 

0.5555555555555556 

4 4 -0.8611363115940526 

-0.3399810435848563 

0.3399810435848563 

0.8611363115940526 

0.3478548451374538 

0.6521451548625461 

0.6521451548625461 

0.3478548451374538 

5 5 -0.9061798459386640 

-0.5384693101056831 

0.0000000000000000 

0.5384693101056831 

0.9061798459386640 

0.2369268850561891 

0.4786286704993665 

0.5688888888888889 

0.4786286704993665 

0.2369268850561891 

6 6 -0.9324695142031521 

-0.6612093864662645 

-0.2386191860831969 

0.2386191860831969 

0.6612093864662645 

0.9324695142031521 

0.1713244923791704 

0.3607615730481386 

0.4679139345726910 

0.4679139345726910 

0.3607615730481386 

0.1713244923791704 

    

 

Table E.2: Gaussian quadrature points and weights for line in [0, 1] space 

Order (p) Points (
qN )     

1 1 0.5000000000000000 1.0000000000000000 

2 2 0.2113248654051871 

0.7886751345948129 

0.5000000000000000 

0.5000000000000000 

3 3 0.1127016653792583 

0.5000000000000000 

0.8872983346207417 

0.2777777777777778 

0.4444444444444444 

0.2777777777777778 

4 4 0.0694318442029737 

0.3300094782075719 

0.6699905217924281 

0.9305681557970263 

0.1739274225687269 

0.3260725774312731 

0.3260725774312731 

0.1739274225687269 

5 5 0.0469100770306680 

0.0230765344947158 

0.5000000000000000 

0.7692346550528415 

0.9530899229693319 

0.1184634425280945 

0.2393143352496832 

0.2844444444444444 

0.2393143352496832 

0.1184634425280945 
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Table E.3: Symmetric quadrature points and weights for triangle in [0, 1]2 space  

Order (p) Points (
qN )    

    

