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Greek 

a - angle of attack 

b - side-slip angle 

g - specific heat ratio 

m - first coefficient of dynamic (shear) viscosity  

bulkm  - coefficient of bulk viscosity  

l - second coefficient of viscosity  

k - heat conduction coefficient  

Q - vector of auxiliary variable 

hQ  - approximated auxiliary variable solution 

,L R

h hQ Q   approximated auxiliary solution for left and right state 

, ,x h z - reference coordinates 
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meanl  - mean free path  

d - boundary thickness layer of the body 

ij,ss  - stress tensor 

,ijtt, P - viscous stress tensor 

, ,xx yy zzP P P - normal stress components 

, ,xy xz yzP P P  - viscous stress components 

D - excess normal stress 

ijee, - symmetric or rate-of-strain tensor 
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ÐÖu  - dilatational term 
dofz  - molecular internal degree of freedoms 

internal

dofz  - internal energy modes 

kinetice  - specific kinetic energy per unit mass 

internale  - specific internal energy per unit mass 

potentiale  - specific potential energy per unit mass 
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Bw  - vector of angular frequency 

massm  - reduced mass of molecule 

n - exponent of the inverse power law  

y - azimuth angle 
()n
L  - dissipation term 

()n
Y  - high-order moments 
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cs  - calortropy production 
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 - dimension of the space 

vÐ  - gradient with respect to velocity-space 

W - bounded domain of the body 

hW  - approximated domain 
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µW - boundary of the domain W 

,D NµW µW - region Dirichlet boundary, region of Neumann boundary 
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st

eW  - standard element 

xJ x
 - jacobian of transformation  

,

nPa b - orthogonal Jacobi polynomials  

c - flow properties 

Ĕ Ĕ Ĕ, ,x y z

inv inv invL L L - inviscid spectral radii 

Ĕ Ĕ Ĕ, ,x y z

vis vis visL L L - viscous  spectral radii 
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L - charactertics length scale 

T - time  

Kn - Knudsen number based on characteristics length scale 

Knd - Knudsen number based on boundary thickness layer 

GLLKn  - gradient length local based Knudsen number 

Nd - composite number 

maxB  - Birdôs breakdown parameter 

maxKn  - Boydôs breakdown parameter 

M - Mach number 
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Pr - Prandtl number 

Ec - Eckert number 

n - normal vector 

r , x - position vector 

v - particle velocity 

u - bulk velocity vector 

u, v, w - Cartesian components of velocity vector 
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J - Jacobian matrix 

n - number density (molecule per unit volume) 

d - molecular diameter 

T - overall temperature 

wT  - wall temperature 

p - pressure 

P  - mean pressure 

BK  - Boltzmann constant 

AN  - Avogadro number 

gasR  - gas constant 

ijmnC  - fourth-order viscosity coefficient tensor 

bulkf  - ratio of bulk viscosity to shear viscosity 

m - molecular mass 

totalE  - total energy 

kineicE  - kinetic energy 

internalE  - internal energy 

potentialE  - potential energy 

viberationalE  - vibrational energy 

I - moment of inertia 

j , j - angular momentum, magnitude of angular momentum 

pC   - specific heat at constant pressure 

vC  - specific heat at constant volume 

s - viscosity index number 

C - peculiar velocity 

Ĕ, ,totalH h h - total enthalpy, specific enthalpy, enthalpy density 

P - pressure tensor 

Q - heat flux vector 

, ,x y zQ Q Q  - heat flux components 

, ,x y zT T T  - temperature components 

I  - unit tensor 

rotH  - rotational Hamiltonian of the molecule 

rotE  - average rotational energy density 

( ), ,f tv r  - single particle distribution 

( )0 , ,f tv r  - equilibrium distribution function 

cf  - nonequilibrium canonical distribution function 

external
F  - vector of external forces 

( )2,C f f  - collision operator 
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rL  - internal Liouville operator 

()n
h  - molecular expression for moments 

()n
Z  - kinematic term arising from hydrodynamic streaming effect 

1stq  - first-order dissipation term  

2ndq  - second-order dissipation term 

1k  - first cumulant expansion 

ĔR  - Rayleigh-Onsager dissipation function 

S  - face vector 

, ,x y zS S S  - components of face vector 

Ĕ Ĕ Ĕ, ,  x y zS S SD D D - Projections of the control volume 

U - vector of conservative variables 

hU  - approximated solution of conservative variables 

BCU  - boundary state variable 

,L R

h hU U  - approximate solution for left and right states 

inv
F  - inviscid flux function 

vis
F  - viscous flux function 

EN  - number of elements 

FN  - number of faces 

kN  - number of basis functions 

kb  - basis function 

, b

auxiliary auxiliaryH H  - numerical auxiliary flux, numerical boundary auxiliary flux  

, b

inviscid inviscidH H  - numerical inviscid flux, numerical boundary inviscid flux  

, b

viscous viscousH H  - numerical viscous flux, numerical boundary viscous flux  

M - mass matrix 
1-

M  - inverse of mass matrix 

( )R U  - residual vector of U variables 
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Abbreviation  

DG - Discontinuous Galerkin 

FD - Finite difference 

FV - Finite volume 

FE - Finite element 

SD - Spectral difference 

SV - Spectral volume 

CFL - CourantïFriedrichs-Lewy number 

RK - Runge-Kutta 

RKDG  Runge-Kutta discontinuous Galerkin 

TVB - Total variation bounded 

TVD - Total variation diminishing 

BR1 - First Bassi-Rebay scheme 

BR2 - Second Bassi-Rebay scheme 

DOF - Degree of freedom 

LDG - Local discontinuous Galerkin 

MPI - Message passage interface 

SPMD - Single program multiple data 

NSF - Navier-Strokes-Fourier 

LTE - Local thermal equilibrium 

NF - Navier-Fourier 

NCCR - Nonlinear coupled constitutive relations 

SVI - Shock-vortex interaction 
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Abstract 

 

Development of a 3D discontinuous Galerkin method for the second-order 

Boltzmann-Curtiss based hydrodynamic models of diatomic  

and polyatomic gases 

                                                           

                                                         Satyvir Singh 

                                                         Department of Mechanical and Aerospace Engineering 

                                                        Graduate School, Gyeongsang National University 

                                                        Supervised by Prof. Rho Shin Myong 

 

 

It is well known that in conventional approach, description of diatomic and polyatomic 

gases is basically the same as the monatomic gas; that is, it is based on the physical laws of 

conservation (mass, momentum, and energy), with the modified ratio of specific heats, and in 

conjunction with the first-order constitutive laws, the two-century-old so-called Navier-

Stokes-Fourier equation based on a critical assumption made by Stokes in 1845 that the bulk 

viscosity vanishes. While the Stokesôs hypothesis is certainly legitimate in the case of 

monatomic gases like argon, there is ever increasing evidence that now indicates that this is 

not the case for non-monatomic gasesðlike nitrogen (or air) and carbon dioxideðthat are far 

from local thermal equilibrium. Therefore, the study of thermal non-equilibrium effects of 

diatomic and polyatomic gas flow is extremely important. 

The general interest of the present study is to explore the suitable and proper master kinetic 

equations for describing diatomic and polyatomic gases and to develop computational methods 

to solve these kinetic equations. First, on the basis of Euôs generalized hydrodynamics and 

Myongôs balanced closure, the second-order constitutive laws are derived from the Boltzmann-

Curtiss kinetic equation for diatomic (and linear polyatomic) molecules. Then the topology of 
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the second-order nonlinear coupled constitutive relations in phase space is investigated for 

elementary flow situations like compression, expansion, and velocity shear. Lastly, a 

theoretical and computational attempt is made to highlight the rotational non-equilibrium 

effects in polyatomic gases by investigating the strong interaction of two important non-

equilibrium phenomena in polyatomic gases ïcompressive shock structure and velocity-shear 

of the vortexðusing the second-order constitutive laws. 

In this study, discontinuous Galerkin (DG) methods were first employed for solving the 

Euler system in order to obtain the solution of the one- and two-dimensional Riemann 

problems. The basic structure of this hyperbolic system, such as contact discontinuity, shock 

wave, and rarefaction wave, were studied numerically. Although modern DG method has been 

successfully applied for solving the Euler equation, the validity of the Euler equation is 

restricted to an equilibrium state, and it is not valid for non-equilibrium flows.  

In order to investigate non-equilibrium gas flows, a new set of DG methods based on mixed 

DG-framework is developed for solving the first-order Navier-Fourier and second-order 

Boltzmann-Curtiss based equations. The final judgment on the accuracy of the computational 

models is obtained through a rigorous study of verification and validation. The first-order and 

second-order Boltzmann-Curtiss based models are compared with the solution of DSMC and 

experiments by considering various problems. DG methods are comprehensively verified and 

validated for steady-state and unsteady transient flow problems as well as smooth and stiff 

solutions of the conservation laws. The analytical solutions of first-order and second-order 

Boltzmann-Curtiss based model in the shock wave structure are considered as a verification 

study on conservative, primitive and non-conservative variables. A self-contained summary of 

numerical implementation of various limiters, numerical flux functions, and boundary 

conditions is provided for the pedagogical purpose.  
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Also, the three-dimensional Maxwell velocity slip and Smoluchowski temperature jump 

boundary conditions are provided for arbitrary geometries. Efficient numerical methods for 

solving non-linear implicit algebraic equations arising from the second-order Boltzmann-

Curtiss based constitutive relations are described, and the solutions of the constitutive relations 

are analyzed in detail. 

The computational cost of the first-order Navier-Fourier and second-order Boltzmann-

Curtiss based solvers is investigated in the serial and parallel frameworks. It was shown that 

the computational cost of the second-order Boltzmann-Curtiss based solver behaves 

nonlinearly concerning the number of elements, due to the dependence of the number of 

iterations of the second-order Boltzmann-Curtiss based solver on the flow structure and the 

degree of thermal non-equilibrium. Finally, a super-parallel performance of a mixed explicit 

discontinuous Galerkin method was reported for the second-order Boltzmann-Curtiss based 

nonlinear coupled constitutive models of rarefied and microscale gases. 
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Abstract in Korean 

 

Boltzmann ï Curtiss ͖Ḗ╢ ╧∙■ · Ѹ∙■ ͖ › ̒  2  ♩ Ҳ 

┘   ᶘҥ╖ ⌐  3D ṩ⁴ἳ Galerkin ͖Ḷ ˉḘ 

                                                          

                                                                                 Ợ ẋᵎ ᾗ 

                                                                                 ˿Ữҍ ̪ ̑̓ҍ  

                                                                                 ͙ ́ ̑̑ Ṩ ̑↕̑ל  ♣̑ 

  ҵ̪ὡ: ᶘ Я ᾐתּ                                                                                 

 

͙Ⱶ╥ ╪∟▫ ḓ ѻ∟▫ ͙ ⁄ ̕  ♪͐ Ḣᾏ╘ Ѿ▀∟▫ ͙ ₮ ͙ṕ♠╖ᴛ 

ҿ▀  ˦╖ᴛ ῼᴎⱨ ₵ѻ. ּס, ẋ⁸ẋʺ ὡ♬ӈ ṒⱵ(ֿװפ, ⇔ҿװ, ⁄Ўּת) ᶹᵙ 

ḹ ⁄ ͙ ̆ ▓╖ᶒ, 1  ♬ ҵ ̯Ἓ ḹ ̓ Ζ Bulk ♩Ἓ╙ ᶴᾎ Ѥ Stokes 

ʺ♬⁄ ͐˞ ⁴ 2 Ἕ͙ ♣(1845Ц)⁄ ┬ҵӈ ╪ᵐḕ Navier-Stokes-Fourier (NSF) ᾏ╙ 

͎ ͐ʼ╖ᴛ ѻ. Stokes ̋ ♬╘ ῷᵎ̈̓ ˉ╘ Ѿ▀∟▫ ͙ ╥ ˿↕Ѥ ᾒ  

♬҉ Ӈּתᵣ. ̰ἵ ⁸ ̓ ˞ᵙʺ ᶀ ẋѾ▀∟▫ ͙  ,͙̑ ἵ, ֞Ѥפֿ) 

╪ụ ἵ)⁄Ѥ ͎ᴅּת Ώѻ. ӻגἌ ╪∟▫₮ ѻ∟▫ ͙  ᵒ╥ ⁸ ẋ  ̓⁄ 

ҍ  ⁷̯Ѥ ᵰ↕ ַא⅝ ѻ. 

ṕ ⁷̯⁄ἌѤ ╪∟▫₮ ѻ∟▫ ͙ ᵑ ἒᶘ Ѥ ♠♥  ᵡᾅ  ⇔ҿ Ḣ♬ᾏ╙ 

⁷̯ ̆ ╪⁄ ͙  ὡ ̕ ⁄Ḥ Ḣ♬ᾏתּ ♠  ♣ụ͙ḹ╙ ˌḛ Ѥ ˦╪ѻ. , 

Generalized Hydrodynamics₮ Balanced Closure ╪ᴝ╙ ͙ ḙ╖ᴛ ╪∟▫ ḓ ἐ  ѻ ∟▫ 

͙ ⁄ ̕  2  ♬ ҵ ̯ Ἓ ḹ ╙ Boltzmann-Curtiss⇔ҿ Ḣ♬ᾏ╖ᴛṨ  ┬ҵ ѻ. 

─Ữ ̑ʼ⁄Ἄ╥ ẋἐ  ˺  ̯Ἓ ́̕ᾏ⁄ ̕  Topologyᵑ   ,  ḓ ἶҵ 
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♣Ѿᵆ₮ ˉ╘ ͙ṕ ᵒ╥ ˿↕⁄ ҍ  ṪἍ ѻ. ѻ╛╖ᴛ ѻ∟▫ ͙ ╥ ♣ ẋ  

 ̓ᵑ ˆⱳ ͙ ─  ѻ∟▫ ͙ ⅝אַ ╥  ӎ ʺּת ẋ  Ữ( ˶  ϿṨ 

̯ⱳ₮ ₮ᵆ ϿṨ╥ ἶҵ ♣Ѿ) Ợ╪╥ ˆ  Ữ  ▬↔╙ ╪ᴝ ḓ ♣ụ́ụ╙  

ṪἍ ѻ. 

֞  ṕ ⁷̯⁄ἌѤ ᶀ♇ 1 ∟̓ 2 ∟╥ Riemann ʊ Ⱡ ᵑ ̯ ͙ ─  Euler 

ᾎᾅ ⁄ Ṭ⁷ἶ Galerkin (DG) ḹ╙ ♠↔ ₄ѻ. ╪ ᾡ̇ἐ ᾎᾅ ╥ ͙ ṕ ̯ ⱳ (♪ ᶔ, 

Ṭ⁷ἶ ˶ , )ᵑ ὡ ♠╖ᴛ ⁷̯ ₄ѻ. ᾐ DG ͙ ḹ╘ Euler Ḣ♬ᾏ╙ Ѥ 

ҥ Ἓ̑ ᵣ, Euler Ḣ♬ᾏ╥ ҉Ἓ╘  Ữתּ ⁄ ♬Ӈḃᴛ ẋ  ┬ҿ⁄Ѥ 

┬  .Ώѻ תּ

ẋ  ͙  ┬ҿ╙ ṪἍ ͙ ─  1  NF₮ 2  Boltzmann-Curtiss Ḣ♬ᾏ╙ ͙ 

─  Mixed ͙ḹ ͙ḙ╥ Ựᴛ⇔ DG ͙ḹ╙ ˌḛ ₄ѻ. ́ụ ᶛҨ╥ ♬ ҵ⁄ ̕  

ꜙ ˺♬╘ ˤּש╥  ˶  ˤ ᵑ  ὡ ▓ѻ. 1  ḓ 2  Boltzmann-Curtiss ╙ 

ᶛҨ╙ ѻ‚  ᶷⱠ⁄ ♠↔  ѻ╛ DSMC╥ ́ụ̓ ᾒ  ˺̓₮ ẋ̪ ₄ѻ. DG ḹ╙ 

♬Ữ Ữ  ḓ ẋ♬Ữ Ữ ╥ ╪ ┬ҿ ᶷⱠ, ṒⱵḹ ╥ Smooth ḓ Stiff ᶷⱠᵑ ҍ  

ˤּש ₄ѻ. ṒⱵ♠, ẋṒὡ♠╬ ṉὡ╥ ʕ ─ ⁷̯ᵑ שּ  ˶  ̯ ⱳ⁄ ҍ  1  ḓ 2 

 Boltzmann-Curtiss ɒ Ҩ╥ Ἅ ᵑ ̆ ᴎ ₄ѻ. ѻ‚  Limiter, ὡ  Flux ὡ, ˿ ́ 

ⱳˠ╥ ὡ  ̯  ͙ḹ╙ ⅝– ₄ѻ. 

֞  ▐╥╥ ͙ ♠ Ữ⁄ ♠↔╪ ʺѫ  Ừ ∟ Maxwell ḈϚᴀ ḓ 

Smoluchowski ₣ҵ ♩  ˿ ́ ⱳˠ╙ ̩ ḛ ₄ѻ. 2  Boltzmann-CurtissᶛҨ⁄ ͙  

̯Ἓ ́̕ᾏ⁄Ἄ Ϯ ϮѤ ẋἐ  ╛ ὡ ╥ ҍὡ Ḣ♬ᾏ╙ ═♠╬ ́ụ Ѥ 

Ḣḹ╙ ͙ὥ ₄ѻ. 
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1  NF₮ 2  Boltzmann-Curtiss ͙ ḙ Solver╥ ́ụ ẋ↔╙ ֹוᴑ ḓ Ṏᴑ  

ᾎᾅ ⁄ ҍ  ṪἍ ₄ѻ. 2  Boltzmann-Curtiss ͙ ḙ SolverѤ ḙṓ ὡ ͙ḹ⁄Ἄ 

Ϯ ϮѤ ḙṓ ὡʺ ┬ҿ Ἓ̓ ⁸♠ ẋ ҵ⁄ ӻג Ҁ͙תּג ԅᶷ⁄ ́ụ ˶▫ 

ὡ⁄ ҍ  ẋἐ  ˞ ҿ╙ Ϯ Ͽ‴ѻ. ˺ ᴝ♠╖ᴛ Ḗ ḓ χ ╪ ᴛ ᾅ ▀ ͙ ⁄ ̕  

2  ♬ ҵ Boltzmann-CurtissᶛҨ ͙ḙ╥ ẋἐ  ˺  ̯Ἓ ́̕ᾏ⁄ ҍ  Ṭ⁷ἶ 

Galerkin ӥѤ  Ṏᴑ Ἓ╙ Ṓ⁴ל‴ѻ. 
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Chapter 1. Introduction  

 

"Thinking should become your capital asset, no matter whatever ups and downs you come 

across in your life."                                                           

                                                                                         - A.P.J Abdul Kalam (1931-2015)  

 

 

1.1 Objective 

When the flow deviates from equilibrium state, the classical continuum description of 

fluid may not provide accurate information about the flow. Hence, application of kinetic 

theory, Boltzmann-Curtiss kinetic equation, or methods based on simplified kinetic theory 

are necessary to describe the flow with an acceptable level of accuracy. This work is 

motivated to elaborate the diatomic and polyatomic gas flows at equilibrium and far-from-

equilibrium states using classical and non-classical constitutive relations derived from the 

Boltzmann-Curtiss equation kinetic, so-called Boltzmann-Curtiss based models. The 

Boltzmann-Curtiss based models considered in the present study are derived from Euôs 

hydrodynamics equations [1-6]. The resulting highly non-linear partial differential 

equations are solved using advanced mathematical and computational methods. 

Along with the aforementioned objective, an attempt is made to describe the 

computational schemes used for solving Boltzmann-Curtiss based models at a deep level. 

Accordingly, detailed information on the development of a modal DG method for one-, 

two-, and three- dimensional systems and application of various boundary conditions are 

provided. As the DG method is still under development and most of the available books on 

this topic focus on the mathematical aspect, I aim to provide a self-contained material with 

a comprehensive explanation on both numerical and mathematical aspects of the DG 

methods to help researchers in the development of advanced high-order numerical schemes. 
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1.2 Contents of the thesis  

This thesis is organized into following chapters. In Chapter 1, the objective of the 

present thesis and its contents are presented. Chapter 2 covers the fundamental of the 

kinetic theory including the classification of flow regimes, bulk viscosity with its 

applications, definition of microscopic and macroscopic properties based on density 

distribution, description of Boltzmann kinetic equation as well Boltzmann-Curtiss kinetic 

equation and Direct Simulation Monte Carlo (DSMC) method. In Chapter 3, derivation of 

Boltzmann-Curtiss based constitutive models, numerical methods for solving algebraic 

constitutive relations, and the description of the physical phenomena of the Boltzmann-

Curtiss constitutive models are delivered.  

In Chapter 4, development of the modal discontinuous Galerkin methods for one-

dimensional, two-dimensional, and three-dimensional systems is presented. A summary of 

available high-order CFD methods and categories of spectral methods is reviewed. Later, 

the efficient discretization of a problem in space and time based on discontinuous Galerkin 

formulation is discussed in detailed. Also, a detailed explanation of the discretization of 

inviscid and viscous flux functions, implementation of various boundary conditions as well 

as positivity preserving and Berth Jespersen limiters are provided.  

In Chapter 5, solutions of zero- and first-order Boltzmann-Curtiss based hydrodynamic 

models for multi-dimensional problems are provided using a modal DG method. Various 

benchmark problems are solved, and their numerical results are compared with experiment, 

exact and other numerical solutions. In Chapter 6, the modal DG Solver is employed for 

solving the second-order Boltzmann-Curtiss based hydrodynamics model for one-

dimensional and two-dimensional rarefied and microscale gas flow problems. And, the 

numerical results are compared with exact, experimental and DSMC method. Chapter 7 

deals with the solution of the second-order Boltzmann-Curtiss based hydrodynamic model 
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for three-dimensional flow problems, and results are compared with experimental data. 

Chapter 8 provides detailed information on parallelization of DG solvers using single program 

multi data (SPMD) parallel programming methods. The computational costs of both solvers 

using serial and parallel solvers based on Boltzmann-Curtiss models are discussed. Finally, 

Chapter 9 summarizes all the important findings from the present research work and proposes 

an outlook on further research works. The basics of vector and tensor theory, derivation of 

conservation laws and constitutive equations, three-dimensional form of second-order 

Boltzmann-Curtiss based constitutive equations, quadrature rule for numerical integration, a 

flow chart of developed in-house 3D-DG solver and basics of aerodynamics theory are 

provided in appendices, followed by a list of references. 
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Chapter 2. Basics of gas kinetic theory 

       

"Imagination is more important than knowledge."        

                                                                                              - Albert Einstein (1879-1955)  

 

In this chapter, we first review the elementary gas kinetic theory of monatomic, 

diatomic and polyatomic (linear) gases and introduce the nonequilibrium phenomena and 

bulk viscosity. Then, we shall discuss the classical Boltzmann-Curtiss kinetic equation, 

which is the fundamental governing equation for processes in dilute gases. We will  also 

discuss one of its direct consequences and standard method ð the direct simulation Monte 

Carlo (DSMC) method. Also, we shall deal with the moments of Boltzmann-Curtiss kinetic 

equation.  

2.1 Gas flow regimes classification 

2.1.1 Flow regimes based on Knudsen number 

   The study of nonequilibrium gases has been treated as a fundamental and challenging 

research topic in last few decades. The flow of gases at high altitudes, in porous media, in 

microscale thermo-fluidic devices, in vacuum technology and microelectromechanical 

systems (MEMS) are of great importance due to their tremendous technological and 

scientific applications [7, 8],  thereby requires a very good understanding of gases in non-

equilibrium conditions. The major indicators of nonequilibrium in above cases are high 

Mach and high Knudsen numbers. Mach number (M) can be defined as the ratio of fluid 

flow speed and sound speed. The deviation of gases from its local equilibrium state can be 

characterized by Knudsen number (Kn) which is usually measured the degree of rarefaction 

[9, 10]. Typically it is defined as the ratio of the particle molecular mean free path ,meanl
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the average distance that a gas particle travels between successive collision,  to the 

characteristic length scale of flow L,  

.mean
mean

L

l
l =  

(2.1) 

Generally, the value of Knudsen number is served as the primary parameter to determine 

the degree of rarefaction and the degree of validity of Boltzmann-based models. Figure 2-1 

predicts the classification of gas flow regimes based on the value of the Knudsen number. 

