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Abstract

Developmentof a 3D discontinuousGalerkin method for the secondorder
Boltzmann-Curtiss based hydrodynamic models of diatomic

and polyatomicgases

Satyvir Singh

Department of Mechanical and Aerospace Engineering
Graduate School, Gyeongsang National University
Supervised by Prof. Rho Shinydng

It is well known thatin conventional approach, description diitomic andpolyatomic
gases is basically the same as the monatomic gas; that is, it is based on the physical laws of
conservation (mass, momentum, and energy), with the modifiecofatfecific heats, and in
conjunction with the firsbrder comstitutive laws, the twaenturyold socdled Navier
StokesFourierequation based on a critical assumption made by Stokes in 1845 that the bulk
viscosity vanishes. Wiisi cértainlytldgigmat® in dhe easé® of h y p «
monatomic gases like argon, there is ever increasing evidence that now indicates that this is
not the case for nemonatomic gaséslike nitrogen (or air) and carbon dioxidehat are far
from local thermal equilibriumTherefore, the study dhermal norequilibrium efects of

diatomic and polyatomic gas flo extremely important.

The general interest of the present study is to exghersuitable and propearaster kinetic
equationgor describingdiatomic and poly@mic gaseand todevelopcomputational methods
to solve these kinetic equatiorf&irst, on the basi o f geBewalized hydrodynamics and
My o n lgpidreed closure, the seceoidler constitutive laws are derived from the Boltzmann

Curtiss kinetic equation for diatomic (and linear polyatomic) molecules. Then the topology of

XXV



the seconarder nonlinear coupled constitutive relations in phase spacwastigated for
elementary flow situations like compression, expansion, and velocity shear. Lastly, a
theoretical and computational attempt is made to highlight the rotationatquolibrium
effects in polyatomic gases by investigating the strong interacf two important non
equilibrium phenomena in polyatomic gasesmpressive shock structure and velositear

of the vorteX using the secondrder constitutive laws.

In this study, discontinuous Galerkin (DG) methods were first employed for solhang th
Euler system in order to obtain the solution of the-cened twedimensional Riemann
problems. The basic structure of this hyperbolic system, such as contact discontinuity, shock
wave, and rarefaction wave, weteidied numerically. Although modern DG tined has been
successfully applied for solving the Euler equation, the validity of the Euler equation is

restricted tanequilibrium stateand it is not valid for nomquilibrium flows.

In order to investigate neequilibrium gas flows, aewset of DGmethodsased a mixed
DG-framework isdevelopedfor solving the first-order NavierFourier and seconarder
BoltzmannCurtissbased equation¥he final judgmenbnthe accuracy of theomputational
modelsis obtainedthrougha rigorousstudy ofverificationandvalidation. Thefirst-orderand
secondorder BoltzmansCurtissbased models ammparedvith the solution of DSMC and
experimentdy consideringrarious problemsDG methods areomprehensively verified and
validated for steadgtateandunsteady transient flow problenas well assmoothand stiff
solutiors of the conseration laws. The analyticadolutiors of first-orderand secondrder
BoltzmannCurtiss based modat the shock wave structure are considered asrification
study on onservative, primitiv@andnon-conservative variable# self-contairedsummaryof
numerical implementation of various limiters, numerical flux functioasd boundary

conditionsis provideal for the pedagogicapurpose

XXV



Also, the threedimensionalMaxwell velocity slip and Smoluchowski temperature jump
boundary conditiogare provided for arbitrary geometrieEfficient numerical methosifor
solving nonlinear implicit algebraicequationsarising from thesecondorder Boltzmann
Curtissbased constitive relationsaredescribedand the solutiomof the constitutive relations
areanalyzedn detail.

The computational cost of the firstder Navier-Fourier and secondorder Boltzmann
Curtiss basedolvers is investigated in the serial and parallel frameworks. It was shown that
the computational cost of theecondorder BoltzmanfCurtiss basedsolver behaves
nonlinearly concerningthe number of elements, due to the dependendbeohumber of
iteratons of thesecondorder Boltzman#Curtiss basedolver on the flow structure and the
degree of thermal neequilibrium. Finally, a supeparallel performance of a mixed explicit
discontinuous Galerkin method wesported for thesecondorder Boltzman#Curtiss based

nonlinear coupled constitutive models of rarefied and microscale gases.
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Chapter 1. Introduction

"Thinking should become your capital asset, no matter whatever ups and downs you come
across in your life."
- A.P.J Abdul Kalan{1931-2015)

1.1 Objective

When theflow deviates from equilibrium statthe classical continuum desctipn of
fluid may not provideaccurate information about the flowWlence, application of kinetic
theory, BoltzmansCurtisskinetic eqation, or methods based on simplified kinetic theory
are necessary to describe the flow with an acceptabtd of accuracy. This work is
motivated to elaborate tlitatomic and polyatomigas flows at equilibrium anr-from-
equilibrium states using daical and nolassical constitutive relations derived from the
BoltzmannCurtiss equation kinetic, socalled BoltzmanfCurtiss based models. The
BoltzmannCurtissbasedmodels considered in the present study are derived frainsEu
hydrodynamics equation§l-6]. The resulting highly noctinear parial differential
eguations are solved using advanced mathematical and computational methods.

Along with the aforementioned objective, an attempt is made to describe the
computational sames used for solving Boltzma@urtissbased models @deep level.
Accordingly, detailed informationrothe development of a modal DG method for-pne
two-, and threedimensional systemand application of various boundary conditions are
provided. As the DG method is still under development and most of the availabsedmok
this topic fows on the mathematical aspdcim to provide a seltontained material with
a comprehensive explanation on both numerical and mathematical saspebe DG

methods to helpesearchers in the development of advancedhigbr numerial schemes.



1.2 Contents of the thesis

This thesis is organized intollowing chaptersin Chapter 1the objective of the
present thesignd its contents are presenté&hapter 2 coverthe fundamental of the
kinetic theory including the classification dfow regimes, bulk viscosity withits
applications,definition of microscopic and macroscopic propertieselaon density
distribution,description of Boltzmann kinetic equation as well Boltzm@&umtiss kinetic
equation and Direct Simulation Monte Cafl@SMC) method. In Chapter 8gerivation of
BoltzmannCurtissbased constitutive modelsumerical methods for solving algebraic
constitutive relations, and the description of the physical phenomena of the Bokzmann
Curtiss constitutive models adelivered

In Chapter 4,development of thenodal discontinuousGalerkin methods for ore
dimensional, twedimensionglandthreedimensionakystems is presentel.summary of
available highorder CFD methodand categories of spectral methaslseviewed Later,
the efficient discretization of a problem in space and time based on discontinuous Galerkin
formulation is dscussed in detailed. Also, a detdilexplanation of the disd¢ization of
inviscid and viscous flux functiopsnplementation of various boundargnditions as well
as sitivity preserving and Berthespersen limiters are provided.

In Chapter 5solutiors of zere and firstorder BoltzmanfCurtiss based hydrodynamic
models for multidimensionalproblems are provideusinga modal DG methadvarious
benchmark problems aselved and their numericaksultsare compared with experiment,
exact and other numerical solutions. In Chapter 6, the modal DG Solver is employed for
solving the secondrder BoltzmanfCurtiss based hydrodynamics modelr fone
dimensional and twdimensionalrarefied and microscale gas flow problerAsd, the
numerical results are compared with exact, experimental and DSMC m€imnapter 7

deals withthe solution of the secondrder BoltzmanfCurtiss based hydrodynamiuatel



for threedimensional flow problemsandresults are compared with experimental data.
Chapter &rovides detailed information grarallelization of DG solvers using single program
multi data (SPMD) parallel programming methods. The computational @bbtsth solvers

using serial and parallel solvers based on Boltzr@mriss models ardiscussedFinally,
Chapter Ssummarizes all the important findings from the present research work and proposes
anoutlook on furtheresearch worksThe basics of vaor and tensor theory, derivation of
conservation laws and constitutive equations, tadigeensional form of secororder
BoltzmannCurtiss based constitutive equations, quadratuies for numerical integratiorg

flow chart of developed #house 3BDG solver and basics of aerodynamics theory are

provided in appendicefllowed by a list of eferences.



Chapter 2. Basics of gskinetic theory

"Imagination is more important than knowledge."
- Albert Einstein {8791955

In this chapterwe first review theelementarygas kinetic theory of monatomic,
diatomic and polyatomi¢linear) gases andintroduce the nonequilibrium phenomena and
bulk viscosity. Then, we shall discusg®e classical Boltzman@urtiss kinetic equation,
which is the fundamental governing equation for processes in dilute ydsesll also
discussoneof its directconsequenceandstandard method the direct simulation Monte
Carlo (DSMC) method. Alsave shall deal witthe moments of Boltzmar@Gurtisskinetic

equation.

2.1 Gas flow regimes classification

2.1.1Flow regimes based on Knudsen number

The stidy of nonequilibrium gases hbeen treated as a fundamental and challenging
research topic in last few decades. The flow of gases at high altitudes, in porous media, in
microscale thermdluidic devices, in vacuum technology and microelectromechanical
systems (MEMS) are of great impance due to their tremendous technological and
scientific application$7, 8], thereby requires\aery good understanding of gases inon
equilibrium conditions. The major indicators of nonequilibrium in above cases are high
Mach and high Knudsen numbers. Mach numb®r¢an be defined as the ratio of fluid
flow speed and sound spedthe deviation ofases from its local equilibrium state can be
characterized by Knudsen numbién) whichis usually measurettie degree of rafaction

[9, 10]. Typically it is defined as the ratio of the particle molecular mean free/path



the average distance that a gas particle trabeteveen successive collision, to the
characteristic length scale of fldwy

/ (2.1)

Generally, the value of Knudsen numbesésvedas the prnary parameter to determine
the degree of rarefaction and the degree of validiBoitzmannbasednodek. Figure2-1

predicts the classification gias flow regimes based on the value of the Knudsen number.

Kn- 0 a

/- 0 ' : a

L- 2 Hydrodynamic - Slip ; Transition Free Molecular L- O
regime 108 regime 10* regime 10 regime

Figure 2-1. Flow regimeclassification based on Knudsen number.

Normally, thegasflow regimeis characterized asontinuumor hydrodynamics flow

regime (for Kn¢10°?), slip flow regime(forl0°¢ Kn ¢10"),transition flow regime

(forl0* ¢ Kn ¢10), and free molecular regiméfor Kn2 10) [11]. However, this

classification has been used widely in gas dynamics community. It may not be suitable for
categorizing gas flow ggmes in natural formAlso, there isarequiremenbf at least two
parameters for describing a gas flow in continuum fluid dyog[12]. Therefore, the flow
maybeclassified based on Reynolds number as well the flow velocity. In order to elaborate
the gas flows in all flow regimes from equilibrium to highly reguilibriumstates, it may

be re-categoized the flow regimes based on the level of deviation from the equilibrium

state
2.1.2Flow regimesbased onTsiend parameter
In 1946, Tsiern13] suggested a Knudsen number based not on a typical body dimension

L butthe thicknesg of the boundary layer on the body. Thus



(2.2)
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Kn,=—
7 d
For a flat plate flow whose length the boundary layer thickness is related videtynolds

L ,RGL _fUL ,R% =—d\7_RE (23)
m m

numberRe, defined as
d
JRe
Here, r is the gas density is thebulk flow velocity, and mis theviscosity coefficient.

Thus, the Knudsen numbé&m, based orthe thickness? can be represented regarding
(2.9)

freestream MackM) and Reynold¢Re) numbers:
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Figure 2-2. Flow regime classification based ond® parameter
par afoet er T

The nondimensional parametévl /\/Re may be referred as s 6 s
par amet e rFigure2-2. iTHellargert r at e c
degr

regime classification based onidrs 6 s
valueof Ten 6 s par amet er i nd iraredattiensandaa latger glistance
from an equilibrium state as shownHigure2-2. The flow regime classification based on

p ar a mddraeterizad asyntinoienfloay regimefor M /Re ¢ 0.01slip

Tsen 6 s



flow regimefor 0.01¢ M/\/ Re ¢lrarefied flow regimefor 1¢ M/\/Re ¢10and free

molecular flow regimefor M/\/Re> 10 Tsend6s par amet the ordnayl uc e s

Knudsen numbredefined in Eq(2.1) for freemolecular flow.

2.1.3Estimation of mean free path

According togas kinetic theorythegasmolecules move in a vessel witlige velocities
even at room temperature. These molecules are considered as paatioigsfinite and
small size. As a resulthe moleculesnoving in the spacefwessel containing it collide
with each othefThe collisbn between tlemolecules of a matter is knownasolecular
collision. However collisions are supposed to be elastic.

The gas moleculesre constaty moving in all directions avarious speeds. They
frequently collide with each otheThereforetheir speeds and directieghange. Since
thesemolecules exert no force upon one another exceptlaiao, they move irstraight
lines with constant speed between two successive collisions. So, the path of a single
molecule is a series of short zZgg paths of different lengths. These are called the free
paths of the molecul@nd their mean is called mean fegh. Hence, the mean free path

/. ...is the average distantravelledby a molecule between two successive collisions with

mean

other molecules.

For an idealgas, the mean free patl,.., is a function of number density(molecules

per unit volume), and the size of moleculgsl being the diameter of thmolecule):

;o1 (2.5)
mean \/Enp d2

Therelationship between pressyrgemperaturd, and the number densityis defined as

p=nK,T, (2.6)



where Ky is the Boltzmann constant which is ratio of gas consintand Avogadro

numberN, i.e.

K = Rgas_ (2.7)

Using therelations(2.6) and(2.7), the mean free path can be represented as
;= KgT . (2.8)
mean \/_Z,Udz p

2.2 Thermal nonequilibrium phenomena and hulk viscosity

2.2.1Thermal nonequilibrium phenomena
A gas particle can have various energy modes, including translational, rotational and
vibrational modesA translational mode is described by the random motion of gas particles.
In addition to a translational mode, diatomic and/atimic gas particles can also possess
an internal mode, due to the rotation of atoms around an axis, as well as the vibration of
atoms along an intaruclear axis. The internal modes of diatomic and polyatomic gases
the rotational a rdloselyrdatedto thesnmbteouifibduine s * ar
The rotational energy is easily excited at room temperature and ubiquitous across whole
flow conditions. However, in many gas flow problemntise rotational norequiibrium
effect can be neglectdmbcause the relaxation time of rotational energy is extremely short
and the equilibrium of rotational mode is usually easy to reach. In the other word, the
rotational norequilibrium effect become important when fleav problem is relevant to
small timescale which is comparable to the relaxation time of rotational energy. The effect
of vibrational norequilibrium becomes relevant only in gas flows where the temperature
is greater than the vibrational excitation temperature; for example, 1000°K. Feattos,
in the study of diatomic and polyatomic gases, the excitation of vibrational degrees of

freedom is usually neglected.



The rotational norequilibrium effect can beimply accounted foby introducingthe
excess normal stress associated with bulkogsy. The secalled hulk viscosityhas a long
history, not only in compressible gas dynamics, but also in fluid dynamics in general. For
example, e twaecenturyold NavierStokesFourier equatior(called NSF hereaftey is
considered to be thde facto mathematical equation for every possible flow problem,
including compressible gas dynamics. The NSF theory is built upon a critical assumption
of the constitutive equationsjtroducedby Stokeg14] in 1845 that the bulk viscosity
vanishes,

2.
M * /'é mg;, equivalently / —?23 - (2.9)

Here m,., /and represent the bulk viscosity, the second coefficient of viscosity and

the shear viscosity of the fluid, respectiveljne Stoke& hypothesis, mathematically
expressed a.9), assumes that thdilatatioral term (B @) plays no role in the level of
theconstitutiveequation of viscous stressyen though it may plag significantrole in the
level of conservation laws in general, likempressible gas flows.

Further, the origin of bulk viscositis often attributed to pure phenomenological
observationsuch as interpreting it as the dissipation mechanism during a charajeme
at a finite r&e, rather than resorting to a fundamental microscopic kinetic theory.

Whi | e t Isbypohesakcergidly legitimate in the case of monatomic gases
like argon,there isever increasing evidentleatnow indicates that this not the casér
nonmonatomic gasegl5-17] d like nitrogen(or air), methaneand carbon dioxid® that
arefar from local thermal equilibriumExamples of gsch cases include the inner structure
of strong shock wawe hypersonic entry into the Mars atmosphereich consiss mostly
of carbon dioxidethe effects obulk viscosityon thestability of theearly universe, and

the bulk viscosity of suspensiof3-20].



It should also be noted that from room temperature acoustic attenuatipthddialk
viscosity for carbon dioxides known to behree orders of magnitude larger than its shear
viscosity, indicating it has &ighly dispersive nture which isdependent on frequencin
fact, in a recent experimental stufdyp] in 2016 on the role of dilatational (longitudinal
acoustic) waes in a seconchode instability in the laminao-turbulence transition in
hypersonic boundary layers, it was observed fioaia real diatomic gasthe growth and
decay of the second mode is accompanied by a dilatation process which labdstto

50%increase in dilatation dissipatioim comparison withit e S ts loypothesis

2.2.2Bulk viscosity derivation from conventional theay

Considera canstant velocity fieldvithoutthe gravity. In thisituation the stress tensor
s is independent fronposition vectorr, and the fluid possesseseither theshearing
motion northeshear stresses. Therefptige stress tens@ can be writtej21, 22| as

s = ¢onstantl (2.10)

Sincethe normal stress is independent af orientation of the surfacthat isgiven by
normal vectom. This is the case for the stress due to the hydrostatic prggswiech
varies withr but not withn. Then,Eg. (2.10) can be writteras

s= pl. (2.11)

Here, by convectiongompressive stress is negative here producing the minus stress. A
fluid motion with a nonzero velocity gradient will possess normessés that arehequal

to thenegatve of the hydrostatic pressui&e now subtract the hydrostatic pressigren

from s to obtain the viscous stre@nsott ,

t=s { pl) & pl+ (212

The viscous stress tensbris nonzero only if the fluid possesses a 42ero relative

motion. It can beelatel to the rateof-strain tensp (rateof-deformation tensor)Any
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secondordertensor can be writtensathe sum of symmetric and aymmetric tensors.

Then the velocity gradiedu can be written as

PDu=e+ w (213

The symmetri¢ensore called the ratef-strain tensor, is given by

e-e __%g ® (+u)b g%% u_l:‘;_h; (2.19)
¢ -
while, theantrsymmetric part oPu is the rotation tensor denotbg w
1. 18y, o, (2.19)
W= ZESD f uB)T 3—2(%% T‘IJ 1
Thus Eq(2.13) can be written as
PDu=dr e d W (2.16)

Eq. (2.16) is associated with a solid body rotation and does not contribute to the viscous
stress tensot. This means that can only depend on the radéstrain tensoe. This
tensor, however, is symmetric with six independent components. These components can
be further subdivided into those producing a shearing motion and dilatation strain. This
later strain is given by the trace efi.e.

Tre)=¢ = M ( (2.17)
For Newbnian fluids,two assumptionare consideread one is linear relation betweehn

ande and second is isotropic condition (assumptions of linearity and isotrBpgh
tensort has nine scalar components. The linear assumption means thatt each

component is propdanal to the nine components e. Hence, there arg' = 81 scalar
coefficients that relate two tensors. These coefficients are the components of a fourth order
tensor. With a subscript notation, the linear relation is given by

L :C|jmn e (218

whereC. _ is called the fourttorder viscosity coefficieniensor. The most general form

ijmn

of an isotropic fourtkorder tensor is given by

11



Cijmn =Adij q B imdjn aa jnq (2.19)
where, A, B, and C are only coefficients remaining out of the original 81. Then relation

(2.18) can be written as
tij :(A ijdmnd-B im ?Z @ in jm)dmn' (220)
=Ad g B €@ ;.e
Sincee is symmetric, this further simplifies to
tij :(A ijalmnal-B im g @ in jm)dmn' (221)
=Ad 4 B @) ,e
Now introducing the notationmand / for the first (shear) and second viscosity

coefficients respectively:

m:%(B €), /I A (2229)
Thereforethe relation(2.21) becomes
t= 1, q.ee (223
which can be written in tensor foras
t 2m e/ DuJl. (2.24)
Fromthe relationg2.12) and(2.24), we have
s {-p+ B 2m (225
This relation can be written in Cartesian form as
o= o +é Ly g n § (2.26)
CH M = X

We emphasize that thesguations are resttied to theNewtonian fluid.In case of
incompressibldlow, ® 0=0 i.e, there is no role of second viscosity coefficiénin an

incompressible flowFor describinghe role of/ for a compressible flow, we define the

mean pressur® as the negative ortird of the sum of the trace of stress tensor.e.

_ 1 2 2 B . (2.27)
P= 5(511 t, '§) p:ge '/5 '87“ ® Qi F1,

where the bulk viscosity coefficienty,, is defined asm,, * / 4% . Replacing the value

of / interm of m,, Eq. (2.24) becomes

12



t 2npu]? + g ( 2P, (2.28)

where[Bu] “represents the traceless symmetric paBotlefined by

A 1 2.29
[Du]()=§g 5) (+u):I) 8§( u)B (2:29)

The termt also known as ratef-shear tensoprovides the viscous stresses associated
only with a shearing motion. Consequently, the bulk viscosity term provides the viscous
stresses due thedilatational motion. The shear and dilatational stresses are caused by the
attractive and repulsive forces betwemolecules and the collision relaxation of the
rotational and vibrational energy modes of polyatomic molecules, respecth®lyan be

seen fom EQ.(2.28), the viscous tensor has an isotropic part and a deviatoric pgurt.
recalling decompositiofi2.25), we get the following expression for thengolete stress

tensor,
s {-p mu( BP 2 pu]E (2.30)
2.2.3Physicalinterpretation of bulk viscosity

The physical interpretation of the bulk viscosity in a gas floassociated with the
relaxation ofinternal, rotational and vibrational, modes polyatomic molecules. Itis well
known from kinetic theory and experiments thalk viscosity is zero for a monatomic gas

[23]. At room temperature, diatomic gassuch asO,,N,,CO, and NC are fully excited

rotationally but possess negligible vibrational excitation. As a consequence, only rotation

contribution to /7,,, and the bulk viscosity ratid,, * m,./ /is of unity order i.e.
fou * O(/M) . The number of collisios required for otational energy equilibratiors

about 4 or 5, whereas vibrational energy relaxation typically requit@ssands of

collisions. Consequently, when the vibration re@dlis partly or fully excitedf, ,, is large

compared to unity. For example, at room tempera@f@,has a value of abo@000[24].