1 1 0.33333333333333 0.33333333333333 1.00000000000000 

2 3 0.16666666666667 

0.66666666666667 

0.16666666666667 

0.16666666666667 

0.16666666666667 

0.66666666666667 

0.33333333333333 

0.33333333333333 

0.33333333333333 

3 4 0.20000000000000 

0.60000000000000 

0.20000000000000 

0.33333333333333 

0.20000000000000 

0.20000000000000 

0.60000000000000 

0.33333333333333 

0.52083333333333 

0.52083333333333 

0.52083333333333 

-0.5625000000000 

4 6 0.09157621350977 

0.44594849091597 

0.81684757298046 

0.44594849091597 

0.09157621350977 

0.10810301816807 

0.09157621350977 

0.10810301816807 

0.09157621350977 

0.44594849091597 

0.81684757298046 

0.44594849091597 

0.10995174365532 

0.22338158967801 

0.10995174365532 

0.22338158967801 

0.10995174365532 

0.22338158967801 

5 7 0.10128650732346 

0.47014206410511 

0.79742698535309 

0.47014206410511 

0.10128650732346 

0.05971587178977 

0.33333333333333 

0.10128650732346 

0.05971587178977 

0.10128650732346 

0.47014206410511 

0.79742698535309 

0.47014206410511 

0.33333333333333 

0.12593918054483 

0.13239415278851 

0.12593918054483 

0.13239415278851 

0.12593918054483 

0.13239415278851 

0.22500000000000 

6 12 0.06308901449150  

0.31035245103378  

0.63650249912140 

0.87382197101700 

0.63650249912140 

0.31035245103378 

0.06308901449150  

0.05314504984482     

0.05314504984482 

0.24928674517091 

0.50142650965818   

0.24928674517091 

0.06308901449150      

0.05314504984482 

0.05314504984482 

0.06308901449150 

0.31035245103378 

0.63650249912140     

0.87382197101700  

0.63650249912140 

0.31035245103378 

0.24928674517091 

0.24928674517091 

0.50142650965818      

0.05084490637021 

0.08285107561837 

0.08285107561837 

0.05084490637021 

0.08285107561837 

0.08285107561837 

0.05084490637021 

0.08285107561837 

0.08285107561837 

0.11678627572638 

0.11678627572638 

0.11678627572638 

7 13 0.06513010290222 

0.31286549600487 

0.63844418856981 

0.86973979419557 

0.63844418856981 

0.31286549600487 

0.06513010290222 

0.04869031542532 

0.04869031542532 

0.26034596607904 

0.47930806784192 

0.26034596607904 

0.33333333333333 

0.06513010290222 

0.04869031542532 

0.04869031542532 

0.06513010290222 

0.31286549600487 

0.63844418856981 

0.86973979419557 

0.63844418856981 

0.31286549600487 

0.26034596607904 

0.26034596607904 

0.47930806784192 

0.33333333333333 

0.05334723560884 

0.07711376089026 

0.07711376089026 

0.05334723560884 

0.07711376089026 

0.07711376089026 

0.07711376089026 

0.07711376089026 

0.05334723560884 

0.17561525743321 

0.17561525743321 

0.17561525743321 

-0.1495700444677 
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Table E.4: Symmetric quadrature points and weights for tetrahedron in [0, 1]3 space 

p   
qN           

1 1 0.250000000000 0.2500000000000 0.2500000000000 1.00000000000000 

2 4 0.585410196624 

0.138196601125 

0.138196601125 

0.138196601125 

0.1381966011250 

0.5854101966249 

0.1381966011250 

0.1381966011250 

0.1381966011250 

0.1381966011250 

0.5854101966249 

0.1381966011250 

0.25000000000000 

0.25000000000000 

0.25000000000000 

0.25000000000000 

3 5 0.250000000000 

0.500000000000 

0.166666666666 

0.166666666666 

0.166666666666 

0.2500000000000 

0.1666666666666 

0.1666666666666 

0.1666666666666 

0.5000000000000 

0.2500000000000 

0.1666666666666 

0.1666666666666 

0.5000000000000 

0.1666666666666 

-0.8000000000000 

0.45000000000000 

0.45000000000000 

0.45000000000000 

0.45000000000000 

4 10 0.568430584196 

0.143856471934 

0.143856471934 

0.143856471934 

0.000000000000 

0.500000000000 

0.500000000000 

0.500000000000 

0.000000000000 

0.000000000000 

0.1438564719343 

0.1438564719343 

0.1438564719343 

0.5684305841968 

0.5000000000000 

0.0000000000000 

0.5000000000000 

0.0000000000000 

0.5000000000000 

0.0000000000000 

0.1438564719343 

0.1438564719343 

0.5684305841968 

0.1438564719343 

0.5000000000000     

0.5000000000000 

0.0000000000000  

0.0000000000000 

0.0000000000000           

0.5000000000000        

0.21776506988041 

0.21776506988041 

0.21776506988041 

0.21776506988041 

0.02148995341306 

0.02148995341306 

0.02148995341306 

0.02148995341306 

0.02148995341306 

0.02148995341306 

5 11 0.250000000000 

0.785714285714 

0.071428571428 

0.071428571428 

0.071428571428 

0.100596423833 

0.399403576166 

0.399403576166 

0.399403576166 

0.100596423833 

0.100596423833 

0.2500000000000 

0.0714285714285 

0.0714285714285 

0.0714285714285 

0.7857142857142 

0.3994035761668 

0.1005964238332 

0.3994035761668 

0.1005964238332 

0.3994035761668 

0.1005964238330 

0.2500000000000 

0.0714285714285 

0.0714285714285 
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 Flow chart of development of 3D DG 

solver 

In this appendix, the flow chart and detail code structure for the development of in-house 

3-D discontinuous Galerkin solver are presented. 