 

Figure 2-1. Flow regime classification based on Knudsen number. 

Normally, the gas flow regime is characterized as continuum or hydrodynamics flow 

regime 3(for 10 ),Kn -¢  slip flow regime 3 1(for10 10 ),Kn- -¢ ¢ transition flow regime 

1(for10 10),Kn-¢ ¢ and free molecular regime(for 10)Kn² [11]. However, this 

classification has been used widely in gas dynamics community. It may not be suitable for 

categorizing gas flow regimes in natural form. Also, there is a requirement of at least two 

parameters for describing a gas flow in continuum fluid dynamics [12]. Therefore, the flow 

may be classified based on Reynolds number as well the flow velocity. In order to elaborate 

the gas flows in all flow regimes from equilibrium to highly non-equilibrium states, it may 

be re-categorized the flow regimes based on the level of deviation from the equilibrium 

state.  

2.1.2 Flow regimes based on Tsienôs parameter 

 In 1946, Tsien [13] suggested a Knudsen number based not on a typical body dimension 

L but the thicknessd of the boundary layer on the body. Thus  

0
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L
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.Knd
l

d
=  

(2.2) 

For a flat plate flow whose length L, the boundary layer thickness is related with Reynolds 

number ReL  defined as 

,Re ,Re Re.
Re

L

L L
d

r r d
d

m m
´ = = ´

u u
 

(2.3) 

 Here, ris the gas density, u is the bulk flow velocity, and mis the viscosity coefficient. 

Thus, the Knudsen number Knd based on the thickness d can be represented regarding 

freestream Mach (M) and Reynolds (Re) numbers: 

.
Re Re

M M
Knd

d

l

d
= = =  

(2.4) 

 

Figure 2-2. Flow regime classification based on Tsienôs parameter. 

The non-dimensional parameter ReM  may be referred as Tsienôs parameter. The flow 

regime classification based on Tsienôs parameter is illustrated in Figure 2-2. The larger 

value of Tsienôs parameter indicates a higher degree of rarefaction and a larger distance 

from an equilibrium state as shown in Figure 2-2. The flow regime classification based on 

Tsienôs parameter may be characterized as continuum flow regime for Re 0.01,M ¢ slip 
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flow regime for 0.01 Re 1,M¢ ¢rarefied flow regime for 1 Re 10,M¢ ¢ and free-

molecular flow regime for Re 10.M >  Tsienôs parameter reduces to the ordinary 

Knudsen number defined in Eq. (2.1) for free-molecular flow. 

2.1.3 Estimation of mean free path 

According to gas kinetic theory, the gas molecules move in a vessel with large velocities 

even at room temperature. These molecules are considered as particles having finite and 

small size. As a result, the molecules moving in the space of vessel containing it collide 

with each other. The collision between these molecules of a matter is known as a molecular 

collision. However, collisions are supposed to be elastic.  

The gas molecules are constantly moving in all directions at various speeds. They 

frequently collide with each other. Therefore, their speeds and directions change. Since 

these molecules exert no force upon one another except at collision, they move in straight 

lines with constant speed between two successive collisions. So, the path of a single 

molecule is a series of short zig-zag paths of different lengths. These are called the free 

paths of the molecule, and their mean is called mean free path. Hence, the mean free path 

meanl is the average distance travelled by a molecule between two successive collisions with 

other molecules.  

For an ideal gas, the mean free path meanl  is a function of number density n (molecules 

per unit volume), and the size of molecules d (d being the diameter of the molecule):  

2

1
.

2
mean

n d
l

p
=  

(2.5) 

The relationship between pressure p, temperature T, and the number density n is defined as  

,Bp nK T=  (2.6) 
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where BK  is the Boltzmann constant which is ratio of gas constant gasR  and Avogadro 

number AN  i.e. 

A

.
gas

B

R
K

N
=  

(2.7) 

Using the relations (2.6) and (2.7), the mean free path can be represented as 

2
.

2

B
mean

K T

d p
l

p
=  

(2.8) 

2.2 Thermal nonequilibrium phenomena and bulk viscosity  

2.2.1 Thermal nonequilibrium phenomena  

A gas particle can have various energy modes, including translational, rotational and 

vibrational modes. A translational mode is described by the random motion of gas particles. 

In addition to a translational mode, diatomic and polyatomic gas particles can also possess 

an internal mode, due to the rotation of atoms around an axis, as well as the vibration of 

atoms along an inter-nuclear axis. The internal modes of diatomic and polyatomic gasesð

the rotational and vibrational modesˈare closely related to thermal non-equilibrium.  

The rotational energy is easily excited at room temperature and ubiquitous across whole 

flow conditions. However, in many gas flow problems, the rotational non-equilibrium 

effect can be neglected because the relaxation time of rotational energy is extremely short 

and the equilibrium of rotational mode is usually easy to reach. In the other word, the 

rotational non-equilibrium effect become important when the flow problem is relevant to 

small time scale which is comparable to the relaxation time of rotational energy. The effect 

of vibrational non-equilibrium becomes relevant only in gas flows where the temperature 

is greater than the vibrational excitation temperature; for example, 1000°K. For this reason, 

in the study of diatomic and polyatomic gases, the excitation of vibrational degrees of 

freedom is usually neglected. 
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The rotational non-equilibrium effect can be simply accounted for by introducing the 

excess normal stress associated with bulk viscosity.  The so-called bulk viscosity has a long 

history, not only in compressible gas dynamics, but also in fluid dynamics in general. For 

example, the two-century old Navier-Stokes-Fourier equation (called NSF hereafter) is 

considered to be the de facto mathematical equation for every possible flow problem, 

including compressible gas dynamics. The NSF theory is built upon a critical assumption 

of the constitutive equations, introduced by Stokes [14] in 1845, that the bulk viscosity 

vanishes, 

2 2
0,  equivalently .

3 3
bulkm l m l m¹ + = =- 

(2.9) 

Here ,  and bulkm l m represent the bulk viscosity, the second coefficient of viscosity and 

the shear viscosity of the fluid, respectively. The Stokesôs hypothesis, mathematically 

expressed as (2.9), assumes that the dilatational term ( )ÐÖu  plays no role in the level of 

the constitutive equation of viscous stress, even though it may play a significant role in the 

level of conservation laws in general, like compressible gas flows.   

Further, the origin of bulk viscosity is often attributed to pure phenomenological 

observation, such as interpreting it as the dissipation mechanism during a change in volume 

at a finite rate, rather than resorting to a fundamental microscopic kinetic theory. 

While the Stokesôs hypothesis is certainly legitimate in the case of monatomic gases 

like argon, there is ever increasing evidence that now indicates that this is not the case for 

non-monatomic gases [15-17] ðlike nitrogen (or air), methane, and carbon dioxideðthat 

are far from local thermal equilibrium. Examples of such cases include the inner structure 

of strong shock waves, hypersonic entry into the Mars atmosphere, which consists mostly 

of carbon dioxide, the effects of bulk viscosity on the stability of the early universe, and 

the bulk viscosity of suspensions [18-20]. 
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It should also be noted that from room temperature acoustic attenuation data, the bulk 

viscosity for carbon dioxide is known to be three orders of magnitude larger than its shear 

viscosity, indicating it has a highly dispersive nature which is dependent on frequency. In 

fact, in a recent experimental study [15] in 2016 on the role of dilatational (longitudinal 

acoustic) waves in a second-mode instability in the laminar-to-turbulence transition in 

hypersonic boundary layers, it was observed that, for a real diatomic gas, the growth and 

decay of the second mode is accompanied by a dilatation process which leads to about a 

50% increase in dilatation dissipation, in comparison with the Stokesôs hypothesis. 

2.2.2 Bulk viscosity derivation from conventional theory 

Consider a constant velocity field without the gravity. In this situation, the stress tensor 

s is independent from position vector r , and the fluid possesses neither the shearing 

motion nor the shear stresses. Therefore, the stress tensor s can be written [21, 22] as 

constant .=( )Is  (2.10) 

Since the normal stress is independent of an orientation of the surface that is given by 

normal vector n. This is the case for the stress due to the hydrostatic pressure p, which 

varies with r but not with n. Then, Eq. (2.10) can be written as 

.p=-Is  (2.11) 

Here, by convection, compressive stress is negative here producing the minus stress. A 

fluid motion with a nonzero velocity gradient will possess normal stresses that are not equal 

to the negative of the hydrostatic pressure. We now subtract the hydrostatic pressure term 

from s to obtain the viscous stress tensort, 

( ) .p p= - - = +I Is st  (2.12) 

The viscous stress tensor t is nonzero only if the fluid possesses a non-zero relative 

motion.  It can be related to the rate-of-strain tensor (rate-of-deformation tensor). Any 
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second-order tensor can be written as the sum of symmetric and antisymmetric tensors. 

Then the velocity gradient Ðu  can be written as 

.Ðu = +e w (2.13) 

The symmetric tensor e called the rate-of-strain tensor, is given by 

( )
1 1

,
2 2

T ji
ij

j i

uu

x x
e

å õµµè ø= = Ð + Ð = +æ öæ öê ú µ µç ÷

u ue  
(2.14) 

while, the anti-symmetric part of Ðu  is the rotation tensor denoted by w, 

( )
1 1

.
2 2

T ji
ij

j i

uu

x x
w

å õµµè ø= Ð - Ð = -æ öæ öê ú µ µç ÷

u uw=  
(2.15) 

Thus Eq. (2.13) can be written as 

d d .Ð Ö Öu = r + re w (2.16) 

Eq. (2.16) is associated with a solid body rotation and does not contribute to the viscous 

stress tensor t.  This means that t can only depend on the rate-of-strain tensor e. This 

tensor, however, is symmetric with six independent components. These components can 

be further subdivided into those producing a shearing motion and dilatation strain.  This 

later strain is given by the trace of e i.e. 

Tr ( ) .iie= =ÐÖue  (2.17) 

For Newtonian fluids, two assumptions are consideredðone is linear relation between t 

ande, and second is isotropic condition (assumptions of linearity and isotropy). Each 

tensor t has nine scalar components. The linear assumption means that each t 

component is proportional to the nine components of e. Hence, there are 
43 81=  scalar 

coefficients that relate two tensors. These coefficients are the components of a fourth order 

tensor. With a subscript notation, the linear relation is given by 

,ii ijmn mnCt e=  (2.18) 

 where ijmnC  is called the fourth-order viscosity coefficient tensor. The most general form 

of an isotropic fourth-order tensor is given by 
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A B C ,ijmn ij mn im jn in jmC d d d d d d= + +  (2.19) 

where, A, B, and C are only coefficients remaining out of the original 81. Then relation 

(2.18) can be written as 

( )A B C

A B C .

ij ij mn im jn in jm mn

ij mn ij ji

t d d d d d d e

d d e e

= + +

= + +
 

(2.20) 

Since e is symmetric, this further simplifies to  

( )
( )

A B C

A B C .

ij ij mn im jn in jm mn

ij mn ij

t d d d d d d e

d d e

= + +

= + +
 

(2.21) 

Now introducing the notation mand l for the first (shear) and second viscosity 

coefficients respectively: 

( )
1

B C , A.
2

m l= + = 
(2.22) 

Therefore, the relation (2.21) becomes 

2 ,ij ij mm ijt ld e me= +  (2.23) 

which can be written in tensor form as 

( )2 .m l+ ÐÖu It= e  (2.24) 

From the relations (2.12) and (2.24), we have 

( ) 2 .p l m- + ÐÖ +u Is = e (2.25) 

This relation can be written in Cartesian form as 

.
ji k

ij ij ij

j i k

uu u
p

x x x
s d m l d

å õµµ µ
=- + + +æ öæ öµ µ µç ÷

 
(2.26) 

We emphasize that these equations are restricted to the Newtonian fluid. In case of 

incompressible flow, = 0ÐÖu  i.e., there is no role of second viscosity coefficient l in an 

incompressible flow. For describing the role of l for a compressible flow, we define the 

mean pressure P  as the negative one-third of the sum of the trace of stress tensor s i.e.  

( )11 22 33

1 2
,

3 3
bulkP p ps s s l m m

å õ
=- + + = - + ÐÖ = - ÐÖæ ö

ç ÷
u u  

(2.27) 

where the bulk viscosity coefficient bulkm is defined as 
2

.
3

bulkm l m¹ +  Replacing the value 

of l in term of bulkm  Eq. (2.24) becomes 
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[ ]() ( )2
2 ,bulkm mÐ + ÐÖu u It=  (2.28) 

where [ ]()2Ðu represents the traceless symmetric part of Ðu defined by 

[ ]() ( ) ( )2 1 1
.

2 3

Tè øÐ = Ð + Ð - ÐÖ
ê ú

u u u u I  
(2.29) 

 The term t also known as rate-of-shear tensor provides the viscous stresses associated 

only with a shearing motion. Consequently, the bulk viscosity term provides the viscous 

stresses due to the dilatational motion. The shear and dilatational stresses are caused by the 

attractive and repulsive forces between molecules and the collision relaxation of the 

rotational and vibrational energy modes of polyatomic molecules, respectively.  As can be 

seen from Eq. (2.28), the viscous tensor has an isotropic part and a deviatoric part.  By 

recalling decomposition (2.25), we get the following expression for the complete stress 

tensor, 

( )( ) [ ]()22 .bulkp m m- + ÐÖ + Ðu I us =  (2.30) 

2.2.3 Physical interpretation  of bulk viscosity 

The physical interpretation of the bulk viscosity in a gas flow is associated with the 

relaxation of internal, rotational and vibrational, modes of polyatomic molecules. It is well 

known from kinetic theory and experiments that bulk viscosity is zero for a monatomic gas 

[23]. At room temperature, diatomic gases such as 2 2O , N ,CO, and NO, are fully excited 

rotationally but possess negligible vibrational excitation.  As a consequence, only rotation 

contribution to ,bulkm  and the bulk viscosity ratio bulk bulkf m m¹  is of unity order i.e. 

().bulkf O m¹  The number of collisions required for rotational energy equilibration is 

about 4 or 5, whereas vibrational energy relaxation typically requires thousands of 

collisions. Consequently, when the vibration mode(s) is partly or fully excited,bulkf  is large 

compared to unity. For example, at room temperature, 2CO has a value of about 2000 [24].  
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The magnitude of this difference between rotational and vibrational relaxation is justified 

by the kinetic theory [25]. The physical interpretation for the bulk viscosity in dense gas 

or liquids are different from that of a simple molecular collision relaxation process.  For 

instance, the bulkm  is proportional to the r at relatively large density values [26]. 

 

Figure 2-3. Physical paramters of monatomic, diatomic and polyatomic gases. 

Physically, the bulk viscosity provides a damping of volumetric vibrations such as 

might occur during sound absorption. In fluid dynamics, bulk viscosity which plays a 

central role is related to the number of collisions or time, required for the molecules to 

achieve internal, vibrational and rotational equilibrium. In present work, we only focus on 

the rotational contribution to the bulk viscosity. In traditional fluid dynamics theory, the 

rotational modes of energy are always considered in equilibrium with the translational and 

completely neglects other internal energy modes. Although there is voluminous literature 

in gas dynamics and fluid mechanics for the description of transport properties like shear 

viscosity and specific heat, there is no significant data for the bulk viscosity. A few 

theoretical and experimental explanation for bulk viscosity has been done [17, 24, 27-32]. 



 

15 

 

These studies are limited to some specific molecules and temperature ranges. The data 

available in the literature of bulk viscosity of ideal gases tells us that the bulk viscosity 

ratio bulkf  has a variation in temperature and usually has a local maximum. It may be noted 

that the bulk viscosity treatment has been the subject of controversy for quite some time 

[16, 32, 33].  

2.3 Microscopic properties 

2.3.1 Basic molecular properties 

A gas molecule can be described based on three molecular parametersðmolecular 

mass m, molecular velocity v, and effective molecular diameter d [1, 34]. The molecular 

velocity v is the sum of bulk velocity u and peculiar velocity C, i.e., .= +v u C  There are 

several quantum energy states 
dofz  in a molecule based on the internal degrees of freedoms 

of the molecule, 

3 ,dof

mN Nz = -  (2.31) 

where 
dofz is the degree of freedom, N is the number of gas molecules and mN  is the 

number of independent relations among molecules. For instance, a monatomic gas 

molecule has 3 degrees of freedom( 3)dofz = , since it has only one molecule (N = 1) and 

there is no independent relation i.e. 0.mN =  For a diatomic gas molecule, 5,dofz =  since 

the diatomic gas molecule has 3 translational and 2 rotational degrees of freedom. In case 

of polyatomic gas, 7dofz = . The total energy of a system can be written as the sum of 

kinetic, internal and potential energy, 

total kinetic internal potential,E E E E= + +  (2.32) 

and the specific energy defined as the energy density per unit mass is given as  

total kinetic internal potential.= + +  (2.33) 
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The specific energy and total energy are related through the relations 

total total

V

dV.E r=ñ  (2.34) 

The kinetic energy of the molecule moving at velocity u is given by: 

2

kinetic

1
.

2
E m= u  

(2.35) 

The potential energy is the energy generated due to external forces acting on a unit mass; 

it is realistic to assume that potential energies are conservative and they are negligible since 

the external forces were usually neglected. On the other hand, the internal energy is 

generated due to the inter-molecular interaction of the substance, and it can be split into 

the lower level of energy states; translational, rotational, vibrational, electrical energy 

states. The internal energy modes are defined as a summation of various internal states; 

internal translational rotational vibrational.
dof dof dof dofz z z z= + +  (2.36) 

The translational energy of a gas molecule is defined by  

2

translational

1
.

2
E m= v  

(2.37) 

The rotational energy of a gas molecule is defined by 

2

rotational

1
,

2
fE Iw=  

(2.38) 

where fw  is the angular frequency of rotation about one of the axes, and I is the moment 

of inertia of the molecule about its center of mass, given by  

2 21 2

1 2

,mass

m m
I r r

m m
m

å õ
= =æ ö

+ç ÷
 

(2.39) 

where 1 2,m m  are the masses of the atoms that form the molecule, r is the atomic separation, 

and ( )1 2 1 2mass m m m mm = +  denotes the reduced mass of the molecule. The magnitude of 

the moleculeôs angular momentum about its center of mass is represented by  

,fL Iw=  (2.40) 
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which classically can have any value. According to Quantum mechanics, the angular 

momentum of the molecule has the value 

( )1 , 0,1,2,3......L J J J= + =  (2.41) 

where J  is an integer called the rotational quantum number and ,
2

h

p
=  h being the 

Planck constant. Combining the Eqs. (2.38), (2.40), and (2.41) the rotational energy of the 

molecule is given by 

( )
2

2

rotational

1
1 , 0,1,2,3......

2 2 2
f

L
E I J J J

I I
w= = = + =  

(2.42) 

The vibrational energy of a gas molecule is given by 

vibrational

1
, 0,1,2,3....

2
vibE hfu u

å õ
= + =æ ö
ç ÷

 
(2.43) 

Here, u is an integer called the vibration quantum number, and vibf  the frequency of 

vibration for the system is defined by 

1
,

2

spring

vib

mass

k
f

p m
=  

(2.44) 

where springk  is the effective spring constant.  

2.3.2 Gas properties 

For an ideal gas, the temperature is related to the pressure p and densityrby the ideal gas 

law:  

,gasp R Tr=  (2.45) 

while, the internal energy of the gas is simply function of temperature only, i.e. 

()internal internal ,E E T= which is defined by 

internal ,vE C T=  (2.46) 

where, vC is the specific heat at constant volume. The gases that obeys Eqs. (2.45) and 

(2.46) are called calorically or thermally perfect gas. The specific enthalpy of the gas is 

defined by 
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,ph C T=  (2.47) 

where pC is called the specific heat at constant pressure. By the ideal gas law results: 

.p v gasC C R- =  (2.48) 

The equation of state of a polytropic gas turns out to depend only on the ratio of the specific 

heats: 

.
p

v

C

C
g=  

(2.49) 

In terms of internal degree of freedom, the specific heat ratio of a gas molecule can be 

defined as  

5 2
1 .

3 3

dof

dof dof

z
g
z z

+
= = +

+ +
 

(2.50) 

The mass of unit molecule and the ordinary gas constant can be defined as 

, ,
gas B

gas

A

W K
m R

N m
= =  

(2.51) 

where AN denotes the Avogadro number and gasW  is the molecular weight of the gas. The 

Prandtl number Pr can be calculated using Euckenôs formulation as  

4
Pr .

9 5

g

g
=

-
 

(2.52) 

The transport properties of a gas can be defined based on the models which are used for 

describing the inter-molecular potential forces. In case of power-law model which is a 

short-range repulsive inter-molecular model, the first coefficient of viscosity m and the 

thermal conductivitykcan be defined as 

( )( )2

, ,

15
with  ,

2 5 2 7 2

1 2
, .

Pr 2 1

s s

ref ref

ref ref

B ref

ref

ref

ref p

ref

T T

T T

mK T

d s s

C
s

m m k k

m
p

m
k

n

å õ å õ
= =æ ö æ öæ ö æ ö

ç ÷ ç ÷

=
- -

= = +
-

 

 

(2.53) 
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The s denotes the viscosity index and nrepresents the exponent of the inverse power law 

for the gas-particle interaction.  

2.3.3 Phase density distribution 

In kinetic theory, the state of a gas is described by a distribution function( ), ,f tv r   such 

that the number of particles in a phase space element, dvdr  at time t is given by 

( ), , ,dN f t d d= v r v r  (2.54) 

where, N is the number of molecules. The integration of ( ), ,f tv r  in phase space is equal 

to a number of molecules in the physical space: 

( ), , .f t d N

¤ ¤ ¤

-¤-¤-¤

=ñ ñ ñv r v  
(2.55) 

The phase density distribution function( ), ,f tv r  is the central quantity in kinetic theory.  

2.4 Macroscopic properties  

All the macroscopic quantities for diatomic gases can be obtained based on the phase 

density distribution function( ), ,f tv r . Therefore, in this section, several important and 

commonly used definitions in this thesis are defined for simplicity, clarity and helpful to 

readers. 

2.4.1 Density 

The density which is the first macroscopic variable is obtained as 

( ) ( ), , , ,m f t mf t dr
¤ ¤ ¤

-¤-¤-¤

= =ñ ñ ñv r v r v,  
(2.56) 

where the symbol ÖÖÖ represents the integration over v-space i.e.   

d

¤ ¤ ¤

-¤-¤-¤

ÖÖÖ = ÖÖÖñ ñ ñv  
(2.57) 
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2.4.2 Velocity 

Velocity or mass velocity, momentum density, and the mean peculiar velocity are 

represented as 

( ) ( )
1

, , , ,f t f t d
n

¤ ¤ ¤

-¤-¤-¤

= =ñ ñ ñu v v r v v r v,  
(2.58) 

( ) ( ), , , ,m f t m f t dr
¤ ¤ ¤

-¤-¤-¤

= =ñ ñ ñu v v r v v r v,  
(2.59) 

( ) ( )( )

( ) ( )

( )

, , , ,

, , , ,

, ,

m f t m f t

m f t m f t

mf tr r r

= -

= -

= - -

C v r v u v r

v v r u v r

u v r u = u u = 0.

 

 

 

 

(2.60) 

2.4.3 Temperature 

Generally, the thermodynamic temperature is known as temperature which can be defined 

based on the equation of states for an ideal gas (2.45), 

translational2
,

3gas gas

ep
T

R Rr
= =  

(2.61) 

where translationale  denotes translational energy density. Also, the temperature quantity can 

be written in terms of probability distribution function as 

( )22 1
, ,

3 2gas

T mC f t d
Rr

¤ ¤ ¤

-¤-¤-¤

= ñ ñ ñ v r v.  
(2.62) 

In case of diatomic and polyatomic gases, the temperature quantity can be measured for 

each state of the energy level as 

translational translational

translational

rotational rotational

rotational

vibrational vibrational

vibrational

2
,

3

2
,

3

2
.

