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Gaseous slip models based on the Langmuir adsorption isotherm
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On the basis of Langmuir’s theory of adsorption of gases on solids, a robust gaseous slip model is
presented. The concept of accommodation coefficient and the difference of gas particles are
explained within the new framework. It turned out that the Langmuir model recovers the Maxwell
model in the first-order approximation in the case of the microchannel gas flow. In order to validate
the new approach, the model is applied to problems of technical interests: pressure-driven
microchannel gas flow and low Reynolds number gas flow past a sphere. With the help of previous
theoretical and experimental results it is shown that with an adjustable parameter the model in
low-speed creeping regime with moderate Knudsen numbers yields a prediction in qualitative
agreement with the data. @004 American Institute of Physic§DOI: 10.1063/1.1630799

I. INTRODUCTION culties of theoretical investigation using fully kinetic models
The slip phenomenon has remained as an intriquin such as the Boltzmann equation, since the theory has not
PP 9uNg,een fully worked out for modifying the Boltzmann collision

problem since it was observed in various experiments of lo . .
density gas flows. A typical example is the appearance Of\/\%(:rm that should correctly reflect the molecular collision with
the surface and the state of knowledge of gas—surface mo-

minimum in the mass flow rate of gases in a tube flow. . . .

Owing to the recent development of microscale devices jecular interaction is not f_%”y satisfactory. .
micro-electro-mechanical systerhd,there has been a re- Recently some wo.rl?s have appeared, W.h'Ch answer
newed interest in understanding the basic nature of this protf'—ome of the afor_emgntmned questions, in pa}rt|cular, W',th re-
lem. Since the mean free path in a rarefied condition or ifpards to the derivation of the thermodynamically consistent

flows involving the microscale geometry is not sufficiently MAcroscopic governing equations and the macroscopic slip

small in comparison with the characteristic length, the theoboundary conditions that take into account the interaction of

retical investigation requires the molecular description 0f9@S molecules and solid surfaces. An important finding ob-
gases as embodied in the Boltzmann equation or the higﬁalned from these works was that, in addition to the nonlinear

order fluid dynamic equations. Furthermore, the study of rarifansport coefficients giving rise to, for example, the non-
efied flows additionally requires information on the interac-Newtonian effect on flow in the nonequilibrium flow regime,
tion of gas molecules with the solid surface, which plays @ detailed examination of the gas—surface interaction is nec-
critical role in determining the drag exerted on the body anceSsary to describe the slip phenoméni&Furthermore, it
the heat transfer between the gas and the solid boundary. Was shown that because the gas may interact only with the
Previous works on the formulations of governing equa-SUrface of the solid the gas—surface molecular interaction
tions and boundary conditions for the description of the slipcan be described with the help of the concept of
flow have led to various models; the Burnett equations an@dsorption;**which is a well-developed field of active re-
the Grad moment equations for the governing equations angearch in physical chemistry of surfaces, in which it is ob-
slip boundary conditions like the one derived by Maxwlell. served that deposition of layers of molecules can occur on
However, there remains the question of whether those modhe solid surface. In this picture, gas molecules can get ad-
els are robust enough to deal with the question of the higisorbed on the surface and desorbed after being held by the
nonlinearity of the slip flow in various situations. The ques-intermolecular force field at the surface, and the fraction of
tion in the case of the governing equations is related t@dsorbed molecules can be determined by the Langmuir ad-
whether the equations satisfy the basic physical laws such @®rption isotherm, for example. This idea resulted in a rather
the second law of thermodynamics, while in the case ofimple slip boundary condition for a monatomic gas readily
boundary conditions it becomes whether the models reflecvailable to the study of rarefied gas flow:**
the true nature of gas—surface molecular interactions and On the basis of this development, an attempt will be
whether their computational models are robust to be applimade in this work to reexamine the slip phenomena and to
cable to the multidimensional simulation of slip flow in com- derive a robust slip model for rarefied and microscale gas
plex flow configurations, which, for instance, model theflows. The approach taken here is similar to the one taken in
separation in rarefied gas flowghere also exist the diffi- the previous workd'>—Langmuir's theory of adsorption
isotherm—but the emphasis will be placed on the issues of
aTelephone: 82-55-751-6107; fax: 82-55-757-5622; electronic mail:Practical implementation of the model under complex geom-
myong@nongae.gsnu.ac.kr etry configurations, extension to a diatomic gas or mixture,
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and validation of the model. For the validation processhydrostatic pressure. By a similar fashion, a composite pa-
which is a critical issue in the assessment of the accuracy amdameter can be defined as the ratio of viscous force to the
the demonstration of correctness of a model, a comparisohydrostatic pressurp. Then this paramet&r defined as

with experimental data will be given with regards to the
qualitative aspects. In order to avoid the uncertainty involv- N = ~KNM~— (1)
ing the numerics, the validation study is confined to analyti- p Re

cally solvable problems—low-speed internal flow in @ very can pest represent the degree of nonequilibrium in macro-
long microchannel and low Reynolds number externalscopic thermodynamic space because the viscous force is a
flow—in which the interaction of gas molecules with the gjrect consequence of the nonequilibrium effect. Fhis the
surface molecules remains significant but the nonlinearityshapman—Enskog viscosity, is the velocity, and. is the
arising from the non-Newtonian effect in bulk flow regions cnharacteristic length. The importance of this parameter can
may be negligible. _ _ be seen by examining the constitutive equations of various
The present paper is organized as follows. First, the Orlhigh order hydrodynamic models; the moment equation of
gin of the slip phenomenon is_reexamined with _the help ofgrad® and EL®-81718Under the shear flow condition, which
recent results on the generalized hydrodynamic theory ofs jn essence the same as the slip flow near a solid wall, the
nonequmbr_lum gas f!ows. In order to examine the dlﬁ?r_ 8onstitutive equations of the normal stresfb@ in the di-
ences behind the S“p models, Fhe popular_ mode| derlVemensionless form can be simplified into, in the order of ap-
originally by Maxwell is summarized. Then in Sec. Ill the roximation used by Grafiand Eu®’
gaseous slip model based on Langmuir’s theory of adsorp[2 y '

tion is described in detail. The present derivation will follow ~2
S S . X 2115
the kinetic derivation based on a mechanical picture because y _ _ NS 2
it is easy to follow intuitively. For the statistical thermody- a4 3+ 2112 '
Xy,

namic derivation of the Langmuir adsorption isotherm, the
reader may be referred to the textbooks on physical chemis-