 

1. Flow chart of 3-dimensional discontinuous Galerkin code 

 

 

Figure F-1.  Flow chart of 3D discontinuous Galerkin solver development. 
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Figure F-2. Global structure of in-house developed 3D discontinuous Galerkin solver. 

 

 

2. Strucutre details of in-house 3D discontinuous Galerkin solver 

2.1. Global structure of in-house 3D discontinuous Galerkin solver 

 3D_DG_SOLVER: This is the main program of ACML-3D-DG solver. 

 DG_RUN: This is the main subroutine of main program. It contains the following 

subroutines: 

 GLOBAL_INPUT 

Read the Global input file “Solver_input.txt”. 

 READ_GRID 

Read the grid information using “GRID_FILE.NEU” 

 ALLOCATED_INPUT_DATA 

Allocate all the input data using in ACML-3D-DG code. 

 READ_INFORMATION_INPUT 

Read the initial input values and gas information. 

 READ_BOUNDARY_INPUT 
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Read the boundary input information for various boundaries likes, Farfield, 

Solid, Side jet etc. 

 MESH_INFORMATION 

Making the grid in non-dimensional form, calculating the element volume, 

surface area, normal & tangential vectors etc. 

 DG_METHOD 

This subroutine is related to DG Solver which contains the following 

subroutines as shown in Figure F-3.  

 

Figure F-3. Subroutine structure of developed in-house 3D discontinuous Galerkin solver. 

 

2.2. Explanation of  subroutine structure of  in-house 3D DG Solver 

 MESH_INFORMATION 

 GRID_NON_DIMENSION: Make grid in non-dimensional form. 

 MESH_GLOBAL_VOLUME: Calculate cell volume, cell center, surface normal 

vectors, tangential vectors etc. 

 ELEMENT_VICINITY: Find the element connectivity. 

 N0DE_VICINITY: Find the node connectivity. 
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 DG_METHOD 

 ALLOCATED_DG_SETUP: Allocate the memory for quadrature points, Basis 

functions, DG variables and limiters. 

 DG_SETUP_ESSENTAILS 

 LOCAL_VPOINTS_INSIDE: Define the quadrature points inside the element. 

 LOCAL_VPOINTS_FACE: Define the quadrature points over the surface. 

 LOCAL_VPOINTS_CENTER: Define the quadrature points in center of the 

element. 

 LOCAL_VPOINTS_CORNER: Define the quadrature points on corner of the 

element. 

 LOCAL_VP_FACE_NEIGHBOR: Define the true quadrature points and position 

for surface neighbors. 

 GLOBAL_VPOINTS_INSIDE: Define the global quadrature points inside the 

element. 

 GLOBAL_VPOINTS_FACE: Define the global quadrature points over the surface. 

 GLOBAL_VPOINTS_CENTER: Define the global quadrature points in the center 

of element. 

 GLOBAL_VPOINTS_CORNER: Define the global quadrature points on the corner 

of element. 

 BASIS_VPOINTS_INSIDE: Define basis function inside the element at the 

quadrature points. 

 BASIS_VPOINTS_FACE: Define basis function over the face at the quadrature 

points. 

 BASIS_VPOINTS_CORNER: Define basis function over corner of element at 

quadrature points. 
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 BASIS_VPOINTS_CORNER: Define basis function over the corner of element at 

quadrature points 

 BASIS_1st_DER_VPOINTS: Define the basis derivative inside the element at 

quadrature points. 

 DG_INVERSE_BiBj_INTEGRATION: Define the RHS mass matrix.  

 DG_REFERENCES: Define the reference parameters and variables for DG solver. 

 DG_INITIALIZATION: Making the equation and variables in nondimensional 

form and initialize the DG program. 

 HIGH_ORDER_LIMITER: Implementation of Positivity preserving limiter, 

indicator and Berth Jespersen limiter. 

 DG_TIMESTEP: Calculating the time step for time marching. 