3

dof

B

dof

B

dof

B

m
T e

K

m
T e

K

m
T e

K

z

z

z

=

=

=

 

 

 

(2.63) 
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The overall temperature value in non-equilibrium condition can be calculated on weighted 

averaging formulation as  

translational translational rotational rotational vibrational vibrational
overall

translational rotational vibrational

.
dof dof dof

dof dof dof

T T T
T

z z z

z z z

+ +
=

+ +
 

(2.64) 

It may be noted that the temperature specifies the collective thermal state of matter 

comprising the system and quantifies the physiological perception of coldness and hotness 

of the body [1]. It is a notion intimately connected with heat and its transfer between bodies 

in contact.  The temperature of a body is quantified if a thermometer is put in thermal 

equilibrium with the body in question. When the thermometer is standardized to a universal 

scale, the temperature of the body is given by an absolute temperature.  

2.4.4 Energy 

The macroscopic internal energy, total energy, and enthalpy for an ideal gas can be defined 

in thermodynamic equilibrium condition as 

internal internal ,vE e C Tr r= º  (2.65) 

( )

total kinetic internal potential

2

height

1
0 ,

2
v

E E E E

C T ghr r r

= + +

= + + =u
 

 

(2.66) 

2

total total

1
.

2
v

p p
H E C Tr r

r r
= + = + +u  

(2.67) 

The total energy can be determined through the probability distribution function as  

( ) ( )2 2

total

1 1
, , , ,

2 2
E m f t m f t d

¤ ¤ ¤

-¤-¤-¤

= =ñ ñ ñv v r v v r v.  
(2.68) 

The internal energy state can also be represented based on ensemble averaging and the first 

moment of single particle probability distribution functions as  

( ) ( )2 2

internal

1 1
, , , , .

2 2
rot rotE mC H f t mC H f t dr

¤ ¤ ¤

-¤ -¤ -¤

å õ å õ
= + = +æ ö æ ö
ç ÷ ç ÷

ñ ñ ñv r v r v  
(2.69) 
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2.4.5 Pressure tensor 

Pressure tensor, so-called stress tensor, is a flux tensor which expresses the transport of 

momentum by the motion of thermal (peculiar) velocity. As the momentum of thermal 

velocity is a vector quantity, the pressure tensor is a second rank tensor given by 

( ) ( ), , , ,m f t m f t d

¤ ¤ ¤

-¤-¤-¤

= =ñ ñ ñP CC v r CC v r v.  
(2.70) 

where C is the peculiar velocity. The pressure tensor P is decomposable into three 

components: hydrostatic pressure, excess trace part, and traceless part.  

( ) .p= +D +P I P  (2.71) 

Here, I is the unit second-rank tensor, p is the hydrostatic pressure, Dis the excess trace 

part (excess normal stress), and P is the traceless part (viscous stress tensor).  

2.4.6 Viscous stress tensor 

Viscous stress tensor can be defined as the traceless part of the symmetric pressure tensor. 

()[]
()21

Tr .
3

= - =P I P PP  
(2.72) 

It can be defined based on the moments of distribution function as 

[ ]
()
( ) [ ]

()
( )

2 2
, , , ,m f t m f t d

¤ ¤ ¤

-¤-¤-¤

= =ñ ñ ñCC v r CC v r v.P  
(2.73) 

Where [ ]
()2

CC denotes the traceless part of the thermal velocity production tensor CC  

defined in Eq. A.32 (Appendix A).  

2.4.7 Excess normal stress 

Excess normal stress D can be defined as the excess trace part of the symmetric pressure 

tensor P, 

()
1

Tr .
3

pD= - P  
(2.74) 

The statistical mechanical formula for  D is given as, 
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( ) ( )
1

Tr , , .
3

m p f t
è ø

D= -é ù
ê ú

CC v r  
(2.75) 

2.4.8 Hydrostatic pressure 

In kinetic theory, the hydrostatic pressure is convecntionally defined [35, 36] as 

()
1

Tr .
3

p=  P  
(2.76) 

However, this definition of hydrostatic pressure is not valid for all fluids since the stress 

tensor is a non-equilibrium quantity. Although the definition (2.76) is true in case of dilute 

gases (i.e., monatomic gas) and it provides zero bulk viscosity i.e. 0 or 0.bulkm = D= But 

this definition (2.76) is not true for dense fluids (for example, diatomic and polyatomic 

gases). Therefore, the hydrostatic pressure requires a more careful definition in kinetic 

theory. According to B.C. Eu [1], ñHydrostatic pressure is an isotropic average of the 

virial tensor over the local equilibrium distribution which in the case of a dilute monatomic 

gas is given by the formula 

( ) ( )01
Tr , , .

3
p m f t= CC v r  

(2.77) 

where ( )0 , ,f tv r  denotes the equilibrium distribution functionò. In case of dense fluids the 

virial tensor includes contributions from the intermolecular forces in addition to the kinetic 

part .mCC  

 

2.4.9 Heat flux vector 

Heat flux vector is a flux vector which expresses the transport of energy of all states of the 

molecules by the motion of thermal (peculiar) velocity. The heat flux vector for a diatomic 

and polyatomic gas reads as, 

( )

( )

2

2

1 Ĕ , ,
2

1 Ĕ , , .
2

rot

rot

mC H mh f t

mC H mh f t d
¤ ¤ ¤

-¤ -¤ -¤

è ø
= + -é ù
ê ú

è ø
= + -é ù

ê ú
ñ ñ ñ

Q C v r

C v r v

 

 

 

(2.78) 
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Here, Ĕh  denotes the enthalpy density defined by  

5Ĕ ,
2

B roth k T E
m

= +  
(2.79) 

with
rotE  for the average rotational energy density 

( ), , .rot rotE H f tr = v r  (2.80) 

 

2.5 Classical Boltzmann kinetic equation 

In kinetic theory, a gas is defined as a collection of many interacting particles. In such 

a microscopic scale where the collective dynamics of particles describes the macroscopic 

state of gas, an appropriate kinetic equation is required to precisely describe the underlying 

micro-dynamics.  

The Boltzmann kinetic equation that connects the regime of dynamics with that of 

thermodynamics has been a milestone in the development of theoretical physics. For 

describing the kinetics of gas, Boltzmann [37] introduced a probabilistic description for the 

evolution of a single-particle distribution which anticipated atomistic scattering concepts. 

Let ( ), ,f tv r  denotes the single particle distribution function where v, r , and t 

represents the particle velocity, position and time, respectively. The distribution function 

( ), ,f tv r  allows the probability of finding a particle in the range of d+v v v and 

d+r r r  at time t. At infinitesimally small time interval dt, the change in distribution 

function in small control volume dvdr  located at phase space ( ),v r  can be written as 

external ,v

f
f f d d dt

t

µå õ
+ ÖÐ + ÖÐæ ö

µç ÷
v F v r  

(2.81) 

where the higher-order terms of order ( )2O tD  are neglected and 
external

F denotes the vector 

of external force on unit mass; , v

µ µ
Ð¹ Ð ¹
µ µr v

. This expression (2.81) accounts for a 

change in probability distribution function due to the steaming motion of the particle in the 
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phase space. If there is no collision between molecules, the changes in the single particle 

distribution ( ), ,f tv r  can be interpreted by a single particle Liouville equation which is 

called the collision-less Boltzmann equation defined by 

( ), , 0.external

v f t
t

µå õ
+ ÖÐ+ ÖÐ =æ ö

µç ÷
v F v r  

(2.82) 

Single particle Liouville equation does not contract the information of the system but 

preserves the information. It describes the evolution of an incompressible probability fluid. 

However, in reality, the molecules collide each other and probability distribution function 

change inside the control volume of the phase space due to the inter-molecular collision. 

Therefore, it is required to find a relationship between the distribution functions ( ), ,f tv r  

and ( )2 2, ,f tv r   of the colliding molecules.   

The collision operator ( )2,C f f  is the Boltzmannôs lasting contribution to the kinetic 

theory which is not invariant to the time reversal. It connects the dynamics of the inter-

molecular collisions, the pre-collision-, and post-collision probability density functions such 

that the evaluation of the particle density function in time and phase space can be written as 

( ) ( )2, , , .external

v f t C f f
t

µå õ
+ ÖÐ+ ÖÐ =æ ö

µç ÷
v F v r  

(2.83) 

The collision operator ( )2,C f f  depends on the way of approximating the collisional 

effects, and the statistical assumptions were made regarding the correlations of the particles 

in a binary collision. Boltzmann derived a classical form for collision operator ( )2,C f f  

using Stosszahl ansatz approach, given by 

( ) ( )
2

2 2 2 2
0 0

, ,rC f f d d dbb f f ff
p

e
¤

¡¡= -ñ ñ ñv v  
(2.84) 

where 2 and f f  are the distribution functions of colliding molecules (and prime denotes the 

distribution functions after collision); b is the impact parameter of two-body collision 

between particles; e denotes the azimuth angle in collision plane which describes the 
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orientation of the collision plane; and 2r = -v v v  represents the relative velocity. Using 

Eqs. (2.83) and (2.84), the classical Boltzmann kinetic equation is given by 

( ) ( )
2

2 2 2
0 0

, , .external

v rf t d d dbb f f ff
t

p

f
¤µå õ

¡¡+ ÖÐ+ ÖÐ = -æ ö
µç ÷

ñ ñ ñv F v r v v  
(2.85) 

The Boltzmann kinetic equation is well-known in kinetic theory for monatomic gas such 

as Argon. It has been considered as a proper nonlinear equation for studying rarefied gas 

flows. It can interpret the inter-molecular collisions and can describe the statistical behavior 

of molecules. However, solving the Boltzmann kinetic equation directly is not an easy task, 

and usually, the analytical solution is limited to simple geometries due to the presence of 

the large number of independent variables in the equation, and the complexity and non-

linearity of the collisional term. 

2.6 Classical Boltzmann-Curtiss kinetic equation 

In 1981, Curtiss designed a thermodynamically consistent extension of the Boltzmann 

equation to dilute rigid diatomic gases which is known as namely, the Boltzmann-Curtiss 

kinetic equation [3, 38, 39]. The mathematical expression of this kinetic equation looks 

rather similar to the Boltzmann of monatomic gases, contains more terms about the 

molecular rotation. 

Consider the diatomic molecule having a moment of inertia I and an angular momentum 

j . The orientation of the angular momentum is specified by the polar angles q and f and 

its magnitude is defined by j. Since the orientation of the molecules is described by Euler 

angles ,  and a b g.Therefore, polar angles of angular momentum j  is chosen as 

, .a q b f= =  Also, =y g is the azimuth specifying the orientation of the molecule in the 

plane perpendicular to the j  vector. The unit vector of the body axis is denoted by  

Ĕ (sin cos ,sin sin ,cos )J j J j J=R with polar angles  and .J y  Then the Boltzmann-
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Curtiss kinetic equation for the diatomic molecule can be expressed with the presence of 

external force [3] as 

( ) ( )2+ , , , , , .r f t C f f
t

y
µå õ
+ ÖÐ =æ ö

µç ÷
v L v r j  

(2.86) 

Here, the subscript 2 refers to the second molecule; f represents the distribution function; 

v is the particle velocity; r is the particle position and rL  is the internal Liouville operator 

defined by  

( ) ,r B

j

I y

µ µ
= + ³ Ö
µ µ

L j
j

w  
(2.87) 

Where Bw  is the vector of angular frequency of precession of the angular momentum due 

to the presence of external force. The ( )2,C f f  denotes the collision integral of the binary 

interaction among the particles and it is given by the expression 

( )

( )( )

2 2 2 2

2 2 2 2

,

, , , ,

r r

r r

C f f d d d d d

v f f ffs

* * *

* * * *

¡= W W W ³

¡ -

ñññññv v v

v j j j j
 

(2.88) 

where the asterisk denotes the post-collision value; 2r = -v v v denotes the relative 

velocity, sind j dj d d dq q fW= g denotes the solid angle of scattering; ( )2 2, , , ,r rs * *¡v j j v j j

represents the collision cross section. In present work, it is assumed that there is no external 

force which leads 0.B =w Then the Boltzmann-Curtiss kinetic equation (2.86) can be 

expressed as  

( ) ( )2+ , , , , , .
j

f t C f f
t I

y
y

å õµ µ
+ ÖÐ =æ ö

µ µç ÷
v v r j  

(2.89) 

According to Curtiss, the distribution function f depends primarily on the free molecular 

constants of motion and it does not depend on azimuthal angle y i.e. on the phase of the 

rotational motion and depends only weakly on the coordinate r  so that one may neglect this 

dependence over distances of the order of molecular dimensions. The conservation laws of 
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conserved variables, and the evolution equations for non-conserved variables such as the 

stress vector, excess normal stress, heat flux, can be derived by defining the following 

velocity moments and then calculating their time derivatives with the help of the 

Boltzmann-Curtiss kinetic equation. 

 

2.7 Direct Simulation Monte Carlo method 

Monte Carlo (MC) method was initially served around sixty years ago to study statistical 

mechanics and to integrate highly nonlinear integrals statistically. Despite the fact that MC 

is a very powerful method, it cannot demonstrate the evaluation of a system. An alternative 

for studying the microscopic behavior of materials is to use the molecular dynamic (MD) 

method which is a deterministic approach [40, 41]. However, it is a very costly and it is 

usually being used for simulating very small scale problems such as nano-materials, nano-

tubes, and microsystems. Bird tried to overcome the difficulties in MD method by 

employing MC method inappropriate way [42]. As a result of that, the direct simulation 

Monte Carlo (DSMC) was introduced to study the molecular behavior of the rarefied and 

non-equilibrium flow [43].  

DSMC is inherently a probabilistic method in which a large number of real particles are 

represented by one simulated particle. The cost of DSMC simulation is considerably less 

than molecular dynamic method. The capability and the simplicity of the DSMC method 

persuade many researchers to utilize it as the standard solver for studying non-continuum 

gas flows. It has been used to study various applications, such as micro gas flows, material 

processing, acoustics, high-speed gas flows, and gas mixing [44-48].  

The conventional DSMC algorithms consider gases as a group of the finite number of 

particles and describe the phase of the system by calculating the position and velocity of 

the particles. The continuous motion and collision of the gas particles are discretized within 
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a small time step, æt, and they are described in two consecutive and decoupled steps: 

movement and collision. These stages are equivalent to the advection and the collision term 

of the Boltzmann kinetic equation, respectively. In each time step æt, the particles move 

based on their own velocities throughout the gas flow without considering the interaction 

with other particles. Subsequently, if any particle reaches a boundary, the proper action 

according to the type of boundary condition is taken into account, and the particle positions 

are updated. Afterwards, the collision step is simulated by utilizing a Markov process in 

the collision cell during a given time interval. Therefore, the collision pairs are chosen 

randomly from particles within the same collision cell, and the collision probability is 

calculated based on kinetic theory. Successful collisions are identified using acceptance-

rejection method, and finally, the post-collision properties are calculated regarding the 

employed inter-particle potential model.  

Generally, the movement phase is deterministic and does not involve any noticeable 

difficulties, while the collision phase is a probabilistic process. Collision process is 

composed of three important steps; counting the number of collisions, pair collision 

selection, and calculating the post-collision properties using inter-particle potential. In 

order to obtain an acceptable efficiency and accuracy in collision process, four features 

should be considered simultaneously: the computational efficiency, physical accuracy, 

reliability and implementing the collision step in the easiest way. Therefore, numbers of 

assumptions and simplifications should be taken into account. These assumptions or 

simplifications led to set up some requirements for physical parameters. For instance, time 

step should be selected small enough so that a particle just travels a fraction of collision 

cell length within a time step. The number of particles should be large enough to quantify 

the number of binary collisions among the particles during a given interval more accurately. 
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Finally, in order to minimize the statistical uncertainty and estimate the mean value of the 

estimators, the probability sampling process is added to the DSMC process [49, 50]. 

In fact, DSMC can be considered as a statistical solution of the Boltzmann equation in 

the case that the infinite number of particles are used and time step and grid size tending to 

zero [51]. However, Boltzmann kinetic equation cannot elaborate all aspects of DSMC 

approach [52]. The ability of the simulating the internal energy modes, chemical reactions, 

and thermal radiations make DSMC more interesting for researchers. The statistical 

behavior of DSMC brings the ability to model the real hydrodynamic fluctuations [53] in 

high-density conditions, although it can be considered as a drawback of the method due to 

produce undesirable statistical fluctuation in low-speed flow regimes. The biggest issue 

with DSMC method is that it is too expensive when the degree of non-equilibrium is low. 

This encouraged researcher to use moment-based methods for simulation of low speed or 

slightly deviated flows from equilibrium conditions.  

 

2.8 Moments of Boltzmann-Curtiss kinetic equation 

2.8.1 Collisional invariants 

The Boltzmann-Curtiss collisional integral (2.88) has a special property that it provides 

to a vanishing integral of a collisional invariant quantity. Consider the integral 

[] ( )2, ,I d C f fY = Yñv  (2.90) 

Substituting of the explicit expression for( )2,C f f  from Eq. (2.88), we get 

[]

( ) ( )

2 2 2

2 2 2 2, , , , .

r r

r r

I d d d d d d

v f f ffs

* * *

* * * *

¡Y = W W W ³

¡ Y -

ññññññv v v v

v j j j j
 

(2.91) 

Since subscripts are dummy indices, they may be interchanged, and the interchange leaves 

[]I Y  invariant. Then Eq. (2.91) can be written in the form 
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[]

( )( )( )

2 2 2

2 2 2 2 2

1

2

, , , , .

r r

r r

I d d d d d d

f f ffs

* * *

* * * *

¡Y = W W W ³

¡ Y+Y -

ññññññv v v v

v j j v j j

 

(2.92) 

 The collision process involved in Eq. (2.92) is ( ) ( )2 2, , .* *v v v v  On reversal of the 

collision process, we get 

[]

( )( )( )

2 2 2

2 2 2 2 2

1

2

, , , .

r r

rr r

I d d d d d d

ff f fs

* * * *

* * * * * * * *

¡Y = W W W ³

¡ Y +Y -

ññññññv v v v

v j j v j , j

 

(2.93) 

On adding both Eqs. (2.92) and (2.93) side by side and dividing the result by 2, we obtain 

[]

( )( )( )

2 2 2

2 2 2 2 2 2

1

4

, , , , .

r r

r r

I d d d d d d

f f ffs

* * *

* * * * * *

¡Y =- W W W ³

¡ Y +Y -Y-Y -

ññññññv v v v

v j j v j j

 

(2.94) 

If the quantity Yis conserved in collision, then 

2 2 0,* *Y +Y -Y-Y = (2.95) 

and the integral []I Y vanishes identically: 

[] 0.I Y =  (2.96) 

Such quantity is called a collision invariant. If the particles are structureless, there are three 

collisional invariants obeying the relations: mass, momentum, and energy.  

2.8.2 Conservation laws 

Since the collisional integral vanishes for mass, momentum, and energy of a molecule, 

it is easy to derive the conservation laws based on Boltzmann-Curtiss kinetic equation 

(2.89). Defining the macroscopic quantity 21
, ,

2
rotm m mC Hj

è ø
= +é ù
ê ú

u  and multiply it into 

Eq. (2.89) and integrating over velocity space. Then simplifying the equations by 

considering that j depends only on the particle position and time, i.e. ( ),tr  leads to the 

differential form of the conservation of mass, momentum, and energy as can be followed 

by Appendix B, 
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( ) ( )

0 0

0 .

0total total

p
t

E E p

r r

r r

r r

è ø è øè ø è ø
µ é ù é ùé ù é ù

+ÐÖ + +ÐÖ +D =é ù é ùé ù é ùµ
é ù é ùé ù é ù+ P+D Öê ú ê úê ú ê ú

u

u uu I I

u I u + Q

P  

(2.97) 

where totalE is the total energy; ,   and D QP  are the viscous stress tensor, excess normal 

stress and heat flux vector which are not defined still now. It must be emphasized that the 

conservation laws are the exact consequence of Boltzmann-Curtiss kinetic equation, and 

they are valid for all degree of non-equilibrium. Only after some approximation in the 

derivation of ,   and D QP , they become approximate.  In next chapter, non-conservative 

variables and the way to obtain an approximate constitutive relation for these variables are 

discussed in detail.  
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Chapter 3. Boltzmann-Curtiss based 

hydrodynamic models 

 

ñI believe all complicated phenomena can be explained by simpler scientific principles.ò   

-  Linus Pauling (1901-1994) 

 

In the previous Chapter, it was shown that the average of an extensive macroscopic 

quantity fj  could be obtained by taking the first moment of a distribution function times 

the microscopic quantity ().j v  It was shown that the conservation laws can be obtained 

from the moment of Boltzmann-Curtiss equation without extra efforts for solving collision 

integral. However, the conservation laws remain open until some expressions for non-

conserved variables are defined. In this chapter, it is assumed that the external forces are 

negligible and the gas consists of non-reacting diatomic molecules. The moment methods 

are applied to Boltzmann-Curtiss kinetic equation, and the extended hydrodynamic 

equations for non-conserved variables are derived. Afterwards, these exact but open 

equations are approximated based on Euôs closure, and Myongôs balanced closure and then 

various Boltzmann-Curtiss based models are obtained.  

3.1 The moment method 

The general evolution equation for non-conserved variables can be obtained by 

multiplication of Boltzmann-Curtiss equation (2.89) with () ()n
hj =v and subsequent 

integration over velocity space yields 

() () () () [ ]2, .
n n n nf j f

h h f h h C f f
t I y

µ µ
+ ÖÐ + =

µ µ
v  

(3.1) 
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Here the collisional term is not zero, and it is denoted by 
() () [ ]2, .
n n

h C f f=L  As we need 

to investigate over velocity, we have to convert the molecular velocity into peculiar 

velocity and then bring it together with distribution function f as 

()( ) () ()( ) () ()( )

() ()
.

n n n n n

n n

j
h f f h h f f h h f

t t I

j
f h

I

y

y

µ µ µ
- + ÖÐ - ÖÐ +

µ µ µ

µ
- =

µ

v v

L

 

(3.2) 

The Eq. (3.2) can be simplified as follows, 
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(3.3) 
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(3.7) 
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µç ÷

å õµ µ
- + ÖÐ+ ÖÐ+ =æ ö

µ µç ÷

u u C

u C L

 

(3.8) 

Using the definition of substantial time derivative, we have  
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() () () ()
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D D j
h f h f h f f h
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(3.9) 

Using the mass conservation law, the general evolution equation (3.9) becomes 

()

() () ()
.

n

n n n
h fD D j

h f f h
Dt Dt I
r

r y

å õ
å õµæ ö+ÐÖ - + ÖÐ+ =æ öæ ö µç ÷

ç ÷

C C L  

(3.10) 

This general evolution equation can be written [3, 39] as 

() () () ()Ĕ ,
n n n nD

h
Dt
r +ÐÖ -Z =Y L  

(3.11) 

where ()
,

n
Y the flux of  

()n
h f , denotes the high-order moments, 

()n
Z  represents the 

kinematic term arising from hydrodynamic streaming effect and 
()n
L  is the dissipation 

term which accounts for energy dissipation accompanying the irreversible process. These 

terms are defined by 

()

()

() ()

() ()

() () [ ]2

Ĕ , ,

,

, .

n

n n n

n n

n n

h f
h h f

D j
f h

Dt I

h C f f

r

y

= =

å õµ
Z = + ÖÐ+æ ö

µç ÷

=

C

C

Y

L

 

 

 

(3.12) 

As we are interested in derivation of first few leading high-order moment equations, letôs 

set the molecular expression to be equal to the definition of viscous stress tensor, excess 

normal stress and heat flux vector, such that 
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(3.13) 
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Using the general evolution equation (3.11), and the respectively molecular expression 

(3.13), the constitutive relation for shear stress tensor, excess normal stress and heat flux 

vector can be obtained (see Appendix C) as,  

() ( )[ ]
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[ ]
() ()2 2

2 2 ,
D

p
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r

å õ
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(3.14) 
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(3.16) 

The conservation law introduced in Section (2.8.2), together with extended hydrodynamics 

equations can be written in a complete and compact form,  
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(3.17) 

Here ( ) ( ) ( ), , andP DÐÖ ÐÖ ÐÖQY Y Y are the higher-order moment terms with the thermal 

velocity that can be seen from Eq. (3.12). It is clear that the higher-order moment terms 

and the intergo-differential collisional terms are not yet defined properly appearing in Eq. 