13



The magnitude of this difference between rotational and vibrational relaxation is justified
by the kinetic theory[25]. The physical intgretation for the bulk viscosity in dense gas

or liquids are different from that of a simple molecular collision relaxation process. For

instance, then,, is proportional to tha/7 at relatively large density valugag].

Argon Nitrogen Oxygen Hydrogen Carbon mono- Methane Carbon dioxide
(Ar) (N2) (02) (H2) oxide (CO) (CH4) (co2)
0.0 0.8 0.73 35 0.55 133

Bulk viscosity 1000

Degree of 3 5 5 3 5 6.4 6.7
freedom

Specific heat ratio 1.667 1.4 1.4 1.4 1.4 1.3125 1.2985
Gas constant 208.24 206.913 259.91 4133.668 206.93 518.45 188.87
Viscosity 2.117x107 1.656x107 1.919x107 0.845%107 1.635%107 1.024x107 1.38x107
Viscosity index 0.81 0.74 0.77 0.67 0.73 0.84 0.93
Prandtl number 0.667 0.7368 0.7368 0.7368 0.7368 0.7706 0.7767
Molecular 4.17x107° 4172107 4.07x107"° 2.92x107" 4.19x107"° 4.83x107° 5.62x107°
diameter (meter)

Molecular mass 66.3:107 46.5x107 53.12x1077 3.34x1077 46,5107 26.63x1077 73.1x107

(kg)

Figure 2-3. Physical paramters of monatomic, diatomic and polyatomic gases

Physically, the bulk viscosity pvides a damping of volumetric vibrations such as
might occur during sound absorption. In fluid dynamics, bulk @ggavhich plays a
central roleis related to the number of collisions or time, required for the molecules to
achieve internal, vibrational and rotational equilibrium. In present work, we only focus on
the rotational contribution to the bulk viscosity. In traditional fluid dynamicsrihebe
rotational modes of energy are always considered in equilibrium with the translational and
completely neglects other internal energy modes. Although thgoduminous literature
in gas dynamics and fluid mechanics for the description of trangpaperties like shear
viscosity and specific heat, there is magnificant data for the bulk viscosity. A few

theoretical and experimental explanation for bu#icosity haseen doné¢l7, 24, 27-32].
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These studies are limited to some speatificlecules and temperature ranges. The data

available in the literature of bulk viscosity of ideal gases talshat the bulk viscosity

ratio f,, has a variation itemperature and usually has a local maximum. It may be noted

that the bulk viscosity treatment has been the subject of controversy for quite some time

[16, 32, 33).

2.3 Microscopic properties

2.3.1Basicmolecular properties
A gas molecule can be described basedhoee molecular parametérsnolecular
massm, molecular velocity, and effective molecular diametéf1, 34]. The molecular

velocity v is the sum of bulk velocity and peculiar velocitf, i.e, v=u 4. There are
several quantum energy sta2¥" in a moleculdased athe internategreesf freedoms
of the molecule

2% =3N -N_, (2.31)

where 2% is the degree of freedonN is the number of gas molecules aNg is the

number of independent relations among molecules. For instance, a monatomic gas

dof

molecule has 3 degreef freedonfz™ =3), since it has only one moleculd € 1) and

there is no independent relation i, = 0. For a diatomic gas moleculez ' =5, since
the diatomic gas molecule has 3 translational and 2 rotational degrsFeedomIn case
of polyatomic gasz® =7. The total energy of a system can be written as the afum

kinetic, internal and potential energy,

Etotal = Ekinetic +Einterna| Epotemial (232)

and the specific energy defined as the energy density per unit mass is given as

£ =& . € & (2.33

total — “kinetic internal potential
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The specific energy and totalexgy are related through thelations

Etotal = FYE totaldv' (234)
Y,

The kinetic energy of the molecule moving at veloaiig given by:

1 (2.35)

Ekinetic = E muz'
The potential energy is the energy generated due to external forces acting on a unit mass;
it is realistic to assume that potential energies are conservatitteegratre negligible since
the external forces were usually neglected. On the other hand, the internal energy is
generated due to the irterolecular interaction of the substance, and it can be split into

the lower level of energy states; translationatational, vibrational, electrical energy

states. The internal energy modes are defined as a summation of various internal states;

Zig?efmal = #Z;slational + b tational +d\?igatiah (236)
The translationa¢énergy of a gasiolecule isdefined by
1 (2.37)
EtranslationaI: E mvz'
The rotational energy of a gas molecule is defined by
1 (2.38)
Erotational = E I M/fz ,

where w; is the angular frequency of rotation about ohéhe axesandl is the moment

of inertia of the molecule about its center of mass, given by

_dmm § 2 (2:39)
|—gem 'E+) S/

where m, m, are the masses of the atoms that form the molecslé)e atomic separation,

and m_..= mm/( m +rrg) denotes the reduced mass of the molecule. The magnitude of

the molecul eds angul ar monemesentadby about its

L=lw,, (2.40)
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which classically can have amnalue. According to Quantum mechanics, the angular

momentum of the molecule has the value
L=3(3 97, J &123.. (2.41)

. . : h .
whereJ is an integer called the rotational quantum number Fandzz, h being the

Planck constanCombining the Eqgq2.38), (2.40), and(2.41) therotational energy of the

molecule is given by

1 > & (242
ErotationaI:E I f =_| 'E_‘J(‘] l)'t' J 0,523...
The vibrational energy of gas molecule is given by
a 0 (2.43)

Evibrational = é’ % fvib’ u Q:, 1, 2, 3 .
¢

Here, v is an integer called the vibration quantum number, §pdthe frequency of

vibration for the system is defined by

fl :i kspring (244)
vib 2p mss’

wherek is the effective spring constant

spring
2.3.2Gas properties

For an ideal gashe temperature is related to the presguaad density by the ideal gas
law:

p =r RgasT’ (245)

while, the internal energy of the gas is simgiynction of temperatureonly, i.e.

Epntema = Einemal T)» Which isdefined by

E =C,T, (2.46)

internal ~—

where,C, is the specific heat at constant volume. The gases that obey&B&s.and

(2.46) are called calorically or thermally perfegas The specific enthalpy of the gas is

definedby
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h=C,T, (2.47)

where C,is called the specific heat constant pressure. By the ideal gas law results:

C,- C, =Ry (2.48)

The equation of state of a polytropic gas turns out to dependoihe ratio of the specific

heats:

C (2.49

g==

CV
In terms of internal degree of freedom, the specific heat ratio of a gas molecule can be
defined as

2945 L2 (2550)
g_zdof +3 'fof 3

The mass of unit molecule and the ordinary gas constant can be defined as

Kq (2.51)

Wgas
m= ) =,
N, Res m

where N, denotes the Avogadro number &, is the molecular weight of the gathe

Prandtl numbePrc an be cal cul ated using Euckenodos fo

or= 29 (2.52)
9g- 5

The transport properties of a gas can be defined based on the models which are used for
describing the intemolecular pagntial forces. In case of powkw model which is a
shortrange repulsive intemolecular model, the first coefficient of viscosity and the

thermal condctivity K can be defined as

° s s

= a-l-('j/(“/(-lé
m_ma-_g _reffé%’

(; ref
15/mK, T,
2d2p (5- 29)(7 -29°

-|-QD: Ot

(253




The s denotes the viscosity index andepresentshe exponent of #inverse power law

for the gagpatrticle interaction.
2.3.3Phasedensity distribution
In kinetic theory, the state of a gas is dé=t by a distribution functioh (v,r,t) such

that the number of particles in a phase sgdementdvdr at timet is given by
dN=f(vrt)dd, (2.54)

where N is the number of molecules. The integrationfdfv,r t) in phase space is equal

to a number of molecules the physical space:

o o

A (fd =N,

-o -a@o

(2.55)

The phase density distribution functibifv,r t) is the central quantity in kinetic theory.

2.4 Macroscopic properties
All the macroscopic quantitiger diatomic gasesan be obtainedased on the phase

density distribution functiorfi (v,r t). Therefore,in this section, several important and

commonly used definitions in this thesis are defined for simplicityjty and helpful to

readers.

2.4.1Density
The density which ighe first macroscopic variabig obtained as

r=(mf(vrt) :"ﬁ“ %ﬂf(ﬁr,t) . (2.56)

ol

where the symon(”))(' represents the integration owespace i.e.

oo oo (2.57)

o0 n
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2.4.2Velocity
Velocity or mass velocity, momentum densignd the mean peculiar velocity are

represented as

u=(vi(vrt) 2/ f1FT O (259
ru=(mv t(ved) =5 A v o (259
(e ((ur.)={m(s 4] (o7 )
=(mvf(v,r.t)) {muf(vr,9)
=ru {mf(vr.thu= n -w=0.
(2.60)

2.4.3Temperature
Generally thethermodynamic temperature is known as temperature which can be defined

based on the equation of states for an idea(2j45),

T= P __E etranslational (261)
r Rgas 3 Rgas 1

wheree,, ..iona d€NOtes translational energy densAyso, the emperatureguantity can

be written in terms of probability distribution function as

R | (2.62
3R r! _ unébnﬁ f(v,r,t) o.

In case of diatomic and polyatomic gases, the temperature quantity can be measured for

each state of the engrtgvel as

- _ 2 m
translational — dof
3Ztranslational K B

e

translational

2 m
T  =—_ @ (2.63
rotational 32 dof K rotational
rotational * *B

T _ 2 m
vibrational — Szdof K evibrational
vibrational B
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The overall temperature value in requilibrium condition can be calculated on weighted

averaging formulation as

dof of d 2.64
T - Z translationa-lr translationa-li- 2 rotation-gl romal + Vi ationaITvibrationaI ( )
overall dof 20f d% '
4 translational+ otational t ¢ rational

It may be noted that the temperature specifies the collective thermal state of matter
comprising the system and quantifies the physiologieateptiorof coldness and hotness

of the body[1]. It is a notion intimately connected with haad its transfer betwedmndies

in contact. The temperature of a body is quantified if a thermometer is put in thermal
equilibriumwith the body in questioWhen the thermometer is standardized to a universal

scale, the temperature of the body is given by an absolute temperature.

2.4.4AEnergy
The macroscopic internal energy, total eneagyl enthalpy for an ideal gas can be defined

in thermodynamic equilibrium condition as

Einternal = reinternal ° ,C/ T’ (265)
E(otal = Ekinetic +Einterna| Epotential
1 2.66
= E r ”u”2 + CVT +gheight( O):! ( )
H (2.67)

total

r

total

p 1 2 P

E.a &— =/|u T —-
Sl et £

The totalenergy can be determined through the probability distribution function as

@ o (2.68)

1 ~ ol
E.u :<§ mv? f(v,r,t)> :n | nébnﬁ2 flvr,) d
The internal energy s&@tan alsderepresented based on ensemble averaging and the first

moment of single particle probability distribution functions as

3 5 T 5 (2.69)
rEinternaI:<§%L mCZ +Hot 8(V’r’ t)> ﬁn ﬁ R a%]cg Hét f(\g’r ! ) ‘d )
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2.4.5Pressure tensor

Pressurdensor, secalled stress tensais a flux tensor which expresses the transport of
momentum by the motion of thermal (peculiar) velocity. As the momentum of thermal
velocity is a vector quantity, the pressure tensor is a second rank tensor given by

P:<mCCf(v,r,t)> :;"ln ﬁTCfﬁ f(vr,9 d. (270

where C is the peculiar velocity. The pressurdensor P is decomposable into three
components: hydrostatic pressure, excess trace pattaaetespart.

P=(p +)D Pt (2.71)
Here,l is the unit secondank tensorp is the hydrostatic pressurB,s the excess trace

part (excess normal stress), dddis thetracelesgart {iscousstress tensor).

2.4.6Viscous stress tensor

Viscous stress tensor can be defined as the traceless part of the symmetric pressure tensor.

P=P %I Tr(P) [P, (272
It can be defined based dmemomens of distribution functioras
@ @ = (2.73)

P=(mlcc]” f(vr) =i gl f(vr ).
Where[CC](Z)denotes the traceless part of the thermal velocity production t&€sor

defined in Eq. A.324ppendix A).

2.4.7Excess normal stress
Excess normal stred3 can be defined as the excess tipag of the symmetric pressure

tensorP,

D %Tr(P) p. @74

The statistical mechanical formula fd is given as,
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D g%mTr(CC) pg(v,r,t)>. @79

2.4.8Hydrostatic pressure
In kinetic theory, the hydrostatic pressure is convecntionally defBte@6] as

p= % Tr(P). (2.76)

However, thisdefinition of hydrostatic pressure is not valid for all fluids sitiee stress
tensor is a noequiibrium quantity. Although the definitio(2.76) is truein case bdilute

gasedi.e, monatomic gas) and it provides zero bulk viscosity #g, =0 or D 8. But

this definition (2.76) is not true for dense fluids (for example, diatomic and polyatomic
gases). Therefore, the hydrostatic pressugeimes a more careful definition in kinetic
theory. According to B.C. E{d], Hyflrostatic pressure is an isotropaverage of the
virial tensor ovetthe localequilibriumdistribution which in the case of a dilute monatomic

gas is given by the formula

p= < % mTr(CC) f°(v,r, t)> (2.77)

wheref°(v,rt) denotes the equilibrium distribution functimn case of dense fluidse

virial tensor includes contributions from the intermolecular forces in addition to the kinetic
part mCC.

2.4.9Heat flux vector
Heat flux vector is a flux vector which expresses the transport of energy of all states of the
moleculesy the motion of thermal (peculiar) velocifyhe heat flux vector foadiatomic

and polyatomi@as reads as

=N, ﬁél C? +H,, mﬁﬁf(v,r,w_ (2.78)



Here, PE denotes the enthalpy density defined by

= 5 - (2.79
B> kT 4E,,
kT +E,
with E , for the average rotational energy density
rEq =(Hy f(Vv.r1.t)). (2.80)

2.5 ClassicalBoltzmann kinetic equation

In Kinetic theory, a gas is defined as a collection of many interacting particles. In such
a microscopic scale where the collective dynamics of particles describes the macroscopic
state of gas, an appropriate kinetic equation is required to precisely describe the underlying
micro-dynamics.

The Boltzmannkinetic equation thatonnects the regime of dynamics with that of
thermodynamics has beenmilestone in the development thfeoretical physics. For
describinghe kinetics of gas, Boltzmaf87] introduced a probabilistic description for the

evolution of a singlgarticle distribution which anticipated atomistic scattering concepts.

Let f (v,r,t) denotes the singl@article distribution function where, r, and t

represents the particle velocity, position and time, respectively. The distribution function
f(v,r,t) allows the probability of fiding a particle in the rge of v~ v+dv and

r~r +d at timet. At infinitesimally small time intervadlt, the change in distribution

function in small control volumevdr located at phase spa(:e,r) can be written as

: .. .G 281
g% +v FDFF™ O dt (281
¢ -

where the higheorder terms of ordeO(th) are neglected anB®*"denotes the vector
of external force on unit masB, 13, 19 J—“. This expressioff2.81) accounts for a

change in probability distribution function due to the steaming motion of the particle in the
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phase space. If there is no collision between molecules, the changessingleparticle

distributionf (v,r,t) can be interpreted by a single particle Liouville equation which is

called thecollision-less Boltzmann equatiatefined by

(2.82)

e ¥ o}

al +v O FjEegemal , (@,r,t) 0.
it :
Single particle Liouville equation does not contract the information of the sysiém
preserves the information. It describes the evolution of an incompressible probability fluid.
However, in reality, the molecules collide each other and probabilitybdison function
change inside the control volume of the phase space due to thmaiezular collision.

Therefore, it is required to find a relatginp between the distribution functioris(v,r ,t)
andf,(v,,r,t) of the colliding molecules.

The ollision operatorC(f,f,)i s t he Boltzmannds | asting

theory which is not invariant to the time reverdakonnects the dynamics of the inter
molecular collisions, there-collision-, and postollision probability density functions such
that the evaluation of the particle density function in time and phase space can be written as

(2.83)

&

é.“ +v O EFe_igternal

(ﬁi v

The cdlision operatorC( f, f,) depends on the way of approximating the collisional

@.rt) C(f4).

effects, and the statistical assumptions were made regarding the correlations of the particles
in a binary collision. Boltzmann derived a classical formdaltision operatorC( f, f,)

usingStosszahl ansagpproachgiven by

~ 2 gy ° . 2.84
C(f, ) =fv, e , dofy, ( ff ¢ 1) (259
wheref andf, are the distribution functions of colliding molecules (and prime denotes the
distribution functions after collision)y is the impact parameter of twmody collision

between particlesg denotes the azimuth angle in collision plameich describes the
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orientation of the collision plane; ang =|v -v2| represents the relative velocitysing

Egs. (2.83) and(2.84), the classical Boltzmann kinetic equation is given by

3 .. 0 o 2.8
%%w OB §@ury) =R dopy, (it i 7). (289

The Boltzmann kinetic equation isell-known in kinetic theory fomonatomicgas such

as Argon. It has been considered as a proper nonlinear equation for studying rarefied gas
flows. It can interpret the intenolecular collisions and can describe the statigtiehbvio

of molecules. However, solving the Boltzmann kinetic equiediirectly is not an easy tagsk

and usually, the analytical solution is limited to simple geometries due to the presence of
the large number of independent variables in the equation, and the complexity and non

linearity of the collisional term.

2.6 ClassicalBoltzmann-Curtiss kinetic equation

In 1981, Curtiss designed a thermodynamically consistent extension of the Boltzmann
equation to dilute rigid diatomic gases which is known as nanteyBoltzmanrCurtiss
kinetic equatiori3, 38, 39]. The mathematical expression of this kinetic elgualooks
rather similar to the Boltzmann of monatomic gases, contains more termsthbout
molecular rotation.

Considetthe diatomic molecule having a moment of ineraad an angular momentum
j. The orientation of the angular momentum is specifiechbypblar angleg and f and
its magnitude is defined hy Since the orientation of the molecules is described by Euler
angles a, bandg Therefore, polar angles of angular momentyms chosen as
a=q b=.Also,y =g is the azimuth specifying the orientation of the molecule in the

plane perpendicular to th¢ vector. The unit vector of the body axis is denoted by

IE:(sin.J cos/ ,sin Jin jcos with polar anglesJ and y Then he Boltzmann
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Curtiss kinetic equation for the diatomic molecule can be expregiethe presence of
external forcg 3] as

%%w o, §vrivi) CEL) (289

Here,the subscript 2 refers to the second moledulepresents the distribution function;

v is the particle velocity;, is theparticle position and., is the internal Liouville operator

defined by

T

2.8
-(W 13) l»t (2.87)
| HJ/
Where w;, is the vector of angular frequency of precession of the angular momentum due

tothe presence of external forGée C( f, fz) denotes the collision integral of the binary

interaction among the particles and it is given by the expression

C(f.f,)=f fi o Madyd ¥ 2 (2.88)
s(viiidwiio)(f t,- 1)
where the asteriskethotes the posollision value; v, =|v -v2| denotes the relative
velocity,dW =jdjsingd ¢ o denots the solid angle afcattering;s (Vj O 2"vr i) 2)
represents the collision cross sectiorpresent work, it is assumed that there is no external
force which leadsw, =0.Then the BoltzmnnCurtiss kinetic equatior§2.86) can e

expressed as

(2.89)

|- OO

(V,I‘,j yt) CEf.f).

ol v o M
ot i u
According to Curtissthe distribution functiorf depends primarily on the free molecular
constants of motion anddioes not depend on azimuthal angla.e. on thephase of the

rotational motiorand depends only weakly on the coordinate that one may neglect this

dependencever distances of therder of molecular dimensions. Tbenservation lawef
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conserved variableandthe evolution equations for naronserved variables such as the
stress vector, excess numl stress, heat flyxcan be derived by defining the following
velocity moments and then calculating their time derivatives with the help of the

BoltzmannCurtiss kinetic equation.

2.7 Direct Simulation Monte Carlo method

Monte Carlo (MC)methodwas initially served around sixty years agstudystatistical
mechanicsnd to integrate highly nonlinear integrals statistically. Despite the fact that MC
is a very powerful method, it cannot demonstrate the evaluatiosystem An alternative
for studying themicroscopicbehaviorof materials is to use the molecular dyne (MD)
method which is a deterministic approdd®, 41]. However it is a very costlhyandit is
usually beingused for simulating very small scale problems suaieasmaterials, nano
tubes, and microsystemBird tried to overcome thedifficulties in MD method by
employing MC methodnappropriatewvay [42]. As a result of thatthe direct simulation
Monte Carlo (DSMCwasintroducel to studythe moleculabehaviorof the rarefied and
non-equilibrium flow[43].

DSMC isinherently a probabilistic method in whieHarge number of real particles are
represented by one simulated partidlee cost of DSMC simulatiois considerablyess
than molecular dynamic methotihe capability and the simplicity of the DSMC method
persuade many researchers to utilizes thestandard solver fastudyingnon-continuum
gas flows It hasbeenused to study various applicatiossich as micro gas flowmaterial
processing, acousticsigh-speedyas flows,andgas mixing[44-48].

The conventional DSMC algorithnt®nsidergasesas a grap of the finite numberof
particles anddescribethe phase ofhe systemby calculating the position and velocity of

the particles. The continuous motion and collisiothefyas particles are discretized within
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a small t i mthey aredesgribed aattwo camsecltive and decoupled steps:
movement and collision. These stages are equivalent to the advection and the collision term
of the Boltzmanrkinetic equation respetvely. In each time stepet , t hemopear t i c |
based on theiown velocities throughout the gas flow without considettinginteraction

with other particlesSubsequentlyif any particle reachea boundarythe proper action
according to the typef @oundary condition isaken intoaccountandthe particlgositions

are updatedAfterwards the collision step is simulated by utilizingvarkov processn

the collision cell during a given time interval. Therefore, the collision pairs are chosen
randomlyfrom particles within the same collision cetind the collision probabilityis
calculated based on kinetic theory. Successful collisions are identifiedacsiagtance
rejection method and finally, thepostcollision properties are calculated regarditige
employednter-particle potential model.

Generally, he movement phase @éeterministicand does not involve any noticeable
difficulties, while the ®llision phase is grobabilistic process.Collision processis
composed of three important steps; counting the number of collisions, pair collision
selection, and calculating thmostcollision properties using inteparticle potential. In
order to obtain an acceptable efficiency and accuracy in collision prdoasseatures
should be considered simultaneously: the computational efficiency, physical accuracy,
reliability and implementing the collision step in the easiest way. Therefore, numbers of
assumptioa and simplificatios should be taken into accourithese assumptions or
simplificationsled to setup some requirements for physical parameteos instancejme
step should be selected small enough so that a particle just travels a fraction of collision
cell length within a time steffhe number of partickeshould be large enough to quantify

the number of binary collisions among the particles during a given interval more accurately.
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Finally, in order tominimizethe statistical uncertainty and estimate the mean value of the
estimators, the probability sanmpd proces is added to the DSMC procdd49, 50].