 

Figure F-4. Data structure of time-dependent (primary) and time-independent 

(auxiliary) solvers in developed in-house 3D discontinuous Galerkin solver. 

 

2.3. Explanation of time dependent and time independent solver 

 AUXILARY_TIME_INDEPENDENT_EQUATIONS 
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 AUXILIARY_SURFACE_INTEGRATION:  Calculate the surface integration for 

auxiliary variables. 

 AUXILIARY_BOUNDARY_INTEGRATION: Calculate the boundary integration 

for auxiliary variables. 

 AUXILIARY_VOLUME_INTEGRATION: Calculate the volume integration for 

auxiliary variables. 

 AUXILIARY_UPDATING: Update the auxiliary variables. 

 PRIMARY_TIME_DEPENDENT_EQUATIONS 

 DG_SAVE_OldSTEP_Uh: Save the old primary variables for further calculation. 

 DG_Lu_OPERATOR 

 PRIMARY_SURFACE_INTEGRATION: Calculate the surface integration for 

primary variables.  

 PRIMARY_BOUNDARY_INTEGRATION: Calculate the boundary integration 

for primary variables. 

 PRIMARY_VOLUME_INTEGRATION: Calculate the volume integration for 

primary variables 

 PRIMARY_UPDATING_EQUATIONS: Update the primary variables. 

 EULER_FORWARD_STPPING: Implementation for time marching scheme. 

 DG_RESIDUAL_CALCULATION: Calculate the residual for DG solver. 

 DG_WRITE_RESTART_FILE: Write the restart file. 

 DG_POST_PROCESS: Post processing part of DG program. 
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 Computational cost comparison 

between DG and FV methods 

 

In this appendix, we are going to compare the computational cost of each part of 

discontinuous Galerkin method with Finite volume method in the same number of 

computational cells in the domain.  

Finite volume solution in the cell versus DG solution 

In contrast to finite volume, DG expands the solution in the local cells using a series of 

polynomials. Defining a general framework allows piecewise polynomials of degree 

approximate the solution of degree K ∈ N in each element. However, the solution in finite 

volume is constant at order of accuracy of one and piecewise linear at the order of accuracy 

of two which do not generated using polynomial series expansion, instead they are using 

Taylor series to obtain higher order of accuracy. 

 

Figure G-1. General solution of DG method at each local element for different order of 

accuracy. 
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In discontinuous Galerkin method the solution is approximated by 

     
1

, ,
k

e e

N
k

kh h
k

t U t b


U x x  
(G.1) 

where,  kb x is the relevant values of basis function, kN  denotes the number of basis 

functions required for approximating the smooth and continuous solution inside the space 

of the polynomial functions,  and  e

k

h
U t  denotes the degree of freedom of the numerical 

solution in an element .e  Therefore, the number of unknown variables for DG method is 

kN  times bigger than finite volume. It means that the number of equations is going to solve 

as system of equations increases kN  times. Therefore, the extra computational cost for 

obtaining the  2 1kN  order of accuracy is  
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(G.2) 

If the data structure of computational program is defined properly, this calculation is 

required to be considered at the beginning of each iteration i.e. data 1.   If the 

computational program is not optimized, then the coefficient value is approximately 4 

times, i.e. data 4.   

Derivatives calculation 

In the case of adventive-convective system of equations we have to calculate the 

conservative variables derivatives. In contrast to finite volume, DG method does not use 

least square method or first order gauss method for derivative calculation. In order to have 

correct and accurate approximation of derivatives we have to use Local DG methods. One 

of the simplest and straight forward methods we can use is mixed DG formulation which 
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is introduced by Bassi and Rebay in 1997. However, it demands more computational efforts 

to solve the extra system of equations beside the original system of equations.  