(3.17), therefore, these moment equations are still open. While there are several ways to 

close this system, we are going to use Euôs closure for closing this system of equations.  
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3.2 Euôs generalized hydrodynamic equations  

In Euôs theory [1], the kinetic theory of fluids is intimately connected to irreversible 

thermodynamics. The second law of thermodynamics is employed as a guiding principle 

for studying the fluid motion and in particular, in high thermal non-equilibrium state. The 

beginning point of this method is the balance equation for the calortropy ĔY, which is 

different from the Boltzmann entropy,  

( ) ( ) ( )Ĕ , ln , , , , 1 , , , , .c

Bt k f t f tr y yè ø=- -ê úr v r j v r jY  (3.18) 

Here the non-equilibrium canonical distribution function cf represents the 

thermodynamic branch of the solution of the Boltzmann-Curtiss kinetic equation f. By 

differentiating the local calortropy densityĔY  with time and combining it with the 

Boltzmann-Curtiss equation, the following equation can be obtained: 
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where [ ]2ln , .c

c Bk f C f fs¹-  According to Euôs theory [3], the nonequilibrium 

canonical distribution function for diatomic gas can be expressed in the exponential form 
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where, Normalizedm is the normalization factor defined as 
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where C is the peculiar velocity of the gas particle defined by ,= -C v u  where v and u 

being the particle velocity and the average bulk velocity, respectively; n is the number 

density; T is the temperature; rotH denotes the rotational Hamiltonian of the molecule; m 

is the molecular mass; BK  is the Boltzmann constant; and ()
,

n
X unknown macroscopic 

quantities, are the conjugate variables to the molecular expressions for moment, 
()

.
n

h In 
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physical perspective, this exponential form is the only form that satisfies the additive 

property of the calortropy and calortropy production, all of which are in the logarithmic 

form. On the other hand, in mathematical perspective, it guarantees the non-negativity of 

the distribution function regardless of the level of approximations. It may be noticed that 

the number of moments goes to infinity as shown in Eq. (3.20).  This is in contrast with 

common practice in considering only the first 13th moments for monatomic gas and the 

first 14th moments for diatomic as well as simple polyatomic gases from the outset in the 

formulation of the theory.  For simplicity, after dropping the superscripts c in the 

distribution function, it may be written in short notation for the exponent [54] as 
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With further introducing of notations and dimensionless variables  
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The calortropy production can be expressed as  
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or simply 

( ) ( ) ( )12 12 12 12
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(3.26) 

This mathematical expression is suitable for so-called cumulant expansion, and it may be 

expressed in the form of  
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(3.27) 

This mathematical expression (3.27) guarantees the positivity of the calortropy production 

regardless of the level of approximations. In addition, when the distribution functions (3.22) 

is inserted into the definition of calortropy production, the dissipation term is shown to be 

directly related to the calortropy production ,cs   
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Now the explicit form of the dissipation term 
()n
L can be derived from Eqs. (3.27) and 

(3.28) by calculating the first reduced collision integral 1k  in terms of ()
,

n
X as x

performing in 1k consists of a sum of various moments, 
() ()

1

1
,

n n
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K T

¤

=

å õ
= -æ ö

ç ÷
ä  with 



 

40 

 

the definition () () ()
,etc.,

n n n
h h hd

*
= - 2

1k may be expressed as a quadratic form of 

2 and ,X X   
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On rearranging of the terms it may become 
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where ( )
12

nl
R  are scalar coefficients made up of collision bracket integrals of 

()n
h  and ()

2

l
h  

for an isotropic system of dilute gases. After comparing Eqs. (3.27), (3.28), and (3.30), 
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then the dissipation term 
()n
L can be derived as, 
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The unknown conjugate variables 
()n

X  can be achieved by generalizing the equilibrium 

Gibbs ensemble theory ï providing the relationship between thermodynamic variables and 

the partition functions ðto nonequilibrium processes. Such nonequilibrium generalization 

was developed by Eu [1] and it may be summarized here 
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(3.33) 

After then, 
()n

X can be calculated in terms of the macroscopic flux 
()n

h f  by solving the 

differential equation (3.33). The leading order approximate solutions are known to be 
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Finally, the moment equation for the general type of molecules (3.14)-(3.16) can be written 

by replacing the collisional term with Eq. (3.32) as  
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Remarks, the system of Eqs. (3.35)-(3.37) are still exact to the original Boltzmann-Curtiss 

equation, since the number of terms in dissipation series goes to infinity, and the kinematic 

high-order term is not yet approximated. Nevertheless, Eqs. (3.35)-(3.37) are in suitable 

shape for balance treatment in approximating the kinematic high-order term on the left-

hand side, and the dissipation term on the right-hand side.  

There are some criticisms found in Euôs closures. One of these criticisms is too 

simplistic treatment of high-order term. In Euôs closure, the high order term 
( )P
Y  is 

assumed to be zero i.e. 
( )

0=
P

Y  by setting 
2

.
3

m f =CCC IQ  This closure suffers a 

mathematical inconsistency, since m fCCC is a symmetric tensor, whereas IQ  is non-

symmetric tensor, leading to a contradiction. This inconsistency in Eu's closure was 

eventually overcome by a recent balanced closure developed by Myong in 2014 [54]. 
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3.3 Boltzmann-Curtiss based constitutive models via the 

balance closure 

3.3.1 Zero-order Boltzmann-Curtiss based model 

The zero-order Boltzmann-Curtiss based model (or Euler constitutive relations) is a 

direct consequence of assuming flow in an equilibrium state. As a resultant, density 

distribution function is assumed to be a Maxwellian distribution function. Note that the 

Maxwellian distribution function is defined [10] as 
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(3.38) 

The statistical formulation of the viscous stress tensor, excess normal stress and the heat 

flux vector using the Maxwellian distribution has simple and exact solution given as; 
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(3.39) 

 

3.3.2 First -order Boltzmann-Curtiss based model 

In the Boltzmann-Curtiss kinetic equation, the left-hand side which demonstrates the 

change of particles due to the collisionless motion of the particles, changes with a time 

scale of the order of 2 .Bnm k TL  On the other side, the right-hand side of Boltzmann-Curtiss 

kinetic equation explains the net change in the number of gas molecules due to inter-

molecular collisions. Basically, it is described by gain minus loss (exp(nonequilibrium)-          

exp(-nonequilibrium))[55], has the time scale of 2 .Bn m k TLs  According to Eu [1], the time 

scale of conservative and non-conservative variables are different. The relaxation time of 

non-conserved variables is much shorter than conserved variables and is found in the order 

of 10-10 seconds. Therefore, the evaluation of non-conserved variables near equilibrium 
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state becomes linear and cumulant expansion of collisional term recovers the first-order 

Chapman-Enskog approximation. It is possible to approximate the entropy production and 

consequently non-conservative evolution equations, such that the viscous stress tensor, the 

excess normal stress, and the heat flux vector moment equations are linearized by 

truncating collisional termïconsidering the first term of cumulant expansion 

( ) () ()( )1 1

12 2 1

nBK T
R X q

g
k
°
ïand approximating transport process.  The approximate dissipation 

terms can be written as 
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(3.40) 

where,  ()1st 1 1,q k =  ,  and bulk km m   are the first coefficient of viscosity, the bulk viscosity 

coefficient and the thermal conductivity derived by Chapman-Enskog transport theory. 

According to Euôs theory, the non-conserved variables change considerably faster than 

conserved variables, and they reach to steady state much earlier than the conserved 

variables. It is valid to simplify the non-conserved equation by omitting the substantial 

time derivative from the equations as, 
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To close the system of equations (3.41), the high-order moments appearing on the left 

side of above equations must be known. According to Myongôs balanced closure theory 

[54], and a recent summary of his theory [56], the first-order approximation of collisional 
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terms requires the same order of approximation on the left-hand side  of non-conserved 

moment equations. Therefore, not only ( )
ÐÖ

P
Y , ()D

ÐÖY and ()
ÐÖ

Q
Y are required to 

remove from the first-order constitutive relations, but also  [ ]
()2

2 ÖÐuP , ( )2 :g¡ +D ÐI uP  

and pC TÖ Ð + ÖÐQ uP  are needed to be eliminated for the first-order approximation. 

Because the thermal velocity appeared in their statistical formulations is the order of two 

or more which can destroy the balance assumptions on the equations. As a result, the first-

order linear Boltzmann-Curtiss based model (i.e. Navier-Fourier constitutive relation) is 

given by 
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(3.42) 

3.3.3 Second-order Boltzmann-Curtiss based model 

Previous theoretical and computational studies [57-59] have revealed that the 

fundamental physics in conditions far from thermal equilibrium is significantly different 

from the classical physics governed by the first-order Boltzmann-Curtiss based model are 

valid only in conventional flows near equilibrium. As a consequence, simple modification 

of first-order Boltzmann-Curtiss based model using transport coefficients, or by 

introducing velocity-slip and temperature-jump boundary conditions, cannot solve the 

current bottleneck of problems in the classical first-order (linear uncoupled) laws. 

Ultimately, the problem demands a completely new development of the non-classical 

second-order (nonlinear coupled) laws. 

Recently, independent of the previous continuum approach, a new development has 

been reported on the constitutive equations of gases in a thermal nonequilibrium (rarefied 

and microscale) state from the viewpoint of the moment method applied to the kinetic 

Boltzmann-Curtiss equation [39] and the so-called balanced closure [54]. An important 
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result obtained from these studies is that the number of places for closing the moment 

equations is two ïkinematic and collision termsðand thus, the order of approximations in 

handling two terms must be the same, for example, second-order for both kinematic and 

collision terms. Otherwise, in the case of high Mach number shock structure, the kinematic 

(stress-strain) coupling term of quadratic nature will grow far faster than the strain rate 

term due to the destructive interplay, resulting in an imbalance with the first-order 

dissipation term and eventually a blow-up mathematical singularity. Therefore, to go 

beyond the first-order accuracy, one must abandon the simple linear relation in the 

collisional term enjoyed by assuming the simple Maxwellian gas molecule, which was once 

considered a nice-to-have mathematical coincidence. 

As a result of the balanced closure, a second-order nonlinear coupled constitutive 

relation expressed in a mathematically implicit ŗsinhŘ form, which is an exact consequence 

of the Boltzmann-Curtiss equation of diatomic and polyatomic gases within the second-

order accuracy, can be derived [39]as 
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In this expansion, the second-order dissipation term 2nd,q  and the first cumulant expansion 

term 1k , are given in hyperbolic sine form and a Rayleigh dissipation function, respectively, 
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These algebraic second-order Boltzmann-Curtiss based relations, so-called nonlinear 

coupled constitutive relations (NCCR), can be solved using an appropriate numerical 
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method while the conserved variables remain constant during the evaluation process. The 

remaining task is to solve this algebraic nonlinear system of equations (3.43) beside the 

conservation of laws using an appropriate numerical method. 

3.4 Governing equations for numerical simulation 

The conservation laws in three-dimensional form, provide a system of five differential 

equations including mass, momentum and energy equations. However, the number of 

unknown field variables is fourteen, namely, , , , , , , ,  and .p T Er Du QP  

 

Figure 3-1. A glance of Boltzmann-Curtiss based consitutive models up to second order. 

The non-conservative variables ( ), ,  D QP can be read from the second-order 

Boltzmann-Curtiss based constitutive relations which is introduced in Figure 3-1. The 

thermodynamic state variables ð density, pressure, and temperature ð can be obtained 

from the equations of states. In dilute gas conditions, mean molecular spacing ( )1/3nd -=  
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is much bigger than molecular diameter d. Therefore, the gas is assumed to be calorically 

perfect that behaves ideally, 

( )
1

1 .
2

B totalp nK T Eg r
å õ

= = - -æ ö
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uu  
(3.45) 

where BK  is the Boltzmann constant, n is the number density, and p vC Cg=  is the 

specific heat ratio. In addition to 14 field unknown variables, there are few more unknown 

which are related to the microscopic gas properties, so-called transport coefficients; the 

first coefficient of viscosity ,m the coefficient of bulk viscosity ,bulkm  the coefficient of 

thermal conductivity ,k  and the second coefficient of viscosity .l They may be calculated 

from either inter-molecular force relations or Chapman-Enskog relations.  

3.4.1 Conservative form of the conservation laws 

The -dimension conservation laws for diatomic and polyatomic gases without source 

term can be represented in differential form as, 
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Here 
( )2+

ÍU  is a vector of conservative variables ï mass per unit volume, momentum 

vector and energy ï which are continuously differentiable in the computational domainW. 

The 
( ) ( )2 2inv vis and 
+ ³ + ³

Í ÍF F are the inviscid and viscous flux functions, 

respectively. The inviscid flux function which is also known as convective flux is related 

to convective transport of macroscopic quantities in the fluid. The viscous flux function 

contains the viscous stresses and heat diffusion terms. 
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3.4.2 Dimensionless form of the governing equations 

In order to study under different conditions around the same geometry and moreover, in 

order to reduce the error due to the finite precision of computers, we have to make sure that 

all the used flow variables are approximate of the same order of magnitude. This process 

can be performed by normalizing the governing equations. There are many different non-

dimensionalization procedures. In this thesis, we are introducing the following variables 

and parameters to make the conservation laws (3.47) in dimensionless form, 
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Here, the reference parameters, denoted by subscript ref, are defined by using four base 

quantities (mass, length, time and temperature) in MLT unit system as 

2, , , .
ref ref ref ref

ref ref ref ref ref

ref

u k TL
t E u

u L L

m D
= = = =QP  

(3.49) 

Here L denotes the characteristics length, refTD denotes w refT T-  or ref wT T- , where wT  is 

the wall temperature.  Putting dimensionless variables from Eqs. (3.38)-(3.39)  into Eq. 

(3.47) and divide it through by the leading dimensional coefficient resulting dimensionless 

form of the conservation laws for diatomic and polyatomic gas, after dropping the asterisks 
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µ
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U
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(3.50) 

with the dimensionless form of conservative variables, inviscid, and viscous flux vector 

defined as, 
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Here the fluid dynamic dimensionless parameters ï Mach number M, Reynolds number Re, 

Prandtl number Pr, Knudsen number Kn, composite number ,Nd  Eckert number Ec ï are 

defined as 

( ) 2, Re , Pr , 1 ,

, , .
Pr

refref pref ref

ref ref ref

ref ref ref ref

ref ref

Cu u L
M Ec M

a

u T
Kn N

L p L T Ec
d

mr
g

m k

l m
e

= = = = -

D
= = =

 

(3.52) 

The dimensionless form of the transport equations based on the inverse power-law 

intermolecular model can be read as 

, , ,s s

bulk bulkT f k Tm m m= = =  (3.53) 

where 
1 2

,
2 1

s
n

= +
-

 nis the exponent of the inverse power laws.  

The second-order Boltzmann-Curtiss based constitutive relations can be reduced in 

dimensionless form as  

( ) ( )

( ) ( )

( ) ( )

(2)

2nd 1st

2nd 1st

2nd 1st 1st

Ĕ ĔĔ Ĕ ĔĔ1 [ ] ,

3Ĕ Ĕ Ĕ ĔĔ Ĕ: ,
2

1Ĕ Ĕ Ĕ ĔĔ Ĕ Ĕ Ĕ1 .
2Pr

bulk

bulk bulk

bulk

q cR f

q cR f f

q cR f

= + D + ÖÐ

D =D + + D Ð

= + D + Ö + ÖÐ

u

I u

Q Q Q Q u

P P P

P

P

 

 

(3.54) 

Here the caret ̂  over a symbol represents a quantity with the dimension of the ratio of the 

stress to the pressure, and, bulkf  denotes the ratio of the bulk viscosity to the shear viscosity. 
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(3.55) 

The values of 1st 1st 1st
ĔĔĔ , , and D QP are the reduced form of the first-order Boltzmann-Curtiss 

based constitutive relations, defined as 
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(3.56) 

The nonlinear coupling factor 2nd
Ĕ( )q cR and dimensionless form of the dissipation function

ĔR  which was derived from the RayleighïOnsager dissipation function [1], given as 

( )
( )

()

2 2

2nd

2

2

Ĕsinh 2 Ĕ ĔĔ Ĕ ĔĔ Ĕ, : ,
Ĕ

2 2
A 4 .

5 1

bulk

cR
q cR R

fcR

c

g

p
n G

n

¡
¹ ¹ D + Ö

è ø
= -é ù-ê ú

Q QP P+

 

 

(3.57) 

The constant c defined in Eq. (3.57) has a value between 1.0138 (Maxwellian) and 1.2232 

( 3n=  ), where n is the exponent of the inverse power law for the gas-particle interaction 

potential and Gdenotes the gamma function.  

In the rest part of present work, non-dimensional equations are utilized, and the asterisk 

symbol is omitted in order to condense the notations. To solve equations using advanced 

numerical methods. A numerical method for solving algebraic constitutive relations is 

provided in the next subsections of this chapter. 
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(a) Argon (fbulk=0) (b) Nitorgen (fbulk=0.8) (c) CO2 (fbulk=1000) 

Figure 3-2. Comparison of stress tensor for first-order (top) and second-order (bottom) 

Boltzmann-Curtiss constitutive models. 

 

3.4.3 Topology of the second-order Boltzmann-Curtiss constitutive model  

In order to study the nature of rotational nonequilibrium based on a various range of 

bulk viscosities, the non-conserved variables obtained by the first-order linear constitutive 

model and the second-order Boltzmann-Curtiss based constitute model are compared. The

bulkf values for argon, nitrogen, and carbon dioxide gases are taken 0.0, 0.8, and 1000, 

respectively from Figure 2-3.  

A significant comparison of the non-conservative stress quantity for first-order and 

second-order constitutive models has been made based on various bulk viscosity bulkf  

values as shown in Figure 3-2. It is obvious that the response of the first-order constitutive 

model to the applied stress and thermal forces are linear whereas the second-order 

constitutive model behaves nonlinearly. For first-order linear model, the viscous stress 
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tensor is not a function of thermal force. Therefore, the influence of thermal forces are 

negligible and the stress values are found to be symmetry with respect to the adiabatic line. 

However, in the case of second-order constitutive model ï due to strong coupling between 

non-conserved variables through the Rayleigh-Onsager function ĔRï the viscous stress 

tensor is a function of both shear force and thermal force. Thus, stress values are changing 

nonlinearly with respect to thermal forces, although stress tensor is more influenced by the 

stress forces in comparison to the thermal forces. Similarly to the first-order model, the 

monotonicity of the solution is preserved and the solution has symmetrical behavior with 

respect to the adiabatic line. As the bulkf  value increases, the influence of thermal forces 

reduces and the stress forces play a dominant role due to a significant contribution of 

bulkf ÐÖu in the compression and expression term.  Therefore, the thermal forces become 

weaker and shear forces become stronger at a higher bulkf value.  

The viscous stress tensor is not a function of the thermal force for the first-order linear 

model. The stress values are found to be symmetry with respect to the adiabatic line, and 

they are not influenced by the thermal forces. For the second-order model, the viscous 

stress tensor is a function of the shear forces and the thermal forces due to strong coupling 

between non-conserved variables through the Rayleigh-Onsager dissipation function. The 

stress values are influenced more by the stress forces than the thermal forces. Similarly to 

the first-order model, the monotonicity of the solution is preserved and the solution is 

symmetrical with respect to the adiabatic line while the solution is changing nonlinearly 

respect to the forces. 
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(a) Argon (fbulk=0) (b) Nitrogen (fbulk=0.8) (c) CO2 (fbulk=0) 

Figure 3-3. Comparison of excess normal stress for first-order (top) and second-order 

(bottom) Boltzmann-Curtiss constitutive models. 

 

Figure 3-3 illustrates a comparison between first-order and second-order constitutive 

models based on excess normal stress for various gases. In the case of monatomic gas, the 

role of the excess normal stress is negligible i.e. 0D=  due to 0.bulkf = Therefore, the 

influence of thermal force and stress force disappear. In the first-order constitutive equation, 

excess normal stress has a similar pattern like stress tensor but different in magnitudes of 

thermal forces (Figure 3-2 and Figure 3-3). In the case of diatomic gases, where 0bulkf ¸ , 

the effect of rotational nonequilibrium is considerable significant due to bulk viscosity. 

When 0.8,bulkf = the excess normal stress does not preserve the monotonicity behavior but 

it contains symmetry behavior along with an adiabatic line. When bulk viscosity increases 

to 1000, the excess normal stress approaches to monotonicity behavior.  
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(a) Argon (fbulk=0) (b) Nitrogen(fbulk=0) (c) CO2 (fbulk=1000) 

Figure 3-4. Comparison of heat flux for first-order (top) and second-order (bottom) 

Boltzmann-Curtiss constitutive models. 

Similar to stress tensor, heat flux plays a vital role in the constitutive model for 

describing the physics of flow behavior. Figure 3-4 shows a comparison between first order 

and second order constitutive models based on heat flux quantity for various gases. In the 

first order constitutive model, the heat flux shows a linear and monotone behavior with 

respect to thermal force while it does not under influence of stress forces. On the other 

hand, the second order model demonstrates the nonlinear behavior of heat flux constitutive 

relations with respect to both forces. It is sensible that at 0,bulkf =  the heat flux is affected 

by the thermal force almost twice than the stress forces and a high nonlinearity behavior is 

found near the origin. As the bulk viscosity increases to 0.8,bulkf = the influence of stress 

forces which are far from the origin, is faded and the heat flux is followed an asymmetry 

behavior with respect to the stress-free line. The heat flux cover fully asymmetry and take 

shape like a shark finning at a higher bulk viscosity value, 1000.bulkf =  
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(a) Argon (fbulk=0.0) (b) Nitrogen (fbulk=0.8) (c) CO2 (fbulk=1000) 

Figure 3-5. Comparison of Rayleigh-Onsager dissipation parameter for first-order (top) and 

second-order (bottom) Boltzmann-Curtiss constitutive models. 

 

Figure 3-5 il lustrates a comparison between computed Rayleigh-Onsager dissipation 

parameterĔ,R using the first-order and second-order constitutive models based on various 

gases. As it is well known that ĔR  implicitly represents the degree of thermal 

nonequilibrium for a process. In the first-order model, at 0.0bulkf =  and 0.8,bulkf = the 

dissipation parameter having a circular shape which presents a uniform distribution of 

thermal nonequilibrium along the thermal stress and stress forces in all directions. At 

higher bulk viscosity value 1000,bulkf =  the dissipation parameter shows higher thermal 

nonequilibrium effects along stress tensor in comparison of thermal forces. On the other 

hand, in second-order Boltzmann-Curtiss based model, the deviation from equilibrium 

state due to thermal stress forces is not equally distributed. It is shown that the weight of 
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the stress forces on deviation from equilibrium state is more, and the thermal forces are 

considered as a secondary parameter to influence the flow. 

3.5 An analysis on the second-order Boltzmann-Curtiss based 

constitutive model 

3.5.1 One-dimensional compression-expansion constitutive relation 

Considering the one-dimensional shock structure problem for diatomic and polyatomic 

gases in which the flow only evolves in x-direction, the second-order Boltzmann-Curtiss 

based constitutive relations (3.54) can be reduced [39] as, 
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(3.59) 

The normal stress in y- and z- directions are defined as 
1Ĕ Ĕ Ĕ
2

yy zz xxP =P =- Pdue to the 

traceless property of viscous stress tensor. The relation between the xx-component of the 

shear stress and the excess normal stress can be obtained by combining the first two 

equations of (3.58) as,  

( )21Ĕ Ĕ9 4 4 ,
8

bulk xx

bulk

f D
f
è øD= - P - +
ê ú

 
(3.60) 

where 

( ) ( )4 2 2 2Ĕ Ĕ81 72 16 32 24 16.bulk bulk xx bulk xxD f f f= + + P + - P + (3.61) 
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Figure 3-6. Second-order model (diatomic and monatomic) relative to the first-order 

model in the compression-expansion flow. The horizontal and vertical axes represent the 

strain (force) term and the normal stress, respectively (Reproduced with permission from 

Myong [39]).  

Figure 3-6 illustrates the general features of the second-order constitutive relations 

(3.58) for diatomic and polyatomic gases in the one-dimensional compression-expansion. 