In fact, DSMC can be considered as a statistical solution of the Boltzmann eguation
the case that the infiniteumber of peiclesare used antime step and grid size tending to
zero[51]. However, Boltzmanrkinetic equation cannot elaborate all aspects of DSMC
approact{52]. The ability of the simulatintheinternal energy modes, chemical reacsion
and thermal radiatian make DSMC more interesting foesearclrs. The statistical
behaviorof DSMC brings the abilityo modelthe real hydrodynamic fluctuatior{$3] in
high-densityconditions, although itan be conslered as a drawbaci the methodlue to
produce undesirable statistical fluctuationlow-speedflow regimes.The biggest issue
with DSMC methods that it is tocexpensive when the degree of reguilibrium is low.
This encouraged researcher to ogament-basedmethods for simulation of low speed or

slightly deviated flows from equilibrium conditions.

2.8 Moments of Boltzmann-Curtiss kinetic equation

2.8.1Collisional invariants
The BoltzmanrCurtiss collisional integrgR.88) has a special property that it provéde
to a vanishing integral of @llisionalinvariant quantityConsider the integral
Y] =ffv €(f, 1), (2.90)

Substituting of the explicit expression fGr( f, f2) from Eq.(2.88), we get

Y= A Avdpdgd pd W W e (2:99)

sV iio)Y (f 1, 2 1),

Since subscripts are dummy indices, they may be interchanged, and the interchange leaves

| [Y] invariant. Then Eq(2.91) can be written in the form

30



o 4 o~ . 2.92
IYI=5A A ACRORd Be W W (292

s(vidnda iiL) (Y + Y)(f £, ).
The collsion process involved in E§2.92) is (v,vz)- (v*,vz*). On reversal of the

collision process, wget
1. . . . .
YI=5A A AV dRdiyd W W " °

s(Vivdal T a)(Y # Y)(H, £ 1)
On adding botlegs.(2.92) and(2.93) side by side and dividing the result by 2, we obtain

(2.93)

I o5\ S (2.99)
IY]= A A AvdRded g wowy o
s(viidt g i) (Y =y Y ) (F £ )
If the quantityY is conserved in collision, then
Y +Y - Y3V, (2.95)
and the integrall [y ] vanishes identically:
I[Y] =o0. (2.96)

Such quantity is called a collision invariant. If the particles are structureless, there are three
collisional invariant®beying the relations: mass, momentamd energy.
2.8.2Conservation laws

Since the collisional integral vanishes for mass, momerdamohenergy of a molecule,

it is easy to derive the conservation laws based on Batim@urtiss kinetic equation
(2.89). Defining the macroscopic quantify= gm, rru,% mC +H, and multply it into

Eg. (289 and integrating over velocity space. Then simplifying the equations by
considering thagf depends only on the particle position and fime (r,t) leads to the

differential form of the conservation of mass, momentand energy as can be followed

by Appendix B
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e r g € o %) e 0 Be (2.97)
Hé U 6 u g | é
utéru ﬁDg) au  ph U +'[€) | "+ Dgé

B B H Bww+tPUl (B +Pu+Q Q&

whereE,_, is the total energyP, D andQ are the viscous stress tensor, excess normal
stress and heat flux vector which are not defined still fiomust be emphasized that the
conservation laws are the exact consequence of Boltz@artiss kinetic equation, and
they are valid for all degree of naguilibrium. Only after some approximation in the
derivation of P, D andQ, they becme approximate.In next chapter, neoonservative

variables and the way to obtain an approximate constitutive relation for these variables are

discussed in detail.
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Chapter 3. Boltzmann-Curtiss based

hydrodynamic models

~

A | beli eve all complicated phenomena can
- Linus Pauling (19041994)
In the previous Chapter, it was shown that the average of an extensive macroscopic

quantity(/ f) couldbe obtained by taking the first moment of a distribution function times

the microscopic quantit{//' (v)) It was shown that the conservation laws can be obtained

from the moment of Boltzmar@urtiss equation without extra efforts foraaly collision
integral. However, the conservation laws remain open until some expressions for non
conserved variables are defined. In this chapter, it is assumed thateihreakfdrces are
negligible and thgasconsiss of nonreacting diatomic moleces. The moment methods

are applied to Boltzmar@urtiss kinetic equation, and the extended hydrodynamic
equations for nofonserved variabs are derived. Afterwards, thesact but open
equations are approxi mat ed b aed@dodurecandtheru 6 s

variousBoltzmannCurtiss based models are obtained.

3.1 The moment method

The general evolutiorequation for norconserved variables can be obtained by
multiplication of BoltzmanfCurtiss equation(2.89) with / (v):h(“) and subsequent
integration over velocity space yields

<h<”) %>+<h(”)v orp <r+>|i—:l‘> (Hed 1, 1]).

(3.1)
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Here thecollisional term is not zer@nd it is denoted by " = <h(”)C[ f, f2]>. As we need

to investigate over velocity, we have to convert the molecular velocity into peculiar

velocity and then bring it together with distribution functfas
n n . A ke i (3.2
<ﬁ(h()f)>-<f—p%()> {v @B 1)) (vi HP Bé%?fm f)>

_ <fth<n)> el
|y

The Eq(3.2) can be simplified as follows,
<§(h<n>f)>-<f_pwn>> {c ) (odr)) ((c-u) f+ 1)
Tt o) o
[api)-( 1) 0 909 (o o) for 4

-(uf &) o <fJ H h(”)> L =

(B(H))-(1-H0) w Gir)  fostr) (#1 ¢ o))

-(ct o) (uf h(ré')>D<fliﬁh(”)> Lo, = (35)

(L)) (1) Gir)  fodtr) (#1 ¢ o))

(ot aB) (u Y < Tﬁm L0 = (36

<§(h(”)f)>-<f—p“h(“)> u QB f)  feala) (K0 u

-(cf o) (uf h%>£)<f|l$h(”)> L. = (3.7)
Horu 0BT (W) uo(cHbik ©9
-<f%u OO + Tjo#g”)> L.

Using the definition of substantial time derivative, we have
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%<h(”)f>+<h(”)f>@la { @) <féD C %—i‘/o§>>
=L,

Using the mass conservation law, the general evolution eqyat®)rbecomes

r2 > @D<(")h(”)f> faD C + -oiéw@(
Dtg’e r 0 éﬁi lnuy =

This general evolution equation can be wriftg/39] as
F O oy O z1; (31
Dt
where Y (™ the flux of <h()f>, denotes the higbrder momentsZ"” represents the

kinematic term arising from hydrodynamic streaming effect Bfitlis the dissipation
term which accounts for energy dissipation accompanying the irreversible process. These

terms are defined by

r

o . o 12
20 {130 o slph o 812

g’“ﬁ lw = /°

L = ([ 1, £]).
As we are interested in derivationfokt few leading higho r der moment equat
set the molecular expression to be equal to the definition of viscous stress éxnses

normal stress and heat flux vector, such that

W = mcc)?
2) = } mCG —,
n (3.13)
h® = anmC2 +H,, mﬁ@
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Using the generatvolution equatior(3.11), and the respectivelyolecular expression
(3.13), the constitutive relation for shear stress tensor, excess normal stress and heat flux

vector can bebtained(seeAppendix Q as,

o = 3.14
PO ot 2 )i uf? erlp ] @19

¢r =

Dab o NS . 2 (3.15
rﬁger_ § 24P I} D P w+u B,

: 3.16
rRa 8oy o udY¢p ) (pD)G T (519
Dt(;f s dt

+P O, ®Q+ uO8. =

Theconservation law introduced in Secti@g.2, together with extended hydrodynamics

equations can be written mcomplete and compact form

er o ¢ d 2 e 0 be o
;g ru ﬁDg@ ou - ph 3 +§ I +DEe 3=
gf E[otal g g ,E[otal + p)U H ( g +|):)U+Q lg H
e 31
&P/ 4 eY® gé 2[ PO 8]? u 34
r 2% r % goo 32 + 2igP 1)x® B
Dth/f H SY(Q) Ue du u
g/ ):Pu i B WD u+P® Tu

82(p+ N a® gé,L‘P)
7 ~ e

+e = PO U P
é glp <@

co/ ool

Hereb ®®, BYB,and Y are the higheorder moment terms witthe thermal
velocity that can be seen from HB.12). It is clear that the highe@rder moment terms
and the intergalifferential collisional terraare na yet defined properly appearing in Eq.
(3.17), therefore, thesemoment equations are still open. While there are several ways to

close thissystem,ev ar e going to use Eubs closure
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32Eudbs generalized hydrodynamic

| n Eu 0 $1], thenkenetic theory of fluids is intimately connectedineversible
thermodynamicsThe second law of thermodynamics is employed as a guiding principle

for studying the fluid motiomand in particular, in high thermal naguilibrium sate. The
beginningpoint of thismethod is the balance equation for the calortrﬁ),ywhich IS
different from the Boltzmann entropy,

r¥E(rt)= ko (gn (v, pnt) 2 gbni . ) (3.18)
Here the nonrequilibrium canonical distribution function f¢ represents the
thermodynamic brancbf the solution of the Boltzmar@Gurtisskinetic equationf. By

differentiating the local calortropy densng' with time and combining itwith the

BoltzmannCurtiss equation, the following equation can be obtained:

rdd—\tE+ E)(C'1<B<C(In fe 1) f->) k8<4zgec%[ C @ff>5 Sy

where 5.t &, (In f°C[f,£]). Accordi ng t o[3], Ehe tenequilibrieno r y

(3.19)

canonical distribution function for diatomic gas can be expressed in the exponential form

e 1 a1 2 o (3.20)
fc = expgs mCZ H X(n) Hn) -
pg KBT é rot na:: MGimalized gi
where, m,..aizealS the normalization factatefined as
(3.2

€XPae —— Miormaiizes GF EXE mCZ Hl_ro a X H ; /n
¢ KeT o g’< K.TE2 e A

whereC is the peculiar velocity of the gas particle defined®y v -u, wherev andu
being the particle velocity and the average bulk velocity, respectimal/the number

density;T is the temperatureid , denotes the rotational Hamiltonian of the molecuie;

17 rot

is the molecwdr massiK, is the Boltzmann constanand X (", unknown macroscopic

guantities, are the conjugate variables to the molecular expressions for mb?ﬂelmt,
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physical perspective, this exponential form is the only form that satisfies the additive
property of the calortropy and calapy production, all of which are in the logarithmic
form. On the other hand, in mathematical perspeciivgjarantees the nemegativity of

the distribution function regardless of the level of approximatithreay be nated that

the number of momengpoes to infinity as shown ikq. (3.20). This is in contrastith
commonpractice in considering only the first"t3noments for monatomic gas and the
first 14" moments for diatomic as well as simple polyatomic gases from tsetantthe
formulation of the theory. For simplicity, after dropping the superscrigtsin the

distribution function it may be written in short notation for the expori&d] as

8 2 ( 3.22
f = f(O) eXp( _X) ! Where( 11_2@- X(n) H”) nﬂlormalized : ( )
B n=1 -
With further introducing of notations and dimensionless variables
s (s _Se 1. [ m (323
Xo =X % Yo W y; X5S. B/g' g n2d2 2KBT1
- b _ _ V\f (
b—a.glz O, = 2KT 3/2eXpa=) (
1 1 0
w, (W, w exXpep— W = vv2 x
12( 2) (2,0)3 pge 2 2 2 9
(A).* f EéWlZ(W, w o)A (w,w ), (3.2
. p =
A6, O Odp dwfy o dfbg,
0 0
2p o

PG, O Odf‘dv,fjd" dfpg, {j
0

0

The calortropy production can be expressed as
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s.t Ky(nfC[f, f,])

C

1/4a1 5 n) on 0
:?<%mc2 +Hrot a x( ) H) nilormalized 8:9 eXp( )) I( eXF( ) %
g n=1 -

g & P <00 {0\ ) -
, Ks iV dﬁodfoﬁibbgznf (% - e y) e x g (3.25)

:iTﬁj GO (x, yi)eexp( yi) ex{ x)-g

or simply

5. = _j]__<(X12 ylz)g?xp( yl-z) ex1[( X12) -)g (3.26)

This mathematical expression is suitable focalled cumulant expansipand it may be
expressed in the form of
_ . R v2 (3.27)
s.= fa( &, Lk OJo@nere %{{(x& )}
e | 1' g 1
( /%7 O ()) O—]@?éxpea l/? u exp &?(_)
o 1! A !
1[ él =1 g | @

This mathematicaxpressior{3.27) guarantees the positivity of the calortropy production

& =y

regardless of the level of approximations. In addition, when the distribution fun(3i28s
is inserted into the definition of calortropy production, the dissipation term is shown to be

directly related to the calortropy productien,

(3.28)
s.t Kg(nfcC[f, 1)) :K-B< k—fa}lx HY ] f, f2]>

1 .u. (n) 1 [:- n
==3 Xl 1, £]) = ZaxL0
T2 e el 5 Ny
Now the explicit form of the dissipation tertd” can be derived fronkgs. (3.27) and

(3.28) by calculating the first reduced collision integral in terms of X, as x

L3y xOH) N {with

B! Cn=l

performing ink, consists of a sum of various momemts;
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the definition gh” = h" -H"" etc. k% may be expressed as a quadratic form of

X andX, ,

s L2 o ) o ) e () (329
k1=%a<(><”<ﬁ” w0 wf)( X0 Al K0 d)é»c_

n,l=1

On rearranging of the terms it may become

o 3.30
(=& XORY X)) 639

n,l=1

where R® are scalar coefficients made up of collision bracket integraté’oéind n{’

for an isotropic system of dilute gasé$ter comparing EQs.(3.27), (3.28), and(3.30),

_ . VP P A S A U e (e (3.31)
5. = ,fq( i/}, (27/( O)O%%ga NCURY aX”%z') Xz(') (( (1),/((2), k),
B n=1 nl %
then the dissipation term™ can be derived as,
L) = KeT % (332

T4 ROk, K Of
=1

The unknown conjugate variablé6"™ can be achieved by generalizing the equilibrium
Gibbs ensemble theoryproviding the relationship between thermodynamic variables and
the partition function® to nonequilibrium processes. Such nonequilibrium generalization

was developed by Hd] and it may be summarized here

(v : ) 3.33
(1) KTeroinz g 53
;T NeTa@n? o

e
where Z1* i< exfe 1
e

1 o
() ) ©
nd KBT m02 Hot g %

B2

After then, X" can be calculated in terms of the macroscopic {quﬁ? f> by solving the

differential equatior{3.33). The leading order approximate solutions are known to be

x0= P yo 8D o Q| (3.34)
2p 2p PG, T
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Finally, the moment equation for the general typmoleculeg3.14)-(3.16) can be witten

by replacing tlk collisional term with E((3.32) as

o x 33
(D2 Low) o b p2lp " (339
¢r =
KT 2 o e
=" a R K K opoo
1=1
D 5 3.36
r2aD 2 ov 24P 1D ZDgu (339
Dt(;f = 3
KT & o RPN
=—2-4 R X&), k), 0jo 0 6
1=1
o« ) 33
fDRtgg § DY (p )&e,DT MCHTQ B (837
¢r =
= KST 3 RO X ok, k), 0Jo 66
1=1

Remarksthe system ofEqgs.(3.35)-(3.37) are still exact to the original Boltzmai@urtiss
eqguation, since the numbertefms in dissipation series goes to infinity, and the kinematic
high-order term is not yet approximatedevertheless, Eq$3.35)-(3.37) are in suitable
shape for balance treatment in approximatimg kinematic higkorder term orthe left
hand side, and the dissipation term on the +igirid side.

There are some criticisms found Ehu 6 s 8. |Onesafl these criticisms i®0

simplistic treatmenof highor der t er m. the higlk ordes tern¥(Pois ur e,

assumedo be zero i.eY® =0 by setting(mCCCf)zng. This closure suffers a

mathematicalnconsistency, iace <mCCCf>is a symmetric tensor, whereb® is non

symmetric tensor|leading to a contradictionThis inconsistency in Eu's closureas

eventually overemeby a recenbalanced closure developed by Myong in 2{84].
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3.3 Boltzmann-Curtiss based constitutive models via the

balance closure

3.3.1Zero-order Boltzmann-Curtiss based model

The zereorder Boltzman#Curtiss based model (or Euler constitutive relations) is a
direct consequence of assuming flow in an equilibrium state. As a resultant, density
distribution function is assumed to be a Maxwellian distribution functitwie that tle
Maxwellian distribution function is defingd.Q] as

& m 6 anc (3.38)

t@=n 6 eXPe i
oK T 2T KT

The statistical formulation of the viscous stress tensor, excess normal stress and the heat

flux vector using the Maxwellian distribution has simple and exact solution given as;
P :<h(1) f(0)> 0,
D =<h(2) f(°)> 8,

Q=(h?1?) =,

(3.39)

3.3.2First-order Boltzmann-Curtiss based model

In the BoltzmannCurtiss kinetic equatigrthe lefthand sidewhich demonstrates the
change of particles due to tlellisionlessmotion of the particles, changes watime
scale of the ordeaf nmy2k, TL On the other side, the rightand side of Boltzman@urtiss
kinetic equation explains the net change in the number of gas molecules due-to inter
molecular collisions.Basically, it is @scribed by gain minus log@xgnoneauilibrum_
exgnenequibrumyrsa) - has the time scale afs ny2k, TL According to Eu[1], the time
scale of conservative and noanservative variables are different. The relaxation time of

non-conserved variablas much shorter than conserved variables and is foutig order

of 10%° seconds. Therefore, the evaluation of fommserved variables near equilibrium
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state becomes linear and cumulant expansion of collisional term recovenstbedgr
ChapmarEnskog approximation. It is possible to approximate the entropy production and
consequently norconservative evolution equations, such that the viscous stress tensor, the
excess normal stresand the heat flux vector moment equations are linearized
truncating collisional terirconsidering the first term of cumulant expansion

KgT
g

Ri(gl) Xz(l) q(kf))'l' and approximating transport process. @pproximate dispation

terms can be written as

® - P

L mpoﬂst(kl)’

LO= 25 P @ (k) (3.40)
3 ngulk ( 1)

where, q.,(k)=1, m g, andk are the first coefficient of viscositshe bulk viscosity

coefficient and the thermalonductivity derived by ChapmeEnskog transport theory.
Accordi ng t o Etdnservad ivaiables change lktansiderably faster than
conserved variables,nd they reach to steady state much earlier than the conserved
variables. It is valid to simplify the nezonserved equation by omitting the substantial

time cerivative from the equations as,

p &® n]® 2[ P+ u]? 6 &2 Pas(k),
2%p ) 0D 2[P+ u]” OB Paz(k) 341

D& 26i(P H:Du %gﬂr u Dgoy;gr-qst(k)’

. y C
p®@ (p YCPT PG TOQ A +p—k®®qsﬁ€ Q).
To close the system of equatiqi@s4l), the highorder moments appearing on the left
side of above equations must be knowoncor di ng t o Myongébés bal anc

[54], and a recent summary of his thesg], the firstorder approximation of collisional
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terms requires the same erdf approximation on the leftand side of nowgonserved

moment equations. Therefore, not oy&® , B & and ® &' are required to
remove from the firsbrder constitutive relations, but al2{P © 8, 2gi(P + D): ®
and P ('1'53p D @ Ware needed to be eliminated for the fstler approximation

Becausedhe thermal velocity appeared in their statistfoamulationsis theorder of two
or more which can destroy the balance assumptions on the equations. As thedgsit,
order linear Boltzmam@urtiss based model (i.e. NakdEourier constitutive relation) is
given by

P=2n &,

D=m, @C (342

Q= B
3.3.3Secondorder Boltzmann-Curtiss based model

Previous theoretical and computationatudies [57-59] have revealedthat the
fundamental physics in conditions far from thermal equilibrium is significantly different
from the classical physics governed by fingt-orderBoltzmannCurtiss based modalre
valid only in conventionaflows near equilibriumAs a consequencsimple modification
of first-order BdtzmannCurtiss based modeusing transport coefficients, or by
introducing velocityslip and temperaturgimp boundary enditions, cannot solve the
current bottleneck of problems in the classical fisster (linear uncoupledjaws.
Ultimately, the problem demands a completely ndsvelopment of the neclassical
secondorder (nonlinear coupledgws.
Recently, independermif the previous continuum approach, a new development has

been reported on the constitutive equations of gases in a thermal nonequilibrium (rarefied
and microscale) state from the viewpoint of the moment method applied to the kinetic

BoltzmannCurtissequation[39] and the saalled balanced closuif®4]. An important
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result obtained from these studies is that the number of places for closing the moment
equations is twdkinematic and collision termdsand thus, the order of approximations in
handlingtwo terms must be the same, for example, se@yddr for both kinematic and
collision terms. Otherwise, in the case of high Mach number shock structure, the kinematic
(stressstrain) coupling term of quadratic nature will grow far faster than the strain rate
term due to the destructive interplay, resulting in an imbalance with theorfitst
dissipation term and eventually a blaw mathematical singularity. Therefore, to go
beyond the firsbrder accuracy, one must abandon the simple linear relation in the
collisional term enjoyed by assuming the simple Maxwellian gas molecule, which was once
considered a nie®-have mathematical coincidence.

As a result of the balanced closu asecondorder nonlinear coupled atstitutive
relationexpressed in a mathematically impligtnhRform, which is an exact consequence

of the BoltzmannCurtiss equation of diatomic and polyatong@seswithin the second

order accuracy, can lerived[39)as

2p+ O €7 24P ufD > Pa(k).

26i(P + D): ® +g>. ud o§ :,%?r G ( KD,
ulk

(3.43

(p+ DC, D PPCOT © C'%aﬂchad( k).
In this expansion, #hseconebrder dissipation terma,,, and tre first cumulant expansion
term Kk, are given in hyperbolic sine form and a Rayleigh dissipation function, respectively,

sin I<1 (3.49)
Ky

1/4

O (k) =

2 (M) TR P Df Q0T 1§_
J2d p & 2m i k a

These algebraisecondorder BoltznannCurtiss based relations, -salled nonlinear

coupled constitutive relations (NCCR), can be solved using an appropriate numerical
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method whilethe conserved variables remaonstant during the evaluation process. The
remaining task $ to solve thisalgebraic nonlinear system of equatid8<13) beside the

conservation of laws usiranappropriate numerical method.