     
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Therefore, the computational cost of these extra calculations can be measured by 
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(G.5) 

Numerical Integration Cost 

In contrast to finite volume method, DG method uses more degree of freedoms and needs 

more points to calculate fluxes at the faces. Moreover, there are extra costs in the 

calculation of each step of DG method because of existence of extra integrals in the weak 

form of the equations. We have to use quadratic numerical integrations to solve volume 

and surface integrals. Therefore, it is necessary to define some gauss points on the faces 

and inside the local elements for solving integrals. This is one of the considerable time 

consuming part of DG method. The difference between the finite volume and DG methods 

in the calculation of flux integrals is illustrated in below table: 
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Finite volume approach Finite element approach 

  

 

Therefore the extra cost of DG approach is 
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Time marching computational cost 

To date, most of the DG codes are explicit and their convergence speed is restricted to 

the value of CFL number. In order to have stable DG solution, it is necessary to reduce 

CFL number with the weight of  1 2 1 .kN  Therefore the computational cost of each 

iteration (time step) of DG method is  2 1kN  times bigger than first order finite volume 

scheme, in the case of using forward Euler time step 
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(G.7) 

Therefore the cost of DG at each time step using Rung-Kutta is 
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(G.8) 

Simulation two-dimensional problem using DG method with first-order 

of accuracy 

For the first-order of accuracy solution polynomial should be order of zero ( 0kN  ) 

and the cost of DG in comparison with FVM is  
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CFL Derivatives

Variables Limiter

Integration Positivity

Cost 1, Cost 1,

Cost 1, Cost 1,

Cost 2, Cost 1,

 
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 

 
                    

DG

FVM

Cost
1

Cost
  

However, one can write the computational code wisely in order to avoid non-necessary 

calculation of volume integration since they are zero. If this issue be considered the cost of 

DG in comparison with finite volume is 1 which means that both methods have same 

computational cost. 

Simulation two-dimensional problem using DG method with second-

order of accuracy 

In order to have a solution with second-order of accuracy we have to use a piecewise 

linear solution in each cell means that order of polynomial is one ( 1kN  ). As a result the 

computational cost of DG in comparison to finite volume is 
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It means that the computational cost of DG method for obtaining second-order of accuracy 

is at least 54 times bigger than finite volume simulation with the same order of accuracy. 

But it may be noticed that this theortical computed DG cost may only 20~25 times in 

contrast to FVM, as auxiliary variables in DG method is simpler to conservative variables 

and its computational cost is only 5~10 % of total conservative variables cost. 
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 Basics of aerodynamics theory 

 

In this appendix, the basics concepts of aerodynamic theory such as velocity components 

of a three dimensional body, total forces, aerodynamic forces, moment forces etc. are 

presented.  

1. Velocity components along the body axes 

 
The orientation of the velocity vector with respect to the body-axes coordinate system 

establishes two angles of significance in the production of aerodynamic forces and 

moments, namely, angle of attack,  and sideslip angle,  [166]. 

  

Figure H-1.  Airframe velocity components. 

Consider the velocity vector of the airframe given by V as defined as 

1 2 3
ˆ ˆ ˆue ve we  V  (H.1) 

where 1 2 3
ˆ ˆ ˆ, ,e e e  are the unit vectors and , ,u v w  are the velocity components along the x, y, 

and z axes, respectively, defined as 
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Here 
2 2 2V u v w   V  is the magnitude of velocity vector V.  The angle of attack 

  and angle of sideslip   can be expressed in terms of these body axes velocities 
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(H.3) 

2. Total forces on an aerodynamic body 

 

Consider the position of a body particle is given by  x, y,zr r  and acting force on 

this particle is given by  , , .x y zF F FF F  The total forces in each direction due to stress 

are given as follows [167], 
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(H.4) 

Here
ij  is the stress tensor, and , ,x y zn n n  are the normal vectors in , , zx y  direction, 

respectively.  Thus the stress tensor 
ij  for diatomic gas which can be can be calculated 

using the deformation law for a Newtonian (linear) viscous fluid can be rewritten in terms 

of bulk viscosity as, 
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Since ,bulk bulkf   where bulkf  being the ratio of the bulk viscosity to the shear viscosity. 