The second-order constitutive model gives the asymmetrical behavior of normal stress for 

the rapid expansion and compression of a gas, as shown in Figure 3-6.  Even though the 

details of the second-order constitutive models for monatomic and diatomic and 

polyatomic gases are different, the general patterns remain unchanged. Figure 3-6 shows 

the free-molecular asymptotic behavior with increasing degree of expansion and velocity-

shear, satisfying ĔĔ 1xxP +D-or 0.xx pP +D+  Previous studies [39, 54, 60] showed 

that the solutions of the second-order constitutive models were well-posed (existence, 

uniqueness, and continuous dependence on the data) for all inputs on thermodynamic 

forces. 
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3.5.2 One-dimensional shear-velocity constitutive relation 

Considering the one-dimensional shear dominant flow problem where the flow only 

evolves in x-direction, and the temperature gradients are negligible, and velocity 

components are assumed zero in y- and z- directions. The reduced form of the second-order 

Boltzmann-Curtiss based constitutive relations (3.54) can be derived as,  
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( ) ( )

( )

1st
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1st
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2nd
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P = P + D+

D = P

P

P

P

 

(3.62) 

The above mentioned relation (3.62) yields an equation of one variable ĔxxP and additional 

equation for ĔD as, 

( )
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2 2
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3 2
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(3.65) 

which follows from the stress constraint 

( )
1st

1/2

23 9Ĕ Ĕ Ĕ Ĕ1 1 .
2 2
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è øè øå õ
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(3.66) 

The normal stress in y- and z-directions are defined as Ĕ Ĕ Ĕ
yy zz xxP =P =-2Pdue to the 

traceless property of viscous stress tensor.  

The general features of the second-order constitutive relations (3.62) for diatomic and 

polyatomic gases in the one-dimensional shear flow are illustrated in Figure 3-7. It is 

obvious that as the shear velocity gradient becomes very large, the shear stresses predicted 

by the second-order constitutive model become very small , compared to the first-order 

constitutive model, as shown in Figure 3-7. Such an asymptotic behavior indicates that the 
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velocity slip phenomenon caused by the non- Newtonian effect can be explained in a very 

simple way. The ultimate origin of this behavior can be traced to the kinematic term ï 

specifically, the constraint on the normal Ĕ( )yyP  and shear Ĕ( )xyP stress. 

 

Figure 3-7. Second-order model (diatomic and monatomic) relative to the first-order 

model in the shear flow. The horizontal and vertical axes represent the strain (force) term 

and the shear and normal stress, respectively (Reproduced with permission from Myong 

[39]). 

3.6 Numerical Solver of the second-order Boltzmann-Curtiss 

based constitutive relations: i terative method 

The second-order Boltzmann-Curtiss based constitutive relations (3.54) consist of 10 

nonlinear implicit algebraic equations of the non-conserved variables ( , , , ,xx xy xz yyP P P P  

, , , , ,yz zz x y zQ Q QP P D ) for known 14 variables (, , , ,p T u v wÐ Ð Ð). Owing to the highly 

nonlinear terms, it appears to be daunting task to develop a proper numerical method for 

solving the nonlinear system of equations. In present work, these nonlinear system of 

equations can be solved by the method of iterations based on previous studies [39, 60].  
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In the case of the three-dimensional problems, the stress and heat flux components 

( , , , ,xx xy xz xQP P P D ) on a line in the physical plane induced by thermodynamic forces 

such as velocity gradients( ), , ,x x x xu v w T and temperature gradient( )xT can be approximated 

as the sum of three solvers: first on ( ),0,0,x xu T second on ( )0, ,0,0 ,xv  and third on 

( )0,0, ,0 .xw Thus the stress and heat flux ( ), , , ,xx xy xz xQP P P D in case of x-direction can 

be decomposed as function of ( ), , ,x x x xu v w T as,  

( ) ( ) ( ) ( )1 2 3, , , ,0,0, 0, ,0,0 0,0, ,0 .x x x x x x x xf u v w T f u T f v f w= + +  (3.67) 

The iteration procedures can be designed individually for these solvers as follows. In 

the first solver on( ),0,0,x xu T which represents the compression-expansion of diatomic 

and polyatomic gases, the stress and heat flux ( ), ,xx xQP D  can be determined based on 

positive 
1st

Ĕ
xxP and 

1st

Ĕ
xQ as, 
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and  
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For the negative 
1st

Ĕ
xxP and 

1st

Ĕ ,xQ the stress and heat flux can be calculated as, 
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Since the equations are invariant under a transformation Ĕ Ĕ,x xQ Qª- only two cases 

satisfying ĔĔ 0xx xQP > are considered. In these expressions, 
1 11

ĔĔĔ , ,xx xQP D are the initial guess 

solution given by the equations 
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In the second and third solver on shear flow, the Ĕ
xxP can be obtained for a given 

0

Ĕ
xyP

through the equation 
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Noted that, the term nY  is well defined for any bulkf  greater than the critical value 2 3. 

The ĔDand ĔxyP  can be determined by using Eq. (3.64) and the stress constraint (3.66). 

When  0 2 3,bulkf¢ <  the ĔxxP  can be calculated by replacing the following algorithm,  
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These solvers and their outcomes can be summarized [61] as following  :  
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Similarly, it is possible to evaluate the value of stress and heat flux in other two primary 

directions. In the case of y-direction, the stress and heat flux ( ), , , ,yx yy yz yQP P P D on a 

line in the physical plane induced by thermodynamic forces (velocity and temperature 

gradients) can be approximated as the sum of three solvers: 
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In case of z-direction, the decomposed stress and heat flux ( ), , , ,zx zy zz zQP P P D can be 

calculated as,  

( ) ( ) ( ) ( )1 2 3, , , 0,0, , ,0,0,0 0, ,0,0 .z z z z z y z zf u v w T f w T f u f v= + +  (3.78) 
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Finally, we will have 
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After convergence, the converged values are implemented back into dimensionless space 

as 
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3.7 Breakdown parameters  

The continuum (or near-equilibrium) breakdown parameter is essential in quantifying 

the gas flow regions in which the linear Navier-Stokes-Fourier hypothesis is no longer 

valid. There were several breakdown parameters appearing in the literature.  

3.7.1 Birdôs breakdown parameter 

Bird [62] first proposed a semi-empirical parameter based on the spatial derivative of 

flow properties such as density, pressure, temperature or velocity magnitude, for steady 

state expanding flows.  

8

mean d
B M

ds

lgp r

r
=  

(3.80) 

where M is the local Mach number. The spatial gradient along the streamline, can be 

calculated in Cartesian coordinates as follows: 

2 2 2 2 2 2 2 2 2
,

d d u d v d w

ds dx dy dzu v w u v w u v w

r r r r
= + +

+ + + + + +
 

(3.81) 

where u, v, and w represents the x-, y- and z-directional velocities, respectively. Moreover, 

if the other flow properties c like the temperature and the velocity, are introduced in order 

to take both viscous effect and heat transfer into account, the following breakdown 

parameters ( )e.g. , andD V TB B B Bc can be calculated: 

8

mean d
B M

ds

lgp
=c

c

c
. 

(3.82) 

Then, by considering all the parameters, a breakdown parameters maxB  can be defined by 

( )max max , , .D T VB B B B¹  (3.83) 

In case of steady expanding flows, it was known that the value of B of about 0.05 is a good 

criterion for identifying the near-equilibrium breakdown.  
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3.7.2 Boydôs breakdown parameter 

However, it was soon recognized that there might be a problem when the Mach number 

approaches to zero at stagnation points. Boyd et al. [63] carried out an extensive numerical 

investigation of one-dimensional normal shock waves and two-dimensional bow shocks 

using DSMC and CFD results in order to determine an appropriate breakdown parameter. 

The gradient length local (GLL) Knudsen number, 

,mean
GLL

d
Kn

dl

l
=

c

c
 

(3.84) 

where l is some distance between two points in the flow field, was introduced and 

demonstrated to provide a better indication of continuum breakdown than B for 

compression-dominated hypersonic flows. The distance l was taken approximately along 

the line of the steepest gradients in the flow properties. For simplicity, d dlc  was 

evaluated by Ð .c Then, the parameter is reduced to  

22 2

.mean mean d d d
Kn

dx dy dz

l l å õå õ å õ
= Ð = + +æ öæ ö æ ö

ç ÷ ç ÷ç ÷
c

c c c
c

c c
 

(3.85) 

Also, by considering all the flow properties, the following breakdown parameter maxKn   

can be derived: 

( )max max , , .D T VKn Kn Kn Kn¹  (3.86) 

It is apparent that there is a direct relationship between Eqs. (3.82) and (3.85);  

cos ,
8

B M Kn
gp

q=c c
. 

(3.87) 

whereqis the angle between gradient Ðc and the flow direction.  

3.7.3 Rayleigh-Onsagarôs breakdown parameter 

The primary objective of the near-equilibrium breakdown parameter is to quantify the 

gas flow regions according to the breakdown of the linear hypothesis in the Navier-Stokes-

Fourier constitutive relation. Therefore, the problem of finding such a parameter is 
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essentially related to the knowledge of when the (first-order) Newtonian hypothesis breaks 

down, which in turn demands the derivation of the second-order non-Newtonian 

constitutive relation. 

A systematic method to derive the second-order non-Newtonian constitutive relation 

from the Boltzmann-Curtiss kinetic equation was recently developed by Myong [39, 64]. 

According to him, the resulting second-order constitutive relations (3.43) can be 

summarized in steady-state case as follows, 
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(3.88) 

Note that, the first-order cumulant expansion takes a form of hyperbolic sine function 

whose argument is given in terms of a quadratic function. Then the function 1k can be 

shown nothing but the Rayleigh-Onsagar dissipation functionĔR and is readily used to 

identify what regions are expected to derive significantly from near-local equilibrium 

assumption since it measures the level of calortropy production in irreversible process [64, 

65]; 
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(3.89) 

Here, ,Nd e are the reference values, while , , ,p T QP are the local values. The new near-

equilibrium breakdown parameter (3.89) is shown to avoid the problem in the Birdôs 

parameter that the Mach number approaches to zero at stagnation points. Further, it takes 

both viscous stress and heat transfer into account within a single framework [64].  

The distributions of the near-equilibrium breakdown parameters max max
Ĕ, ,B Kn R  based 

on Bird, Boyd and Rayleigh-Onsagar dissipation function are calculated in multi-
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dimensional hypersonic rarefied gas flows around a cylinder. Argon gas is considered as 

working gas for all cases. Figure 3-8 compares the distributions of three near-equilibrium 

breakdown parameters for the first-order (NSF) and the second-order (NCCR) Boltzmann-

Curtiss based constitutive models. It can be noticed that 1) there exist two distinctive 

regions of gaseous compression and expansion in the frontal and rear parts of the cylinder, 

respectively; 2) the level of breakdown parameters is high at the bow shock structure and 

at the rear part of cylinder; and (3) the first-order model in general predicts high than the 

second-order model in the level of parameters. In addition, it can be found that all three 

breakdown parameters produce qualitatively similar results, but new and Birdôs parameters 

predict more similar distributions. 

 
(a) Boydôs parameter       (b) Boydôs parameter           (c) Rayleigh-Onsagarôs parameter 

Figure 3-8. Comparison of the breakdown parameters in hypersonic rarefied gas flow 

with M=5.48, Kn=0.5 [64]. 
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Chapter 4. Discontinuous Galerkin method 

 

ñMathematics is the language with which God wrote the universe.ò 

                                                                                             ð Galileo Galilei (1564-1642) 

 

 

In this chapter, numerical methods for solving the highly nonlinear partial differential 

equations are discussed in details. We first provide the brief summary of available 

numerical methods used in modern CFD, then the literature survey of discontinuous 

Galerkin (DG) method is provided. The space discontinuous Galerkin discretization of the 

compressible Navier-Stokes equations is discussed along with problem definition in DG 

framework, elemental transformation to the computational space, the foundation of basis 

functions, numerical integration, numerical inviscid and viscous fluxes, and numerical 

boundary conditions. Finally, we discuss the crucial part of DG methodðimplementation 

of limiters.  

4.1 Numerical methods for modern CFD 

4.1.1 Finite difference method 

The Finite difference (FD) method is the oldest and the simplest discretization approach 

for a conservation law based upon the differential form of partial differential equations 

(PDEs) to be solved. In FD method, a discrete approximation is obtained using Taylor 

series expansion approach for the occurring derivatives and replacing the analytical 

derivatives with the discrete ones. It results in a discrete problem that can be solved 

numerically. In this method, a topologically square network of lines is used to construct 

the discretization of the PDEs. There are some excellent references for describing these 

methodologies in [66-69]. 
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The great strengths of the FD method are that, they are easy to program and that they 

are extremely efficient in terms of computational cost. Due to their well-efficiency and 

well-analyzed numerical properties, FD method is often used for numerically sensitive and 

computationally costly problems, such as laminar-turbulent transition [70, 71]. High order 

versions of the FD method are easy to construct since the accuracy of the method is 

determined by the accuracy of the estimation of the discrete derivative [72]. There are some 

major drawbacks of the FD method. For examples, it is mainly applicable for structured 

grids and it is unable to preserve the conservative nature of the governing equations. 

However, this method can be implemented on unstructured grids using the reconstruction 

of a polynomial function [73], but it is a very complex problem for unstructured grids. 

Moreover, a high-order FD method requires smooth and regular grids for geometrically 

complex configurations regarding for stability issues [74]. 

4.1.2 Finite element method 

The main idea behind the finite element (FE) method is somewhat different than the 

finite difference discretization techniques discussed previously. The finite element method 

takes the differential equations, multiply them by an arbitrary test function, and integrate 

them by parts. The approximate solution is constructed as a linear combination of the so-

called basis (ansatz) functions, which are the piecewise polynomials. The choice of the 

basis and test function space adjudicates upon which type of FE method is obtained. There 

are some typical versions of FE methods: the Galerkin, Petrov-Galerkin, and Least-squares 

[75]. The finite element methods can be classified into two main classes of schemes, 

continuous and discontinuous methods. In contrast to the continuous finite element method, 

the discontinuous method needs no global continuity requirement for ansatz and test 

functions leading to the frequently-used term discontinuous finite element method. The 
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approximation space is not a subspace of the continuous solution space. In other words, the 

element is nonconforming. 

For the convection-dominated Navier-Stokes equations, the continuous FE method 

typically produces oscillations which can be handled by adding artificial dissipation terms 

to the formulation. There are various techniques for selecting the stabilization terms. In the 

streamline upwind Petrov-Galerkin [76] method, a stabilizing term is added in the weak 

formulation. As a result, it creates an upwind effect by weighting more heavily the upwind 

stream nodes within each element. A variety of other methodologies have been proposed 

to provide additional stability to the convection terms, monotone discrete systems and ease 

of implementation. A disadvantage of the conforming FE discretization compared to FD 

and FV is, that if explicit discretization in time is used, a coupled system of equations has 

to be solved for every time step. This is due to the coupling of the degrees of freedom at 

cell interfaces, where continuity requirements have to be fulfilled.  

4.1.3 Finite volume method 

The finite volume (FV) method is very famous numerical scheme in the CFD 

community. The FV method is based on the integral formulation of the conservation laws. 

In contrast to FD method, the FV method evaluates the fluxes through the discretization 

element boundaries. There are various views for selecting numerical fluxes. An upwind 

method is a very popular approach to convection-dominated problems [77, 78], where the 

flux choice is based on characteristics of wave propagation. 

The higher order versions of the FV method are generally obtained with the help of a 

so-called reconstruction procedure [79, 80], whereas an intermediate higher-order solution 

is constructed out of the piecewise constant element data of adjacent cells. The cells, which 

are included in the reconstruction, are depicted as the reconstruction stencil of the method. 

The problem with high-order FV methods working on unstructured grids is, that the 



 

71 

 

reconstruction stencil (especially in 3D) becomes extremely large [81] and the resulting 

scheme would be extremely complex to program, and more importantly, would be 

expensive in terms of CPU time. In general, real high-order is only achieved on relatively 

smooth and regular grids. A further drawback is, that due to the increased stencil, such a 

scheme is not suited for efficient parallelization because the stencil is quite large for the 

reconstruction and consequently a lot of information has to be exchanged between the 

parallel nodes. The same holds for high order FD methods. To conclude, in principle, FV 

methods are approved schemes for the simulation of flows around complex geometries, but 

a fundamental problem is to construct a high order scheme working on unstructured grids. 

4.1.4 High order spectral method 

In recent years, the high order numerical methods in computational fluid dynamics 

(CFD) have been widely used to effectively resolve complex flows that particularly require 

highly accurate treatment, such as wave propagation problems, vortex-dominated flows 

including high-lift configurations and flows over blunt bodies, flows with complex shock 

interactions, transitional flow over airfoils, as well as large eddy simulate on and direct 

numerical simulation of turbulence, all of which are difficult to simulate appropriately via 

classical low-order methods whose use in academia and industry remains widespread up 

to the present date.  

A class of schemes especially efficient for practical CFD applications are the so-called 

spectral/hp methods. Regarding the terminology, in a broad sense, the so-called ñspectral" 

methods are those in which the numerical solution is represented by series of (modal) 

functions. In general, the solution accuracy enhances when the number of such modal 

functions is increased. In some approaches, the entire domain is represented by a single 

mesh element and the solution is represented entirely by one (large) function series. For 
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general applications, however, the hp methods are preferred, where the domain of interest 

is divided into a number of elements of typical size h and the solution within each element 

is represented individually through a local function series, normally consisting of a 

polynomial of maximum degree p. 

The choice of the polynomial space function is the main feature that distinguishes high-

order methods from finite difference and finite volume methods. Spectral hp methods can 

be classified based on the definition of the polynomial space (ansatz) function into several 

categories including; discontinuous Galerkin (DG), spectral difference (SD), spectral 

volume (SV), and flux reconstruction (FR) approach. An excellent reference for the 

explanation of spectral methods is [80]. 

4.2 Discontinuous Galerkin method  

The discontinuous Galerkin Method is probably the famous and most developed high-

order accurate method for arbitrary type grids. It is now emerging as a new class of methods 

in the field of the numerical solution of partial differential equations representing 

conservation laws. It was originally developed by Reed and Hill [82] in 1973 for a steady 

conservation law, namely the neutron transport problem. In 1978, this method was first 

time used for unsteady advection laws by Van Leer [83]. Le Saint and Raviart [84] in 1975, 

first analyzed DG for linear hyperbolic problems, derived a priori error estimates and 

proved rates of convergence.  A major contribution to the development of the Runge-Kutta 

DG (RKDG) methods for linear and nonlinear hyperbolic conservation laws were made by 

Cockburn and Shu [85-88]. The RKDG method is an essentially high-order Finite Element 

method using ideas of the high-order Finite Volume method, such as exact or approximate 

Riemann solvers to evaluate numerical fluxes, in order to handle discontinuities at the cell 
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interfaces. A more comprehensive historical overview of DG methods can be found in a 

review article by Cockburn et al.[89].  

From the last decades, the development of DG has gradually shifted to convection-

diffusion problems. The RKDG method was recently extended to handle convection-

diffusion systems by Cockburn and Shu [90]. Bassi and Rebay demonstrated the high-order 

accurate DG discretization for the compressible Euler and Navier-Stokes equations [91, 

92]. Motivated by pioneering work of Bassi and Rebay for compressible Navier-Stokes 

equations, various approaches for the discretization of the diffusion equation were 

developed. These include the local DG (LDG) approach [93], interior penalty (IP) 

approach[94], and Baumann and Oden (BO) approach[95]. An interesting overview and 

study within a unifying framework of all these approaches can be found in Arnold et al.[96], 

where their consistency, stability, and order of accuracy are discussed. The order of 

accuracy of all these approaches for the diffusion equation is limited to p + 1, with p the 

degree of the solution polynomials. The local DG approach developed by Cockburn and 

Shu provides the stability and convergence with error estimates. The LDG approach may 

handle higher order ( 2² ) derivatives such as the viscous second order terms in the Navier-

Stokes equation.  Recently, Dumbser et al. [41] introduced the ADER-DG approach, which 

couples the ADER [89] with the spatial DG approach. With the aid of ADER, they 

developed arbitrary high-order schemes for hyperbolic conservation laws not only in space 

but also in time. 

Many other researchers made significant contributions to the various aspect of DG 

methods. A quadrature-free DG formulation was investigated by Atkins and Shu [97]. An 

analysis based on the wave propagation properties of the DG method was performed by 

Hu et al. [98]. A simplified treatment of curved wall boundaries for the Euler equations 

with the DG method was proposed by Krivodonova and Berger [99]. A significant 
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contribution in space-time implicit DG methods for hyperbolic conservation laws were 

done by Lowrie et al. [100], Van der Vegt and its co-authors [101-103]. In the area of DG 

method based turbulent flow simulations, a very little experience has been gained to till 

date. Collis performed a numerical study of DG for the simulation of turbulent flows with 

the aid of direct numerical simulation (DNS) [104]. The application of DG to the Reynolds-

Averaged-Navier-Stokes (RANS) equations has only been reported by Bassi and Rebay 

[105]. For closure of the RANS equations, they use the fully coupled k w-  turbulence 

model equations. Later, Bassi and Rebay extended their solution algorithm, where 

reliability conditions were added to the w- equation in order to increase the numerical 

robustness of the method [106]. 

4.3 Problem definition in DG framework  

In order to construct a DG discretization system for -dimension conservation laws 

(3.50), letôs consider a bounded domain WÍ  with boundaryµW. The boundary is 

decomposed into a region of Dirichlet boundary DµW and a region of Neumann boundary 

NµW i.e., D NµW=µW µW, 
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(4.1) 

where Dg  and Ng  are the boundary operators derived from the boundary conditions. 

These operators can be a function of information either at one side or both sides of the 

boundary interfaces. The
2+ÍU  is the vector of conservative variables; 

inv ( 2)+ ³ÍF  

is the inviscid flux tensor; and 
vis ( 2)+ ³ÍF is the viscous flux tensor. 
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Since the spatial discretization of governing equation (4.1) cannot be accomplished 

with the standard DG method due to the presence of higher order derivatives in viscous 

terms. Therefore, a mixed DG formulation developed by Xiao and Myong [58, 107] is 

employed to discretize the governing equation. In this formulation, an auxiliary variable 

vector Q is introduced to handle the second-order derivatives in viscous stress and heat 

flux. Therefore, the auxiliary variable vector Qcan be defined as the derivative of either 

primitive or conservative variables U. In order to apply the mixed DG formulation, Eq. 

(4.1) can be rewritten as a coupled system for U and Qas 

() ( )inv vis

0,

, 0.
t

Q-Ð =ë
î
µì
+ÐÖ +ÐÖ Q =îµí

U

U
F U F U

 

 

(4.2) 

It may be noticed that the introduction of an extra set of equations for the auxiliary variables 

leads to additional computational cost that is the main drawback of the mixed DG 

formulations.  

In FEM-based methods, auxiliary variables are only utilized as an intermediate step in 

the derivation of the discretized system. Later, they will eliminate it by reforming the 

equations from the flux formulation to the primal formulation. Nonetheless, unfortunately, 

it is not possible to eliminate the auxiliary system for solving high-order Boltzmann-based 

models in which viscous fluxes are a nonlinear and implicit function of the conservative 

variables and their derivatives. Thus, in present work, instead of reformulating the 

governing equations in primal (bilinear) form, the mixed-DG formulation is utilized and 

auxiliary equations are solved besides the primary equations. 

4.3.1 Discontinuous Galerkin spatial discretization 

In order to discretize the coupled system of equations (4.2), the domain Wcan be 

approximated by hW  such that hW W as 0.h  Accordingly, the approximated domain 

hW  is tessellated into a collection of EN  arbitrary non-overlapping elements eW  such that 
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{ }.h e= W  In present thesis, the discretization elements eW  are lines in one-dimensional, 

triangles/rectangular in two-dimensional and tetrahedrons in three-dimensional spaces.  

The boundaries of every element eµW are divided into two parts: interfaces-oriented 

boundaries e

FG  and element-oriented boundariese

BG .  The collection of the interfaces and 

boundary faces of the tessellated domain h  are denoted by  and h hI , respectively. 