72
try of surfaces® In Sec. IV microchannel flows and low - 20y o
Reynolds number flow past a sphere are investigated to vali- oo 3(sinhiR/R)2+ 2112 ' &)
date the new slip model and to show the feasibility of the (sin ) XYNs

approach for the study of slip phenomena taken in S0 oty O .
the present work. Finally concluding remarks are givenWhereR_ =3II,(Ily,~1) and the SAUbSC”pt NS represents
in Sec. V. the Navier—Stokes theory. The caré) (over a symbol rep-

resents a quantity with the dimension of the ratio of the stress
to the pressure, for examplél,,=N4(II,,/p) and HXVNs

o ] =N,(— ndu/dy)/p. Thex andy denote the tangential and
A. Origin of gaseous slip normal directions at the wall, respectively. Then the shear

The degree of nonequilibrium in phase space is best repstressll,, is determined by the following stress constraint
resented by the Knudsen number since the collision integraihose ultimate origin can be traced to the kinematic terms in
of the Boltzmann equation in nondimensionalized form isthe constitutive equations,
scaled by an inverse Knudsen number. Based on this obser- . . N
vation the value of Knudsen number was used as the primary 11, =sign(Il,y J[— 3[ITy,+1]11,,]*2 4)
parameter to determine the degree of rarefaction and the de-

gree of validity of macroscopic model. For example, the flowOr S|mpI|_C|ty, _the |s_0th_ermal flow of a monaf[omlc gas IS
can be classified as in the continuum regime €0 3) assumed in this derivation. It should be mentioned that the

the slip flow regime (103<Kn<10"1), the transition re- essence of these relations remains the same for other closures
gime (10 '=Kn=10), and the free molecular flow (Kn based on the moment method. Equatié®sand (3) of the

~10). Even though this classification may serve as a guidgormal stresses can be easily soIvedAfor a given value of the
to explain the various experiments and as a starting point foshear velocity gradient, equivalentlyl, = and then the
effective theoretical investigations there are many indicationshear stresses follow from the stress constri@ntThe gen-

to make the picture of slip flow more complicated. For in- eral properties obtained by this procedure can be found in
stance, the early study of the drag by a flat plate in theFig. 1 where the stresses by the Grad and Eu theories are
low-density regim& showed that the parameter Kl is the illustrated against the shear velocity gradient. As expected,
dominant factor to determine its macroscopic property—thehe normal stresses vanish near equilibriiarigin) or in the

drag coefficient. A simple explanation of this result—trivial limit of small Ns, and the shear stresses recover the value
at first glance—can be obtained by examining how the nonpredicted by the Navier—Stokes theory. On the other hand, as
equilibrium effects are described in the macroscopic level. Ithe value ofN; increases, the stresses deviate from those
is straightforward to identify two primary nondimensional predicted by the linear relations and eventually all the com-
parameters Re antfl by comparing inertial force, hydro- ponents of the stress tenspr-I1,, andlIl,, in the dimen-
static pressure, and viscous force terms in the conservation sfonal form, vanish. This unusual asymptotic behavior typi-
law of momentum; the former being the ratio of inertial force cal of free molecular flows indicates that the gas can slip
to viscous force, and the latter the ratio of inertial force to thenear the solid wall, and consequently velocity slip can be

II. SLIP IN NONEQUILIBRIUM GAS TRANSPORT
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FIG. 1. Grad and Eugeneralized hydrodynamics; GHonstitutive rela-
tions to the Navier—Stokes theory in the shear flow of a monatomic gas. Th

horizontal axis represents the shear velocity grad:é,%s.

observed in this limit because of a purely hydrodynamic rea
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carefully take into account the energy dissipation mechanism
are necessary to properly treat this regime in which shock
and expansion waves are abundant.

On the other hand, the opposite conclusion can be drawn
for the low speedmicroscale regime whose typical example
is a gas flow at atmospheric condition but in microscale ge-
ometry. First of all, owing to the extremely small valueMbf
the slip by the non-Newtonian effect is negligible in the bulk
flow region and the linear theory is applicable to all flow
regimes. According to the approach based on Knidgdthe
only noticeable effect by the high Knudsen number in this
acoustic-dominated limit comes from the slip arising from
the gas—surface molecular interaction. Therefore it may be
argued that if the gas—surface molecular interaction is prop-
erly taken into account most of flows in this regime can be
described without reckoning the complicated fully kinetic or
high order fluid dynamic governing equations. It is from this
Bbservation that the present study focuses on the gas—surface
molecular interaction and restricts its scope of validation to
low speed microscale gas flows.

In the case of high speed free molecular regime, none of
the simplifications available to the two aforementioned cases
may be possible since all of nonequilibrium factghsgh

son, which has nothing to do with the gas—surface moleculagP€ed, low density, and small length s¢aieay be present.

interaction. The velocity slip by this mechanism comes fromThis regime may be found in mechanical devices operating
the nonlinear nature of the constitutive equations and thus fi€ar the vacuum condition or in high speed microscale gas
may be called the slip by the non-Newtonian effect of gaglows. Since both Kn andll; are large well beyond the limit
flow in highly nonequilibrium states. This finding can also be'Where no slip and the linear constitutive relation may hold,
confirmed by theoretical investigatidi<® or numerical the slip effects from both the gas—surface molecular interac-
simulations of the high order hydrodynamic equations in &ion and the non-Newtoniamonlinear bulk transporiprop-
simple geometr§. Therefore, it may be feasible to explain €rties are equally important in this regime. As a consequence,
the slip phenomenon largely by two basic components: onthe study of this regime may require a detailed description of

the non-Newtonian effect in bulk flow region measured byonlinear coupling effects between heat conduction and
the composite numbeX; and another the gas—surface mo- stresses in the gas, of which the prominent examples are

1
lecular interaction measured by the Knudsen number Krlihermal stress and thermal creég: Therefore the study of

whose scale is the order of gas molecular size. If we cIassil‘?"’lsdﬂtc;]\'vS n t?lshwicos!ty domér:ateq Ilrtr)utthmta;]y be tpor;3|d-d
the nonequilibrium parameter regimes based on Knkipd ere € most challenging probiem in bo eoretical an

most of nonequilibrium gas flows of technological interestscompmatlonalI aspects.
may come under one of the following:

KnO(10 3~10"1),

B. Maxwell slip model
(1) Hypersonic rarefied
N;=0(10 1~1).

regime. A simple way to include the slip effect is to make a

correction based on the degree of nonequilibrium near the

@ L_ow-spgad micro_scale Egreeping regime: KN yall surface which can be best represented by the shear
_,Orflo Nl)f’ N5—|0(1|0 ~10 )'_ stress. This idea can be traced to the work by Maxtiell
(3) :'g_ _g?leedlo) ree-molecular regime:  Ki©O(1~10),  \hich the following slip velocity boundary condition is pro-
S -~ .

posed:

The typical case of hypersonic rarefied regime can be (5)
found in the prediction of the aerothermodynamic loads and _ )
heat transfer on hypersonic vehicles that operate in high ay_vhere u, IT;, ands represgnt the _sl_|p velocity, t.he shear
titude. For this range of Kn and 5 it becomes apparent that §tress at the vyall, anq the slip coefﬁc!enp respecu_vely. If the
the slip neither by the gas—surface molecular interaction nolllnear theory is apphed to _the constitutive equation of the
by the non-Newtonian behavior of flow is large because th(_;*f‘hear stress, the slip velocity reduces to
Knudsen number is small and the constitutive relation of du
shear flow remains to be linear. However, in this ranghl pf - nd_y
the constitutive relation of gas compressishock wave or
expansion ceases to follow the linear relaffaamd hence it The slip coefficients can be further refined by using the
can be argued that the full kinetic theory with an accuratekinetic derivatior?? If we introduce the concept of diffusive
treatment of the collision term or fluid dynamic models thatreflection of the gas molecule near the surface as the colli-

u=slIl,,,

©6)

uU=sg

w
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sion in which a molecule is temporarily absorbed at the surplaining the subtle differences concerning the gas and sur-
face and then re-emitted, the mean velocitigsandq, of  face temperature, and type of gdsr example, monatomic
molecules before striking and after leaving the stationary surer diatomic gas and surface molecules. Another difficulty
face can be written as arises also from the accommodation coefficient in the math-
ematical sense. The expression by the Maxwell slip model is
d2=(1=6)as, not well-defined mathematically in the limit of vanishing dif-
where the accommodation coefficiefirepresents the frac- fusive reflection and, depending on situations, the value of
tion of molecules undergoing diffusive reflection. Then theslip is not bounded, which can cause severe problems in the
average tangential velocity of the gas at the surfacan be  numerical implementation of the model. It was reported in
represented as the mean of the pre- and post-collision velocihe stud)? of modeling separation in rarefied gas flows that
ties, the Maxwell slip model can cause the reversal of slip veloc-
ity and an overshoot of slip velocity near the reattachment
u= E(q +q,)= ﬂ point. Furthermore, it can be shown by a simple analysis that
2T 2 M in order to ensure the numerical stability f h [
y for no change in the
sign of vorticity at the wall the Knudsen number should be

average velocity at a distance of a mean free path from thi¥SS than the size of the grid, restricting the range of the

surface where the last collision occurred, it may be written asnde! significantly, especially if the grid size is refined near
the wall. To deal with some of these difficulties, a slip model
du

of the gas—surface molecular interaction based on Lang-
dy| () muirs theory of the adsorption of lids i id-
y y of the adsorption of gases on solids is consi

v ered in the present work.
wherel denotes the mean free path. On combining two equa-

tions, the slip velocity reduces to Ill. GAS—SURFACE MOLECULAR INTERACTION:
du LANGMUIR SLIP MODEL

dy

where the coefficient is defined as (2 6)/6. The compari-
son between Eq$6) and(8) yields the following expression
for the slip coefficient:

Nothing that the value ofj; can be approximated by the

q1:U+|

u=oal

8

Another way to include the slip effect near the surface is
to take into account the interfacial interaction between the
gas molecules and the surface, which itself consists of mol-
ecules. It is well known through numerous studte&® on
surfaces that the gas molecules do not in general rebound

o elastically but inelastically interact with the surface of the
s=——1. solid owing to a long range attractive force, and conse-
K quently the gas molecules can get adsorbed on the surface
The slip model(8) by Maxwell becomes in the dimension- (condensation and then desorbed after some time lag
less form (evaporation This picture results in the deposition of a layer
with a thickness of one or more molecules on the surface.
Kn|du _ S . .
U=o—|—| . (9)  This is known as adsorption in the literature. On the basis of
p Ldy], this concept of adsorption it is possible to derive a slip model
i8f the gas—surface molecular interaction.

)
w

As expected, the only parameter appearing in this model
the Knudsen number, which measures the level of the slip bx\
the gas—surface molecular interaction. Since the same’
method can be applied to derive the temperature slip bound- The critical part in the theory of adsorption rests on the
ary condition, the discussion of temperature slip is omitted irmmount of gas adsorbed, which is in general a function of
the present work. pressure and temperature. If we consider the amount of gas
From this model, it is also possible to derive more re-at constant temperature, the so-called adsorption isotherm
fined versions, for example, high order slip boundarycan be defined. There exist various adsorption isotherms, but
conditions®>?*All of these more elaborate models, however,among them the isotherm developed by Langftstands
yield the simple Maxwell slip model in the limit of small out most because it has proven to be extremely useful both in
Knudsen number, so that it was argued that the Maxwell sliggxplaining experimental data and for theoretical treatments.
model should be sufficient for most of the slip phenomenaThe Langmuir adsorption isotherm can be derived from the
Nonetheless, as the need for treating the more challengingiolecular viewpoint by employing statistical thermodynam-
problem has grown rapidly in recent years, there exist somis. In the present study we will follow the derivatioi
serious difficulties, especially in implementing the model forbased on a mechanical picture which is essentially that given
the numerical codes. The main difficulty comes from theby Langmuir. A more elaborate derivation may be found in
accommodation coefficient whose values have to be found the textbook on physical chemistry of surfacs.
by other means. In practice, their values are chosen such that Let us assume that there axesites per unit area of the
they fit best for the experimental data, and they are tabulatesurface interacting with the gas molecules. Also dddie the
for various gases and surfaces. There remains, however,feaction of the surface covered by adsorbed atoms at thermal
need for developing an efficient procedure capable of exequilibrium. Then the number of sites which are not covered