3.4 Governing equations for numerical simulation

The conservation lawis threedimensional form, provide a system of five differential
eguations including mass, momentum and energy equations. However, the number of

unknown field variables is fourtegmamely,r,u, p,T,E,P ,D, andQ

i | Zero-order Boltzmann-Curtiss based model (Euler constitutive relations) |

2 fly i k=0,
II1=0,A=0,Q=0.
| First-order Boltzmann-Curtiss based model (Navier-Stokes-Fourier constitutive relations) |

k= [(p.T), g =0
1=-2u[Vu]?, A=0,Q=-kVT.

um level

| First-order Boltzmann-Curtiss based model (Navier-Fourier constitutive relations) |
/ue/"bufwk_)f(P»T)’
I1= —Z;J[Vu](z) JA=—p, ,V-u,Q=—kVT.

| Second-order Boltzmann-Curtiss based model (Nonlinear coupled constitutive relations) |

U My b —>f(PvT)>

2(p +A)[Vu](2' +2[H-Vu](2) __pypsinhk
H k,
ny(AI+H):Vu+%},vpV_u=_E},f P Asmhk1
3 Hpuie k]
(“‘ .
(p+A)C,VT+Q-Vu+C,I1.VT =~ ZPQsmi_ﬂq_
1

Figure 3-1. A glance of Boltzmami€Curtiss based consitutive models up to second o

The nonconservative variablegP,D, Q) can be read from theseconeorder

BoltzmannCurtiss based constitutive relations which is introduceé&igure 3-1. The

thermodynamic state variablés density, pressureand temperate & can be obtained

from the equations of states. In dilute gas conditions, mean molecular s(ma(cimgm)
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is much bigger than molecular diamedeiT hereforethe gas is assumed to be calorically

perfect that behaves ideally,

3 1 ‘ (3.45
p:nKBT :(g ]:) é‘a&otal E'UU :

where K; is the Boltzmannconstant,n is the number density, ary=Cp/Cv is the

specific heat ratio. In addition to 14 field unknown variables, there are few morewmkno
which are related to thmicroscopicgasproperties, saalled transport coefficientshe

first coefficient of viscosityz the coefficient of bulk viscosityn,,.. the coefficient of
thermal conductivity, and the secondoefficient of viscosity . They may be calculated

from either intermoleailar force relathns or Chapmainskog relations.

3.4.1Conservative form of the conservation laws

TheD - dimensiorconservation laws for diatomand polyatomigaseswithoutsource
termcan be represented in differential form as,

%+ PRY(U) B0, U) ® wmgt, )t (W), Rog 40

U(x,0) =U,(x) in WIR,
Here Ui R™*? is a vector of conservative variablesnass per unit volume, momentum

vector and energly which are continuously differentiable tine computational domaiw.

The F™i R®2? gndF* [ R® ? ” gre the inviscid and viscous flux functions,
respectively. The invisciflux functionwhich is also known as convective fliscrelated
to convective transport of macroscopic quantities in the fllingk viscous flux function

contains the viscous stresses and heat diffusion terms.

& r g & /¢ ) e 0 (347)
— é U inv _é U vis _é
U—é ru UF _(? au  pl u F _é FI+"D
gf E[otal EI g ,E[otal + Fj )U H ( g + ))J Q
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3.4.2Dimensionless form of the governing equations

In order to study under different conditions around the same geometry and moreover, in
order to reduce the error due to the finite precision of computers, we have to make sure that
all the usedlow variables s approximat®f the same order of magnitude. This process
can be performed by normalizing the governing equations. There are many different non
dimensionakation procedures. In this thesise are introducing the following variables

and parametet® make the conservation la{&47) in dimensionless form

* * * * * .4
t=L,xé,r < u 2, P T T=, (348)
1:ref L r ref uref pref Tref
* * * C * * *
=X ¢ =, e Ep Fog O
mef kref Cpref Eref P ref Q ref
D =L b

Here,thereference parameters, denoted by subsceiptare defined by using four base
guantities (mass, length, time and temperature) in MLT unit system as

u k DT 3.49
t . = L’ E :UZ P o ,_nef ref ’ Q o ref ref - ( )
uref L L

re ref ref 1

HereL dendes the characteristics length],

ref

denotesT,, - T orT

ot ot = T, whereT, is
the wall temperature. Putting demsionless variables fro Eqgs.(3.38)-(3.39) into Eq.
(3.47) and divide it through by the leading dimensional coefficient resulting dimensionless

form of the conservation lawsr diatomicand polyatomigas after dropping the asterisks

%+ PRY(U) #B(0, U) @ (350

with the dimensionless form of conservative variables, invisait viscous flux vector

defined as,
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_é U-inv  _& i Vis ]; e l (351)
U=gru §™ £ ou +—p F* =g R+D |
e . é ,Re u Reé l.
& Eoa H éo 9 L:J {P + [) U O—5— i
%E[ | 1 pl g Y e EcPr L
a; ota NdRe - H

Here the fluid dynamic dimensionless paramétévisich numbeM, Reynolds number Re,

Prandtl number PKnudsen numben, composite numbeN ,, Eckert numbeEci are

defined as
u ru_ L ,,C (3.52
M = ref ’ Re = ref ’ Pr I_Uf Pret ,EC (g )-M2
aref mef /gf
/ u DT
Kn — ref Nd — ,ry ref ’ e — ref
L pref L Tref ECPr

The dimensionless form of the transport equations basethemverse powetaw
intermolecular modatan beread as

m=T°, . =fou & F, (353

wheres—% +i1 nis the exponent of the inverse power laws.
n -

The seconabrder BoltananrCurtiss basecdconstitutive relations can be reduced in

dimensionless form as

#q, (cR = (1 +1,, FPE [P EEOP
o (cRF= RS+ (F £31):BE ©
69a(cR=(1 +1, RE B, 6 -0 &

Here the carett over a symbol represents a quantity with the dimension of the ratio of the

(3.54)

stress to the pressure, anig,,, denotes the ratio of the bulk viscosity to the shear viscosity.

49



g Nop pNe § Nw Q
p p

p \/ (3.55)
N, N, DT 1 1
PE! 2m—< uwp FD K< 1 .
p p 1/T/(Ze EcPr T/DT

The values of'::-lst, |§15p andd;lsare the reduced form of the fistder BoltzmansCurtiss

basedconstitutive reldons,defined as

&= 2n] §°
IE1&;t ngulk E O (356)
G.= « B

The nonlinear coupling fact(nm(cfe and dimensionless form of the dissipation function

T which was derived from the Rawigil Onsager dissipation functiqd], given as
sinh|c - = 20 T
qm(cﬁ)l (ﬁ@ REyE: pE+vY. EGLQE (357)
c Fouik '
c? :—2‘/'EA2(n) c§4 2 @
5

n-1H
The constant defined in Eq(3.57) has a value between 1.0138 (Maxwellian) and 1.2232

(n=3), wheren is the exponent of thinversepower law for the gaparticle interaction
potential andG denotes the gamma function.

In the rest part of present worlgrrdimensional equations are utilized, and the asterisk
symbol is omitted in order to condense the notatidessolve equationssingadvanced
numerical methods. A numerical method for solving algebraic constitutive relations is

provided in thenext subsections of this chapter.
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(@) Argon (fou=0) (b) Nitorgen(foui=0.8) (c) COz (fou=1000)

Figure 3-2. Compaison of stress tensor for firsrder(top) and secondarder(bottom)
BoltzmannCurtissconstitutive models

3.4.3Topology ofthe secondorder Boltzmmann-Curtiss constitutive model

In order to study the nature of rotational nonequilibrium based \@rious range of
bulk viscosities, the nenonserved/ariables obtained by the firetder linear costitutive
model and the secoratder BoltzmanfCurtiss based constitute model are cared. The
f,. vValues forargon, nitrogenand @rbon dioxide gases are taken 0.0, @& 1000,
respectivelyfrom Figure2-3.

A significant comparison of the naronserative stress quantity for firgtrder and
secondorder constitutive models has been made based on various bulk vistggity
values as shown iRigure3-2. It is obviougthat the response of the fistder constitutive
model to the applied stress and thermal forege linear whereas the secamder

constitutive model éhaves nonlinearly. Fdirst-order linear model, the viscous stress
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tensor is not function of thermal force. Therefore, the influence of thermal forces are
negligible awl the stress values are found to be symmetry with respect to the adiabatic line.

Howe\er, in the case of sendorderconstitutive model due to strong coupling between

nonconserved variables through the Rayle@hsager functiorf&i the viscous stress
tensor isafunction of both shear force and thermal force. Thus, stress \akiebanging
nonlinearly with respect to thermal forces, although stress tensor is more influenced by the
stress forces in comparison to the therfoates. Similarly to the firsbrder model the
monotonicity of the solution is preserved @hd solutionhassymmetrical behavior with

respect tadhe adiabatic ine. As the f,,, value increases, the influence of thermal forces

reduces and the stress forces play a dominant role daesigmificant contribution of

f,. P @in the compression and expression term. Thegethe thermal forces become
weaker and shear forces become strongehagherf, ,, value.

The viscous stress tensor is not a function of the thermal force for theréiestlinear
model. The stress values are found to be symmetry with respect to the adiabatic line, and
they are not influenced by the thermal forces. For the seoated model, the viscous
stress tensor is a function of the shear forces and the thermal forcesttoagaoupling
between noftonserved variables through the Raylef@hsager dissipation function. The
stress values are influenced more by the stress forces than the thermal forces. Similarly to
the firstorder model, the monotonicity of the solution iegerved and the solution is
symmetrical with respect to the adiabatic line while the solution is changirigeemty

respect to the forces.
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(a) Argon (four=0)

Figure 3-3. Comparison ofexcess normal streder first-order (top) and seconrdrder

(bottom)BoltzmannCurtissconstitutive models

Figure 3-3 illustrates a comparison between fistler and secondrder constitutive

models based on excess normal stress for various gases. In the case of monatomic gas, the
role of the excess normatress is negligible i.eD =0 due to f,, =0.Therefore, the
influence of thermal force and stress fadesappear. Ithefirst-order constitutive equation,

excess normal stress hasimilar pattern like stresgensor but different in agnitudes of

thermal forcesKigure3-2 andFigure3-3). In the case of diatomic gases, whigg , O,

the effect of rotational nonequilibriums considerable significant due bwlk viscosity.
Whenf,, =0.8,the excess normal stress doespreserve the monotonicity behavior but

it contains symmetry behavior alomgth anadiabatic line. When bulk viscosity increases

to 100Q the excess normal stress approaches to monotonicity behavior.
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(c) CO (four=1000)

Figure 3-4. Comparison ofheat flux for first-order (top) and seconarder (bottom)

(a) Argon (fou=0)

BoltzmannCurtissconstitutive models

Similar to stress tensor, heat flux pdag vital role inthe constitutive model for
describing the physics of flow behaviéigure3-4 shows a comparison between first order
and second order constitutive modeésed on heat flux quantity for various gases. In the
first order constitutive model, the heat flux shows a linear and monotone behavior with
respect to thermal force while it does not under influence of stress forces. On the other
hand, the second orderodel demonstrates the nonlinear behavior of heat flux constitutive

relations with respect to both forces. It is sensible thdj at= 0, the heat flux is affected

by the thermal force almost twice than the stress forces and a higheaoityi behavior is
found neatheorigin. As the bulk viscosity increases fg,, = 0.8,the influence of stress
forces which are far frorthe origin, is faded and the heat flux is followed an asymmetry
behavior with respect to the stres®ee line. The heat fluxaver fully asymmetry and take

shape likeashark finning at a higher bulk viscosity valdg,, =1000.
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(a) Argon (foux=0.0)

Figure 3-5. Comparison oRayleighOnsager dissipation parameter first-order (top) and

secondorder(bottom)BoltzmannCurtissconstitutive models

Figure 3-5 illustrates a comparison between computed Ray@igtager dissipation
parameteIE, using the firstorder and secondrder constitutive models based warious
gases. Asit is well known that® implicitly representsthe degree of thermal
nonequilibrum for a process. In the firsrder model, atf,,, =0.0 and f,, =0.8,the

dissipation parameter havirgycircular shape which presents a uniform distribution of
thermal nonequilibrium along the thermal stress and stress forces in all directions. At
higher bulk viscosity valud, , =1000, the dissipation parametshows higher thermal
nonequilibrium effects along stress tensor in comparison of thermatfdbeethe other
hand, in secondrder BoltzmanfCurtissbased model, the deviation from equilibrium

state due to thermal stress forces is not equally distriblitesdshown that the weight of
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the stress forces on deviation from equilibrium statsore, and the thermal forces are

considered aa secondary parametty influencethe flow.

3.5An analysis on the seconarder Boltzmann-Curtiss based

constitutive modd

3.5.10ne-dimensional compressiorexpansion constitutive relation
Considering the ondimensional shock structure problem for diatomic and polyatomic

gases in which the flow only evolvesrdirection the seconarder BoltzmansCurtiss

based constitutive raians(3.54) can beeduced 39 as,

FEquan(Cﬁ) :( EE; ok EI]))P-X{F, (3.58)

IJqund((:R)Ej{%?’( Efx) Fu ) l ﬁ"lst! D
(gxoand(CE):( Ex’x o E]-)'QE %; QP%SH

.

b,

1st

where

g - (3.59)

%

XX

B 2
5

W

fbulk

f

INU®

bulk®  xxg "

The normal stress ig- and z- directions are defined dEyy = E;E :% wdue tothe

traceless property of viscous stress tengbe relation between the-component of the
shear stress and the excess normal stress can be obtained by combining the first two

eqguations 0{3.58) as,

5 =1 gof2, 4) EpP4-JDrg (360)
8fbulk
where
D:(Slfbtm +72fb2ulk Exzxp( 32 24bzulk) E FLe (36D
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Figure 3-6. Secondorder model (diatomic and anatomic) relative to the firgirder
model in the compressiegxpansion flow. The horizontal and vertical axes represer
strain (force) term and the normal stresspectivel{Reproducedvith permission from
Myong[39]).

Figure 3-6 illustrates the general features tbk secondorder constitutive relations
(3.58) for diatomicand polyatomigasesn the onedimensionaktompressiorexpansion
The secondrder constitutive model givake asymmetrical behaviaf normal stress for
therapid expansion ahcompression o gas as shown irFigure3-6. Even thougtthe
detaik of the secongbrder constitutive models for monatomic and diatoraitd

polyatomicgases are different, the general pateeman unchangedFigure 3-6 shows

the freemolecular asymptotic behaviwith increasing dgree of expansion and velocity
shear, satisfyingf:-xx +Ep - lorP, + Dp O.Previous studie$39, 54, 60] showed

that the solution®f the secondrder constitutive modelsiere well-posed (existence,
uniqueness, and continuous dependence on the data) fapat onthermodynamic

forces.
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3.5.20ne-dimensional shea¥rvelocity constitutive relation

Considering the ondimensional shear dominant flow problem where the flow only
evdves in x-direction and the temperature gradients are negligildled velocity
components are assumed zerg-iandz- directions. The reduced form of the secamder

BoltzmannCurtiss based constitutive relatiof¥54) can be derived as,

E (R = 2 P.E -
lExy%nd(Cﬁ) =( EE o E[D)F‘-XYF’
[qund(CR)E's tlulk ngst

The above mentioned relati¢8.62) yields an equation of one variatﬁﬁX and additional

equation forb as,

- 23 - (3.63
|:Equ22nd(0® = 56} foulk Oxx ﬁxys!z’
= 9 = (3.64)
E ==z fbulk ExxF
2
where
2 X0 ~ c 3.65)
= a_ e €3, 45 0 a( (
fe= \/é E;xaié- +- szulk O x 1'C|i
C € 4 - u-
which follows from the stress constraint
~ V2 3.66)
= . 3 9 0 g, 9 (
I:Exy :Slgn( X)h) % bulk O E d-xx i?
ua da
The normal stress iy- and z-directions are defined a§W = I;':f = - ,due to the

traceless property of viscous stress tensor.

The general features of tisecondorder constitutive relation§3.62) for diatomicand
polyatomic gasesin the onedimensionalshear floware illustrated inFigure 3-7. It is
obvious thass thesheawelocity gradient becomes very largjee sheartsesses predicted
by the seconarder constitutive model become very simeompared tahe first-order

consttutive mode] asshown inFigure3-7. Such an asymptotic behavior indicates that the
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velocity slip phenomenon causky the non Newtonian effect can be explained in a very

simple way. The ultimate origin of this behavior can be traced to the kinematid term

specifically, the constraint ahe normaI(IEyy) and shea(lExy)stress.

25 T T T T T

Shear stress
(1t-order model)

15
Shear stress-Diatomic
(2"-order model)

Normal stress
(1%t-order model)

N "‘—H_H_‘A‘_ 4
: Shear stress-Monatomic ~ ~ ~ = -
(2™-order model)

Normal stress-Diatomic
(2m-order model)

Normal stress-Monatomic
(2*-order model)

=

_241 0 -8 -6 -4 -2 0 2 4 B g 10

Figure 3-7. Secondorder model (diatomic and anatomic) relative to the firgirder
model in the shear flow. The horizontal and vertical axaesent the strain (force) ter
and the shear and normal stress, respect{iRdproduced with permission from Myor
[39]).

3.6 Numerical Solver of the secondorder Boltzmann-Curtiss

basedconstitutive relations: iterative method
The seconarder BoltzmanfsCurtiss based constitutive relatio(854) consistof 10

nonlinear implicit algebraiequations of the neconserved variables™,,, P,,, P, B,

P, P, DQ, Q,Q) for known 14 variablesig, T, bu, by, ). Owing to the highly

nonlinear terms, it appears to be daunting task to develop a proper numerical method for
solving the nonlinear system of equations. In present work, these nonlinear system of

equationgan be solved by the method of iterations based on previous dt8@]i66)].
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In the case of the threimensionalproblems, the stress and heat fllomponents

(P, P,, P, BQ)on alne in the physical plane induced by thermodynamic forces

XX xy!

such as velocity gradier(ts,, v,, w,, T,) and temperature gradi€fi} ) can be approximated

1 X X7 X

as the sum of three solversrdi on (u,,0,0,T,) second on(0,v,,0,0 , and thirdon

(0,0,w, ,0 .Thus the stress and heat fI(R Py P EQX)in case ofk-direction can

xx? Xz

be decomposed as function (f,, v,, w,, T,) as,

X1 X

f(uovow, T)= £(u.0,0T) +£( 0,09 +( 0,0m .0 (3.67)

The iteration procedures can be designed individually for these solviakoas. In

the first solver or(ux,O,O,TX)Which represents the compressixpansion of diatomic
and polyatomic gases, the stress and heat(ﬂugg, D Qx) can be determined based on

positive £, _and & _as,

- (3.68)
Ij%ﬂ_ESInhlgc\/Vn %
where
) L 5 s § ) 3.69
Yn:(l +E>'<_;$)1 f'f)'ulkEn)D:{c!tE 4( +I><E% be“'kt)%l D( "*‘E‘- Foli )ﬁf_ e o
bulk
and
. _(1+ %)% 'fbuu(En)) %EIE 379
% v g
&
(gxnu = I:EXls 5’%1'

XXt

For the negativééxylsl and & _»the stress and heat flux can be calculated as,

& _(1+ Fou 'i?) Ep (3.70)

=

“ q(cR)- B,
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Since the equations are invariant under a transformatgpfh - QXEonIy two cases
satisfying FEXX@ >0are considered. In these expresaidﬁa, E} @1 arethe initial guess

solutiongiven by the equations
- sinh’ (cﬁst) (372

w " &
X Cﬁst Ast

& _sinh‘l(cﬁst) 5

N

. _sinh‘l(cﬁst) £

(5)(1 - Cﬁst Xst”
In the second and third solver on shear flow, Iﬁlgcan be obtained for a givelﬁXy0

through the equation

& = %sinh'l[c\g] , (373
i _2(3-D,.,) |
" 3(4+ 4562, )
where
. L, U (3.74)
e é 9 u,.e ,ads
Y =&i1 = f2 0L ko #2 > 1
n gz: J‘%‘- o bulk gva: {:EZ bulk % w Xy
5., B o

Noted that, the terny, is well defined for anyf, , greater than the critical valué2/3.
The IEand FEXy canbe determined by using E(B.64) and the stressonstraint(3.66).

When O¢ f,,, </§/3, the I’EXx canbe calculated by replacing the following algorithm,
o (3.79)

IE _ o -,
X1 3q2(CE)+(2 -9 ﬁjlk) EE)()

where
(3.76)

-O:Ot
=g
[ERN
1
SSAS

= & = & 45
F%:,E?%% ='Zszulk 0

CD><'BOCD
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These solvers and their outcomes can be summdgigds bllowing :

f,(u,.0,0T) f,(0.v,,0,0 f,(0,0w,,0
IExx 1x7 ;ylx = _]2_' X)E%)Q IFxx—zw ngx’ F?xx—3x’ PE—EX'
FE I:E FEXZ-ZX = F;EZ-ZX ©:1 I:E><y—3>< = I:ESX @:’
xy-1x = Xz 4 x @:’ =2 - 9 9
o ) 1 o I:Eyy—Zx =2 5{2 X7 F?yy—fix = %—3"’
FEzy 1x =O, FE 1 x =_- xx%)! FEZZ— oy = F%(—Z ; F%ZZ—SX = % ?3 "
x 1x' @ ED (§x—2x = O’ E?—x @, (gx-Sx = O’ %-x @

Similarly, it is possible to evaluate the value of stress and heat flux in other two primary

directions. In the case gfdirection, the stress and heat fI(RyX, w P [ZQy)on a

line in the physical plane induced by thermodynamic forces (velocitytemgerature

gradients) can be approximated as the sum of three solvers:

7)< £(0,0) +1(u.0.09 400w p @7
Herg
f,(0v,,0T,) f,(u,.0,0,9 f,(0.0w,.9
FEW—ly’ >;1y = % ysllELy' ny'zy’ P}I/Eylzy’ F%yy-sy’ PE;SW
- _ I:E & I:Exz-2y = yz2'y ©:1 FExy-3y = I:E-S ©:’
xy-1 xz4 ! - 2 - -
FEy ’ FEy 1 o F%xx—Zy = 2.. %-Zy’ F%xx-Sy = I:;/Ey )
sz—ly _VO! szly _E_ yy%y Fbj:zz-Zy = Flgly_zy Fbj:zz—Sy = g ?3 y
@y = QVE-V’ ®y g’ y-2y = O’ ®'y @’ y-3y = O’ ®‘y @
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In case of-direction, the decomposed stress and heat(ﬂFUgg, P, P, B Z)can be

calculated as

f (U, v, w, T)= £(0,0w,,T) +£(u,0,00 +( Ov,,0)p (3.78)
f,(0,w,,0,T,) f,(u,,0,0,0 f,(0,v,,0,0
Fézzlz’ ;xlz = _]2- Ez ﬁVXZ-ZZ’ PzEzEz I:%21—32’ PEV
FE — FE G FEXV'ZZ = F;’EZ'ZZ I:Exy-fs‘z = F% 37z
xy-1z xzdz ! - = - 9
o ’ L 1 o FFXX 2z = _ E) I%xx—Sz = I:'z:_: 3
I:Ezy—lz =0, I:gy—lz ZE- zz%z F%zz 5y = FEEZ FEyy—3Z = %
zlz_Q % 22— @ z—3z:0’ E;—z e
Finally, we will have
L sk e Lo, o
w — heix +x>§y XX3I:§ éﬁ yyly2 - 82( Vy2-y 212.}" & yy8 'y+ E’zz,
T .
vy = F)Ey—ly +yy'£2y -')-IyBI:% ?xxlxz—zzlz 92( Xx2 x$ zzsl-l-& 72 z+$X8’
- - - - é‘ vxx 1x + I%y—ly 0 E E
FEZZ = F?zl z + ZEZ +28 z é% 2 8-2( >E() 3x +WB)’) XX ZE 3EI
FE><y = ;ZX +x;y XPE :XZ3PyE ><2-—’ZF)E yz P)Ezy PE}&’2+ PE

as

d d (3.79
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3.7 Breakdown parameters

The continuum (or neagquilibrium) breakdown parameteressential in quantifying
the gas flow regions iwhich the linear NavieStokesFourier hypothesis is no longer

valid. There wee several breakdown parametappearing in the literature.