, ,
j j

e e

h h

e e

h F h B

j j
e e

I
"ÍW "ÍW
" Í " Í

= G = G  

(4.3) 

where 
j

e

FG denotes the thj  face of the local element eW . Consider the finite element space 

(broken space) hV  defined by 
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for some polynomial degree 0,k² being ( )k

eW  the space of polynomial functions of 

degree at most k on the element eW  and ( )2

hL W  represents the space of functions, which 

are squared Lebesgue integrable over the approximated domain .hW  

If the space of the polynomial functions are defined appropriately in a standard region, 

the numerical solution in local element eW  can be expressed in terms of a polynomial field 

that accumulates the multiplication of local degree of freedoms with corresponding 

polynomial functions of degree k as, 
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(4.5) 

Here the expansion coefficients ()e

k

h
U t and e

k

h
Q denote the degree of freedom of the 

numerical solution and of the test function in an element ,eW  respectively, and kN  denotes 

the number of basis functions required for approximating the smooth and continuous 
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solution inside the space of the polynomial functions. The 1kN +  basis functions ()kb x  are 

a base for the polynomial functions .
k

The exact solution of the conservative variables 

and their derivatives can be approximated by the numerical solution obtained in every 

element as follows 
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(4.6) 

 

4.3.2 Elemental formulation  

Taking the product of the conservation laws with vector u, and the auxiliary equations 

with tensor t and then integrating over the solution domain, we obtain its weighted 

residual form 
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(4.7) 

Now we perform integration by parts using Gaussian divergence theorem on the advection 

and viscous term and we get the basic form of the DG approach for the system of 

conservation law ï the weak formulation of the problem (4.2), 
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(4.8) 

where n represents the outward normal vector. Splitting the volume integral over hW  into 

sum of the integrals over the local elements eW  and using the divergence theorem, Eq. 

(4.8) leads to the elemental formulation of the governing equations as 
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(4.9) 

Here edG  denotes the boundaries of the local element.  

The solution U inside each element is approximated by a linear combination of the test 

functionu. In addition, if we choose the same discontinuous test functions and ansatz 

functions for the solution of the auxiliary variable Q as for the solution U itself i.e.

() = ,h h kbt u =x we obtain the following semi-discrete system of k equations for the 

generic element eW : 
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(4.10) 

The system of equations introduced in Eq. (4.10) is not solvable since the degree of 

freedom related to every element is not linked to the degree of freedoms in another element 

of .hW  Thus, establishing a weak inter-element connection though introducing an 

appropriate monotone numerical fluxes at interfaces and boundaries of elements eW  is 

essential to obtain an approximate spectral solution.  

4.3.3 Weak DG formulation 

In order to handle the discontinuities occurring in the boundary integral of Eq. (4.10), 

we have to approximate the physical fluxes using the following numerical fluxes such as 
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(4.11) 

Here the ( ) and ( )L RÖ Ö notation is used to indicate the trace value taken from the interior 

and exterior of the element, respectively. If we split the element boundary integrals into 

inner face integrals and domain boundary face integrals, we finally arrive at the mixed 

weak DG formulation of the conservation laws (4.2) on the local element eW : 
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(4.12) 

The resulting formulation is called a two-step mixed-DG method in which the test functions, 

accordingly to Galerkin method are chosen to equal to the basis (ansatz) functions.  In 

mixed DG method, the auxiliary equations are initially solved at beginning of every step, 

then the gradients of primary variables eh
Q  are updated based on the global solutions eh

U

at current time step. Afterwards, the primary system is solved, using the values of eh
Q

obtained from step one. 

All the boundary conditions are be imposed in a weak manner. We construct an exterior 

boundary state ( ), ,b L

h h BCU U U  which is a function of the interior state L
hU and the known 
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physical boundary data .BCU Hence the numerical boundary flux is computed as 

( ), ,b L

h h BCU U U  

( )

( )

( )

, ,

, ,

, , , .

b L b

auxiliary auxiliary h h

b L b

inviscid inviscid h h

b L L b b

viscous viscous h h h h

=

=

= Q Q

H H U U

H H U U

H H U U

 

 

(4.13) 

In this work, we implemented the approximate Riemann solvers of Lax-Friedrich solver 

for inviscid numerical flux .inviscidH  Moreover, the choice of the fluxes auxiliaryH  and viscousH

is the crucial part of the weal formulation for DG methods for higher order derivatives, 

since there is no counterpart or experience from the Finite Volume method. Therefore, the 

choice of numerical fluxes auxiliaryH  and viscousH for different approaches has been adopted 

from the theoretical and numerical studies of purely diffusive model problems.  

All the integrals appearing in the elemental equations are calculated by means of 

numerical quadrature rule with a number of integration points consistent with the accuracy 

required. By assembling all the elemental information in Eq. (4.12), it leads to a system of 

ordinary differential equations (ODEs) in time which can be written as 

( )
d

dt
=

U
M R U  

(4.14) 

where M is the mass matrix, U is the global vector of the degree of freedom, and R is the 

residual vector.  The elements of mass matrix is defined as 

.k j
E
b b d= WñM  (4.15) 

In case of orthogonal basis functions 

0, ,k j
E
b b d k j= W= ¸ñM  (4.16) 

Thus the elemental mass matrices possess diagonal form. 
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4.4 Elemental transformation to computational space 

4.4.1 One-dimensional elemental transformation  

For one-dimensional problems, the local element eW  are equally spaced 1i ix x x+D = - 

and the space coordinate x in element eW is linked to the local spatial coordinate x in a 

standard element [ ]1,1 ,st

eW Í - see Figure 4-1, under the affine sub-parametric 

transformation  : st

e e eT W W  defined by 

1

2 1, .i
e

i i

x x
x

x x
x

+

-
= - " ÍW

-
 

(4.17) 

The Jacobian of this transformation is given by 

.
2

x x

x


µ D
= =
µ

x
J x

 
(4.18) 

The inverse of the transformation 
1 : st

e e eT - W Wis given by 

1

1 1
, .

2 2

st

i i ex x x
x x

x+

- +
= + " ÍW 

(4.19) 

In addition, the space coordinate x in element eWmay be transformed to the local spatial 

coordinate x in a standard element [ ]0,1 ,st

eW Í as defined in Figure 4-2, under the affine 

sub-parametric transformation : st

e e eT W W , 

1

, .i
e

i i

x x
x

x x
x

+

-
= " ÍW

-
 

(4.20) 

In this case, the Jacobian of this transformation can be evaluated as 

.
x

x
x



µ
= =D
µ

x
J x

 
(4.21) 

While the inverse of the transformation 
1 : st

e e eT - W Wis given by 

( )1 21 , .st

ex x xx x x= - + " ÍW (4.22) 
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Figure 4-1. Transformation from physical line elment to computational standard 

element in interval [-1,1]. 

 

Figure 4-2. Transformation from physical line elment to computational standard 

element in interval [0,1]. 

4.4.2 Two-dimensional elemental transformation  

Rectangular element 

A reference or standard rectangular element 
st

eW  is defined using a local Cartesian 

coordinate system ( )[ ], 1,1x hÍ - as defined in Figure 4-3. The reference (standard) 

rectangular element can be mapped from the computational space ( ),x h to an arbitrary 

rectangular element in the physical space ( ),x y  under the linear transformation 

: st

e e eT W Wdefined by 

( ) ( )

( ) ( )

1 2

1 2

1
1 1 ,

2

1
1 1 ,

2

x x x

y y y

x x

h h

= - + +è øê ú

= - + +è øê ú

 

(4.23) 
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where ( )( )( ) ( )1 1 2 2 3 3 4 4, , , , , , and ,x y x y x y x y  are the physical coordinates of the vortices 

of eW . The Jacobian of this mapping is given by 

( )

( )
2 1 rectangle

2 1

0, 1 1
A ,

0, 4 4
e

x xx y

y yx h


-µ è ø
= = =é ù

-µ ê ú
x

J x
 

(4.24) 

where 
rectangleA e is the area of the rectangle element eW . The inverse of the transformation 

1 : st

e e eT - W W  is given by 

( )

( )

1 2

1 2

1
2

1
2

x x x
x

y y y
y

x

h

= - -
D

= - -
D

 

(4.25) 

where 2 1 2 1, and .x x x y y yD = - D = -  

Triangular element 

A reference triangle can be mapped from the physical space ( ),x y to computational 

space ( ),x hwith the linear transformation : st

e e eT W W 

( )

( )

1 2 3

1 2 3

1 ,

1 ,

x x x x

y y y y

x h x h

x h x h

= - - + +

= - - + +
 

(4.26) 

while the Jacobian of the transformation is given by 

( )

( )
( ) ( ) ( )1 2 3 2 3 1 3 1 2

,
2 .

,
tri

x x

x y
J x y y x y y x y y

y y

x h

x h

x h

µ µ

µ µ µ
= = = - + - + - = D

µ µµ

µ µ

 

(4.27) 



 

84 

 

 

Figure 4-3. Transformation from physical rectangular elment to computational standard 

rectangular element in interval [-1,1]. 

 

Figure 4-4. Transformation from physical triangular element to computational triangular 

element in interval [0,1]. 

Here, triD  is the area of physical triangle element which is given by 

( ) ( ) ( )

1 1

2 2

3 3

1 2 3 2 3 1 3 1 2

1
1

1
2

1

1
.

2

tri

x y

x y

x y

x y y x y y x y y

D =

= - + - + -è øê ú

 

(4.28) 

The inverse transformation from computational space to physical space 
1 : st

e e eT - W W is 

given by 
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( ) ( )

( ) ( )

3 1 1 3 3 1 1 3

1 2 2 1 1 2 2 1

1

1
.

x y y y x x x y x y
J

x y y y x x x y x y
J

x

h

= - + - + -è øê ú

= - + - + -è øê ú

 

(4.29) 

 

Figure 4-5. Transformation from physical tetraherdral element to computational 

tetraherdral element in interval [0,1]. 

 

4.4.3 Three-dimensional elemental transformation  

A tetrahedral element in physical space ( ), ,x y z  can be transformed to a canonical 

reference tetrahedral in a computational space ( ), ,x h z system under the linear mapping 

: st

e e eT W W  as shown in Figure 4-5. The coordinate transformation ( ) ( ), , , ,x y z x h z

is given as 

( ){ }, , | 0 1; 0 1 ; 0 1 ,x h z x h x z x h = ¢ ¢ ¢ ¢ - ¢ ¢ - - (4.30) 

such that  

( ) ( )

( ) ( )

( ) ( )

1 2 3 4

1 2 3 4

1 2 3 4

, , 1 ,

, , 1 ,

, , 1 .

x x x x x

y y y y y

z z z z z

x h z x h z x h z

x h z x h z x h z

x h z x h z x h z

= - - - + + +

= - - - + + +

= - - - + + +

 

 

(4.31) 

The Jacobian of the transformation is given as  
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( )

( )

2 1 3 1 4 1

2 1 3 1 4 1

2 1 3 1 4 1
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6 .
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(4.32) 

The inverse transformation ( ) ( ), , , ,x y zx h z is given as 
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(4.33) 

Note that, tetW is the volume of real tetrahedral in xyz-system 
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1
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tet
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(4.34) 

With respect to the coordinate transformation into the computational space( ), ,x h z, we 

have 

,xdxdydz J d d dx x h z=  (4.35) 

 and the transformation gradients of the form 

.

x x x x

y y y y

z z z z

x h z

x

x h z

h

x h z

z

å õµå õ å õµ µ µ µ
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= æ öæ ö æ öµ µ µ µ µæ öæ ö æ ö
æ öµµ µ µ µæ ö æ ö

æ ö æ öæ ö
µµ µ µ µç ÷ ç ÷ç ÷

 

 

(4.36) 

 

4.5 Foundation of basis functions 

The choice of the basis functions is ambiguous and has a little contribution to the 

accuracy, but no effect on the overall results of the DG method. Both orthogonal and non-

orthogonal basis functions have been used. Apart from being orthogonal and non-

orthogonal, basis function may be modal and nodal. In this thesis, we employed modal 

basis function, with increasing order of accuracy, higher order polynomials are included in 

the approximation which are in hierarchical nature. It means that 0 1 2,
kNb b b -ÖÖÖ are included 

along with the 1kNb -  basis functions in 1kN -  order approximation. With the modal 

expansion, the position of the degree of freedom e

k

h
U in the reference domain is not 

important. The approximation solution can be defined in terms of modal expansion as, 

( ) () ()
1

, ,
k

e e

N
k

kh h
k

t U t b
=

=äU x x  
(4.37) 
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where, ()kb x is the Jacobi polynomials. The alternate of modal basis functions are the 

nodal basis functions, which apart from increasing the mode of polynomial, increase the 

nodes on which to evaluate the degree of freedom. Nodal basis functions are not 

hierarchical meaning the basis functions for an 1kN -  accuracy cannot be constructed from 

the 0 1 2,
kNb b b -ÖÖÖ basis functions. Also the reconstruction of the approximate solution is 

different. In nodal basis function, the position of the degree of freedom e

k

h
U in the reference 

domain is important as a particular node corresponds to a particular basis function. Hence 

information about the position of the degree of freedom is stored in the solution array. In 

term of nodal expansion, the approximation solution can be defined as, 

( ) ()()
1

, ,
k

e e

N
k

kh h
k

t U t l
=

=äU x x  
(4.38) 

where ()kl x is the Lagrangian polynomials defined as 

()
( )
( )

( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

0,

0 1 1 1

0 1 1 1

.

n
j

k
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k k k k k k k n

x x
l x

x x

x x x x x x x x x x

x x x x x x x x x x

= ¸

- +

- +

-
=

-

- - ÖÖÖ - - ÖÖÖ -
=

- - ÖÖÖ - - ÖÖÖ -

ä
 

(4.39) 

In the present thesis, we use orthogonal Jacobi polynomials (),

nPa bxwhich is also called 

hypergeometric polynomials. These are defined as the polynomial solutions of the Strum-

Liouville problem which can be given as 

( ) ( ) ( )
2

2

2
1 2 1 .

d y dy
n n

d d
x b a a b x a b x

x x
- + - - + + = + + +è øê ú  

(4.40) 

In the interval[ ]1, 1- , the Jacobi polynomials can be expressed as 

()
( )

( )( ) ( ) ( ){ },
1

1 1 1 1 , , 1
2 !

n n
n n

n n n

d
P

n d

a b a ba bx x x x x a b
x

- + +-
= + + - - >- 

(4.41) 

The Jacobi Polynomials have the orthogonal property 
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() ()( )( )
1

, ,

1

1,
1 1

0, .
i j ij

i j
P P d

i j

a ba b a bx x x x x d
-

=ë
+ + = =ì

¸í
ñ  

(4.42) 

The Legendre polynomials ()0,0 ,nP x  which are a generalisation form of the Jacobi 

polynomials (by setting 0a b= =) can be given by 

() ()
( )

( )0,0 2
1

1 .
2 !

n n
n

n n n n

d
L P

n d
x x x

x

-
= = -  

(4.43) 

 

 

Figure 4-6. Number of required basis (polynomial) functions up to 5th order. 

 

4.5.1 Number of required basis functions 

The total number of required basis function for a reconstruction of a complete set bases 

of order p is a function of degree p and dimension :  

( )
1( , ) .

!

k
p

p k
N N p =

Ô +
= =  

(4.44) 

For instance, the number of required basis function of order p in arbitrary-dimension is 

given by 
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(4.45) 

Figure 4-6 provides the required number of basis functions for one-dimensional, two-

dimensional and three-dimensional discontinuous Galerkin method.  

 

Figure 4-7. Modes of one-dimensional Legendre basis functions up to 5th order. 

 

 

Figure 4-8. Modes of one-dimensional scaled Legendre basis functions up to 5th order. 
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4.5.2 Basis functions for one-dimensional problem 

Due to different features as orthogonality and recursive formula, Legendre polynomials 

are mainly used. In one-dimensional DG method, Legendre polynomials are used as the 

basis functions such as,  

()0,0 .i ib P x=  (4.46) 

The one-dimensional Legendre basis functions up to 5th order are defined in Eq. (4.47) and 

their modes are given in Figure 4-7  
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(4.47) 

The scaled Legendre polynomials are defined as: 

()
()

( )
()

2

0,0
2 !

.
2 !

n

n n

n
P

n
x x=  

(4.48) 

The one-dimensional scaled Legendre basis functions () ()i nb x x= up to 5th order are 

given in Eq. (4.49) and their modes are plotted in Figure 4-8. 
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4.5.3 Basis functions for two-dimensional problem 

4.5.3.1 Basis functions for rectangular elements  

An orthogonal basis for the rectangular element can be constructed as a tensor product 

of the so-called principal function defined as  

() ()
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() ()
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2
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2
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j
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j

y x x x

y h h h

= =

= =

 

 

 

(4.50) 

where ()i xand ()j h are the scaled Legendre polynomials. With the definitions of the 

principal functions 
a

iy and ,b

jy  the rectangular basis functions are constructed as their 

tensor product 

( ) () (), .a b

k i jb x h y x y h=  (4.51) 

The two-dimensional scaled Legendre basis functions for rectangular element up to 4th 

order are defined in Eq. (4.52) and their modes are represented in Figure 4-9. 
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(4.52) 
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Figure 4-9. Complete scaled Legendre polynomial space, based on Pascalôs triangle, for 

full standard rectangular expansion up to 4th order. 

 

 

Figure 4-10. Complete scaled Legendre polynomial space, based on Pascalôs triangle, 

for full standard triangular expansion up to 4th order. 
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4.5.3.2 Basis functions for triangular elements 

An orthogonal basis for the triangle can be constructed as a generalized tensor product 

of the so-called principal functions defined as 

() ()

() ()
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2 1,0

,

1
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2
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b i
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z P z

z
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(4.53) 

The basis functions for the standard triangle element are defined using the principle 

functions as 

( ) ( )
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(4.54) 

The two-dimensional hierarchical basis functions for the standard triangle element up to 

4th order are defined in Eq. (4.55) and their modes are presented in Figure 4-10. 
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4.5.4 Basis functions for three-dimensional problem 

An orthogonal basis for the tetrahedral element can be constructed as a generalized 

tensor product of the so-called principal functions defined as 
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(4.56) 

The basis functions kb  for the standard tetrahedral element are defined in terms of the 

principle functions as 

( ) ( )
2 2
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å õ å õ
= - - - +æ ö æ ö

- - -ç ÷ ç ÷
 

(4.57) 

The three-dimensional hierarchical basis functions for tetrahedral element up to second-

order are given as: 
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(4.58) 

 

4.5.5 Derivatives of basis functions 

In case of one-dimensional problems, the basis functions are defined as 

() ()( ).k kb x b xx=  (4.59) 
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Then the derivatives of the basis function in the computational domain are given by 

.k kb b

x x

x

x

µ µµ
=

µ µ µ
 

(4.60) 

In case of two-dimensional problems, the basis functions kb  are defined as 

( ) ( ) ( )( ), , , , .k kb x y b x yx h x h=  (4.61) 

Then the derivatives of the basis function in the computational domain are given as 
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(4.62) 

In case of three-dimensional problems, the basis function kb  is defined as 

( ) ( ) ( ) ( )( ), , , , , , , , z , , .k kb x y z b x yx h z x h z x h z=  (4.63) 

Then the derivatives of the basis function in the computational domain are given as 
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(4.64) 

4.5.6 Evaluation of mass Matrix 

In section (4.3), the elemental mass matrix M is introduced. The integration required 

for the elements M is performed in the three-dimensional computational domain 
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(4.65) 

Here xJ x  denotes the transformation Jacobian. Since, the orthogonal basis function are 

employed in present work, therefore, the constant ijC  can be defined as 
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(4.66) 

 

 

Figure 4-11. A plot of the computed mass matrix for complete orthogonal polynomial 

space up to 4th order for full  tetrahedral expansion. 

 

4.6 Numerical integration in computational domain  

In many cases, it is not possible to integrate the expression in closed form. Therefore 

numerical integration must, therefore, be utilized. If one is using sophisticated elements, it 

is almost always necessary to use numerical integration. Similarly, if the application is 

complicated, e.g., the solution of a nonlinear ordinary differential equation, then even 

simple one-dimensional elements can require numerical integration. Many analysts have 

found that the use of numerical integration simplifies the programming of the element 

matrices. This results from the fact that lengthy algebraic expressions are avoided and thus 

the chance of algebraic and/or programming errors is reduced. There are many numerical 
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integration methods available. Only those methods commonly used in finite element 

applications will be considered here. 

In discontinuous Galerkin weak formulation (4.12), the surface and volume integrals 

are needed to be a weighted approximated as a weighted summation of function evaluation 

at a number of points. The choice of quadrature rule limits the order of DG method, 

therefore, choosing an appropriate numerical integration method is essential to obtain 

highly accurate DG solutions. 

4.6.1 Numerical integration in one-dimensional space 

The Gaussian quadrature of order qN  for the standard interval [ ]1, 1-  is given as 

follows: 

() ()
1

11

,
qN

i i

i

f d fx x w x
=-

ºäñ  
(4.67) 

where ix and iw are the Gaussian quadrature points and weights, respectively. Noted that 

a Gaussian quadrature using qN  points may provide the exact integral if ()f x  is a 

polynomial of order 2 1qN -  or less. The Gaussian quadrature points and weights of order 

qN  in interval [ ]1, 1-  are provided in Table E.1 (9.2.4Appendix E). In addition the 

numerical integration of a polynomial function ()f x on a reference line of unit length 

[ ]0, 1 is approximated as  

() ()
1

10

.
qN

i i

i

f d fx x w x
=

ºäñ  
(4.68) 

The quadrature points and weights of the unit reference line in interval [ ]0, 1  are provided 

in Table E.2 (9.2.4Appendix E).  Figure 4-12 shows the distribution of the Gauss-Legendre 

quadrature points inside and over the one-dimensional master element.  



 

99 

 

 

 

Figure 4-12. Number of required quadrature points for integrating inside and over one-

dimensional master element for (a) p=0, (b) p=1, and (c) p=2 order of space polynomials. 

4.6.2 Numerical integration in two-dimensional space 

Integration on standard quadrilateral (square) element ( ){ }, : 1 , 1stQ x h x h= - ¢ ¢ 

usually relies on tensor product of the one-dimensional Gaussian quadrature formulas 

defined in Eq. (4.67). Thus, the application of Eq. (4.67) to a two-dimensional integral on 

a standard quadrilateral element on [ ][ ]1,1 1,1- ³ -  yields the approximation  

( ) ( ) ( )
1 1

1 11 1

, , , ,
q q

st

N N

i j i j
Q

i j

f d d f d d fx h x h x h x h ww x h
= =- -

= ºääññ ññ  
(4.69) 

where ,i jx h the quadrature are points and ,i jw w are the weights of the respective 

quadrature points of order .qN   Figure 4-13 shows the distribution of the Gauss-Legendre 

quadrature points inside and over the two-dimensional master triangular element. 

 

Figure 4-13. Number of required quadrature points for integrating inside and over the 

two-dimensional master triangular element for (a) p=0, (b) p=1, and (c) p=2 order of 

space polynomials. 

In case of two-dimensional standard triangle (unit triangle) element 

( ){ }, : 0 , , 1stT x h x h x h= ¢ + ¢ integration may be calculated by using tensor product-type 
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Gaussian quadrature formula, but it may be less efficient [108].  The integration of the 

standard triangular element on [ ][ ]0,1 0,1³  can be evaluated by symmetric quadrature 

formula defined in [108, 109] as 

( ) ( ) ( )
11
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1
, , , ,

2

q

st

N

i i i
T

i

f d d f d d f

x

x h x h x h x h w x h
-

=

= ºäññ ññ  
(4.70) 

where ( ),i ix h are the quadrature points located inside the standard triangle, iw are the 

normalized weights with respect to the triangle area and 
qN  is the number of quadrature 

points. Noted that the resulting quadrature should use as less as a possible number of 

quadrature points to achieve as high as possible accuracy, we also would like the quadrature 

points to possess some kind of symmetry. The typical points for symmetric quadrature 

rules on the unit triangle are provided in Table E.3 (9.2.4Appendix E). Figure 4-14 shows 

the distribution of the Gauss-Legendre quadrature points inside and over the two-

dimensional master rectangular element. 

 

Figure 4-14. Number of required quadrature points for integrating inside and over the 

two-dimensional master rectangular element for (a) p=0, (b) p=1, and (c) p=2 order of 

space polynomials. 
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Distribution of all quadrature points  

 

Distribution of surface quadrature points 

 

Distribution of volume quadrature points 

 

 

Figure 4-15 Number of required quadrature points for numerical integration in a 

three-dimensional tetrahedron element for (a) p=0, (b) p=1, and (c) p=2 order of 

space polynomials. 