Langmuir’s theory of adsorption
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is N(1— «). If we model this interaction as a chemical reac- surface molecular interaction. The velocity and temperature
tion in which the gas moleculen and the sites form the  slip can be expressed, in the dimensional formi;*4s
complexc, the equilibrium constanK can be expressed in

the concentration ofn, s, andc, u=au,+(1-ajug, (14)
C. T=aT,+(1- a)Tg , (15)
K= C.C. (10)

where the subscrigy denotes the local value adjacent to the
Since Cp,=p/kgTy, Cs=N(1—a), C.=Na wherekg is wall—for example, a mean free path away from the wall.
the Boltzmann constant, we can derive the following formThe only parameter requiring a further investigatiorgisr

known as the Langmuir hyperbolic adsorption isotherm: ~ Specifically the equilibrium consta#t The equilibrium con-
stant may be calculated by using the partition function as

a=(1-a)Bp follows:
or
(o Qe 6
Bp QmQs
“ 1+Bp’ (D The partition function of the siteQ4 can be assumed unity

because the sites are fixed in the surface. The partition func-
tion Q,, of the gas molecules per unit volume can be ex-

teraction parameters. The fractiatis a function of the pres- d binati f lational and i |
surep, the equilibrium constari, and the surface tempera- pressed as a combination of translational and internal energy
' ' and thus it becomes

ture T,,. As the pressure increases, its value approaches _ _
unity, implying that most of molecules are at thermal equi-  Q,,=QM'QY"=Q"(2rmkgT/h?)%?, (17)

m<m ~ ~m
librium.
This derivation can also be extended to treat the adsorpv-vherem andh are the molecular mass and the Planck con-

tion of a diatomic gas, such as nitrogen, on the sol tant, respectively. The partition functi@y depends on the

surface'? In order that a gas molecule approaching the gyrdetails of the gas—surface molecular interaction and thus it

face may be adsorbed on the surface, two particular eIemeﬁEkeS different forms for different models of the motion on
S

tary sites must be vacant. The chance of one of these sit%v EUT;:ZSE.;r;otgseecsatffcgrshgﬁécg:uadi??;g[logé t(;]esgrc;g]e%e;;
being vacant is (% «); that both sites will be vacant is (1 S y €

— )2, Thus the rate of condensation is proportional to (lan almost transla_tnonal mofuon of the gas mo_IecuIe in the
eld of an attractive potential energy of magnitude. In

i A
— a)?. Evaporation only occurs when adsorbed atoms are |rth. - .
adjacent sites. The chance that an atom shall be in a givetnIS model, the partition function of the compl& may be

site is a and therefore the chance that atoms shall be inexpressed as

adjacent sites is equal #®’. Thus the rate of evaporation of t~trans ~int - e
molecules from the surface is proportionald®. From this Qc=Q¢ Q¢ ™=Qc (2mmkgT/h%)* AL ex;{ KeT )
reasoning, the following adsorption isotherm for a diatomic v (18

gas can be found:

where 8=K/kgT,, andK is a function of the interfacial in-

whereA is the mean area of a site afids a mean collision
a?=(1—a)’Bp distance between the wall surface and the gas molecules. The
inclusion of the term exi./kgT,,) means thaQ. is referred

or to the gaseous state. The, denotes the potential parameter
\/ﬁ (heat of adsorptionwhich measures how strong the surface—
a=—F. (12 molecular interaction is and it will have different values for
1+ \/% the different combination of the gas molecules and the sur-
It is also straightforward to treat the adsorption of a gadace atoms. Then the equilibrium constant reduces to
mixture within the present formulation. Suppose that a mix- int D
ture consists of two gas componeifitstrogen and oxygen K= —%A€ exp{ #) (19
m B'w

andV denotes the fraction of components in volume, then

the fraction of the surface at thermal equilibrium may be|f we introduce an approximation that the internal partition

expressed asviy,+Vo,=1) functions are the same for the two statesandc it can be
further simplified, and then the paramegetakes the follow-

VBN,P VBo,P ing form:

a=Vy———+Vg————. (13)
M1+ JBup 2L+ \Bo,p Al % D,
ex

IB B kBTW kBTW

. (20

B. Langmuir slip models A more detailed derivation of the equilibrium constaft

With information of the fraction of surface covered at may be found in Refs. 10 and 13. When the characteristic
equilibrium « determined by the Langmuir adsorption iso- lengthL is taken equal t& then the parameter can be, after
therm, it is possible to develop a slip model for the gas—some manipulation, simplified into the form
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\/; A T, D, 1 us consider the simplest case; velocity slip of a monatomic
=\V3% derz T—Wexr< m) b Kn' (21)  gas at the stationary surface. The resulting slip model can be

expressed as
where the subscript stands for the reference state and

u 1
1/2 —=(1l—-a)= (23
o= ZfAz(v)FM—Z/(v—l)] Ug 1+pp
or in the dimensionless form
Herel denotes the gamma functiothjs the diameter of the
molecule, and is the exponent of the inverse power law for U= 1 _ 1 , (24)
the gas particle interaction potential. Thg(v) is a pure 1+pldwKn 14 8p
number; its tabulated values are available in the monographs
on kinetic theon?? In deriving this equation, in addition to Where
the equation of state and the definition @fthe following . 1
relations were used: B= ZaKn (25
| = \ﬁ Y and w is a function ofy, T, andD,. Thus the slip in the
2 p\/R_T' Langmuir model depends largely on the parametersix,
v, and T,,. As the density or pressure increases, the slip
_ S [mkgT velocity vanishes. On the other hand, as the Knudsen number
= 8A,(v)I'[4—2/(v—1)]d? T’ increases, the dimensionless slip velocity approaches unity,

Yr-1) meaning the full slip to the reference velocity. Notice that

d=( K ) due to its special form the slip value in the present model is
2kgT ' always bounded; € u<u,. This ensures the preservation of
whereR is a gas constant and is the coefficient of the thedS||gn_ of vorticity hnez(ijr_ﬁt_hel WaI]Ic. ;]I'herefore,”the é)rlesent
inverse power laws. Finally, if the area covered by a mol-T0del circumvents the difficulty of the Maxwell model re-

eculeA is approximated asrd?/4, the parameteB reduces Iated.to the reversal of slip veloc.|ty.and overshoot of slip
velocity near the reattachment point in a separated gas flow.

to
In connection with this, it is instructive to note that the fol-
11 29 lowing second-order Maxwell model considered in the work
B= 4o Knp,’ (22) of Beskok and KarniadakidRef. 23 can be explained in the
where context of the Langmuir model,
Kn[du Kn/p)?[d2u
2 402 TW s+1/2 _De U:U'<_ d_ ( 2|p_) F +)
w= ; 7 T_r ex m p y W . y w
1 du

ands=3+2/(v—1). The coefficientw will be shown to be _
very similar to the slip coefficient of the Maxwell model in —bl/o+plaKn
the next section. For most of molecular interaction models
the value of the heat of adsorptid@h, falls under the range