371Bi rdds breakdown parameter
Bird [62] first proposed a ser@mpirical parameter based on the spatial derivative of

flow properties such as density, pressure, temperature or velocity magnitudeatyr st

B=M g_lolmean
\/8 r

whereM is thelocal Mach number. The spatial gradient along the streamline, can be

state expanding flows.

(3.80)

d.
ds

calculated in Cartesian coordinates as follows:

dr _dr u d r Y d

- = 4 - &
ds  dxJe+v W dyJZ ¥ W d

r o w (3.81)

z[ @+ W

whereu, v, andw represents the-, y- and zdirectional velocities, respectively. Moreover,

if the other flow propertieg like the temperature and the velocity, are introduced in order

to take both viscous effect and heat tranghto account, the following breakdown

parameters3, (e.g.B, ,B, andB )can be calculated:

Bc:M g_lolmean
V'8 ¢

Then, by considering all the parameters, a breakdown paraniteresan be defined by

(3.82)

de
ds|

Bo Mmax(B, B B) (3.83)

In case of steady expanding flows, it was known that the valB@bébout 0.05 is a good

criterion for identifying the neagquilibrium breakdown.
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372Boydds breakdown parameter

However, it wa soon recognized that there migbkta problem when the Mach number
approaches to zero stgnation point8oydet al [63] carried out an extensive numerical
investigation of onalimensional normal shookaves and twalimensional bow shocks
using DSMC and CFD results in orderdetermine an appropridbeeakdown parameter.

The gradient length local (GLL) Knudsen number,

/

Kng, = r::ean

de
d

where | is somedistance between two points the flow field, was introduced and

(3.84)

demonstreed to provide a bettemdication of continuum breakdown thaB for
compressiordominated hypersonic flow3he distance was takerapproximately along

the line of the steepest gradients in the flow properf@s. simplicity, dc/dl was

evaluated bypc Then, the parameter is reduced to

Kn :@| .m| —/mean adc 2(:) ?é(LC ZC_) déc2 (385)
S c \&x 2 Gay 2 '

Also, by considering all the flow properties, tfidlowing breakdown parametdfn_
can be derived:

Kn,o t max(Kn, ,Knp ,Kn,) . (3.86)

It is apparent that there is a direelationship between Eg&.82) and(3.85);

[ (3.87)
B.=M %pcosq Kn,,.

whereg is the angle between gradiddt and the flow direction.

3.7.3Rayleigh-Ons a g émeakdown parameter

The primary objective of the neaquilibrium breakdown parameter is to quantify the
gas flow regionsaccordingo the breakdown of the linear hypothesis in the NaStekes
Fourier constitutive relation. Therefore, the problemfinding such a parameter is
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essentially related to the knowledge of when the {@rder) Newtonian hypothediseaks
down, which in turn demands the derivation of the secamder non-Newtonian
constitutive relation.

A systematic method to derive teecondorder non-Newtonian constittive relation
from theBoltzmannCurtiss kineticequation vas recently developed by Myoip89, 64].
According to him, the resulting secondder constitutive relationg3.43) can be

sunmarized in stady-state case as follows,

20p+ O &7 2P WD 2P, (K).

sink, (mK f4T“eP P D QOQ/T o
k, \/_d P é & 2m i k H

Note that,the firstorder cumulant expansion takes a form of hyperbolic &inetion

(3.89)

where, g, (k;) =

whose argumenis given in terms of quadratic function. Then the functiéncan be

shown nothing but th&®ayleighOnsagardissipation function®and is readily used to
identify what regions are expeed to derive significantly from nedocal equilibrium
assumption sincié measures the level of calortropy production in irreversible prgédss

63l;

- N, & 20 2 8
f="25p: P +I DB Q §
Pc =+

ngulk T
. -1)M?

whereN, = 2—gKn e LT ‘1-,Ec (i=)—
\'p EcPr|T IT/T-1

Here, N,, e are the reference values, whipgT,P ,Q are the local value3he new near

(3.89)

equilibrium breakdowrparameter389)i s shown to avoid the
parameter thahe Mach number approaches to zerstagnation points. Further,takes

both viscous stress and heat transfer atiwount withina single framework64].

The distributions of the neaquiibrium breakdown parametei, ., Kn R based

on Bird, Boyd and Rayleigbnsagar dissipation functioare calculated in muki
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dimensionalhypersonic rarefied gas flows around a cylinder. Argonigasnsidereds

working gas for all case&igure3-8 compars the distributions of three neaquilibrium

breakdown parameters for thest-order NSF) andthe seconarder (NCCR) Boltzmamn

Curtiss based constitutivemodels. It can be noticetthat 1) there exist twalistinctive

regions of gaseous compression and expansion in the frontal and rear parts of the cylinder,
respectively?) the level of breakdown parameters is high at the bow shock structure and

at the rear part of cylinder; and (B first-ordermodel ingeneral predicts high than the
secondordermodel in the level of parameters. In addition, it can be fahadall three

breakdown parameters produce qualitativetyilar results, butnewandBidds par amet er

predictmore simila distributions.

@Boydodos pabRomed@s parcaRageiggOnsagar 6s

Figure 3-8. Comparison of the breakdown parameters in hypersonic rarefied ga:
with M=5.48, Kn=0.564].

67



Chapter 4. Discontinuous Galerkin method

fiMathematics is the language with which Gaidte the universe
0 Galileo Galilei(15641642)

In this chapternumerical method#r solving the highly nonlinear partial differential
equations are discssd in details. We first provide the brief summary of available
numerical methods used in modern CFD, then the literatureey of discontinuous
Galerkin (DG) method is provided. The space discontinuous Galerkin discretization of the
compressible NavieBtokes equations is discussed alavith problemdefinition in DG
framework, elemental transformation to the computational splaeé&undation of basis
functions, numerical integration, numerical inviscid amscousfluxes, and numerical
boundary conditiond=inally, wediscuss the crucial part of DG metl@odnplementation

of limiters.

4.1 Numerical methods for modernCFD

4.1.1Finite difference method

TheFinite differencgFD) methods theoldest andhesimplest discretizéon approach
for a conservation law baseghon the differential form opartial differential equations
(PDEs) to be solvedn FD method a discrete approximatiors obtainedusing Taylor
series expansion approad¢tr the acurring derivatives andeplacing the analytical
derivatives with the discrete onel$ results in a discrete problem thzdn be solved
numerically.In this method, a topologically square network of lines is used to construct
the discretization of the PDEShere are some excetit references for describing these

methodologies ifi66-69].
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The greastrengthof the FDmethodare thatthey are easy to prograand that they
are extremely ef@ient in terms of computational cost. Due to thedll-efficiency and
well-analyzechumerical propert®, FDmethodis oftenused for numerically sersie and
computationally costlprodems, such as lamindwrbulenttransition[ 70, 71]. High order
versions of the FDmethodare easy to construsincethe accuracy of the method is
determined by the aaracy of the estimatioof the discrete derivatiJ&2]. There are some
major dravbacks of the FDmethod For examplesit is mainly applicable forstructured
grids and it is unableto preservethe conservative nature of the governing equations
However this method can be implemented unstructured gridasing thereconstruction
of a polynomial functior{73], butit is a very complex problem for unstructured grid
Moreover a high-order FDmethodrequires smooth andegulargrids for geometrically

complex configurationsegardingfor stability issue$74).

4.1.2Finite elementmethod

The main idedehind the finite eleme{fE) methods somewhat different than the
finite differencediscretizatiortechniquesliscussegbreviously The finite elementmethod
takes the differential equations, multiply them by an arbitrary test function, andratéeg
them by parts. The approximagelution is constructedsa linear combination of the so
calledbasis énsat? functions, which are thepiecewise polynomials. The choice of the
basisand test function space adjudicates upon which type of FE method is obTdiass.
are someyipical version®f FE methodsthe Galerkin, Pebv-Galerkin, and Leasiquares
[75]. The finite elementmethods can belassifiedinto two main classes of schemes,
continuous and discontinuous methods. In contrast to the continage®fement method,
the discontinuousmethod needsio global continuity requirement for ansatz and test

functions leading to the frequtly-used term discontinuougite elementmethod. The
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approximation space et a subspace of tleentinuous solutio space. lother wordsthe
element is nonconforming.

For the convectiordominated NaviefStokes equationghe continuous FE method
typically produces oscillationswhich can be handled by addiagificial dissipation terms
to the formulation. There axarious technique®r selectinghestabilizationterms. In the
streamline upwind Petrefalerkin[76] method astabilizingterm is added in the weak
formulation As a result, itreates anpwind effect by weighting more heavily the upwind
stream nodes within each elemew variety of other methodologies have been proposed
to provide additional stability to the convection terms, monotone discrete systems and ease
of implementationA disadrantage of the conforming Fdiscretizationcompared to FD
and FV is, thaif explicit discretizationn time isused, a couptesystem of equations has
to besolved for every time step. This is due to the couplinthefdegrees of freedom at

cell interfaces, where contiity requirements have to be fuléd.

4.1.3Finite volume method

The finite volume (FV) method isvery famous numerical scheme the CFD
community.The FV method is based on tiiegral formulatiorof the conservation laws.
In contrast to FD method, the FV method evaluatesftbges through théiscretization
elementboundaries There arevariousviews for selecting numerical fluxeg\n upwind
method is avery popularapproach toconvectiondominatedproblemg 77, 78], where the
flux choice is based on characteristics of wave propagation

The higher order versions of the FV method are gglyeobtained with the help &t
so-called reconstruction procedyi&d, 80], whereas an istmediate higheorder solution
is constructed out of the piecewise constant elemeatadaidjacent cells. The celishich
are included in the reconstruction, are depicted as thaseaotion steritof the method.
The problem with higlorder FV methosl working on unstructured grids, that the
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reconstruction stencil (especially in 3D@domes extremely lard81] andthe resulting
scheme would be extremely complex to program, and more importavaiyld be
expensive in terms of CPU time. In generaglrhighorder is only achievedn relatively
smooth and regular grids. A further drawkas, that due to the increasstkncil, segh a
scheme is not suited for effent parallelizationbecause the etcil is quitelarge for the
reconstruction and consequently a lotimbrmation has to & exchangedbetween the
parallel nodes. The samelds for high order FD method$§o conclude, in principle, FV
methods are approgteschemes for the simulation ad¥s around complex geometries, but

a fundamental problem is to construct a logtherschene working on unstructured grids.

4.1.4High order spectral method

In recent years, the high order numerical methodsomputationalfluid dynamics
(CFD) have been widely used to effectively resolve complex flowsgptrétularly require
highly accuratdreatment, such as wave propagatmoblems,vortexdominatedflows
including high-lift configurations andlows over blunt bodieslows with complex shock
interactions transitionalflow over airfoils, as well as large eddynulateon and direct
numertal simulation ofturbulence, all of which are diffult to simulate appropriately via
classicallow-order methods whose use in academia and industry remains widespread up
to thepresent date.

A class of schemes especially eiiint for practical CFD apjglations are the soalled
spectralhip methods Regarding the terminologyj ia broad sense, the-soca | kpeadtral"f
methods are those in which the numerical solution is represented by series of (modal)
functions.In general, the solution accuraephances when the number of such modal
functions is increased. In some approaches, the entire domain is represented by a single

mesh element and the solution is represented entirely by one (large) functionFseries.
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general applications, however, themethods are preferred, where the domain of interest
is divided into a number of elements of typical $iznd the solution within each element
is represented individually through a local function series, normally consisting of a
polynomial of maximum degep.

The choice of the polynomial space function is the main feature that distinguishes high
order methods from finite difference and finite volume meth8gectrahp methods can
be classified based on the definition of the polynomial space (ansattipfuimto several
categories including; discontinuous Galerkin (DG), spectral difference (SD), spectral
volume (SV) and flux reconstruction (FR) approacln excellent reference for the

explanation of spectral methodq &9].

4.2 Discontinuous Galerkin method

The discontinuous Galerkin Method is probably the famous and most developed high
order accurate method for arbitrary type grids. hio& emerging as a new class of methods
in the field of the numerical solutionof partial differential equations representing
conservation lawdt wasoriginally developed by Reed and Hi82] in 1973 fora steady
corservation law, namely theeutron transport problenn 1978, this method was first
time used for unsteady advection laws by Van [88}. Le Saint andRaviart[84] in 1975
first analyzed DG for linear hyperboliproblems, derived priori error estimates and
proved rates of convergenc&.majorcontributionto the development of tHeungeKutta
DG (RKDG)methoddor linear and nolnear hyperboliconservéon laws were made by
Cockburn and Shi85-88]. TheRKDG method isn essentially highorder Finite Element
method using ideas of the higinderFinite Volumemethod, such as exact or approximate

Riemann solvers to evaluate numeritakes, in order to handle discontinuities at the cell
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interfaces A morecomprehensivéistoricaloverview ofDG methods can be found in a
review articleby Cockburret al[89].

From the last decadetf)e development of DG hagadually shifted to convectien
diffusion problems. ie RKDG methodwas recently extendetb handle conweion-
diffusion systemby Cockburn and SH®(]. Bassi and Rebay demonstrated the tagter
accurate DG discretization for the compressible Euter ldavierStokes equationf91,

92]. Motivated by poneering work of Bassi and Rebay for compressible Nestekes
equations various approaches for the discretization of di#usion equation wee
developed. These includine local DG (LDG) approach[93], interior penalty (IP)
approacfP4], andBaumann and Ode{BO) approacfP5]. An interesting overview and
studywithin a unifying framework of all thesspproaches can be found in Arnold €tos],
where their consistencystability, and order of accuracy are discussed. The order of
accuray of all these approaches for the diffusion equation is limitgul+tdl, with p the
degree of the soluttopolynomias. The local DG approdcdeveloped by Cockburn and
Shuprovides the stability and convergence with error estimates. The LDG approach may
handle higlerorder ¢ 2) derivatives such as the viscous second order terms in the Navier
Stokes equationRecently, Dumbser et al. [41] introduced the ADBR approach, which
couples theADER [89] with the spatial DG approach. Withet aid of ADER, they
developedarbitrary hidr-order schemes for hyperbolic conservation laws not only in space
but alsoin time.

Many other researchers made significant contributions twdhieus aspect obG
method. A quadraturdree DG formulation wasvestigatedy Atkins and Shii97]. An
analysis based otme wave propagation propertiestbé DG methodvas performedby
Hu et al.[98]. A simplified treatment of curved wall boundaries for Eader equations

with the DG method was proposed by Krivodonova &wger[99]. A significant
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contributionin gpacetime implicit DG methods for hyperbolic conservatilans were
done byLowrie et al.[100, Van der Vegand its ceauthorg101-103. In the area of DG
method based turbulent flow simulationsyaay little experience has begained tatill
date.Collis performed aumericalstudy of DG for the simulation of turbulethows with
the aid of direchumerical simulation (DNJ)L04]. The applicatiorof DG to theReynolds
AveragedNavierStokes (RANS)equations has only been repadriey Bassi and Rebay
[105. For closure of the RANS equatigribey use the fully coupled- w turbulence
model equations. LaterBassi and Rebagxtendedtheir solution algorithm where
reliability conditions were added the w- equation in order tincrease the numerical

robustness of the meth¢#iog.

4.3 Problem definition in DG framework
In order to construca DG discretization system fap - dimensionconservation laws
(350, et 6s consi der WAaR” Wwithwouddarg: V.dTbenbalndary is

decomposed into a region of Dirichlet boundgaryy and a region of Neumann boundary

HWie, pW=gW ,

%* PRY(U) +B(0, U) @ (4.0
U(x)=U,(x), att %,

U(x) =g, (%), forall x I poV

U(x) =g, (x), forall x I p\V

where g, and g,, are the boundary operators derived from the boundary conditions.
These operators can be a function of information either at one side or both sides of the
boundary interfacegheUl R”*? is the vector of conservative variabldgd” | R ®

is the inviscid flux tensor; anB"* i R®*?? s the viscous flux tensor.
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Sincethe spatial disretization of governing equatidd.1) cannotbe accomplished
with the standard DG method due to the presence of higher order derivatives in viscous
terms. Therefore, a mixed DG formulation developed by Xiao and M{®8gL07] is
employed to discretize the governing equation. In this formulation, an auxiliary variable
vector Q is introduced to handle the secemdler derivatives in viscous stress and heat
flux. Therefore, the auxiliary variable vectQrcan be defined as the derivative of either
primitive or conservative variablds. In order to apply the mixed DG formulatioBg.
(4.1) canberewritten as a coupled system fdand Q as

Q- B G
1%+ PRY (U) +FB(0, ) o. (42)

It may be noticed that the introduction of an extra set of equations for the auxiliary variables
leads to additional computational cost that is the main drawback of the Di&ed
formulations

In FEM-based methods, auxiliary variables are only utilizedramtermediate step in
the derivation of the discretized system. Later, they will eliminate it by reforming the
equations from the flux formulation to the primal formulation. Nonetheless, unfortunately,
it is not possible to eliminate the auxiliary systEmsolving highorder Boltzmansbased
models in which viscous fluxes are a nonlinear and implicit function of the conservative
variables and their derivatives. Thus, in present work, instead of reformulating the
governing equations in primal (bilineagrin, the mixeeDG formulation isutilized and

auxiliary equations are solved besides the primary equations.
4.3.1Discontinuous Galerkin spatial discretization

In order to discretize the coupled systemeqgiiations(4.2), the domainWcan be
approximated by, suchthatw, - Wash- 0. Accordingly, the approximated domain

W, is tessellated into a collection &f. arbitrary noroverlapping elementd/, such that
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7, ={ W} . In present thesjghe discretization element/, are lines in onglimensional,

trianglesfectangulain two-dimensional and tetrahed®im threedimensional spaces.

The boundaries of every elemgnt\) are divided into two parts: interfacesented
boundariess; and elemenbriented boundarigs;,. The collection of the interfaces and

boundary faces of the tessellated dontfajnare denoted bly, andB,, respectively.

i bt (4-3)
where Gﬁj denotes thej™ face of the locaklement\, . Consider the finite element space

(broken space)/, defined by

Vo={u, Tt (WE A, PE W g W (4.4)
for some polynomial degrek? 0, being P* (W,) the space of polynomial functions of

degree at mogton the elementV, and L?(W, ) represents the space of functions, which

are squared Lebesgue integrable over the approximated d@pain

If the space of the polynomial functions are defined appropriately in a standard region,

the numerical solution in local elemte\W, can be expressed in terms of a polynomial field

that accumulates the multiplication of local degree of freedoms with corresponding

polynomial functions of degrdeas,

Ny
U.(x,t)=8 Uk (t)b (x),
«(0t)=a U ()b (x) @9

Ny
Q, ()= Qb(x)
Here the expansion coefficients . (t) and Q. denote the degree of freedom of the

numerical solution and of the test function in an elenvéntespectively, antll, denotes

the number of basis functions required for approximating the smooth and continuous
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solution inside the space of the polynomial functidie N, +1 basis functions, (x) are

a base for the polynomial functiof®. The exactsolution of the conservative variables
and their derivatives can be approximated by the numerical solution obtained in every

element as follows

N

u(xt)ou, = Bi(xt) {g, UF WP

Qx)° Q = A {= Qi+ Q e

(4.6)

4.3.2Elemental formulation
Taking the product of the conservation laws with vectoand the auxiliargquations

with tensort and then integrating over the solution domaire obtain its weighted

residual form

4.7

Now we perform integration by parts using Gaussian divergence theorem on the advection
and viscous term and we get the basic form of the DG approach for the system of

conservation law the weak formulation of the problef.2),

Tem Q Wo mUtndsC") " f¥dbtod w=

T_4 pU G .. . . (4.8)
J\m?j_g |v )nCK) %-ﬁanM)d)

|

1

i

+<ﬁwutv's U Rn® Gfj FYU,0)d o

wheren represents the outward normal vectplitting the volume integral ovad,, into
sum of the integrals over the local elemewWs and usingthe divergence theorem, Eq.

(4.8) leads to the elemental formulation of the governing equations as
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6 Qn ~ " .. _
$%é 1@ Wo gundQ G fud g)g@ W = “9)
DGt §W e gRr(U) nd, 6 FRWO , §

18ee M= ! §0.

AW, A VIS u

e @, F ) n@ . G fi FOW °

Here dG, denotes the boundaries of the local element.

The solutionU inside each element is approximated by a linear combination of the test
functionu . In addition, f we choose the same discontinuous test functions and ansatz

functions for the solution ofhe auxiliary variableQ as for the solutiorl itself i.e.

t,= K bg(x),we obtain the following sendiscrete sy®m of k equations for the

generic element\,:

DQudW o iU, n@ . G +fBd Q0 Vv
mt&U dw, +0 m(Fmv h Fvis(U ) Q nd")e
i -, B (87(U) FEU, )e . W

The system ofquations introduced in E@4.10) is not solvable since the degree of

(4.10)

freedom related to every element is not linked to the degree of freedamshiar element

of W,. Thus, establishing a weak intelement connection though introducing an
appropriate monotone numerical fluxes at interfaces and boundaries of el&weists
essential to obtain an approximate spectral solution.