4.6.3 Numerical integration in three-dimensional space 

In present work, we are using the standard tetrahedral (unit tetrahedral) element 

( ){ }, , : 0 , , , 1stTet x h z x h z x h z= ¢ + + ¢for three-dimensional simulations. The 

integration of the standard tetrahedral element may be evaluated by symmetric quadrature 

formula defined in [108, 110] as 



 

102 

 

( ) ( )

( )

1 11

0 0 0

1

, , , ,

1
, , .

6

st

q

Tet

N

i i i i

i

f d d d f d d d

f

x x h

x h z x h z x h z x h z

w x h z

- - -

=

=

=

ñññ ññ ñ

ä

 

(4.71) 

The symmetric quadrature points for a unit tetrahedral element are given in Table E.4 

(9.2.4Appendix E). Figure 4-15 shows the distribution of the symmetric quadrature points 

inside and over the surface in the three-dimensional master tetrahedral element. 

4.7 Initialization of DG solver  

Let the initial condition be defined in the physical space W as 

( ) ()0,0 =U x U x  (4.72) 

Replacing the left-hand side with the approximation solution 

( ) ()0,0h =U x U x  (4.73) 

where, as previously defined 

( ) ()()
1

,
pN

h i i

i

t t b
=

=äU x U x  
(4.74) 

Casting this into the weak form, multiplying Eq.  (4.73) by the test function and integrating 

over the element of the domain 

( )() ()()0,0h i ib d b d
W W

W= Wñ ñU x x U x x  (4.75) 

From the Eqs. (4.74) and (4.75), we get  

()() () ()()0

1

0
pN

i i j i

i

b b d b d
W W

=

å õ
W= Wæ öæ ö

ç ÷
äñ ñU x x U x x , 

(4.76) 

factoring out the degree of freedom, 

() () () ()()00i i j ib b d b d
W W
Ö W= Wñ ñU x x U x x  (4.77) 

 where the integral on the left-hand side of Eq. (4.77) is the mass matrix 
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() () .i jb b d
W

= WñM x x  (4.78) 

Thus, finally the initialization becomes 

() ()()0

1
0 .i ib d

W
= WñU U x x

M
 

(4.79) 

 

4.8 Time discretization of the problem 

The spatial discretization of the governing Eq. (4.14)  with discontinuous Galerkin 

method results to a system of semi-discrete ordinary differential equation in time 

( ),
d

dt
=

U
M R U  

(4.80) 

where M  is the mass matrix, U is the global vector of the degree of freedom, and R is the 

residual vector. In our present work, explicit time scheme of the solution is performed with 

high-order strong stability preserving (SSP) Runge-Kutta methods that preserve the 

monotonicity of the spatial discretization in any norm or semi-norm coupled with first-

order forward Euler time stepping. The explicit third-order  accurate SSP Runge-Kutta 

method proposed by Shu and Osher [111] is employed, 
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(4.81) 

where 
1-

M  is the inverse of the mass matrix.  

4.8.1 Time step calculation 

The time step value tD  for nonlinear system of differential equations can be given by 

( ) ( )
.

Ĕ Ĕ Ĕ Ĕ Ĕ Ĕ
I

I x y z x y z

inv inv inv vis vis vis
I I

t CFL
C

W
D =

L +L +L + L +L +L
 

(4.82) 
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Here, CFL is the CourantïFriedrichs-Lewy condition ( )1 .CFL¢  The inviscid spectral 

radii are defined as 

( )
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(4.83) 

and the viscous spectral radii are given by 
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(4.84) 

Here, the C denotes the constant parameter that is set to be zero for zero-order Boltzmann-

Curtiss based model; 2 for first-order Boltzmann-Curtiss based model; and 4 for second- 

order Boltzmann-Curtiss based model. The variables Ĕ Ĕ Ĕ, ,and ,x y zS S SD D D  illustrate the 

projections of the control volume on the , and y z x z x y- - - planes, respectively. These 

may be defined as 

1 1 1

1 1 1Ĕ Ĕ Ĕ, , ,
2 2 2

F F FN N N
x y z

x y zJ JJ
J J J

S S S S S S
= = =

D = D = D =ä ä ä  
(4.85) 

where , andx y zS S S  denote the x-, y- and z-component of the face vector .S S= ÖDn  The 

FN  denotes the number of faces of local element.   

4.9 Numerical flux functions 

Due to the discontinuous space and individual elements, the numerical flux function 

provides the necessary communication of flow information between elements on the ñleftò 

and ñrightò sides of a given interface. Traditionally, with the local element eW and 
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corresponding outward unit normal traditionally designated as the L-side and the neighbor 

element is designated as the R-side. At a minimum, the numerical flux function must satisfy 

the consistency relations 

( ) ( )

( ) ( )

, ,

, , .

h h h

L R R L

h h h h

=

=-

H U U H U

H U U H U U
 

(4.86) 

For the viscous flux function treatment, various schemes exist which are provided in depth-

discussion by Arnold [112]. In this thesis, we employed first Bassi-Rebay scheme (BR1) 

for viscous flux treatment. In this scheme, a central discretization is proposed for the 

auxiliary as well as the viscous fluxes: 

( ) ( )

( ) ( ) ( )( )vis vis

1
, ,

2

1
, , , , , .

2

L R L R

auxiliary h h h h

L L R R L L R R

viscous h h h h h h h h

= +

Q Q = Q + Q

H U U U U

H U U F U F U

 

(4.87) 

On the other hand, the inviscid flux normal trace is constructed with the theory of the Finite 

Volume (FV) methodðwell known Riemann problem. Many choices exist in literature, 

such as Lax-Friedrichs, Roe, van Leer, Harten-Lax-van Leer, exact Godunov and many 

others. However, in contrast to FV methods, the particular choice of flux function becomes 

less important for at least two reasons. First, the interface integral does not carry the entire 

burden for the element update. Second, the inter-element solution jumps become 

increasingly small at an exponential rate with increasing order of the DG approximating 

space. Therefore, due consideration must be given to the sophistication, difficulty of 

implementation, and cost of computation. It turns out that the Lax-Friedrichs flux performs 

quite well compared to other traditional and more complex functions. The function is given 

by 

( ) ( ) ( ) ( )inv inv

max

1 1
, ,

2 2

L R L R L R

inviscid h h h h h hlè ø= + +
ê ú

H U U F U F U U - U  
(4.88) 

where maxl  is the spectral radius (maximum eigenvalue) of the flux Jacobian  
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inv

,J
µ
=
µ

F

U
 

(4.89) 

along the direction n normal to the edge and is equal to: 

max .sound soundC Cl = Ö + = +V n V  (4.90) 

Here, soundC  is the sound speed.  

4.10 Numerical boundary conditions 

According to the flow conditions which have to be found at specific regions of the 

computational domain, the appropriate boundary conditions have to implement to the system 

of the governing equations. The numerical implementation of the boundary conditions is tricky 

and it demands special attention. The accuracy of the simulation, the rate of residual 

convergence, and stability of the numerical solver are strongly dependent on the 

implementation of the boundary conditions. 

All boundary conditions may be imposed weakly. For this purpose, we construct an exterior 

boundary state variable ( ), ,b L

h h BCU U U which is a function of interior state 
L

hU  and the known 

physical boundary data .BCU  

4.10.1 Far-field boundary 

Two requirements must be satisfied in numerical implementation of the far-field boundary 

conditions: first, the cutting of the physical domain should not have any considerable effect on 

the flow solution as compared to the unbounded domain and second, any outgoing noise should 

have no influence on the flow field. Inadequate truncation of the domain can lead to a severe 

slowdown of steady-state convergence rate. This issue is more sensible in the simulation of 

subsonic and transonic flow problems which are naturally elliptic and parabolic. 

Based on the concept of characteristics variables, all information are transported into the 

computational domain along the characteristics waves when the incoming flow is supersonic. 

Therefore, all eigenvalues have the similar sign, and boundary operator is solely defined based 

on conservative variables at boundary side as 
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(4.91) 

where the subscript ¤ denotes the free-stream values. In addition, the numerical flux functions 

ð auxiliary, inviscid, and viscous ï can be approximated as 
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inviscid inviscid h h

b L L b b
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= Q Q
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(4.92) 

 

4.10.2 Inviscid wall boundary 

In case of an inviscid flow, the fluid slips over the surface and it does not penetrate into 

the wall. Since there is no friction force, the velocity vector must be tangent to the surface 

e.g., there is no flow normal to the surface, i.e.  

0,Ö =u n  (4.93) 

where u is the velocity of flow on the boundary, and n is the unit outer normal vector on 

the boundary. The inviscid flux function is computed by adjusting the wall velocity to have 

zero normal component. While the viscous and auxiliary flux function are zero by default.  
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b L L
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(4.94) 

and 
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(4.95) 
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4.10.3 No-slip viscous wall boundary 

In no-slip wall where a viscous fluid passes a solid wall, the relative velocity between a 

solid wall and fluid attachment to the surface is assumed to be zero. Therefore, the physical 

velocity on the solid should be defined such that,  

0.b solid- =u u  (4.96) 

The solid temperature should be given explicitly if the wall boundary maintains the 

temperature. However, if heat flux vector is prescribed at wall, the normal heat flux on the 

wall should be defined as 

.solid bÖq = n q  (4.97) 

 For Navier-Fourier (NF) equations where Fourier law is employed for calculating heat 

flux vector, the normal gradient of temperature on the surface must set zero for adiabatic 

wall boundary condition as,  

.
L

b

i

i

T
T n

x

µ
ÖÐ =

µ
n  

(4.98) 

The most straight forward method to define no-slip boundary condition is to use following 

relations for adiabatic wall  

( )11
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(4.99) 

and 
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(4.100) 

 

4.10.4 Viscous slip wall boundary 

4.10.4.1 Langmuir velocity slip and temperature jump boundary 

The velocity slip and temperature jump boundary conditions on the surface are 

necessary for the studying the rarefied and microscale gas flows. Among the various slip 
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models, the Langmuir slip model based on the physical adsorption isotherm can be 

employed to model the slip effects[55, 113]. This boundary condition is considered that 

not only recovers the predictability but also facilitates a hydrodynamic treatment of the 

entire density regime with a single formalism. This present method takes the interfacial 

gasðsurface molecule interaction into account. A fraction  ( )0 1a a¢ ¢  of molecules 

reaching thermal equilibrium with wall can be expressed in dimensional form, as 

, for monatomic gas,
1

, for diatomic gas,
1

slip

slip

slip

slip

p

p

p

p

b

b
a

b

b

ë
î
+

î
=ì
î
î+
í

 

(4.101) 

where p is the surface pressure and the parameter
slipb depends on the wall temperature wT  

as well as interfacial interaction parameters. By considering the gas-surface molecular 

interaction process as a chemical reaction, the parameter 
slipb can be expressed as,  

2

1
exp ,

32

ref

slip

w B w ref

T De

c T k T p Kn

p p
b

å õ
= æ ö

ç ÷
 

(4.102) 

where c is the gas constant of the exponent of the inverse power law of the particle 

interaction potential, 
refp and 

refT  are reference pressure and temperature, Kn is the global 

Knudsen number, and De  is the heat of adsorption, for example, 5,255De J mol= for 

Ar-Al molecular interaction model. The velocity slip and temperature jump boundary 

conditions in the Langmuir model are determined according to the fraction, ,a  

( )

( )

1 ,

1 .

w g

w gT T T

a a

a a

= + -

= + -

u u u
 

(4.103) 

Here, u is velocity vector, wu  is the wall velocity vector, 
gu and 

gT  are the gas velocity 

vector and temperature at the reference location. 
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4.10.4.2 Maxwell slip wall boundary 

In 1879, Maxwell proposed a velocity slip boundary condition known as Maxwell 

velocity slip boundary condition[114, 115]. In this boundary condition, he related the 

tangential gas velocity slip 
slipu  to the tangential shear stress 

tangentialP  and the tangential 

heat flux
tangentialQ . This slip boundary condition can be expressed in tensor form [115] as, 

( )
tangential tangential

Pr 12 3

4

v mean
slip wall

v p

gs l

s m g

-å õ-
- =- -æ ö

ç ÷
u u QP  

(4.104) 

where the tangential shear stress 
tangentialP  and the tangential heat flux 

tangentialQ  are defined 

at the surface as,  

( )tangential tangential .Ö Ö Ön S, Q = Q SP = P  (4.105) 

Here, P and Q is the stress tensor and the heat flux vector along the surface; n denotes 

unit outward normal vector; tensor S which defined as ( )= - ÃS I n n , removes normal 

components at any non-scalar field, for example, velocity, so that slip only occurs in the 

tangential direction to the surface. The symbol I  denotes the identity tensor andÃ

represents the dyadic product between two vectors defined in equation (A.18) of 

9.2.4Appendix A; Pr is the Prandtl number; and wallu is the wall velocity. The tangential 

momentum accommodation coefficient is denoted by ( )0 1v vs s¢ ¢which determines the 

proportion of the molecules reflected from the surface purely diffusely or purely specularly 

according to  1vs =  and 0,vs =  respectively. In the notation given in Eq. (4.105), the 

Maxwell velocity slip boundary condition becomes, 

( )( )
( )

( )
Pr 12 3

.
4

v mean
slip wall

v p

gs l

s m g

-å õ-
- =- Ö Ö - Ã - Ö - Ãæ ö

ç ÷
u u n I n n Q I n nP  

(4.106) 

Generally, the stress tensor P and heat flux Q are defined for Newtonian fluid as  
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Using Eq. (4.107), the Maxwell slip boundary condition, (4.106) becomes as  
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where 
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(4.109) 

4.10.5 Symmetry boundary 

Symmetry boundary condition should guarantee no flux across the boundary. To satisfy 

this condition; the velocity normal to the symmetry plane must be zero; the gradients of 

scalar quantities normal to the boundary, and the gradient of tangential velocity on the 

boundary must be zero. It is also necessary that the gradient of normal velocity along the 

boundary vanishes. The summary of these conditions can be written in form of 

mathematical relation as 

( ) ( )( )

( ) ( ) ( )

0,

0,

0,

t

t

ÖÐ =

ÖÐ Ö = ÖÐ Ö - Ã =

ÖÐ Ö = - Ã ÖÐ Ö =

n U

n u n u I n n

u n I n n u n

 

(4.110) 

where t denotes a tangential vector to the symmetry boundary. 
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4.10.6 Outflow boundary 

If the outgoing flow is a supersonic flow, the sign of all eigenvalues is same and all 

characteristics waves leave the computational domain. Considering behavior of the 

characteristics waves, the boundary operator can be defined as, 

( )11

,

.

L

b L L

h

L L

b L L b L

h h h h

E

C

r

r

r

å õ
æ ö
=æ ö
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Q =Q - -

U u

U U n

 

 

(4.111) 

The numerical inviscid, viscous and auxiliary flux functions can also be approximated as   

( )

( )

( )

, ,

, ,

, , , .

b L b

auxiliary auxiliary h h

b L b

inviscid inviscid h h

b L L b b

viscous viscous h h h h

=

=

= Q Q

H H U U

H H U U

H H U U

 

 

(4.112) 

 

4.11 Implementation of limiters 

4.11.1 Positivity preserving limiter  

   In DG scheme, numerical solutions may lead to negative density and pressure during 

the time marching. But, physically, the density and the pressure should be positive. 

Therefore, the positivity preserving limiter is needed to enforce positive pressure and 

density at every element. Recently, Zhang and Shu proposed [116] positivity preserving 

limiters for compressible Euler equations on rectangular meshes in DG method and also, 

extended this method to unstructured triangular meshes [117]. According to Zhang and 

Shu, the solution coefficients are limited in such a way, so that the accuracy is maintained 

for smooth solutions while the DG scheme remains conservative and limiting for positivity 

of density and pressure is performed locally at each element. 
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The first step is to limit the density field at every element. So, start with defining a small 

value ( )13min 10 , ,pw r-= based on the mean value of the computed density and pressure 

in the target cell. Then, the positivity of density checks by computing and finding the 

minimum value of density,minr  looping over the quadrature points in the local elements. 

The limited coefficient 1q is then evaluated as 

1

min

min ,1
r w

q
r r

å õ-
= æ ö

-ç ÷
 

(4.113) 

The high order components of the density variable are then limited by   

( ) () () () ()0

0 1

1

, .
k

i

h j j i

i

t U t U tj q j
=

= +äU x x x  
(4.114) 

The second step is to preserve the pressure at each local element. This requires the scaling 

of all high order moments of the solution of all conservative variables with 2q . For 

computing the value of 2q, it requires to solve the quadratic equation 

( )1 , 0 1.p t t twè ø- + = ¢ ¢ê úUW  (4.115) 

where W is the mean solution and U is the conservative variables with limited density 

solution. Then, pick the minimum value of t among all the quadrature points as 2.q  The 

limited coefficient ( )2 1 2min ,t tq= . The high order components of conservative variables 

are limited by 

( ) () () () ()0

0 2

1

,
k

i

h j j i

i

t U t U tj q j
=

= +äU x x x  
(4.116) 

 

4.11.2 The Barth Jespersen limiter 

In the context of DG methods, a slope limiter is post-processing filter that constraints a 

polynomial basis function to stay within certain bounds. Barth and Jespersen [118] 

proposed an algorithm based on the unstructured grid for piecewise-linear data. Given a 
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cell average 
h c=U U  and the gradient ( ),

c
ÐU the goal is to determine the maximum 

admissible slope for a constrained reconstruction of the form,  

() ( )( ), 0 1, .h c e c e ec
a a= + Ð Ö - ¢ ¢ ÍWU x U U x x x  (4.117) 

Bath and Jespersen define the correction factor ea  so that the final solution values at a 

number of control points i eÍµWx  or in one of its neighbors aW  having a common 

boundary with .eW  That is, 

()min max, .e i e i¢ ¢ "U U x U  (4.118) 

Due to linearity, the solution hU  attains its extrema at the vertices ix of the cell .eW  To 

enforce condition (4.118), the correction factor ea  is defined as  

max

min

min 1, , if 0,

min 1, if 0,

min 1, , if 0,

e c
i c

i c

e i c
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i c

i c
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(4.119) 

where  () ( )( )h c cc
= + Ð Ö -U x U U x x  is the unconstrained solution value at ix .  
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Chapter 5. Solutions of zero and first-order 

Boltzmann-Curtiss based hydrodynamic models 

 

ñAll of physics is either impossible or trivial. It is impossible until you understand it, and 

then it becomes trivial.ò                                                    

                                                                                         ð Ernest Rutherford (1871-1937) 

 

 

This chapter is devoted to a series of applications for laminar flows based on zero-order, 

and first-order Boltzmann-Curtiss based hydrodynamic models i.e. Euler, and Navier-

Fourier are provided. This chapter is divided into three sections based on one-dimensional, 

two-dimensional and three-dimensional benchmark problems. In case of one-dimensional 

problems, the different Riemann test cases are assessed within DG framework and 

compared to the exact solutions. In case of two-dimensional problems, the different 

inviscid Riemann test casesðdouble Mach reflection, forward facing step, shock-vortex 

interaction and bubble-shock interaction, are simulated for checking solver accuracy. 

Finally, in three-dimensional problems, various Riemann benchmark are simulated. A 

subsonic flow past a sphere is simulated at 
o0a=  and validated with experimental results. 

Finally, a transonic flow over a G400 aircraft is simulated with angle of attack, 
o0 .a=  
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5.1 One-dimensional problems 

5.1.1 One-dimensional Riemann problem 

The test cases introduced by Toro[119] are well suited and often used as first test cases 

for the validation of inviscid CFD codes because exact solutions can easily be found for 

the respective problems. These test cases are performed for capturing the wave 

configurations. The computational domain is [ ]0,1W=  and 200 points are considered for 

all simulations. All cases are initial value problem (IVP), characterized by discontinuous 

conditions for flow variables which are prescribed in Figure 5-1. 

 

Figure 5-1. Initial conditions of various one-dimensional Riemann test cases. 

The ratio of specific heats is 1.4,g=  and the initial discontinuity is located at 0.5x=  for 

these problems. The Zero Gradient boundary condition is employed.  The exact solution of 

these problems can be found in [119]. The density, pressure, and velocity distributions for 

the exact solutions and numerical solutions are presented in Figure 5-2 and Figure 5-3. We 

observed that the numerical solutions of these Riemann problems are in good agreement 

with the exact solution.  
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Figure 5-2. One-dimensional Riemann problem: Sod shock tube problem (left): the 

density, pressure, velocity distribution contours at t=0.25, and Lax shock tube problem 

(right): the density, pressure, velocity distribution contours at t=0.14. 
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Figure 5-3. One-dimensional Riemann problem: 123 problem (left): the density, 

pressure, velocity distribution contours at t=0.15, and blast wave problem (right): the 

density, pressure, velocity distribution contours at t=0.012. 
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5.2 Two-dimensional problems 

5.2.1 Two-dimensional double Mach reflection problem 

The double Mach reflection problem is a standard test problem for shock capturing 

schemes. It originated by experimental and numerical studies of reflections of planar shock 

waves from wedges. This problem was extensively studied by Woodward and Colella for 

the inviscid flow [120]. In this problem, the shock wave has a strength with Mach number 

of 10, which is initially positioned at 0,x=  and hits a 
030  ramp with the x-axis. The initial 

pre-shock and post-shock conditions is   

( )
( )

( )

8,8.25,0,116.5 , if 0.25 0
, , ,

1.4,0,0,1 ,              if    0 3.0.

x
u v p

x
r

- ¢ ¢ëî
=ì

¢ ¢îí

 
(5.1) 

The computational domain is [ ][ ]0.25,3 0,1 ,W= - ³ and the implemented boundary 

conditions (inflow, outflow and reflected wall) are shown in Figure 5-4.  

 
 

Figure 5-4. Two-dimensional double Mach refelction problem: computational domain 

and intial configuration. 

The final simulation time is considered as 0.2.t= The post-shock condition is imposed 

from 0.25x=-  to 0x=  whereas a reflecting boundary condition is enforced from 0x=

to 3.0x=  at the bottom. For the top boundary condition, the fluid variables are defined as 



 

120 

 

to exactly follow the evolution of the Mach 10 shock wave. The inflow and outflow 

conditions are imposed for the left and right side of the computational domain. The density 

distributions with mesh size 1/150h=  are shown in Figure 5-5. This modal DG scheme 

resolves the flow structure under the Mach stem clearly.  

 
 

Figure 5-5. Two-dimensional double Mach reflection problem: density distribution 

contours at t=0.2. 

 

 

 
 

Figure 5-6. Two-dimensional forward facing step problem: computational domain. 
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(a) t=0.5 sec 

 
(b) t=1.0 sec 

 
(c) t=2.0 sec 

 
(d) t=3.0 sec 

 
(e) t=4.0 sec 

Figure 5-7. Two-dimensional forward facing step problem: density contours at various 

time step. 
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5.2.2 Two-dimensional forward facing step problem 

The forward facing step problem which is also known as Mach reflection problem was 

also proposed by Woodward and Colella [120] for the inviscid flow. The computational 

domain is [ ][ ][ ][ ]0,3 0,1 0.6,3 0,0.2W= ³ ³ as shown in Figure 5-6, which is covered by 

unstructured triangular mesh. The Mach step is located at 0.6x=  with height 0.2 in the 

tunnel. Initially, a right-moving flow with Mach 3 is imposed in the whole computational 

domain. The reflective boundary conditions are applied on the upper and along the walls 

of the tunnel, and inflow and outflow boundary conditions are imposed at the entrance and 

the exit. The corner of the step is the center of a rarefaction fan, which is a singularity point. 

For minimizing this numerical error generated at corner, the meshes near the corner are 

refined. The density distributions with 1/ 200h= at various times are presented in Figure 

5-7. It may be noted that the resolution is improved with this mesh refinement, especially 

for the slip line started from the triple point.  

5.2.3 Two-dimensional shock-vortex interaction problem 

In this test case, we are considering the interaction of a vortex with a steady shock wave. 

The shock-vortex interaction (SVI) problem proposed by Rault [121], is a good benchmark 

problem for a high order numerical scheme. It is usually followed by a complex flow 

pattern with both smooth features and discontinuous waves. The computational domain is

[ ][ ]0,2 0,1³ , and a normal strong shock wave with Mach sM  is located at 0.5,x=  as 

shown in Figure 5-8.  