(26)

dy

w
Wwhereb is a parameter to be determined. The first equality in
this equation can be derived by keeping the higher-order

D.=0(10 '~10) kcal/mol. terms in the Taylor series of the mean velocity of molecules
Its value may be inferred from experimental data or theoret-qls'gjq' (7). In that work the following parameter was pro-

ical prediction of intermolecular forces. It was known from PO
previous studie$*® that the lighter gas molecules such as 1
helium have smaller values of the heat of adsorption in com- b= >
parison with the heavier molecules such as argon. The easier
way to determine its value, however, would be the use of thand set ad=—1. The reasoning for this modification be-
experimental data of some benchmark problems, which wilcomes obvious when we compare mod@4) and (26) and
be given in the next section. also note that the two consecutive derivatives in the Taylor
This completes the derivation of a gaseous slip modeteries expansion of the functiq24) or a similar function
based on the Langmuir adsorption isotherm. In summary, thalways have a different sign. The ultimate origin of this prop-
idea of the Langmuir slip model can be explained by theerty is associated with the boundedness of the slip velocity in
statement that all the molecules adsorbed are desorbed aftée limit of large Knudsen number, which is automatically
some time lag with a totally random velocity and thus thesatisfied in the case of the Langmuir slip model.
fraction of molecules undergoing diffusive reflection is pro- The implementation of the present model to the multi-
portional to the fraction of molecules adsorbed out of all thedimensional numerical codes is straightforward. Since its
molecules approaching the surface. And this fraction of admathematical form is of Dirichlet type rather than of Neu-
sorbed molecules can be given by the Langmuir hyperbolienann type, there is no need for changing the basic structure
adsorption isotherm. In order to discuss its characteristics l€tom the stick boundary condition. Furthermore, if we inter-

d?u/dy?
du/dy w
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pret the value of the slip velocity as the magnitude of the N
velocity vector and use the local information adjacent to the =~ 9=24——.
surface for the direction of the velocity, the present model
can be applied to gas flows under any flow configurationdn this expressior represents the ratio of the channel height
since the gas molecule—surface interaction is local with itgH) to its length(L). It should be noted that the term associ-
range being a few nanometers. ated with the bulk viscosity of a diatomic gas does not enter
the present perturbation analysis to the lowest order and thus
the present equations also hold for a diatomic gas. The
streamwise coordinate and the coordinatg normal to the
wall are nondimensionalized hyandH. Theu andv denote
As the slip phenomena have remained a knotty problemt,he streamwise and_normal velocity components. The geom-
the validation study of the slip models has also been consicfY Of the channel is represented by@<1 and—1/2<y
ered a very delicate and, often in many cases, vexatious task 1/2. The reference state is _chosgn as the exit conditions
The cause of this situation can be explained by recalling thatx=1)- The reference velocity, is the area-averaged
not only the slip effect from the gas—surface molecular in-Stréamwise velocity at the channel exit, or the maximum
teraction but also the non-Newtonian effect is required tovelocny. condltlon.ln this particular row. pioblem. Critical
validate the slip model. The latter, especially, means thagonstraints on which the present analysis is based are
complicated nonlinear constitutive equations beyond the lin- 1, M<1, O(e/Ny~1. (29)
ear theory must be taken into account. Therefore, if one is
interested in undertaking the validation study for some probAt this stage a few comments must be added with regard to
lems with non-negligible non-Newtonian effect, one is im- the applicability range of the present analysis and the impli-
mediately confronted with a daunting task to consider thecation of the aforementioned constraints. First, in these mi-
nonlinear constitutive equations, which cannot be performegrochannel gas flows the pressure may strongly change ow-
without reckoning on a numerical method or an approximatdng to the viscous effects even though the speeds may not be
technique. In principle, high order equations such as the Busufficiently high for the Mach number to go beyond the tra-
nett equation or particle simulation meth&ye® may be em- ditional threshold of O§O For this reason the flow is treated
ployed to calculate the non-Newtonian effect in the bulk re-2s compressible rather than incompressible. Second, the
gion, but it has not been very effective owing to numericalvalue ofe andN s should be very small and at the same time
uncertainty, in particu|ar, for the low Speed gas flows. should be considered finite. Once infinitely Iong channel or
In the present study we will circumvent this difficulty by incompressibility is assumed, the resulting pressure distribu-
Considering a unique situation in which On|y the 5||p effecttion along the channel is always linear, which can exclude all
from the gas—surface molecular interaction is important buthe subtle effects relating to rarefaction and compressibility
the non-Newtonian effect in the bulk region is small. Fortu-from the beginning. It can be said from these points that a
nately, this can be found in thew speed microscalgas careful check on the underlying assumptions must be made if
flows2’~2° which have been investigated by recent experi-one tries to compare the present analysis with other studies.
ments. Since the Mach number is extremely small in this
case, for relatively large values of the Knudsen number the o .
non-Newtonian effect can be assumed to be very small. As & Velocity slip in a monatomic gas

result, the Navier—Stokes equations can be used as the gov- With the Langmuir slip model of a monatomic géz3)

erning equations. Furthermore, the low Mach number aspr (24), the dimensionless slip velocity at the surface can be
sumption can lead to a perturbation solution of the Navier-expressed as

Stokes equations in the case of the very long channel flow.