4.3.3Weak DG formulation

In order to handle the discontinuities occurringha boundary integral of E¢4.10),

we have to approximate the physical fluxes usingdhewing numerical fluxes such as
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fj o U.Bd G D PPH awiian(USUG) n O, G
ﬂ \é/bx Finv (Uh)m d g'; OO HmH inviscid(U I_h’URh) n CD é G
ﬂ\é/bK I:Vis(uh’(gh) @d eG e) UemkH viscouiULh Lhujh RJ Qd q

(4.11)

Here the(Q" and ( X notation is used to indicate the trace value taken from the interior

and exterior of the elemenggpectivelylf we split the element boundary integrals into
inner face integrals and domain boundary face integrals, we finally arrive at the mixed

weakDG formulation of the conservation lay?2) on the local elemei,:

P QW

’:\- . a mHauxiliary(UthFs) rm eG

1 d W pw

%_ ) a Wquxiliary(Uh’Uﬁ) iod .G W—lﬁkahd(")e oW =

Lo uw A

J\

TR o

g BB A (4.12)

%-I_ P a m (Hinviscid (U IFVUT]) H ViSCOuiU Lh QJ Rh m n (D .

~ W pw

1

¥+' a. <ﬁ*(Hibnviscid(UI[_pUF;) HbviSCUS(UrL”Qh’UF;’ QE;)) [m e'
dpw pw

i ,

i- 1, B (&™(u,) F¥(U, )@ . w =

Theresulting formulation is called a twsiepmixed-DG method in which the test functions,
accordingly to Galerkin methodre chosen to equéd the basis (ansatz) functiondn
mixed DG method, the auxiliary equations are initially solved at beginning of every step,
then the gradients of primary vablesQ,, are updated based on the global solutiops

at current time step. Afterwards, the primary system is solved, using the valQgs of

obtained from step one.

All the boundary coditions are be imposed in a weak manner. We construct an exterior

boundary stateJ? (UE,UBC), which is a function of the interior staté; and the known
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physical boundary datbl,.. Hence the numerical boundary flux is computed as

Un (Un Uee).

H Zuxiliary = H auxiliary (U h'U ?1) '
H i?wiscid =H inviscid (U I_h’U bh) ' (413)
H\tjiscous =H viscou{u Lh QhU ° h @\ )

In this work, we implemented the approximate Riemsoivers of LaxFriedrichsolver

for inviscid numerical flud Moreover, the choice of the fluxe$ and H

inviscid * auxiliary viscous
is the crucial part of the weal formulation for DG methods for higher order derivatives,
since thered no counterpart or experience from the Finite Volume method. Therefore, the
and H

choice of numerical fluxesi for different approaches has been adopted

auxiliary viscous
from the theoretical and numerical studies of puddfyisive model problems.

All the integrals appearing in the elemental equations are calculated by means of
numerical quadrature rule with a number of integration points consistent with the accuracy
required. By assembling all tledemental information ikq. (4.12), it leads to a system of

ordinary differential equations (ODES) in time which can be written as

M du “R(U) (4.149
dt
whereM is the mass matri}) is the global vector of the degree of freed@ndR is the
residual vector. The elements of mass matrix is defined as
M = Fjbbd W (4.15)

In case of orthogonal badisnctions

M=pbbdwe, k j (4.16)

Thus the elemental mass matrices possess diagonal form.
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4.4 Elemental transformation to computational space

4.4.10ne-dimensional elemental transformation

For onedimensionaproblemsthe local elemenW, are equally spaceBx =x,, X
and the space coordinatan elementW.,is linked to the local spatial coordinakin a
standard elementW' i[ 4,1, see Figure 4-1, under the affine suparametric

transformationT,: W, - W defined by

x=2 XA g X 0, (417
Xa~ X
The Jacobian ahis transformation is given by
) o B (419
X- X UX 2 )
The inverse of the transformatidg * : W2 - Wis given by
- . 4.1

In addition, the space coordinatén elementW, may be transformed to the local spatial
coordinateX in a standard elemeM£' i[0,1] ,as defined irFigure4-2, under the affie

subparametric transformatidn: W, - W,

. 3 4.20
X= X- X , X 1YV ( )
X~ X%

In this case, the Jacobian of this transformation can be evaluated as

J _ X (4.21)
X- X HX
While the inverse of the transformatidg': W' - Wis given by

x=(1 X)x 4%, "x f. (4.22)
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Figure 4-1. Transformation from physical line elment to computational stan
element in interval-L,1].

>
Cal il

X '3
Figure 4-2. Transformation from physical line elment to computational stan
element in interval [0,1].

4.4.2Two-dimensional elemental transformation

Rectangular element

A reference or standard rectangular eleméfitis defined using a local Cartesian
coordinate systen{x, 4 [ -1 as defined inFigure 4-3. The reference (standard)
rectangular element can be mapped from the computational (spae)eto an arbitrary
rectangular element in the physical spapey) under the linear transformation
T.: W - Wdefined by

4.23
F%él X% (& ¥ g e

v=3ELA)y (@ By, ¢
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where(x, ¥;), (%, ¥,) . ( %, %), and( % ,y) are the physical coordinates of the vortices

of W,. The Jacobian of thisiapping is given by

3 ZH(Y) 18- % 0 B e (4.24)
u(x b 480 y-y G4

-

where A***"%s the area of the rectangle elem&t The inverse of the transformation
T :W, - W is given by

(4.25)

whereDx =x, x,and yD y= Y.

Triangular element
A reference triangle can be mapped from the physical s(pa(y)to computational
space(x, Awith the linear transformatiom, : W, - W,
x=(1x hx % xh (4.26)
y=(1x hy ¥ W

while the &cobian of the transformation is given by

(4.27)

(% %) %ty W-x% ¥ ¥ 2.

Tl %
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X

:
Figure 4-3. Transformation from physical rectangular elment to computational sta

rectangular element in interviall,1].

(.\‘,}') :f(f,r,l)

(IuJ})

('\‘I’/l‘l )

5
>
X

LR 4

Figure 4-4. Transformation from physical triangular element to computational trian:

element in interval [0,1].

Here, D,; is the aea of physical triangle element whicgiven by
. X Y (4.28)
Dtri =§ X2 y2
X5 Y

=ogs(y %) m(% W)y W)

The inverse transformation from computational space to physical 3pace/, - Wis

given by
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4.29
eX(ys -%) (% %) %% x¥g 429

h=—gx(% -¥%.) % % X% %y¢

(A ».z)=f(s.m.4)

(0.1.0)

"4‘ 4

n
(x004.73)
g
€
-Z*.Vl*:i)

(% 10.2,) (0,0,1) (1,0.0)

Figure 4-5. Transformation from physical tetraherdral element to computati
tetraherdral element in interval [0,1].

4.4.3Three-dimensional elemental transformation

A tetrahedral element in physical spa(oey, z) can be transformed to a canonical
reference tetrahedral in a computational sfage/ ) systemunder theinear mapping

T.:WJ - W as shan in Figure4-5. The coordinate transformatidix, y, 2) - (x, # )
is given as

{(x, » 40 ¢ A¢0 ¢B ¢;0-x 16z ¢} (4.30)

such that

- x Axz oy x+ X
(X,/,7)Z‘( - X Az oy ot B, (4.31)
p=(1- x Ahzzz X+ &

The Jacobian of the transformation is given as
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®o KX
W pha
Xm X X X X%
J =“(X’y’z)| AT =
X- X IJ.(X,/J)* L ox p h u Z{-le 3-% ; tef (432)
L S :
W pha
The inverse transformatiofx, # )= (x,y,2)is given as
X- X % -X % X
X = Y ¥ ¥ Y
”z-% z-2 % -
6W x(v.z -%z) %(yz ¥3 ¥ yz ¥z
X{y1234+>éz 2 {z § +
y{x(z +x(z -2 Hz & +
Ax(w- v (v ¥ Hy W
X- % XX % X
h=g—¥. % ¥y % %V
“Mlz,-z z-72 7 -
1
= [yl( X2, Xzzzt) %( %z %3 W xz x¥
x{v(z x 22 Hz # +
v{x(z 2 Kz B +
Ax(vi- %) sy % Hy W
L e x %o XX
zZ = > s Y
““lz,-z z-72 z-
1
=W[zl(x3y2-x2y3) (%% %Y) & xy ¥y
{w(z-2)+y(z 3 Az #} +
y{x(z-2)+%(z 9 £z # +
Ax(v- %) (% ) Ay W (4.33

Note that, W

1S the volume of real tetrahedralxgzsystem
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Jerx %% %
Wee =52 % ¥ % Y (4.34)
%4 2-2 % -

With respect to the coordinate transformation into the computational (spage ), we

have

dxdydz= ] , & dAhd.. (4.35)

and the transformation gradients of the form

dp 6 @ h I

T S E w x (430
‘L 0 B h RO

B0 B w vER]

&l 0 Be B e

xe_ 0 & (

cz + @ & z

4.5 Foundation of basis functions

The choice of he basis functions is ambiguoasd hasa little contribution to the
accuracy, buno effect on the overall results of the DG methBadth orthogonal and nen
orthogonal basis functions have been uskdart from being orthogonal and non
orthogoral, basis function may be modal and nodalthis thesis, we employed modal
basis function, with increasing order of accuracy, higher order polynomials are included in

the approximation which aie hierarchicahature It means thab,,b O &, Q are included
along with theby , basis functions inN, - 1 order approximation. With the modal

expansion, the position of the degree of freedotnin the reference domain is not

important.The approximatiosolutioncan be defined in terms of modal expansion as,

N 4.3
U, (x0) =AU (08 (<), @0
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where, b (x) is the Jacobpolynomials The alternate of modal basis functions are the

nodal basisfunctions which apart from increasing the mode of polynomial, increase the
nodes on which to evaluate the degree of freedom. Nodal basis functions are not

hierarchicameaning the basfunctions for anN, - 1 accuracycannoteconstructedrom
the b, O QKQ basis functions. Also the reconstruction of the approximate solution is
different. In nodal basis function, the position of the degree of fre&d{qbin the reference

domain is important as a particular node corresponds to a partiadis function. Hence
information about the position of the degree of freedom is stored in the solution array. In

term of nodal expansion, the approximation solution can be defined as,

N (4.39)
U, (1) =& U2 (04 (0.
wherel, (x) is the Lagrangiapolynomialsdefined as
 (x- %) (4.39)
L. (x)= & '
3% j=0,] k(Xk‘ X;)

(x-%)(x %) @O®)(x x,) {x YO
(%= %) (% -%) OOO)(%x x4 {x P

In the present thesisye use orthogonalacobi polynomialsR?* *(x) which is also called

hypergeometric polynomislThese are defined as the polynomial solutions of the Strum

Liouville problem which can be given as

2 4.40
(1-X2)¥4gb-a(-a+2) +§¥)¥(n(n: €] A (449

In the interva[- 1, ]] , theJacobi polynomialgan be expressed as
(4.47)

w=bhe oy g yre g e

erI

The Jacobi Polynomials have the orthogonal property

88



zH
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)R Yar K1 +) w g a2
I

The Legendre polynomialﬂo’o(x), which are a generalisation form of tlecobi

polynomials(by setting? = 0 9) can be given by

N n (443)

— p0.0 _(' 1) d 2\!

L, (x)=R>°( ¥ _n—n!ﬁ(l 7K
Polynomial 0 1 2 3 4 5

order, p

1-dimensional 1 2 3 4 5 6
2-dimensional 1 3 6 10 15 21
3-dimensional 1 4 10 20 35 56

Figure 4-6. Number of requiredbasis (polynomial) functions up 5" order.

4.5.1Number of required basis functiors
The total number of required basis function for a reconstruction of a complete set bases

of orderpis a function of degrep anddimensiorD :

(4.44)

% O

1

(p +k)

N, =N(pD) 21—

For instance, the number of required basis function of opderarbitrarydimension is

given by
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(4.45)

5
i(p+1), itD =1
I

Np:i—(pﬂ)z(p 2 D =2
|
%(p+1)(p6+2)(p Y ip-3

Figure 4-6 provides he requirednumberof basis functions for onrdimensional, two

dimensional and thredimensional discontinuousalerkih method.

— Polé)
— Pi(§)
— Ful§)
10— Py(f)
— F4l§)
— Psl)

Figure 4-7. Modes of onadimensional Legendre basis functions up‘fader.

-1.0

Figure 4-8. Modes of onadimensionakcaled_egendre basis functions up t8 érder.
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4.5.2Basis functionsfor one-dimensional problem

Due to different features as orthogonality and recursive formula, Legendre polysomial
are mainly usedn onedimensonal DG method, Legendre polynomials are used as the
basis functions such as,

b = P°°(x). (4.46)

The onedimensional Legendre basis functions uptfler aredefined inEq. (4.47) and

their modes argivenin Figure4-7

bO (X) = 1, (447)

e
3
I
x

3% ),

(
(5% -3 Jx
(
(

||
><., ><v

35 % -30 xi)

Ik Ik NIFP N

63 x -70 x15)

The scaled Legendre polynomialse defined as

2 (), (4.48)

L, (x)= 2n)! P>( X.

The onedimensional scaleddgendre basifunctionsh (x) = £, ( yup to5" order are

givenin Eq. (4.49) and their modes are plottedfigure4-8.

b, () =1 (4.49)
b(x)= x

1
bz(X)— i’ —3,
b, (x) = )”(-g X
b,(x)= % 6 2)(4:-3—,

7 35

b(x)= X 1—; 3)(4251 X

(o]
=



4.5.3Basis functions for twadimensional problem

4.5.3.1Basis functions for rectangular elements
An orthogonal basis for the rectangular element can be constructed as a tensor product

of the secalled principal function defined as

e (w20 oo
Vi ()9-[1( )X (Zi)! R ( )'
2°(7)” Los (4.50)
@iy T

where £ (x)and £, (#) are the scaled Legendre polynomials. With the definitions of the

yi(A=L(p

principal functionsy ’ andy;’, the rectangular basis functions are constructed as their
tensor product
b (x A= U )W) (4.59)

The twedimensional scaled Legdre basis functions for rectanguiement up to 4

order aredefined in Eq(4.52) and their modes are representeéigure4-9.

by (x, §=1, h( x) &, x
0, (% A= A o( 4 # %
b,(x, h= x h b( . \=h %/7
— 3 3 é. 2 1 0
by (x, k= Xz X b,( , )Xé,—ig 370
_8.,,130 3
bs(XJ)‘ééhég h( .,y # oA
no(n h= %5 txk n( e 2x g
_4, 1064,1 0 4. 3,,¢
blZ(X’ /}_8'9 X_3 9 g 3’ 9b13( ’ )X /EE )ghh{:
b, (X, = ap O zh% (4.52)
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Figure4-9.Comp | et e scaled Legendre pol ynol
full standardrectangulaexpansion up to%order.
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Figure 4-10Compl et e scaled Legendre polyn
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for full standard triangular expansion up tbatder.



4.5.3.2Basis functions for triangular elements

An orthogonal basis for the trigle can be constructed as a generalized tensor product

of the secalled principal functions defined as

yi(2)=#2(2). 459

The basis functions fothe standardriangle element are defined using the principle
functions as

b (x. = 3’aq_— 1 o.% t 24). (@59

The twadimensional hierarchical basis functions foe standardriangle element up to

4" order aredefined in Eq(4.55) and their modes are presentedrigure4-10.

b(x, A=1, (4.55)
b(x, }= 1 2 x +h

b (x A= 1 3 p

b(x, h=6 x4 (& ¥ ¢t ) #

b(x, h=(1 2 x Hh1 5)+h( ,)x1h2A 4 /B)-, +h

b, (x, h=(10 %40 (xa ¥ (4 Y1 2- ) &

n(x h=(6 %6 (& ¥} ot Y)w1 7).

b(x, h=(1 2 x {a 3¢ 4 7))+h

bo(x, h= 4 5 (B {19 -7 )4

b,(xh)=70% 440% 1 }h9e*(x1 )’ 4/720( W) -( AL )"
b, (x, h=(10 %40 (xa ¥ 4 )1 2- M 149) - &
ba(x, h=(6 26 (& ¥ (2 )b 4( 4/79} #

ba(x, h=(1 2 X)(hl 214 2)°H b

bs(x, h=1 2 (112 (B (+M6-9))}h
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4.5.4Basis functions for threedimensional problem
An orthogonal basis for the tetrahedral element can be constructed as a generalized

tensor product of the stalled principal functions defined as

yia(z): Ep*o(z), (4.56)
al- z ' i+1,
(@)= B,
c al- 5 i+2j 2,0
yijk(2)=8972 8':!32 ().

The basis function$, for the standardetrahedralelement are defineth terms of the

principle functions as

& 2 0, Ah G (4.57)
h )= ¢ 1 g Y T osEyl-2
bK (X’ ! i cl- h -7 glj 1Q > ijk gy _)-

The threedimensional hierarchical basis functicios tetrahedral element up to secend

order are given as:

h =1, (4.58)
X, h =41 2 x+ h+ z

h 413 htz

 h )= 1 4,2

h(-12 ¥ A &5 +)h+ z

hE(12 » A w6), z

,h (-1 8 A)(A-679, 2

hYe?s6 (x+ H(zx - ¥,

x, h =10 > 48 ( 4 +) (z+1-)2+z

bo(x, # J=1+5 (2 3). z

~

N X X X

x

£ L FLFLFO PO

4.5.5Derivatives of hasis functions

In case of onglimensional problems, the basis funci@redefined as

b, (X) = b ( X(x)). (459)
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Then the derivativ&of the basis functioin the computationalomain aregiven by

oo _howx (4.60
X X
In case of twedimensional problemshe basis functiasb, aredefined as
(4.61)

b (x ¥) =B (Xx b A X))k

Then the derivatives of the basis function in the computational domain are given as

WO _ Bopx | buophs (4.62)
X M X X
WO _ Bopx | buophs
by M YH Ay

In case of threglimensioml problems, the basfanction b, is defined as

(4.63)

b (xv9=R(Xx. # 2 X . x hdz, , ¥

Then the derivatives of the basis function in the computational domain are given as
(4.64)

55 E[F%|F

4.5.6Evaluation of mass Matrix

In section (4.3), the elemental mass matvixs introduced. The integration required

for the elementM is performed in théhreedimensional computationalomain

M = mh(x, Y, 2 b( x y ¥ dxdydz (4.65)

=f A (. ¥ W2

C

ddd>

= x‘ i

denotes the transformation Jacobi@mce, the orthogonal basis function are

Here|J

employed in present work, therefore, the cons@@ntan be defined as
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PR, 1 i iz 4.66
C:|j :\IPQ hr(h (ﬁ’ /17 )é d dxd h izi= i, ( )
10, it i .

20F 120

1‘ E; 1IO 1I5 2;)
Figure 4-11. A plot of the computed mass matrixfor complete orthogonaolynomial
spaceup to 4" orderfor full tetrahedraexpansion

4.6 Numerical integration in computational domain

In many casest is not possible to integrate the expression in closed form. Therefore
numerical integration mughereforg be utilized. If one is using sophisticatelements, it
is almost always necessary to use numerical integration. Similarly, dpjplecation is
complicated, e.g., the solution of a nonlinear ordinary differential equaten, even
simple onedimensioml elements can require numerical integration. Manglysts have
found that the use of numerical integration simplifies the programmirigeoélement
matrices. This results from the fact that lengthy algebraic expressicansogiied and thus

the chancef algebraic and/or programming errors is reduced. Téierenany numerical
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integration methods available. Only those methods commonly insédite element

applications will be considered here.

In discontinuous Galerkiweak formulation(4.12), thesurface and volume integrals
are needed to be a weighted approximated as a weighted summation of function evaluation
at a number of points. The choice of quadrature rule limits the ofdBX\G method,
therefore, choosing an appropriate numerical integration method is essential to obtain

highly accurate DG solutions.

4.6.1Numerical integration in one-dimensional space

The Gaussian quadrature of ord¥y for the standardnterval [ 1,]] IS given as

follows:

1

A (d e & o).

-1

(4.67)

wherex; and w are the Gaussian quadrature points and weights, respectively. Noted that
a Gaussian quadrature usifg points may provide the exact integral ﬁf(x) is a
polynomial of order2N, - 1 or less The Gaussian quadrature points and weights of order

N, in interval [1]] are provided inTable E.1(9.2.4Appendix E In addition the

q

numerical integration o& polynomial functiorf (x) on a reference line of unit length

[0, 1] is approximated as

1

A ()d £ & o)

0

(4.68)

The quadrature points and weightdreunit reference line in intervdlo, 1] are provided

in Table E.29.2.4Appendix £ Figure4-12shows the distribution of the Gaulssgendre

quadrature points inside and ovee tinedimensionamasterelement.
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O ® O O—e —0O Oe g O
(@) (b) (©)

Figure 4-12. Number of required quadrature points foteigrating inside and over on

dimensionamaster elemerior (a) p=0, (b)p=1, and (cp=2 order of spacpolynomials

4.6.2Numerical integration in two-dimensional space

Integration on standard quadrilateral (square) eIeng[tz{(x, /)': 1 ¢x /1}(
usually reles on tensor product of the edenensional Gaussian quadrature formulas
defined inEqg. (4.67). Thus, the application &q. (4.67) to a twedimensional integral on
a standard quadrilateral element[er,]] { 1.1 yields the approximation

11 Ny N (4.69)
ﬁosﬁ(x’ hd de :/_71 jﬁ’ P d o.aﬂjg' BRI

where x, A the quadrature are points amg, i are the weights of the respective

quadrature points of orde,. Figure4-13 shows the distribution of the Gatlssgendre

guadrature points inside and ovee two-dimensionamastertriangular element.

O

(a) (b)

Figure 4-13. Number of required quadrature points foteigrating inside and ovéne
two-dimensionalmaster triangular elemefar (a) p=0, (b) p=1, and (c)p=2 order of
space polynomials

In case of twealimensional standard triangle (unit triangle) element

T, :{(x, /):O ¢ x,h % J}c integrationmay be calculated by using tensor proelype
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Gaussian quadrature formulaut it may be less efficierftt0g. The integration of the

standard triangular element ¢8,1]3[0, can be evaluated by symmetric quadrature

formula defined if108 109 as

11-x

Rl b oc=n fh. e a ka1

st 00

(4.70)

where ()q, @ are the quadrature points located inside the standard trianghee the
normalized weights with respect to the triangle areafdpds the number of quadrature

points. Noted thathe resulting quadrature should use as lesa @assible number of
guadrature points to achievetagh as possiblaccuracy, we also would like the quadrature
pointsto possess some kind of symmetfhe typical points for symmetric quadrature
rules on the unit triangle are provitie Table E.3 9.2.4Appendix [ Figure4-14 shows
the distribution of the Gaudsegendre quadrature points inside and over tthio-

dimensionamastemrectangular element.