Note that the value bulkf  for monatomic gas can be assumed zero i.e. 0.bulkf   Therefore,  
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(H.6) 

The components of stress tensor for diatomic gas can be calculated as 
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(H.7b) 

where ii  is the normal stress, 
ij  is the shear stress and   is the excess normal stress. 

Thus from the relations (H.4) and (H.7a) and (H.7b), the total forces in each direction can 

be calculated as 

      

      

       .

x xx x xy y xz z

y xy x yy y yz z

z xz x yz y zz z

dF p n dydz n dxdz n dxdy

dF n dydz p n dxdz n dxdy

dF n dydz n dxdz p n dxdy

         

         

         

 

(H.8) 

3. Aerodynamic forces in the body axes 

 
Often aerodynamic forces are specified in terms of three mutually perpendicular 

forces[168]:  lift force L (aero-force perpendicular to V), drag force D(aeroforce opposite 

to V), and side force S. These forces, L, D, and S define an axes system so called flight 

path axes. These forces can be calculated in terms of total forces as 
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(H.9) 

Then, we get the drag force D, lateral force S, and lift force L, given below: 

 
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x z y
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  

 

(H.10) 

From the relation (H.10), we can deduce the aerodynamic forces for two dimensional body 

by using the following assumptions, 

sideslip angle 0,

side force=0,

force in y-direction =0,

axial force = ,

normal force = .

y

x

z

S

F

A F

N F

  









 

(H.11) 

Thus, we can have the two dimensional aerodynamic forces defined by 

cos sin

cos sin .

D A N

L N A

 

 

 

 
 

(H.12) 

 

4. Moment vector on the body 

 
The moment produced by force on the body is given by  

      .

x y z

z y x z y x

i j k

x y z

F F F

yF zF i zF xF j xF yF k

 

     

m r F =
 

(H.13) 
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Figure H-2. Moment produced by force on a particle. 

 

 

Figure H-3.  Forces and moments acting on the entire airplane1 

.  

Thus, 
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m =  

(H.14) 

The force vector is given by 
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(H.15) 

The moment vector is given by 

                                                 
1 Robert F. Stengel, Aircraft Flight Dynamics,  http://www.princeton.edu/~stengel/MAE331Lecture5.pdf 
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.
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(H.16) 

 

5. Center of pressure 

Aerodynamic force acts through the center of pressure. The pressure varies around the 

surface of an object. The center of pressure moves with angle of attack. The center of 

Pressure, 
cpx  is the average location of the pressure2 

 

 
cp

Surface

Surface

p dS

p dS






x x

x
x

  

 

(H.17) 

where,  , ,x y zx = is the position vector of  fluid particle on wall and  p x is the pressure 

on wall. The coordinate of the “Center of Pressure” can be defined as: 
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(H.18) 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
2 NASA, https://www.grc.nasa.gov/www/k-12/airplane/cp.html 
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6. Aerodynamic coefficients 

Aerodynamic coefficient Mathematical expression 

Dynamic pressure 21

2
q V    

Pressure coefficient 
p

p p
C

q






  

Drag coefficient 
D

ref

D
C

q A

  

Lift coefficient 
L

ref

L
C

q A

  

Lateral force coefficient 
S

ref

S
C

q A

  

Friction coefficient 
, tangential stress forcefC

q






   

Roll moment coefficient 
l

ref ref

L
C

q A l

  

Pitch moment coefficient 
m

ref ref

M
C

q A l

  

Yaw moment coefficient 
n

ref ref

N
C

q A l

  

Heat flux coefficient 
wall

h

Q
C

q

  

Here, ,ref refA l are the reference surface area and reference length of the body. 
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