IV. VALIDATION STUDY

u(xy=0)

A. Pressure-driven microchannel gas flows u :

1+Ep
As a first test case, pressure-driven internal isothermal . b Ning fi giti d the af
gas flows in a very long microchannel of high aspect ratio” 'St by applying flow symmetry conditions and the afore-

will be considered. With a correction factor accounting formentioned slip boundary condition to E@8), and then by

the different geometry, the flow in a very long microtube Caninserting the so determined streamwise velocity profile into

also be treated by the present method. Using the methog": (27), we can derive an _equation foi th_e velocity normal
described by Arkilic et al.2” the compressible Navier— to the wall. By further applying the vanishing normal veloc-

Stokes equations, at the zeroth ordekoay be written as ity at the wall, a solvability condition of the pressure distri-
’ bution can be derived,

d(pu)  (pv) _

0, (27) 3
X % (p?)"=-=p’, (30)
24dp J%u P
Sdx (9_y2 (28)  where the prime denotes the differentiation in the streamwise
coordinatex. Finally, by utilizing the pressure conditions at
where the inlet and exit, the following exact solutions—

Downloaded 19 Jan 2004 to 130.159.248.44. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 16, No. 1, January 2004 Gaseous slip models based on the Langmuir adsorption 111

dimensionless streamwise velocityx,y), the pressure dis-

tribution along channgb(x), and the dimensional mass flow (p?)'=— _3(1—+_'8) Lp. (35)
rate m—can be obtained: B(1+ Bp)?
3 , 1 Even though this ordinary differential equation @fx)
u(x,y)=— SD' 1-4y*+ —|, (3D seems at first glance very complicated, it can be analytically
Bp solved by utilizing the following integral formula:
1-p?+3[1-pl/B p’+Cip P
g ox= 2 PrSATRIA (32 piC, dp=75+(C1=Co)p

1-p2+3[1-p,liB
+C,(Cy—Cyp)In(p+Cy),

. ngpgut
m= 247LRT? (33)  whereC, and C, are integration constants. Applying the
pressure conditions at the inlet and exit results in the follow-
where ing solutions:
' 3 3 3 1+8
8=—py_1| 2+ =| =phH—1+3(pi,—1)/B. u(x,y)=—~|p'(1—4y*+ _—Ep;(:l . (36
B g B(1+Bp)

Here thep,_, represents the derivative of the pressure f(1)—f(p)
profile at the exit condition. Th&V denotes the channel 1—X:W, (37)
width. As expected, in the pressure-driven internal flow the (1)~ 1(pin)

value of § is determined in terms of the pressure differencewhere

and plays a dominant role in the mass flow rate. In the limit o

of large 8 or small Kn, the continuunino-slip) solutions can 5= —pl_.| 2+ 3| _2B(2B+3)[f(pin) —f(1)]
be obtained: for example, the pressure distribution along the x=1 7 (252_3) '

channel takes the following nonlinear form: A
In this expression the functiof(p) is defined as
PO =[x(1=pf)+pRl*2

A very instructive result can be obtained from this f(p)zg-f-
simple analysis of the low speed microchannel flow. By ap- B?
plying the same technique, if the following equivalence re-,
lation is introduced,

o=, (34) e 3B(B+1)

it is straightforward to show that exactly the same solutions 3- ZEZ
can be derived by using the first-order Maxwell slip mOdeIIn the later discussion these solutions will be referred to as

(?S'.?] pl;ze I(t)st:geLtTmr:eg{m:)lrs?'“pn?]o%%i ;Z'S dles 2|(\)/e2(/j S]:l:(; the global Langmuir solution, as opposed to the local Lang-
Fh(la Ito?all '%del endent cvovns'dg)rat'on of the asv S Fr)face m'gpuir solution obtained in the previous case. In order that the
lecular in%(;ractii)on The implilcatior:s of this f?ndi;guare two solutions shall remain meaningful, the following condition

. S . : i " from the well-posedness of the paramesathat includes a
fold: with the introduction of relatior(34) a new physical b P

. . . . ._natural logarithm term should be satisfied:
meaning may be assigned to the accommodation coefficient 9

PPlafl e In(8%p+ B—a)
2 2\ @ Bp+B—a),

here

of the Maxwell slip model; and the Langmuir slip model Ezp, +E_a
recovers the Maxwell slip model in the first-order approxi- %>O
mation in the case of the microchannel flow. The latter B*+pB—a

means that previous validation results of the microchanne
flow using the Maxwell model—for example, the works by
Arkilic et al2”3—can carry over to the validation study of ~ — [1+6pj(pin—1)]¥?—1
the present model without any change. B> 2Pin

Another interesting observation can be made if the ref- _
erence velocity in the Langmuir slip model is changed intoThis condition, mainly of the pressure differenpg and 3
the overall maximum velocity, rather than the velocity adja-O" the Knudsen number, simply tells us that for a given
cent to the surface or thical centerline velocity in the Knudsen number there exists an upper limit of the pressure

channel. In this case, the slip boundary condition becomesdifference. Since the value &f, or & for a given value ofe
is proportional to the pressure difference, this in turn means

u(x=1y=0) that the validity of the present analysis represented by con-
u= ? dition (29) is ensured only when the aforementioned condi-

P tion is met. The presence of such constraint whose math-

and then a solvability condition can be written as ematical origin can be traced to the appearance of the term

(39
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Langmuir Global
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Langmuir Local & Maxwell

No-Stip
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FIG. 2. Mass flow ratékg/s) of helium gas in the scale of 16 depicted as

a function of pressure ratio (kn0.158). The square represents the experi-

mental dataRef. 29.

py—; in the differential equatioi35) may be explained with

150

o
k=3

Langmuir Local & Maxweli

o
o

Mass Flow Rate for a Pressure Drop

Langmuir Global

P

No-Slip

=
-~
-

L 1 L
-12 -1 -0.8
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FIG. 4. Variation of mass flow rate of helium gas per pressure dmp (
=2) as a function of the exit Knudsen number in logarithmic scale. The
dimensionalized value can be recovered by multiplying a fagtor/2)

X (H2W/24LJRT).

the help of the argument of Ref. 32 that whereas the calcuthe pressure distribution along the channel are measured.
lations in the first-order approximation in general do notOther important conditions conceming the experimental
show in themselves the range of their validity, higher ordersetup and the physical properties of helium gas are

calculations may show the range of their validity within the

T=293 K, poi=1 atm, R=2077 Jkg K,

formulation. Thus it is possible to infer that the higher order

effects have been incorporated in the present global model.

7=1.97x10"° Ns/n?, v=14, c=1.046.

With these analytical results in hand, comparisons withrhe Knydsen number based on the density at the exit and the

experimental data are performed for helium gas in Figs. 2—

A recent experimental work on gas flows in uniform micro-

channels by Shitet al?® is utilized. The dimensions of the
microchannel are as follows:

H=1.2 um, L=4000 um, W=40.0 um.

designed to fabricate integrated circuit chips and is made

The channel is manufactured by the method originallyt
silicon with a very smooth surface. The mass flow rate anccf

25 T T T T T T T T T

Non-Dimensional Pressure

incompressible Limit

1 ' L
04 0.5 0.6
Streamwise Position

1 ' ' L
0 0.1 0.2 03

.
0.7 [eX:]

FIG. 3. Pressure distribution of helium gas along the microchannel. Th

Maxwell (or Langmuir local model by the dashed lines; the Langmuir
global model by the thick solid lines; the experimental d&af. 29 by the
symbols.