O © O O—= c—0O O=© = =20
[ @ ® (
[ ] ® 0]
@ ( ¢ e o ®
¢ ® [ ] @
P @ o ® P
O =) O O—= : O 0= S =a®
(a) (b) ()

Figure 4-14. Number of required quadrature points foteigrating inside and ovéne
two-dimensonal master rectangular elemeort (a) p=0, (b)p=1, and (c)=2 order of

space polynomials
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Distribution of all quadrature points

AP

(b) (c

Distribution of surface quadrature points

(a) (b) ()

Distribution of volume quadrature points

ANJANGEN

(b) (©)

Figure 4-15 Number of requiredjuadrature points for numerical integration ir
threedimensionaltetrahedron element for (@0, (b) p=1, and (c)p=2 order of

space polynomials

4.6.3Numerical integration in three-dimensional space

In present work, we are using the standard tetrahedral (unit tetrahedral) element
Tet, ={(x, # 20 ¢, x s = x+ } for threedimensional simulations. The
integration of the standard tetrahedral element may be evaluated by symmetric quadrature

formula defined if108 110 as
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. 11-x1-x-h . (471)
AL o) dxd & 2 A7 WA g

00 0
N

"
ol

wi(x 4,)z

iy

The symmetric quadrature points famunit tetrahedral element are givenTable E.4
(9.2.4Appendix E Figure4-15 shows the distribution of theymmetricquadrature points

inside and ovethe surface inhe threedimensionamastertetrahedral element.

4.7 Initialization of DG solver
Let the initial conditon be defined in the physical spaseas
U(x,0) =U,(x) (4.72
Replacing the lefthand side with the approximation solution
U, (x,0) = U, (x) (4.73)
where, as previously defined

N, (4.74)
U, (x)=3 U, ()8 ()

i=1
Castng this into thaveak form, multiplying Eq.(4.73) by the test function and integrating

over the element of the domain
~ - 4.7
[, Un (x.0)b (x)dW = @ (x)h(x)d (4.75)

From the Eqs(4.74) and(4.75), we get

Law 6 (4.76)
r\]/(é?f-l U, (0)h (x) Q(X)GW = B (x)b(x)d,
factoring out the degree of freedom,
U (0)@jh (x)B (x)d W =3 (x) b(x) d (477

where the integraidn the lefthand side of Eq4.77) is the mass matrix
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M =fjh ()b (x)d v (4.79)

Thus, finally the initialization becomes

U,(0) =1 U, (98 (x)d w “r

4.8 Time discretization of the problem

The spatial discretaion of the governing Eq4.14) with discontinuous Galerkin
method results to a systemsaEmidiscreteordinary differential equation in time

du (4.80)
M P =R U),

whereM is the mass matriX) is the global vetor of the degree of freedomndR is the
residual vectorin our present worlexplicit time scheme of the solution is performed with
high-order strong stability preserving (SSP) Ruwuikgeéta methods tht preserve the
monotonicity of the spatial discretization in any norm or seanm coupled with first
order forward Euler time steppingh@& explicit thirdorder accurate SSP Runri§atta

method proposed by Shu and OgHdr]] is employed,

u=u" R (U"), (4.81)
U =3y Ly 3 t R (U%),

4° 4 4

1o 2y 2

U™ ==y" £<u tMD'lR(U(Z)),
3 3 3

whereM ! is the inverse othemass matrix.

4.8.1Time stepcalculation

The time step valu®t for nonlinear system of differential equations can be given by

W (4.82)

(B, + E #F cl+i En+E)"

Dt, =CFL
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Here, CFL is the CouraritFriedrichsLewy condition(CFL ¢1). The inviscid spectral

radii are defined as

LE* Hu ¢ & (483

nv

B, M ¢ &
LE;V {w ¢ &

and the viscous spectral radii are given by

& madd 9 & mPST (489
1=7 a4 g 8 me.psy)z

ax ) )
w G Uy

E ax = @
T T @ Ty
Here, theC denotes the constant parameter that is set to be zero fayraeroBoltzmann

Curtiss based model; 2 for firetder BoltzmansCurtiss based model; and 4 for second
order BoltzmansCurtiss based model. The variabl%‘, IZS",Eand B illustrate the
projections of the control volume on the z x -zand x -y planes, respectively. These

may be defined as

o N =1 N (4.85)
D& = al%ly ;q}? Sﬁ;?lﬁ

whereS,, § and $ denote the:-, y- andz-component of the face vect&=n Od The

N; denotes the number of faces of local element.

4.9 Numerical flux functions

Due to the discontinuous space and individual elements, the numerical flux function
provides the necessary communication of f 1 ¢

and Aright o sirthees Traditfonally, withi theeatal eleméen, and
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corresponding outward unit normal traditionally designated als-theée and the neighbor
element is designated as Raide. At a minimum, the numerical flux function must satisfy

the consistency relations
H(U,.U,)=H(U,), (4.86)
H(ULUR)= H(URU ).
For the viscous flux functiotreatment, various schemneegst which are provided in depth
discussion by Arnold112. In this thesis, we employed first Ba$dbayschemgBR1)

for viscous flux treatment. In thischeme a central discretization is proposed for the

auxiliary as well as the viscous fluxes:

(4.87)

H (Uh,Uﬁ):%(U; u¥),

auxiliary
U5 QLUL B) 2FH (U 9 PR
On the other hand, the inviscid flux normal trace is congd.eith the theory of the Finite
Volume (FV) method well known Riemann problenMany choices exisin literature,
such ad.ax-Friedriichs, Roe, van LeeHartenLax-van Leer,exact Godunowand many
others However, in contrast to F\methods, the particular choice of flux function becomes
less importat for at least two reasorsirst, the interface integral does not carry the entire
burden for the element updatS&econd, the inteelement solution jumps become
increasingly small at an exponential ratgh increasing order of the DG approximating
spa@. Therefore, due consideration mib& given to the sophistication, difficulty of
implementation, and cost of computatiortulins out that the Lakriedrichs flux performs
quite well compared to other traditiorsald more complex fumions. The functioms given
by

1.

Hinviscid (U IB;U F;) = Eg:inv (U h) _Finv (U F;) 8%/max(u IB- U F;), (488)

where /., is the spectral radius (maximugigenvalug of the flux Jacobian
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(4.89)

J:‘HF
pU

along the directiom normal to the edge and is equal to:

/ .=V 1© Ct VE C.it (4.90)

'sound

Here, C,_ .4 IS the sound speed.

4.10Numerical boundary conditions

According to the flow conditions which have to be found at specific regions of the
computational domain, the appropriate boundary conditions have to implement to the system
of the governingquationsThe numerical implementation of the boundeonditions is tricky
and it demands special attention. The accuracy of the simuldtierate of residual
convergence, and stability of the numerical solver are strongly dependent on the
implementation of the boundary conditions.

All boundary conditionsnay be imposed weakljFor this purpose, we construct aegior

boundary state variablg? (Uﬁ U BC) ,which is a function of interior statd; and the known

physical boundary dathl ;.

4.10.1Far-field boundary

Two requirements must be satisfied in numerical implementation of ttiel&boundary
conditions: irst, the cutting of the physical domain should not have any considerable effect on
the flow solution asampared to the unbounded domain an@sdcany outgoing noise should
have no influence on the flow fielthadequate truncation of the domain can lead severe
slowdown of steadgtate convergence rate. This issue is more sensilthe simulation of
subsonic and transonic flow problemsigrhare néurally elliptic and parabolic.

Based orthe concept of characteristics variables, all information are transported into the
computational domain along the characteristics waves wiencoming flow is supersonic.
Therefore, all eigenvalues hatre similar sign, and boundary operator is solely defined based

on conservative variables at boundary side as
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& r. (4.92)
U =gru),
gfr E),

wherethe subscripf denoteshe freestream valuesnladdition, the numerical flux functions

0 auxiliary, inviscid, and viscouscan be approximated as

auxiliary (U lI;’U tl:) J (4.92)
Hivisoa =H inviscia (U WU bh) '
H \t/)iscous =H vis;cou(U Lh QhU ° h @\ )

Hb

auxiliary

=H

4.10.2Inviscid wall boundary

In case of amviscid flow, the fluid slips over the surface and it doespaotetrate into
the wall. Sincehere is no friction force, the velocity vector must be tangent to the surface
e.g, there is no flow normal to the surface.

ud 8, (4.93)

whereu is the velocity of flow on the boundary, ands the unit outer normal vector on
the boundaryThe inviscid flux function is computed lagjustingthe wallvelocityto have

zero normatompament. Whilethe viscous and auxiliary flux function are zero by default.

L

a r (
Us =8 2(ut nhn ¢ (4.99
éﬁ rte* E
and
2 iy =H iy (U502 2,
Hieca =H ieea (U wU") 0. (4.95)
Hiiscous =H vsear{U 5 @U°, & €
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4.10.3No-slip viscouswall boundary

In no-slip wall where aviscousfluid passes a solid wall, the relative velocity betwaen
solid wall and fluid attachment to the surface is assumed to be zero. Therefore, the physical
velocity on the solid should be definectbuhat,

Ul -y o (4.96)
The solid temperature should be giverplicitly if the wall boundary maintains the
temperature. However, if heat flux vector is prescribed at wall, the normal heat tle on
wall should bedefinedas

q=" = néyP. (4.97)
For NavierFourier (NF equations where Fourier law énployed for calculating heat
flux vector, the normal gradient of temperature on the surface must set zero for adiabatic
wall boundary condition as,
Tk (4.98
K'
The most straighforward method to define ralip boundary condition is to use following

nOP 1

relationsfor adiabatiowall

/,L

0

(0]

o (4.99)
LEL 9

a

e
Uh=x

&

and

H oy =H

auxiliary —

auxiliary (U h’U k?1) ’
H b =H inviscid (U I-h'U bh) ’ (4100)

inviscid

H Siscous =H viscoui(U Lh QhU " h @\ '

4.10.4Viscous slip wall boundary

4.10.4.1Langmuir velocity slip and temperature jump boundary

The velocity slip and temperature jump boundary conditions on the surface are

necessaryor the studying the rarefied and microscale gas flows. Aytloa various slip
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models, the Langmuir slip model based on the physical adsorption isotherm can be
employed to model the slip effef$s, 113. This boundary condition isonsidered that

not only recovers the predictability but also facilitates a hydrodyntneatmentof the

entire density regime with a single formalism. This present odethkes the interfacial

ga$ surface molecule interaction into account. A fractien0¢ a d) of molecules

reaching thermatquilibriumwith wall can be expressed in dimensional form, as

& byP _ (4.10))
7 , for monatomic ga:

| 1+ bSle p

=1

T NTSe T Pain P for diatomic gas,

:' 1+ bshp p

wherep is the surface pressure ath@ parametep . depends on the wall temperatdie

slip
as well as interfacial interaction parameters. dysideringthe gassurface moledar

interaction process as a chemical reaction, the paramgigran be expressed as,

b - \F Pl o, iDe 01 (4.102
PN32¢? T, EEI? N, Kn'

wherec is the gas constant of the exponent of the invemseer law of the article

interaction potential p,., andT_, are reference pressure and temperakimés the global

Knudsennumber,and De is the heat of adsorptiofor example,De =5, 255J/ molfor
Ar-Al molecular interaction model. The velocity slip and temperature jump boundary

conditions in the Langmuir model are determined according to the fraetion,

u=au, {1 4u,, (4.103
T=aT, {1 4T,

Here,u is velocity vector,u,, is the wall velocity vectoru ,andT, are the gas velocity

vector and temperature thie reference location.
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4.10.4.2Maxwell slip wall boundary

In 1879, Maxwell proposed a velocity slip boundary condition known as Maxwell
velocity slip boundary conditigta14, 115. In this boundary condition, he related the

tangential gas velocity slip,, to the tangential shear streBg, ..., andthe tangential

heatflux Q,, enia- This slip boundary condition can be expressed in tensor[ft as,

82-s, ... 3 Pr(g- (4.104
uslip - uWall = & S U" Ptangential Z ( @ ]) Q tangentie
¢ Sv =

where the tangential shear strésg, ..., andthetangentiaheat fluxQ,, ..., are defined

at the surface as,

Ptangential =(n O e, SD Q[angentialz Q S (4103

Here,P andQ is the stress tensandthe heat flux vector along the surfacegenotes

unit outward normal vector; tens&which defined ass:(l n A), removes normal

components at any nestalar field, for exampleselocity, so that slip only occurs in the
tangential direction to the surface. The symbaillenotes the identity tensor afd
represents the dyadiproduct between two vectordefined in equation (A.18) of

9.2.4Appendix APr is the Prandtl number; ang_, is the wall velocity. The tangential
momentum accommodatiaefficient is denoted by, (0¢ 5 ¢)which determines the

proportion of the molecules reflected from the surface purely diffusely or purely specularly

according to s, =1 and s, =0, respectively.In the notation given in Eq4.109), the

Maxwell velocity slip boundary condition becomes,

82-s. 4§ Y . 3pr(g- (4109
uslip_ Y &s—v ﬁ%;;(n Pﬂl O n) ZAMQ (I n ngl
C °v = 9

Generally, the stress tens®rand heat fluxQ are defined for Newtonian fluid as
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P P, P, (4.107)
XX Xy Xz A
P= gPyX Pyy PYZ l
SPZX sz Pzz t
N T
Q=8.Q.Q g

Using Eq.(4.107), the Maxwell slip boundary conditio(4.106) becomes as
e(t-nf)a nn g An g (4108
éz_ SV %eane |
us-u, = g&—— ﬁ—n72 nNGg (1 +r12y) -g nynz-gq:

¢ Sv =M€
%nznqu -nznyg (-1 rfi) 3q:

é(1- n?)Q, -nnQ, ANQ, ¢
3 Pr(g- 1) g 2 .
“aop nnQ, (£ n Q nRQ,

N/ CmCy

g- nznxQx -nznyQy (-H' r%z)Qz

where

= R+, 4R (4.109
%= Rno + /|, I
&= BN, + B, P
4.10.5Symmetry boundary
Symmetry boundary condition should guarantee no flux across the boundary. To satisfy
this condition;the velocity normal to the symmetry plane must be zero; the gradients of
scalar quantities normal to the boundary, and the gradient of tangential velocity on the
boundary must be zero. It is also necessary that the gradient of normal velocity along the
boundary vanishes. The summary of these conditions can be written in form of

mathematical relation as

nOb G (4.110
nOfut)On =(udion @)) -o,
tOfu nP (I=n n) Au nd 0,

wheret denotes a tangentiaéctor to the symmetry boundary.
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4.10.60utflow boundary
If the outgoing flow is a supersonic flow, the sign of all eigenvalues is same and all
characteristics waves leave the computatioth@main Consideringbehavio of the

characteristics waves, the boundary operator can be defined as

(4.111)

The numerical inviscid, viscous and auxiliary flunctionscan aso ke approximated as

Hb

auxiliary

= H auxiliary (U h'U tP)1) ’
Hivisca =H inviscia (U WU bh) : (4112

H \t;iscous =H viscouiU Lh Qhu ° h @\ )

4.11Implementation of limiters

4.11.1Positivity preserving limiter

In DG schemgnumerical solutions may lead to negative density and pressure during
the time marchingBut, physically, the density and the pressure should be positive.
Therefore, the positivity preserving limiter is needed to enforce positive pressure and
density at every elemeriRecently,Zhang and Shproposed 116§ positivity preserving
limiters for compressible Euler equations on rectangular meshes in DG method and also,
extended this method to unstructured triangular meghEg. According to Zhang and
Shu, the solution coefficients are limited in such a way, so thatctheacy is maintained
for smooth solutions while the DG scheme remains conservative and limiting for positivity

of density and pressure is performed locally at each element.
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The first step is to limit the densitigld at every elemen§o, start with defing a small

value w= min(lO s f,ﬁ) based on the mean value of the computed density and pressure

in the target cell. Then, the positivity of density checks by computing and finding the

minimum value of density; .. looping oser the quadrature points in the local elements.

The limited coefficienty, is then evaluated as

ATr- w (4113
g =minge’ 1
Qr- fin

The high order components of the density variaéethen limited by

U, (1) =US ()] o) +@U3 (1) LX) (4119

The second step is pyeservahe pressure aach locaklementThis requires the scaling

of all high order moments of the solution of all conservative variabiésg, . For

computing the valuefg,, it requires to solve the quadratic equation

pgl- )W U gw, O tel. (4.115

whereW is the mean solution and is the conservative variables with limited density

solution. Then, pick the minimum value bdmong all thequadrature pointas g,. The
limited coefficientg, = min(t,,t,). The high order components of conservative variables

are limited by
(4.116

k .
U, () =U7(t)/ o (x) +ga uj(t) iAx)
i=1
4.11.2The Barth Jespersen limiter
In thecontext of DG methods, a slope limitempigstprocessindilter that constraints a

polynomial basis function to stay within certain bounds. Barth and Jespdrsgn

proposed an algorithm based i unstructured grid for piecewidmear data. Given a
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cell averageU, =U_ and the gradien{bu)_, the goalis to determine the maximum

admissibleslopefor a constrained reconstruction of the form,

U,(x)=U, &, B)_ (x0x) 0 qwx¢ . (4.117)

Bath and Jespemsadefine the correction facter, so that the final solution values at a
number of control points, i p Yy or in one of its neighbor$\, having a common
boundary withW,. That is,

urmeu(x,) wr i (4118

Due to linearity, the solutiotJ, attains its extrema at the verticeof the cellW,. To

enforce conditior{4.118), the correction factoa, is definedas

é Umax_ Uc

é a
fminj1,—= g IfU-U, >0,
I i U-U. y
ae=min11, if U, -U. 6 (4.119
I min N
imlnfel,ue Y. H if U -U, <,
I i Ui-U Yy

where U, (x)=U, { ®@)_(xOx,)isthe unconstrained solution valai; .
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Chapter 5. Solutions of zero and first-order

Boltzmann-Curtiss based hydrodynamic models

AAll of physics i s eit Bsihleuntilygop ondesstatdlayed o r

then itbecomes triviab
0 Ernest Rutherford (187#1937)

This chapter is devoted to a series of applications for larfimas based orzerocorder,
and firstorder BoltzmanrCurtiss based hydrodynamic modeks. Euler and Navier
Fourierare providedThis chapters dividedinto three setonsbased omnedimensional,
two-dimensional and thredimensionabenchmarkproblems.n case ofonedimensional

problems the different Riemann test casase assessed within DG framewoakd

compared tohe exact solutions. In case of tdonensional problems, the different

inviscid Riemann test cagesiouble Mach reflection, fevard facing step, shoekortex

interaction and bubblshock interaction, are simulated for checgkisolver accuracy.

Finally, in threedimensonal problems, various Riemann benchmark are simulated. A

subsonic flow past a sphere is simulated & 0° and validated with experimental results.

Finally, a transonic flow over @400 aircraft is simulated with angdé attack,a = 0°.
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5.1 One-dimensionalproblems

5.1.10ne-dimensional Riemann problem
The test casantroduced bylorg 119 arewell suited and often used asstitest cases
for the validation d inviscid CFD codes because exact solutions can easily be found for

the respective problemsThese test caseare performed for capturing the wave

configurationsThe computational domain M/ :[0,]] and 200 points are considered for

all simulations All cases are initial value problem (IVP), characterized by discontinuous

conditions for flowvariableswhich areprescribedn Figure5-1.

Problem Left state Right State Final time | Discontinuity
(sec.) position
Density | Pressure Velocity Density | Pressure Velocity
Sod shock tube problem 1.0 1.0 0.0 0.125 0.1 0.0 0.25 0.5
Lax shock tube problem 0.445 3.528 0.698 0.5 0.571 0.0 0.14 0.5
123 problem 1.0 -2.0 0.4 1.0 2.0 0.4 0.15 0.5
Blast wave problem 1.0 1000.0 0.0 1.0 0.01 0.0 0.012 0.5

Figure 5-1. Initial conditions ofvariousonedimensionaRiemann test cases

The ratio of specific heats ig=1.4, andthe initial discontinuity is located at=0.5 for
these problem3heZeroGradient boundary condition is employethe exact slation of
theseproblems can be found [A19. The density, pressure, and velocity distributions for
the exact solutions and numerical solutions are presenkedure5-2 andFigure5-3. We
observed thatie numerical solutisof these Riemann problems aregood agreement

with the exact solution.
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density,pressure, velocity distribution otours att=0.25, and Lax shock tuljgroblem

(right): the density, pressure, velocdigtribution contours at0.14
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5.2 Two-dimensional problems

5.2.1Two-dimensional double Mach eflection problem

The double Mach reflection problem is a standard test problem for shock capturing
schemesdlt originated by experimental and numericlidies of rBections of planar shock
waves from wedgegd his problem was extensively studied by Woodward @aktlla for
the inviscid flow[12(. In this problemthe shock wave has a strength with Mach number
of 10, which is initially positioned aX =0, and hits a30° ramp with the xaxis.The initial

preshock and posthock conditions is

#(8,8.25,0,1165 , it 0.25 ¢ (5.1)

(r,uv, p):}(1_4,o,0,:), if O0x ¢ 3.C

The computational domain ¥/ =[ 0.25,3 [90,] and the implementecboundary

conditions(inflow, outflow and reflected wallre shown irFigure5-4.

Outflow boundary

Outflow
boundary

Inflow
boundary

Figure 5-4. Two-dimensional duble Mach refelctioproblem computational domair
and intial configuration

The final simulation time igonsidered as=0.2.The postshock condition is imposed
from x= 0.25to x=0 whereas a reflecting boundary condition is enforced frxosD

to x =3.0 at the bottom. For the top boundary condition, the fluid variables are defined as
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to exactly follow the evolution othe Mach 10 shock wave. The inflow and outflow
conditions are imposed for the left and right side of the computational domain. The density
distributions with mesh size=1/150 are shown irFigure5-5. ThismodalDG scheme

resolves the flow structure under the Mach stem clearly.