The flow is from the left to the right direction. The upstream state of the pre-shock 

region is given by ( ) ( ), , , 1, ,0,1su v p Mr g=  and the downstream value in the post-shock 

region are computed through the Rankine-Hugoniot condition. A composite vortex, 
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rotating clockwise direction, is initially located at ( ) ( ), 0.25,0.5c cx y = with an angular 

velocity  

2

2 2
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           if   ,   

0                                        if  .
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r
u r a
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a b
v u r a r b

a b r
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(5.2) 

Here, mu  is the maximum tangential velocity,  ( ) ( )
2 2

c cr x x y y= - + -   is the distance 

from the vortex core ( ), ,c cx y and the radii of the inner and the outer annular region are 

given as ( ) ( ), 0.075,0.175 .a b =  The strength of the vortex is measured by ,vM  where 

v mM u a=  and a is the sound speed calculated from the upstream flow condition. Inside 

the vortex, the density and pressure are the functions of the temperature (T) and the 

upstream state of the normal shock.  

1

1 1

0 0

0 0

, ,
T T

p p
T T

g

g g

r r
- -å õ å õ

= =æ ö æ ö
ç ÷ ç ÷

 

(5.3) 

where the temperature at the left state of 0T  is calculated by the ideal gas law p RTr=  

with gas constant 1.R=  The temperature inside the vortex is obtained after solving the 

ordinary differential equation 

()2
1

.
v rdT

dr R r

qg

g

-
=  

(5.4) 

In the present computation, we are considering two different simulation problem: weak 

SVI with 1.2 and 0.5s vM M= =  and strong SVI with  1.5 and 0.7.s vM M= =  The 

computed solutions of these two test cases are presented in Figure 5-9 and Figure 5-10.  
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Figure 5-8. Two-dimensional shock-vortex interaction problem: computational domain. 

 

  

(a) Vorticity contours (b) Density contours 

Figure 5-9. Two-dimensional shock-vortex interaction problem: computed (a) vorticity 

and (b) density distribution contours with shock Mach =1.2, Vortex Mach =0.5 at t=2.5. 

 

  

(a) Vorticity contours (b) Density contours 

Figure 5-10. Two-dimensional shock-vortex interaction problem: computed (a) vorticity 

and (b) density distribution contours with shock Mach =1.5, Vortex Mach =0.7 at t=2.5. 

 



 

125 

 

5.2.4 Two-dimensional shock-bubble interaction problem 

The developed DG solver is applied to the prediction of shock-bubble interaction (SBI) 

problem. The schematic diagram of the SBI problem is illustrated in Figure 5-11. The 

computational domain is [ ][ ]0,3 0.5,0.5 .W= ³ -  The diameter of the bubble is 0.5.D= and 

it is centered at ( ) ( ), 1.75,0 .c cx y =  A left running shock wave is initially located at 

2.5.x=  The initial value of post-shocked region is ( ), , ,u v pr ( )1.38, 0.39,0,1.57= - , the 

initial flow condition of bubble is ( ) ( ), , , 0.138,0,0,1.0 ,u v pr = and the flow condition of 

the pre-shocked region is ( ) ( ), , , 1.0,0,0,1.0 .u v pr =  The right boundary is set to be inflow; 

and the other boundaries, namely, left, upper and bottom are set to be outflow. For the 

numerical simulation, we have considered 1000 1000³  points over rectangular meshes. 

 
 

Figure 5-11. Two-dimensional shock-bubble interaction (SBI) problem: schematic 

diagram of computational domain. 

 The numerical schlieren images for the flow field evolution at various time steps are 

reported in Figure 5-12.  The density and velocity of the post-shocked region are 

determined from the Rankine-Hugoniot jump condition. 
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(a) t=0.0 ms 

 
(b) t=1.0 ms 

 
(c) t=2.0 ms 

 
(d) t=3.0 ms 

 
(e) t=4.0 ms 

 
(f) t=5.0 ms 

 
(g) t=6.0 ms 

Figure 5-12. Two-dimensional shock-bubble interaction (SBI) problem: schlieren 

images for flow field evolution at various times.  
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5.3 Three-dimensional problems 

5.3.1 Three-dimensional Sod shock tube problem 

The shock tube problem or Sod problem introduced by Gary A. Sod in 1978 [122] is 

frequently used to test the accuracy of computational methods. An analytical solution is 

infact available, therefore, it is possible to compare numerical results with it and understand 

the strengths and weaknesses of the scheme implemented. A shock tube consists of a pipe 

with rectangular cross-section filled with a fluid (or a gas) with a diaphragm splitting the 

tube into two halves as shown in Figure 5-13. The diaphragm is numerically simulated as 

a discontinuity in different fluid conditions (temperature, pressure, and density) across that 

specific surface. Generally, the left side of the tube has higher values for the fluid 

properties. Given such initial conditions, the system is allowed to evolve in time. Two 

waves are generated and can be seen in all the physical variables. A shock wave will move 

towards the right (low-pressure region), and a refractive wave will move to the left (high-

pressure region). A contact discontinuity (moving towards the right side) separates the two 

regions and is visible in density and temperature (or energy) only as shown in Figure 5-14. 

 
Figure 5-13. Three-dimensional Sod shock tube problem: schematic diagram and initial 

configuration. 
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Figure 5-14. Three-dimensional Sod shock tube problem: produced different waves after 

broken diaphragm.  

In present work, the classical Sod shock tube on a one-dimensional unstructured mesh 

to assess the ability of the numerical methods to capture one-dimensional simple wave is 

considered as a standard benchmark problem. We select a computational domain, defined 

by [ ][ ][ ]0,1 0,0.1 0,0.01 .³ ³  The unstructured tetrahedral mesh are used for our 

computations and contains 98801 tetrahedral elements with mesh size 0.01.h=  It provides 

an equivalent one-dimensional resolution of 100 elements. The Dirichlet boundary 

conditions are imposed in x-direction, whereas the periodic boundary conditions are 

imposed in y and z directions. The initial condition is defined as follows: 

( )
( )

( )

1,0,0,0,1 ,                if    0.5
, , , w,

0.125,0,0,0,0.1 ,         if    0.5.

x
u v p

x
r

¢ëî
=ì

>îí

 
(5.5) 

The ratio of specific heats is 1.4g=  and the initial discontinuity is located at 0.5.x=  The 

computed final time is considered at t = 0.2 sec. The computed density and pressure 

distributions for the Sod shock tube problem in three-dimension, two-dimension and one-

dimension representation are shown in Figure 5-15. The x-component of the computed 

density and pressure distributions are compared with the exact solutions and found in good 

agreement as shown Figure 5-15 (bottom) 
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Density distribution Pressure distribution 

Figure 5-15. Three-dimensional Sod shock tube problem: the computed density (left) 

and pressure (right) distributions in three-dimensional view (upper); two-dimensional 

view (middle) and one-dimensional profiles (bottom) at t=0.2. 
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Figure 5-16. Three-dimensional Riemann 123 problem: the computed density (left) and 

pressure (right) distributions in three-dimensional view (upper); two-dimensional view 

(middle) and one-dimensional profiles (bottom) at t=0.15. 
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5.3.2 Three-dimensional 123 problem 

The next validation test case, so-called the Riemann 123 problem, has a solution 

consisting of two strong rarefactions and a trivial stationary contact discontinuity; the 

pressure is very small (close to vacuum) and this can lead to difficulties in the iteration 

scheme to find pressure numerically.  This benchmark problem is also useful in assessing 

the performance of numerical methods for low-density flows [123]. 

For the numerical simulations, we select a computational domain, defined by 

[ ][ ][ ]0.5,0.5 0.03,0.03 0,0.01 .- ³ - ³  The unstructured tetrahedral mesh are used for our 

computations and contains 22318 tetrahedral elements with mesh size 0.01.h=  It provides 

an equivalent one-dimensional resolution of 100 elements. The Dirichlet boundary 

conditions are imposed in x-direction, whereas the periodic boundary conditions are 

imposed in y and z directions. The initial condition is defined as follows: 

( )
( )

( )

1, 2.0, 0.0, 0.0, 0.4 for 0,
, , , ,

1.0, 2.0, 0.0, 0.0, 0.4 otherwise 0.

x
u v w p

x
r

- ¢ëî
=ì

>îí

 
(5.6) 

The ratio of specific heats is 1.4g=  and the initial discontinuity is located at 0.x=  The 

computed final time is considered at t = 0.15 sec. The computed density and pressure 

distributions for the 123 problem in three-dimension, two-dimension and one-dimension 

representation are shown in Figure 5-16. The x-component of the computed density and 

pressure distributions are compared with the exact solutions and found in good agreement 

as shown in Figure 5-16 (bottom). 

5.3.3 Three-dimensional explosion problem 

To validate the present numerical scheme in three spatial dimensions, we have 

considered a spherical explosion problem. This problem is important, as it involves the 

propagation of the waves which is not aligned with the Cartesian grid.  
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Figure 5-17. Three-dimensional explosion problem: initial configuration at t = 0 sec. 

 
Figure 5-18. Three-dimensional explosion problem: the computed density contours at t 

= 0.2 sec. 

The computational domain is the one-eighth of a sphere whose radius is one. The problem 

setup represents a multi-dimensional extension of the classical Sod problem [122], with 

initial conditions  

( )
( )

( )

1,0,0,0,1 ,                       for  ,
, , , ,

0.125,0,0,0,0.1              for  ,

r R
u v w p

r R
r

¢ëî
=ì

>îí

 
(5.7) 



 

133 

 

where 
2 2 2r x y z= + + is the radial coordinate, while 0.5R=  denotes the radius of the 

initial discontinuity. The computational domain consists of the fine grid with a huge mesh 

898,582 unstructured tetrahedral. Figure 5-17 illustrates the initial configuration of the 

explosion problem, while the computed density contours at 0.2t=  have been reported in 

Figure 5-18.  Since the problem is spherically symmetric, the reference solution can be 

obtained solving an equivalent one-dimensional PDE in the radial direction with geometric 

source term [119]. 

5.3.4 Three-dimensional double Mach reflection problem 

The next benchmark problem in the three-dimensional simulation is the double Mach 

reflection problem which is first extensively studied by Woodward and Colella [120] for 

the inviscid flow. This is one of the most well-known benchmark problems for high-

resolution shock-capturing schemes. For this problem, the computational domain is 

[ ][ ][ ]0.3,3 0,2 0,0.05 ,W= - ³ ³  and a solid wall lies at the bottom of the computational 

domain starting from 0.x=  The unstructured tetrahedral mesh are used for our 

computations and contains 1023663 tetrahedral elements with mesh size 0.01.h=  This 

test problem involves a strong moving shock with Mach 10 in a perfect gas with 1.4g=  

which hits a ramp at 30 degree with x-axis. The initial and post-shock conditions are 

( )
( )

( )

8.0, 8.25, 0.0, 0.0, 116.5 for 0.0,
, , , ,

1.0, 0.0, 0.0, 0.0,1.0 for 0.0. 
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=ì
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(5.8) 

The final simulation time is considered as 0.2.t= The post-shock condition is imposed 

from 0.25x=-  to 0x=  whereas a reflecting boundary condition is enforced from 0x=

to 3.0x=  at the bottom. For the top boundary condition, the fluid variables are defined as 

to exactly follow the evolution of the Mach 10 shock wave. The inflow and outflow 
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conditions are imposed on the left and right side of the computational domain. The 

computed density distributions are shown in Figure 5-19. 

 

 

Figure 5-19. Three-dimensional double Mach reflection problem: computed density 

contours. 

 

5.3.5 Three-dimensional forward facing step problem 

Another classical three-dimensional benchmark problem for high-resolution shock-

capturing discontinuous Galerkin scheme consists in the forward facing step problem, also 

called the Mach 3 wind tunnel test.  It has also been proposed originally by Woodward, 

and Collela [120]. The computational domain is given by 

[ ][ ][ ][ ]0,3 0,1 \ 0.6,3 0,0.2W= ³ ³ which consists 1251048 unstructured tetrahedral meshes. 

The initial condition is a uniform flow at Mach number M = 3 moving to the right. In 

particular, the flow variables ( ) ( ) ( ), ,0 1, , ,0 1 , , ,0 3,x y p x y u x yr g= = =

( ) ( ), ,0 0, , ,0 0v x y w x y= = are employed at initial conditions.   The ratio of specific heats 

is set to 1.4.g=  Simulations are carried out until t = 3.0 sec. Reflective boundary 
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conditions are applied on the upper and lower boundary of the domain and inflow/outflow 

boundary conditions are applied at the entrance/exit. At the corner of the step, there is a 

singularity, which is properly resolved with the second-order modal DG scheme using grid 

refinement.  The computed density distributions with second order modal three-

dimensional DG method are depicted in Figure 5-20. One can observe that the second-

order scheme provides a much better resolution of the physical instability and roll up of 

the contact line compared to the standard second order scheme. This indicates that the use 

of higher order schemes may be appropriate to enhance resolution and to reduce numerical 

viscosity for small-scale turbulent structures. 

 

Figure 5-20. Three-dimensional forward facing step problem: computed density 

contours. 

 

5.3.6 Three-dimensional transonic flow over a G400 aircraft 

The test case of a transonic gas flows past a complete G400 aircraft at a free stream 

Mach number M = 0.84 and an angle of attack of 
o0a= is chosen in order to assess the 

performance of the three-dimensional modal DG method in computing complex geometric 

configurations. In this test case, laminar flow is considered in contrast to turbulent flow, as 

it is the smooth flow of a fluid over a surface. Moreover, engineers want to design aircraft 
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with the laminar flow over their wings to make them more aerodynamic and efficient. Here, 

the G400 configuration includes the fuselage, wings, horizontal and vertical tails and two 

jet engines. For numerical simulations, the unstructured tetrahedral grids are used, 

containing 2,010,878 elements and 366,684 grid points. In present test case, the full aircraft 

is modeled, as shown in Figure 5-21. The computed pressure coeffiecient value, the 

pressure contours on the wing and the streamlines over the aircraft are shown in Figure 

5-22, Figure 5-23 andFigure 5-24, respectively. 

 

Figure 5-21. Three-dimensional transonic flow over a G400 aircraft: computational 

domain with tetrahedral unstructured grids.  

 

 

Figure 5-22. Three-dimensional transonic flow over a G400 aircraft: computed Cp 

value.  
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Figure 5-23. Three-dimensional transonic flow over a G400 aircraft: pressure contours 

on wing.  

 

 

Figure 5-24. Three-dimensional transonic flow over a G400 aircraft: computed 

streamlines. 

 

5.3.7 Three-dimensional subsonic viscous flow past a sphere 

A viscous flow past a sphere at a freestream Mach number of 0.3, and an angle of attack

o0 , and a Reynolds number of 118 is considered in this benchmark problem. This problem 

has been studied both experimentally [124] and numerically [125]. An adiabatic wall is 

assumed in this benchmark problem. Figure 5-25 shows the computational grid used in this 

test case, consisting of 98,000 tetrahedral elements, and 25344 grid points.  
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(a) Global view (b) Close up view near sphere surface 

Figure 5-25. Three-dimensional subsonic viscous flow past a sphere: computational 

domain with unstructured tetrahedral mesh with 98,000 elements and 25,344 grid points. 

 

  

(a) Present computational results (b) Experimental results 

Figure 5-26. Three-dimensional subsonic viscous flow past a sphere: computed 

streamlines of the flow field (left) and from experiment (right) at Mach =0.3, Re=118 

and AoA=0 degree. 

The computational streamlines obtained by the modal DG (P=2) method are compared 

with experimental streamlines in Figure 5-26, where steady separation bubble is readily 

observed in both plots and the size of the separation region in the computation agrees very 

well with that of the experiment. The computed Mach contours and streamlines in the flow 

field at different Reynolds numbers 25.5 and 133 with Mach =0.3 are shown in Figure 5-27. 

The numerical results show that at low Reynolds number, the viscous effects are important 

in a large area. A small recirculating zone (or vortex ring) develops close to the rear 
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stagnation points at about Re=25.5, as shown in Figure 5-27 (a). With further increase in 

the Reynolds number, this recirculating zone or wake expands, as shown in Figure 5-27 

(b). 

  

(a) Mach =0.3, Re=25.5 (b) Mach =0.3, Re=133 

Figure 5-27. Three-dimensional subsonic viscous flow past a sphere: computed Mach 

contours and streamlines at Mach =0.3, (a) Re=25.5, and (b) Re=133. 
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Chapter 6. Solution of second-order Boltzmann-

Curtiss based hydrodynamic models: 1D and 2D 

problems  

 

ñDream is not that which you see while sleeping it is something that does not let you sleepò                                                                                                                                     

                                                                                         -A.P.J. Abdul Kalam (1931-2015)  

 

In case that flow deviates from local thermal equilibrium state, application of the moment 

method into the classical Boltzmann-Curtiss equations leads to Boltzmann-Curtiss based 

models where the non-conservative variables are being linearly or nonlinearly proportional 

to the gradient of the velocity (strain rate) and temperature (thermal strain rate) state 

variables. The objective of this chapter is to measure the level of accuracy of the 

Boltzmann-Curtiss based models. Therefore, solutions of the Boltzmann-Curtiss based 

models are compared with each other, the solution of the DSMC method, and experimental 

data. Firstly, One-dimensional shock structure is simulated using Boltzmann-Curtiss based 

model and the results are compared with experiments. Then the flow over a cylinder is 

studied in detail. Then, a comparative analysis of different slip boundary conditions is 

provided using Navier-Fourier (i.e., first-order Boltzmann-Curtiss-based) equation. Finally, 

a flow over a sphere is simulated using modal DG method. 

6.1 One-diemensional compression dominant problem: shock 

structure 

The shock wave structure is one of the most fundamental problems in kinetic theory of 

gases and it is considered as a major stumbling block for theoreticians for the last decades 

[126-132]. For example, it has a big impact on the overall flow patterns around hypersonic 
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aerospace vehicles at high altitude [133]. The stationary shock wave structure problem is 

defined as very thin (order of mean free path; in other words, Knudsen number close to 1.0) 

stationary gas flow region between supersonic and subsonic downstream. The upstream 

and downstream states, denoted by the subscripts 1 and 2, respectively, are determined by 

the so-called Rankine-Hugoniot condition: 
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For comparison of various results of shock structure, the following parameters are very 

useful. The inverse of the shock density thickness ( )1 ,d  and the shock temperature-

density separation ( ),sD  which measures the separation between density and temperature 

profiles are defined as 
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(6.2) 

where r and T  are the normalized density and temperature profiles defined as 

1 1

2 1 2 1
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T T
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= =
- -

 
(6.3) 

The central position 0x=  is defined as the location where the local variables (i.e. density, 

temperature, velocity) becomes equal to the arithmetic average of the upstream and 

downstream variables. 

The density solution of viscous shock structure for argon gas ( 0bulkf = ) and nitrogen gas 

( 0.8bulkf = ) with four different Mach stream conditions are shown in Figure 6-1 and Figure 
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6-2, respectively. The zero-order solutions are way off from the experiment, while the 

quasi-linear hydrodynamic model, the first-order and the second-order Boltzmann-Curtiss 

based models can predict the shock density profile moderately for all Mach flow conditions. 

It is also shown that the difference between first-order solution and experiments become 

noticeable for high Mach number flows, while second-order Boltzmann- Curtiss based 

solution is very close to the experiments. 

  
(a) Mach =1.55 (b) Mach =3.8 

  
(c) Mach =6.5 (d) Mach =9.0 

Figure 6-1. One-dimensional shock structure problem: normalized density profile for 

argon gas at four different flow stem Mach numbers. 

 

 

 

X/l

N
o

rm
a

li
z
e

d
d

e
n

s
it

y

-5 0 5
0

0.2

0.4

0.6

0.8

1

Zero order Boltzmann-Curtiss based model

1st order Boltzmann-Curtiss based model

2nd order Boltzmann-Curtiss based model

Quasi-linear generalized hydrodynamic model

Experiment (Alsmeyer)

X/l

N
o

rm
a

li
z
e

d
d

e
n

s
it

y

-5 0 5
0

0.2

0.4

0.6

0.8

1

Zero order Boltzmann-Curtiss based model

1st order Boltzmann-Curtiss based model

2nd order Boltzmann-Curtiss based model

Quasi-linear generalized hydrodynamic model

Experiment (Alsmeyer)

X/l

N
o

rm
a

li
z
e

d
d

e
n

s
it

y

-5 0 5
0

0.2

0.4

0.6

0.8

1

Zero order Boltzmann-Curtiss based model

1st order Boltzmann-Curtiss based model

2nd order Boltzmann-Curtiss based model

Quasi-linear generalized hydrodynamic model

Experiment (Alsmeyer)

X/l

N
o

rm
a

li
z
e

d
d

e
n

s
it

y

-5 0 5
0

0.2

0.4

0.6

0.8

1

Zero order Boltzmann-Curtiss based model

1st order Boltzmann-Curtiss based model

2nd order Boltzmann-Curtiss based model

Quasi-linear generalized hydrodynamic model

Experiment (Alsmeyer)



 

143 

 

  
(a) Mach =1.53 (b) Mach =2.0 

  
(c) Mach =6.1 (d) Mach =10.0 

Figure 6-2. One-dimensional shock structure problem: normalized density profile for 

nitrogen gas at four different flow stem Mach numbers. 

 

The shock density thickness is known as one of the important parameters on the accuracy 

of the models, therefore, the solution of Boltzmann-Curtiss based models for argon gas and 

nitrogen gas are compared with experimental data [134]. It is obvious from Figure 6-3 that 

second-order Boltzmann-based method can precisely capture the shock-density thickness 

for all Mach number regimes. 
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(a) Argon gas (b) Nitrogen gas 

Figure 6-3. One-dimensional shock structure problem: computed inverse shock density 

thickness profile for (a) argon, and (b) nitrogen gas. 

 

6.2 Two-dimensional hypersonic flow past a cylinder  

To demonstrate the capability of the second-order Boltzmann-Curtiss based 

constitutive model, a viscous compressible flow past a cylinder is simulated for both 

hypersonic rarefied [135] and low-speed microscale [136].  The two-dimensional DG code 

was validated for various benchmark problems of viscous compressible gas flow. A 

monatomic argon gas with Pr=2/3 and s=0.75 was chosen as the working gas. In our 

previous studies [58, 137], the numerical results were compared with the DSMC method. 

Unstructured triangular grid with approximately 90,000 computation cells refined with a 

ratio of 1.06 near the wall to capture the physics is used for the DG simulations. The far-

field boundary condition was imposed on the outer boundary of the computational domain 

while the Langmuir boundary condition [57,126, 127] was applied to the solid wall. The 

power law model was used for calculating the transport properties [60]. On the other hand, 

in the DSMC simulation, the VHS inter-particle collision model and the fully diffusive 

wall boundary condition were implemented. Approximately 2,000,000 particles were used 
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with at least 50 particles per each cell. The time step and the cell size were set one-tenth of 

mean collision time and one-fifth of the free-stream mean free path, respectively[138]. 

  
(a)  (b) 

Figure 6-4. Validation of second-order Boltzmann-Curtiss based model (NCCR) with 

the DSMC in density distribution for (a) M = 5.48, Kn = 0.05, and (b) M = 0.1, Kn = 0.1 

[58, 137]. 

In Figure 6-4, a comparison of the DG code with DSMC solutions for rarefied and 

microscale gas flow around a circular cylinder is shown for both cases of high-speed 

rarefied (M=5.48, Kn=0.05) and low-speed microscale (M=0.1, Kn=0.1) problems. The 

results show that the numerical solutions of the second-order Boltzmann-Curtiss based 

constitutive model are in close agreement with the simulated solutions of DSMC. In the 

high-speed case, the flow consists of a compressive bow shock structure, a stagnation 

region near the frontal part of the cylinder, and a gaseous expansion region near the rear 

part of the cylinder. The density remains initially constant in the free-stream region and 

then experiences a rapid change across the bow shock wave, whose value is very close to 

the theoretical prediction given by the RankineïHugoniot relations. Further, the shock 

thickness and general flow pattern are very similar. In the low-speed case, the flow consists 

of smooth compression and stagnation regions near the frontal part of the cylinder, and a 
















































































































































































