4hannel height is 0.158. According to the conventional clas-
sification based on the Knudsen number, the flow belongs to
the transition regime. Even though the pressure difference is
raised by a maximum value of 2.14 atm, the range of the
nonequilibrium parameterNs; remains an order of
O(5el24)=10"4, implying that the flow falls safely under

e low speed microscal@reeping regime. By following

e same spirit as found in other studies, the values for the
djustable parameter are taken so as to best fit the experi-
mental data. The accommodation coefficientf the Max-

well model and the adsorption coefficient of the local Lang-
muir slip model chosen in the present work are

0=0.721, ®=0.721 or D,=0.252 kcal/mol.

In the case of the global Langmuir slip model the following
value turns out to fit best the experimental data:

®0=0.408 or D,=0.584 kcal/mol.

In Fig. 2, dimensional mass flow rates of helium gas
flows in the microchannel are depicted as a function of pres-
sure ratio. Using the values assigned to the accommodation
and adsorption coefficients, all of the slip models—either
Maxwell or Langmuir—seem to predict the experimental
values qualitatively correctly. Only a minor difference was
found for the flow driven by the high pressure difference in
which the global Langmuir slip model tends to predict
slightly larger mass flow rate. This may reflect its character-
Sstics associated with the higher order effects. On the other
hand, the continuum model without slip correction underes-
timates the mass flow rate, especially in the case of high
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pressure ratio, confirming the existence of velocity slip at the © ' : ' ' '
wall. In Fig. 3, the pressure distribution of helium gas flows
along the channel is compared with the experimental data. 4. Langmu Local /
The theories succeed in showing the nonlinearity of the pres- \DD it
sure distribution, and if the experimental uncertainties are
considered, it can be said that all the results are in good *f
agreement with the data. The prediction by the continuum § pd
theory falls somewhere between the lines by the Maxy{eell
Langmuir loca] model and the Langmuir global model. In
order to enhance the visibility of the figure, only the profile
in the incompressible limit is given for comparison. In order
to compare the different slip models in detail, the variation of \
mass flow rate for a pressure drop is also described as ¢ 1+ No-Siip ]
function of exit Knudsen number in Fig. 4. The Maxweédr
Langmuir loca] and Langmuir global models show very . , , , , , . , . )
similar results over a large range of Knudsen number, but * 4 w18 02 P2 24 26 283
begin to deviate near kn0.4.[From the validity condition
(38), the upper limit of the Knudsen number is ¥10.94 at FIG. 5. qus flow ratékg/s) o_f nitrogen gas in the scale of 18" depicted
L . . as a function of pressure ratio (Kr0.054). The square represents the ex-
pin=2.] This indicates that the flow region is very close to perimental dataRef. 29.
where the restrictioi29) in the present perturbation analysis
can be violated. Notice also that the so-called Knudsen'’s
minimunt® is captured by the Langmuir global model. The

, b : L B — 3. 9 — 27 [ =— 3
nonlmegr nature of the gas—surface mole_cu_lar mteracn_on is g(p)==p /BD— ZBp+ — /BD— “n /,3D+ el
responsible for the appearance of such minimum, and it im- 3 8 16 64 4

plies that with the inclusion of a proper higher order consti-nn analysis similar to the case of monatomic gases can be
tutive equation the prediction may go beyond the limit and, i to the global Langmuir slip model. Since the essence
eventually connect the free molecular limit. of the theory turns out to remain exactly the same, it will be
omitted in the present validation study.
The nitrogen, the main component of the air, was used as
2. Velocity slip in a diatomic gas the working gas in the experiment of Steéhal?® Other im-

) ) o _ portant conditions different from the helium gas case are
By using the Langmuir adsorption isotherm of a di-

atomic gas(12), the dimensionless slip velocity at the sur- ~ R=297 J/kg K,

Mass Flow R:
0
T
L

Maxwell

face can be expressed as 7=1.76x10"5 Ns/n?, »=0, c=1.018.
u(x,y=0) With these values the maximum Knudsen number is
u= —\/: ‘ 0.054. In this diatomic case the following value of accom-
1+VBp modation coefficientr of the Maxwell model is set:

Then a solvability condition can be written as o=1.86.

6p In the case of the Langmuir slip model the following value
(p?)'=——7=0p". (39 turns out to fit best the experimental data:
3+4VBp

©=0.361 or D,=0.624 kcal/mol.

In Fig. 5, dimensional mass flow rates of nitrogen gas in
the microchannel are depicted as a function of pressure ratio.

With the pressure boundary conditions, we can derive the
following solutions:

3 1 Both models seem to predict the experimental values cor-
u(x,y)=——=p'| 1—4y%+ T] , (40 rectly over a large portion of the pressure drop. But a careful
g \/% examination indicates that the Langmuir model yields a pre-
diction in better agreement with the data over the whole
1-p2+3[g(1)—g(p)1/B? range of the pressure drop. It may arise from the explicit
1-x= " = (41)  treatment of the diatomic effect in the Langmuir slip model.
1-pint3[9(1)—g(pin) /B On the other hand, the prediction by the continuum theory is
where grossly in error, and it gets worse as the pressure drop in-
creases.
3
6= —py—q| 2+ T_ B. Low Reynolds number gas flow past a sphere
B Another validation study considered in the present work
and is the low Reynolds number isothermal gas flow past a
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sphere. The understanding of this external creeping flow mawhere

become important when one tries to estimate the drag expe-

. . . ) du, U, 1au

rienced by a microsphere subjected to unconfined low Rey- My=—n —"——+-—

nolds number gas flo#:%® Unlike the internal flow of the a v rdd

pressure-driven microchannel the external creeping flovand | =Kn(2R). By utilizing the method of separation of

does not involve any significant pressure change, and cons@ariables, the following solutions can be obtained:
guently it can be assumed incompressible. Thus the flow can

3

be dgscrlbed by using the mcomp_rgssuble Navier—Stokes u,=U cos¢ 1+k1(8 +k, E) ’ (51)
equation and the slip boundary condition. In fact, the present r r
study can be regarded as an extension of Stokes’ analytical 3
solution for creeping flow past a sphere which takes noncon- u,=—Using|1+ — _) - (_) } (52
tinuum effects into account. 2\ rAr