Mach stem 1

Figure 5-5. Two-dimensiamal double Mach reflgion problem density distribution

contours at=0.2

Reflected wall
INONONIONNONISNININININS NNNNNNNNNNS
\WAVAVAVAVAVAVAVAVI VAVAVAY

AVAVAVAVAVAN

Arepunoq mogpngQ

Inflow boundary

NN
AVAVAVAVAVAVAVANANAVAVAVAVAVAV/
NNNNNN

Reflected wall

Figure 5-6. Two-dimensionaforwardfacing step ppblem: @mputational domain.
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(a) t=0.5 sec

(e) t=4.0 sec

Figure 5-7. Two-dimensional forward facing stepgblem density contours at variot
time step.
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5.2.2Two-dimensional forward facing step poblem
The forward facing step problem which is also known as Mach reflection problem was
also proposed by Woodward and Colgll2q for the inviscid fow. The computational

domain isw 50,3 [0,1/[ 0.6, [20,0}as shown irFigure5-6, which is covered

unstructured triangular meshhe Mach step is located at=0.6 with height 0.2 in the
tunnel. Initially, a rightmoving flow with Mach 3 is imposeith the whole computational
domain.The reflective boundary coittbns areappliedon the upper andlong the walls

of the tunnel, and inflow and outflow boundary conditionsragosedat the entrance and
theexit. The corner of the step is the center @frafaction fan, which is a singularity point.

For minimizing this numerical error generated at corner, the meshes near the corner are
refined. The density distributions withh=1/200at various times are presentedrigure

5-7. It may be noted that the resolution is improved with this mesh refinement, especially

for the slip line started from the triple point.

5.2.3Two-dimensional $1ock-vortex interaction problem

In this test case, we are considering the interaction of a vortex with a steady shock wave.
The shockvortex interaction (SVI) problem proposed by R§Lft]], is a good benchmark
problem for a high order numerical scheme. It is usually followed by a complex flow

pattern with both smooth features and discontinuous waves. The computational domain is

[0,2]2[ 0,1, and a normastrongshock wave vth Mach M, is located atx=0.5, as

shown inFigure5-8.

The flow is from the left to the right direction. The upstream state of thehmek
region is given by(7,u,v, p) = (1, MS\/_gO,j and the downstream value in the psisbck

region are computed through the Rankihggoniot condition. A composite vortex,
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rotating clockwise direction, is initially located ft_, y.)=(0.25,0.§with an angular

velocity

A 52
TeumL if¢ca |, 2
.~ a
|
i a a b o .

VvV, =j — & ifa b

q ,:\umaZ_bZéd. r 9 ¢
{o if r>bh.
[

Here, u, is the maximum tangential velocityt :\/(x %) (@ ) is the distance
from the vortex cor€x_, y.),and the radii of the inner and the outer annular region are
given as(a,b)=(0.075,0.175 The strength of the vortex is measured My, where

M, =u,/a andais the sound speed calculated from the upstream flow condition. Inside

the vortex, the density and pressure are the functions of the tempetued(the

upstream state of the normal shock.

o é 1:)i ' (5'3)
Lo AT 8 o Ta A
63:‘12 9 P =P f‘a;e .

where the temperature dite left state ofT, is calculated by the ideal gas lag= r RT

with gas constanR=1. The temperature inside the vortex is obtained after solving the

ordinary differential equation

d_T:g;lqu(r) (54)
dr Rg r

In the present computation, we are considering two different simulation problem: weak

SVI with M =1.2 andM, =0. and strong SVI with M =1.5andM, =0.7 The

computed solutions of these two test cases are pegseritigure5-9 andFigure5-10.
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Figure 5-8. Two-dimensional Bock-vortex interaction problentomputational domair
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Figure 5-9. Two-dimensionakhockvortex interaction problencomputed (a) vorticity
and (b) density distribution contoussth shock Mach =1.2, Vortex Mach =0.5taR.5.
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Figure 5-10. Two-dimensional shockortex interaction problentomputed (a) vorticity
and (b) density distribution contours with shock Mach =1.5, Vortex Machat€:2.5.
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5.2.4Two-dimensional $iock-bubble interaction problem
The developed DG solver is applied to finediction of shoclbubble interactiofSBI)

problem.The schematic diagram of the SBI problem is illustrate&igure 5-11. The

computational domain iV ={0,3 f 0:5,0.% The diameter of the bubble B = 0.5.and

it is centered a(x;, y,)=(1.75,0 A left running shock wave is initially located at
x = 2.5. The initial value of posshocked region i§r,u,v, p) =(1.38, -0.39,0,1.5), the
initial flow condition of bubble ifr,u,v, p) =(0.138,0,0,1.p and the flow condition of

the preshocked region i§7,u,v, p) =(1.0,0,0,1.) The right boundary is set to be inflow;

and the other bouaries, namely, left, upper and bottom are set to be outffowthe

numericalsimulation, wehaveconsideredLOO® 100( points over rectangular meshes.

OQOutflow boundary

Pre-shock Post-shock
Outflow region region Inflow
boundary boundary

Incident shock wave

Outflow boundary

Figure 5-11. Two-dimensionalshockbubble interaction (SBI) problemschematic
diagramof computational domain

The numerical schlieren images for the flow field evolution at various time steps are
reported inFigure 5-12. The density and velocityof the postshocked regionare

determined from the Rankistdugoniotjump condition.
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(a) t=0.0 ms

(d) t=3.0 ms

\
N

0

(9) t=6.0 ms

Figure 5-12. Two-dimensionalshockbubble interaction (SBI) problemschlieren

images fofflow field evolution at various times.
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5.3 Three-dimensionalproblems

5.3.1Three-dimensional Sod shocktube problem

The shock tube problem or Sod problartroduced by Gary A. Sod in 197827 is
frequently used to test the accuracy of computational methd analyttal solution is
infact available, thereforé is possible to compare numerical results with it and understand
the strengths and weaknesses of the scheme implemented. A shock giktis oba pipe
with rectangular crossection filled with a fluid (or @as) with a diaphragm splittinbe
tube irto two halves as shown Figure5-13. Thediaphragm is numerically simulated as
a discontinuity in different fluid conditions (temperature, pressure density) across that
specific surface. Generally, the left side of the tube has higher values for the fluid
properties. Given such initial comidns, the system is allowed to evolve in time. Two
waves are generated and can be seen in all the physical variables. A shock wave will move
towards theaight (low-pressure regionpnd a refractive ave will move to the left (high
pressure region). A cbact discontinuity (moving towards the right side) separates the two

regions and is visible in densitpétemperature (or energy) only as showRigure5-14.

Figure 5-13. Threedimensional 8d hock tube problemschematic diagram and initi
configuration.
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Figure 5-14. Threedimensional Sodrecktube problemproduced different waves aft

broken diaphragm.

In present worktheclassical Sod shock tulms a onedimensionalunstructured mesh
to assess the ability of the numerical methodsafmiuze onalimensionakimple waves

considered as a standard benchmark problem. We setechputational domain, defined

by [0,4]2[0,0.] {0,0.00 The unstructured tetrahedral mesh are used far ou

computationgnd contains 98801 tetrahedral elements with mesthsiz&01. It provides
an equivalent ondimensional resolution of 100 elements. The Dirichlet boundary
conditions are imposed ir-direction, whereas the periodic boundary conditions are

imposed iny andz directions. The initial condition is defined as follows:

£(1,0,0,0,} , ifx¢ O. (5.5)
|

(ruvw, p):T(O.125,0,0,0,0.)1, ifx> 0,

The ratio of specific heats ig=1.4 and the initial discontinuity is located &t=0.5. The
computed final time is considered tat 0.2 sec.The computeddensity and pressure
distributiors for the Sod shock tube problemthreedimension, twedimension and one
dimensionrepresentation arshownin Figure 5-15. The xcomponent of the computed
density and pressure distributicar® compared witthe exact solutionand found in good

agreement as shoviigure5-15 (bottom)
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5.3.2Three-dimensional 123 problem

The next validation test case,-salled theRiemann 123 problehas a solution
consistingof two strong rarefactions aral trivial stationary comict discontinuity; the
pressurdas very small (closéo vacuum) and this can lead to difficultiesthe iteration
scheme to find pressure numerically. This benchmark problem is also useful singsses
the performare of numerical methods for ledensity flows[123.

For the numerical simulations, ewselecta computational domain, defineboly

[-0.5,0.3 { ©.03,0.03[ 20,0.p: The unstructured tetrahedral mesh are used for ou

computationsind contain22318tetrahedral elements with mesh stze 0.01. It provides
an equivalent ondimensional resolution of 100 elements. The Dirichlet boundary
conditions are imposed ir-direction, whereas the periodic boundary conditions are

imposed iny andz directions. The initial condition is defined as follows:

#(1,- 2.0,0.0,0.0, 04 fox ¢ 0, (5.6)

(r.uv,w, p) =%(1_0, 2.0, 0.0, 0.0, O)4 otherwise>

The ratio of specific heats ig=1.4 and the initial discontinuity is located &at=0. The
computed final time is considered tat 0.15sec. The computed density and pressure
distributions for the 123%roblem in threadimension, twedimension and ordimension
representation arghownin Figure5-16. Thex-component of the computed density and
pressure distributions are compared with the exact solution®and in good agreement

as show in Figure5-16 (bottom).

5.3.3Three-dimensional &plosion problem
To validate the present numerical scheme in three spatial dimensions, we have
considered a spherical explosion problem. This problem is important, as it involves the

propagation of the waves which is not aligned with the Cartesian grid.
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Figure 5-17. Threedimensionakxplosion problem: initial configuration & 0 sec.

L] R ||

Density: 0.15 024 0.34 043 053 062 0.72 081 091 1.00

Figure 5-18. Threedimensionakxplosion problemthe computed density contours
=0.2sec

The computational domain is the eaighth of a sphere whose radius is one. The problem
setup represents a muttimensional extension of the classical Sod prodl&g¥, with

initial conditions

£(1,0,0,0,3 , far¢ R (5.7)
|

(r,uv,w, IO)27(0.125,0,0,0,0-)1 far>R
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wherer =x* #° # is the radial coordinate, whilg = 0.5 denotes the radius of the

initial discontinuity. The computati@h domain consists of the firggid with a huge mesh
898,582 unstructured tetrahedrBlgure 5-17 illustrates the initial configuration of the
explosion problem, while the computed density contouts=d1.2 have been reported in
Figure5-18. Since the problem is spherically symmetric, the reference solution can be
obtained solving an equivalent cdémensional PDE in the radial direction with geometric

sourceterm[119.

5.3.4Three-dimensional double Mach reflection problem

The next benchmark problem time threedimensionakimulation is thelouble Mach
reflection problenmwhich isfirst extensively studied by Woodward and Col¢ll2(q for
the invigid flow. This is one of the most welinown benchmark problesrfor high-

resolution shockcapturing schemes For this problem, e computational domain is

W< 6.3,3 [9,2 [ 6,0.0p and a solid wall lies at the bottom of the computational

domain starting fromx=0. The unstructured tetrahedral mesh are used for ou
computationsand containsl023663tetrahedral elements with mesh size 0.01. This
test problem involves strong moving shock with Mach 10 a perfect gas witlg=1.4

which hits a ramp &0 degree with xaxis. The initial and posshock conditions are

£(8.0, 8.25, 0.0, 0.0, 116)5 fox¢ 0.0, (5.8)
(r,uv,w, p=|
1(1.0,0.0,0.0,0.0,1)0 for> 0.C

The final simulation time is considered s 0.2.The postshock condition is imposed
from x= 0.25t0 x=0 whereas a reflecting boundary condition is enforced fsorD
to x=3.0 at the bottom. For the top boundary condition, the fluid variables are defined as

to exactly follow the evolution of the Mach 10 shock wavke inflow and outflow
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conditions are imposed othe left and right side of the computational domain. The

computed density distributions are showrrigure5-19.

Density
3.8
34
3.0
2.6
22
1.9
1.5
1.1
0.7
0.3

Figure 5-19. Threedimensionaldouble Mach reflectiorproblem: computed ahsity

contours

5.3.5Three-dimensionalforward facing step problem

Another classicathreedimensonal benchmark problem fohigh-resolution shock
capturingdiscontinuous Galerkin scheme consists inféineard facing step problem, also
called the Mach 3 wind tunnel teslt has also been proped originallypy Woodward,

and Collela [120. The computational domain is given by

w =0,3 Fo, Y 0.6,3 [20,0]which consistd251048unstructuredetrahedral meshes.

The initial condition is a uniform flow at Mach numbir= 3 movirg to the right.In

particular, ~the  flow  variables r(x y,0)=1,p(x,y,0 =1 g X,y,0 =
v(x v,0)=0,w( x, y,0 =Care employed at initial conditions. The ratio of specific heats

is set tog=1.4. Simulations are carried outntil t = 3.0 sec.Reflective boundary
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conditions are applied on the upper and lower boundary of the domain and inflow/outflow
boundary conditions are applied at the entrance/exit. At the corner of the step, there is a
singularity, which is properly resolved with teecondorder modal DGcheme using grid
refinement The computeddensity distributions with second order modal three
dimersional DG methodare depicted irFigure 5-20. One ca observe that the second

order scheme provides a much better resolution of the physical instability and roll up of
the contact line compared to the standard second order schemiadidates that the use

of higher order schemes may be appropriate to enhance resolution and écwadecical

viscosity for smalscale turbulent structures.

Y

k.

Figure 5-20. Threedimensionalforward facing step problem: computededsity

contours

5.3.6 Three-dimensional ransonic flow over a G400 aircraft

The test case of a transomgjasflows past a complete G4Qdircraftat a free stream
Mach numberM = 0.84 and an angle of attack @f=0°is chosen in order to assahkge
performance of ththreedimensional moddDG methodn computing complex geometric
configurationsin this test case, laminar flow is consiettm contrast to turbulent flow, as

it is the smooth flow of a fluid over a $ace.Moreover, engineers want to design aircraft
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with thelaminar flow over their wings to make them more aerodynamic and effieiers,

the G400 configuration includes the fuselage, wings, horizontal and vertical tails and two
jet engines. For numericasimulations, the unstructured tetrahedral grids are used,
containing 2,010,878 elements and 366,684 grid points. In present test case, the full aircraft
is modeled, as shown iRigure 5-21. The computed pressure coeffiecient value, the
pressure contours on the wing and the streamlines over the aircraft are sHaguren

5-22, Figure5-23 andrigure5-24, respectivhy.

Figure 5-21. Threedimersional ransonic flow over a G400 amaft: computational

domain with tetrahedrainstructuredyrids.

C, -14 -11 08 -05 02 00 03 06 09 12

Figure 5-22. Threedimensionaltransonic flow over a G400 airdtacomputedCy

value
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Figure 5-23. Threedimensional transonic flow over a G400 aircrafessure contour

on wing.

Figure 5-24. Threedimensional transonic flow over a G400 aircrafbmputed

streamlines.

5.3.7Three-dimensional sibsonic viscoudlow pasta sphere

A viscous flow pasasphere at a freestream Mach numiifed.3, and an angle of attack
0°, and aReynoldshumber of 118 is considered in this benchmark problem. This problem

has been studied both experimentfll24 and numerically[125. An adabatic wall is
assumed in this benchmark probldfigure5-25shows the computational grid used in this

test case, consisting of 98,0@@rahedral elementand25344grid points.
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(a) Global view (b) Close up view neaphere surface

Figure 5-25. Threedimensionalsubsonic viscouglow past a sphere: computatior
domain with unstructured tetrahedral mesh with 98,000 elemen2584d grid points.

(a) Presentomputational results (b) Experimental results

Figure 5-26. Threedimensional subsonic viscoudlow past a sphere: compute

streamlines of the flow field (left) and from experiment (right) at Mach =0.3, Re:
and AoA=0 degree.

The computational streamlinebtained by the mod&G (P=2 methodare compared
with experimentaktreamlines irFigure 5-26, where steady separation bubbleeadily
observed in both plots and the size of the separation rggiba computation agrees very
well with that of the experimenthecomputed Mach contouesd streamlines the flow
field at differentReynoldsnumbers 25.5 and 133 with Mach =0.3 sitewnin Figure5-27.
The numerical results shawat at lowReynoldsnumber, the viscous effects are important

in a large area. A small recirculating zone (or vortex ring) develops close to the rear
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stagnation pints at about Re=25.5, as showrfigure5-27 (a). With further increase in

the Reynoldsnumber this recirculating zone or wake expands, as showfigare5-27

(b).

= ———— [ — 0%- - Wakeregion |

: g;g = - — — — = v - 026 == - —~ . . N = rms
| 018 ~ —— i — — - = -~ — -
o Wake region = = e

- e A e 10 == — e = — e

- Flow separation = Boundary layer : - Flow separation — Boundary layer :

(a) Mach =0.3, Re=25.5 (b) Mach =0.3, Re=133
Figure 5-27. Threedimensionalkubsonicviscousflow past a spherecomputed Mack

contours and streamlines at Mach =0.3, (a) Re=25.5, and (b) Re=133.
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Chapter 6. Solution of secondorder Boltzmann-
Curtiss based hydrodynamic models1D and 2D

problems

ADream i s not that whischl oyneu hd engg whialte doleesce
-A.P.J.Abdul Kalam(1931-2015)

In case that flow deviates from local thermal equilibrium state, application of the moment
method into the classical Boltzma@urtissequations leads to Boltzmai@urtissbased
models where the neconservative vaables are being linearly or nonlinearly proportional

to the gradient of the velocity (strain rate) and temperature (thermal strain rate) state
variables. The objective of this chapter is to measure the level of accuracy of the
BoltzmannCurtissbased mods. Therefore, solutions of the Boltzma@urtiss based
models are compared with each other, the solution of the DSMC method, and experimental
data.Firstly, Onedimensional shock struatlis simulated using Boltzmar@urtissbased

model and the resul@re canpared with experiment3hen the flow over a cylinder is
studied in detail. Thena comparative analysis different slip boundary conditions
provided using NavieFourier (i.e., firstorder BoltzmansCurtissbased) equation. Finally,

a flow ove asphere is simulated using modal DG method.

6.1 One-diemensional ompression dominant problem:shock
structure

The shock wave structure is one of the most fundamental problems in kinetic theory of
gases and it is considered as a major stumbling blockdoreticians for the last decades

[126-137). For example, it has a big impact on the overall flow patterns around hypersonic
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aerospace vehicles at high altityd83. The stationary shockave structure problem is
defined as very thin (order of mean free path; in other words, Knudsen number close to 1.0)
stationary gas flow region between supersonic and subsonic downstream. The upstream
and downstream states, denoted by the subscripts 2, aespectively, are determined by

the secalled RankineHugoniot condition:

(g+)M; 6.1)

Peog 429 (w2 9,

P g+l

T, _8oM7-( 91 g g@mM; 2+
. (g-)° M7

For comparison of various results of shock structure, the following parameters are very

useful. The inverse of the shock density thicknéﬂy@n’), and the shock temperature

density separatio(mDs), which measures the separation between density and tetm@er

profilesare defined as

1_ 1 |dr (6.2)
d (75- ~ndx

D, #x(7 &5 xT 05§ ¢

)
max

where 7 andT are the normalized density and temperature profiles defined as

F=l 1
r,- f

T T, (6.3)

=
I

The central positiork = 0 is defined as the location where the local variables (i.e. density,
temperature, velocity) becomes equal to the arithmetic average of the upammdam
downstream variables.

The density solution ofiscous shock structure for arggas( f,,,, =0) and nitrogen gas

( foux = 0.8) with four different Mach stream conditions @fgown inFigure6-1 andFigure
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6-2, respectively.The zereorder solutions are wagff from the experiment, whil¢he
guastlinear hydrodynamic model, tHest-order and the secoratder BoltzmanfCurtiss
based models can et the shock density profile moderately for all Mach flow conditions.
It is also shown that the difference between4mster solution and experiments become
noticeable for high Mach number flows, while secamder Boltzmann Curtiss based

solution isvery close to the experiments.
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(c) Mach =6.5 (d) Mach =9.0
Figure 6-1. Onedimensionalshock structure problem: normalizdénsity profilefor
argon gasat four different flow stenMach numbes.
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Figure 6-2. Onedimensionalshock structure problenmormalized density profiléor
nitrogen gast four different flow stem Mach numlser

The shock density thickness is known as one of the important parameteesaocouracy
of the models, therefore, the solution of Boltzm&urtissbased model®r argon gas and
nitrogen gasre compared with experimental dgt&4]. It is obviousrom Figure6-3 that

seconedorderBoltzmannbased method can precisely capture the sllecisity thickness

for all Mach number regimes.
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04 09

Inverse density thickness

8
Mach number Mach number

(a) Argon gas (b) Nitrogen gas
Figure 6-3. Onedimensionakhock structure problencomputed inverse shk density
thickness profile for (a) argon, and (b) nitroggs.

6.2 Two-dimensioral hypersonicflow pasta cylinder

To demonstrate the capability of the seconder BoltzmansCurtiss based
constitutive model, a viscous compressible flow past a cylinder is simulated for both
hypersonic rarefiefll35 and lowspeed microscald36. The twedimensional DG code
was validated for varioubenchmark problemsf viscous compressible gas flow
monatomic argon gas witRr=2/3 and s=0.75was chosen athe working gas In our
previous studiefs8, 137], the rumericalresults were compared withe DSMC method.
Unstructured triangular grid with approximately 90,000 computation cells refiitca
ratio of 1.06 near the wall to capture the physics is used for the DG simuldtnentar
field boundary condition was imposed on the outer boundary of the computational domain
while the Langmuir boundary conditidb7,126, 127]was applied tahe solid wall. The
power law model wassedfor calculating the transport properti€&®]. On the other hand,
in the DSMC simuation, the VHS intefparticle collision mode&nd the fully diffusive

wall boundary condition were implemented. Approximately 2,000,000 particlesisede
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with at least 50 particles per each cell. The time atepthe cell sizeveresetonetenth of

mean collision timend onéfifth of the freestream mean free patihespectivel}13§.

(b)

Figure 6-4. Validation of secongrderBoltzmannCurtiss based modeNCCR) with
theDSMC in densitydistributionfor (a) M =5.48, Kn = 0.05, and (b) M = 0.1, Kn =(
[58, 137].

In Figure 6-4, a comparisonof the DG code with DSMC solutignfor rarefied and

microscalegas flow around a circular cylindés shown for both caseof high-speed
rarefied M=5.48, Kn=0.05)and low-speedmicroscale(M=0.1, Kn=0.1)problems.The

results show that the numerical solutiafsthe secondorder BoltzmannCurtiss based
constitutivemodelare in close agreement withe simulated solutions dDSMC. Inthe
high-speed case, the flow consists ot@mpressive bow shock structure, a stagnation
region near the frontal part of the cylinder, and a gaseous expansion region near the rear
part of the cylinder. The densitgmains initially constant ithe freestream region and

then experiences a rapid dgg across the bow shoalave, whose value iery close to

the theoretical predictiorgiven by the RankineHugoniot relationsFurther,the shock
thickness andeneraflow patternarevery similar. Inthe lowspeedtase, the flow consists

of smooth compssion and stagnation regions near the frontal part of the cylinder, and a
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