Let us consider a monatomic gas creeping flow with the k,7RU cose
incoming velocityU past a microsphere with the radiés P=Pot ——m—, (53
For this incompressible flow with small Reynolds numbers, r
the inertia terms of the momentum equation can be newhere
glected, and it yields the Stokes equations 3(1+ 40 Kn) 1

V-u=0, (42 K== 1T 60Kn)’ 2T2(1+60Kn)"

Vp=7Vu. (43 The drag arising from skin friction can be found by re-

- o . _.solving the shear stress in the direction of the incoming free
Here it is worth mentioning that now the pressure is of . . . S
. stream velocity and integrating the stress distribution over

: . S he surface. Also, the drag arising from pressure distribution

sure. Owing to the symmetry in the flow direction, they take . . o
. . . ) . can be found by integrating the pressure distribution around

the following form in the spherical coordinates: . L

the surface of the sphere. Finally, the drag arising from the
ou, 1lodu, 2u, u,cote normal stress, which vanishes in the continuum limit, can be
ar + r o + r + r =0, (44 found by integrating the normal stress distribution around the
surface. Thus the mathematical form of the total drag can be

9P _ 2 2 dug 2u; 2ugcote expressed as follows:
5_77<Vsur_r_2 i r2 r2 ) (45) )
Drag=2 sz I, 4], _r S ¢d
1 p _ (Vz I 2 duy Uy 46 g=em 0[ rglr=R pd¢
rag VT2 G (ZsiP g ) (46) ]
where +fo [—Ppli=rsing cos¢de

# 29 1 9 cotd 9 -
2__ .
Vs=—arz+rg+r—z—&¢z+—rz s +fo [—II,,],=rSiN¢ cospd e |, (54)

In this expressiom and ¢ denote the radius and the cone \yhere
angle in spherical coordinates. To account for slip effects
near the surface of the microsphere, the governing equations M.=—2 %
are solved in conjunction with the slip velocity boundary " o

condition: From this relation a coefficient of the total drag experi-

Ugp=Ugpg at r=R, 0s¢<=m. (47 enced by the sphere can be derived:

Other boundary conditions are zero normal flow on the sur- -C (1+4U K”) (55)
face and the reference flow at the far field Pumaxwel~Pno-sip| 1+ 60 Kn)’

u,=0 at r=R, (48) whereCDno_S”pz 24/Re and Rep, . U(2R)/7.

u=Ucos¢, uy=-Using, p=p, atr—x.
(49)

1. Maxwell slip model 2. Langmuir slip model

When the Langmuir model is used to describe the slip
effects, the corresponding velocity boundary condition at the
surface can be expressed as

When the Maxwell model is used to describe the slip
effects, the slip velocity boundary condition can be ex-
pressed as

uys(r=eR)
o __¢
u¢slip: - ;l[Hrqﬁ]r:Rv (50) u¢slip 1+E ’ (56
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FIG. 6. Variation of the drag coefficients as a function of the KnudsenFIG. 7. Low speed drag coefficients of a sphere as a function of the inverse
number(4o Kn). Knudsen number. The drag coefficients are normalized by the free molecular
value. The continuum Stokes solution by the thin solid lines; the Maxwell
model by the thick dashed lines; the Langmuir model by the thick solid
. . lines; the experimental result of Sherm@ef. 38 by the thin dashed lines;
where I<e<w. By using the same method as used in thethe experimental data of MillikafRef. 39 by the square; the computation

previous case we can show that the solutions differ only irbf Cercignaniet al. (Ref. 40 by the dotted lines.
the expression of the constarks andk, and the new con-

stants are
e 3-1-38 e l-1+8 sive reflection, free molecular drag coefficient for the sphere
Kj=——, ky=———, in the low-speed isothermal limit can be expressefi¥s
2(B+1-E) 2(B+1-E)
whereE=(e '+ e %)/2. From these results we can calcu- C. = 16 n 2\m E (59)
late the total drag mo\3ym 3 s’
B+(1—e 3)/3 where the dimensionless spesds defined ass=\y/2M.
Diangmuir Pnosipl  — . = |- (57)  Then the no-sligStokes drag coefficient relative to the free
B+1-E molecular value can be written as
If we choose the free stream velocity as the reference veloc-
ity of the Langmuir slip model or, equivalently, taking a limit Dnosip_ 36 Kn (60)
of e—, then with a definition of3=1/(4w Kn) the drag Cp,, 8+m 7

coefficient reduces to _ ) _ o
where a relatiorM = y2/ym Kn Re is applied. Similarly, the

drag coefficients by the Maxwell and Langmuir slip models
can be expressed as

_ 1+4w Kn/3
DLangmuir_CDno-inp 1+4w Kn |’ (58)

In connection with such a choice it is worth noting that

the local velocity in Stokes’ flow never exceeds the free CDMaXWE”Z 36 n(l+4o Kn>, (61)
stream velocity owing to the absence of the inertial fofce. Coy, 8+ 1+6oKn
In Fig. 6, the drag coefficients relative to no-slip values
are depicted as a function of the Knudsen num@erkn). CDmngmuir_ 36 1+4w Kn/3
The equality 3r=4w is assumed for the sake of comparison, Cop,,, T8t N T4 Kn (62

which makes the rates of the change of the coefficient by the

Maxwell and the Langmuir model coincide in the continuumOn the other hand, an interpolating formula of experimental

limit. As in the case of the microchannel flow, the compari-data derived by Shermé#hcan be written as

son yields basically two conclusions: two models predict es-

sentially the same result in their qualitative aspect; and the CDsherman_ Kn

slip effect by the Langmuir model is more prominent, espe- Cp,, T Kn+0.3425

cially in the high Knudsen number regime. Therefore, it is

expected that with an adjustable parameter both models can The results on this classical probl&nare illustrated in

be used to describe the low Reynolds number creeping flowsig. 7, where experimental data by Millik¥hand a varia-
With new results in hand, an extensive comparison withtional calculation with the BGK model by Cercignaeti al*°

previous theoretical and experimental data is performed foare also shown for completeness. In this figure, the low-

low-speed drag coefficient of a sphere. In the case of diffuspeed drag coefficients of a sphere are plotted as a function

(63
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of the inverse Knudsen number. To be consistent with th€01-3. The author expresses his deep appreciation to Profes-
diffusive reflection assumption, the following values are assor B. C. Eu at McGill University for his encouragement and
signed to the accommodation coefficients: advice and for reading the manuscript.
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