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Abstract: The discontinuous Galerkin (DG) method has been popular as a numerical technique 

for solving the conservation laws of gas dynamics. In the present study, we develop an explicit 

modal DG scheme for multi-dimensional conservation laws on unstructured triangular meshes in 

conjunction with non-Newtonian implicit nonlinear coupled constitutive relations (NCCR). 

Special attention is given to how to treat the complex non-Newtonian type constitutive relations 

arising from the high degree of thermal nonequilibrium in multi-dimensional gas flows within the 

Galerkin framework. The Langmuir velocity slip and temperature jump conditions are also 

implemented into the two-dimensional DG scheme for high Knudsen number flows. As a 

canonical scalar case, Newtonian and non-Newtonian convection-diffusion Burgers equations are 

studied to develop the basic building blocks for the scheme. In order to verify and validate the 

scheme, we applied the scheme to a stiff problem of the shock wave structure for all Mach 

numbers and to the two-dimensional hypersonic rarefied and low-speed microscale gas flows past 

a circular cylinder. The computational results show that the NCCR model yields the solutions in 

better agreement with the direct simulation Monte Carlo (DSMC) data than the Newtonian linear 
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Navier-Stokes-Fourier (NSF) results in all cases of the problem studied.  

Keywords: Discontinuous Galerkin, rarefied and microscale gas, nonlinear coupled constitutive 

relations 

1 Introduction 

In spite of considerable efforts over the past decades, an accurate numerical simulation of 

nonequilibrium rarefied and microscale gases remains very challenging in the field of 

computational fluid dynamics (CFD). Nonequilibrium gas flows of technological interest may be 

found in three distinctive problems [1-4]: 1) the hypersonic rarefied regime of trans-atmospheric 

vehicles; 2) the microscale low-speed (creeping) regime of micro- and nano-devices; and 3) the 

high-speed free-molecular regime of mechanical devices operating near the vacuum condition. 

The high Mach and Knudsen numbers are the sources of thermal nonequilibrium in these cases 

(the high Mach, the high Knudsen, or both). From past experiences, it was accepted that 

conventional models based on classical physics, such as the NSF equations, have serious 

limitations in capturing the correct flow physics of high thermal nonequilibrium. In the NSF 

equations, non-conserved variables associated with thermal nonequilibrium, the shear stress 

tensor and heat flux vector, are described in conjunction with the linear uncoupled constitutive 

relations of gradients of velocity and temperature. Note that these classical NSF relations are 

derived with the assumption that it is valid near local thermal equilibrium only. However, the 

near-local-thermal-equilibrium assumption is no longer applicable in rarefied and microscale 

gases because of the reduction of molecular collisions. Recently, in order to remove this 

shortcoming of the continuum approach, nonlinear coupled constitutive relations (NCCR) in a 

compact implicit algebraic form were derived [2,5,6] from the generalized hydrodynamic 

equations pioneered by Eu [7]. An important result obtained in those studies was that constitutive 

relations between stresses (heat flux) and the strain rate (the temperature gradient) are generally 
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nonlinear and coupled in states removed from thermal equilibrium. The new NCCR model has 

been successfully applied to some challenging problems of nonequilibrium gas flows where the 

NSF equations were found to be inappropriate. 

In previous studies [2,5,6], the conservation laws with the non-Newtonian NCCR model were 

solved by applying the upwind type finite volume method (FVM) commonly used in the CFD 

community. In the course of these endeavors, however, it was recognized that the FVM is limited 

to second order accuracy at best, and in particular, it suffers a noticeable degradation in low Mach 

number flows. This deficiency is very critical because the NCCR model is envisioned to solve all 

three—the high Mach, the high Knudsen, and both—of regimes, including the high Knudsen and 

low Mach number regime, in a unified framework, which demands a capability to treat two 

extreme cases, high and low Mach number flows. This is the primary factor in the present study 

to employ the discontinuous Galerkin (DG) method, which demonstrated the ability to compute 

low Mach number flow problems, without resorting to the time-preconditioning techniques 

normally required for the FVMs. 

The DG method has recently found its way into the main stream of CFD as an alternative 

approach for CFD based on the finite volume framework. This method combines key features of 

the finite element and finite volume methods, and has been successfully applied to a variety of 

problems, such as gas dynamics, acoustics, and magneto-hydrodynamics. It may be divided into 

modal [8-13] or nodal [14-18], depending on the basis function used in the scheme. The modal 

DG method had been developed for the one-dimensional (1D) Burgers equation [9,10,14], which 

is a simplified model equation of the conservation laws, and the two-dimensional (2D) 

compressible NSF equations [8,15,16,19]. An implicit nodal 1D DG scheme was also developed 

for the NSF equations to investigate the shock wave structure [15].  

The essential idea of the DG method is derived from the fact that the shape functions can be 
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chosen so that either the field variable or its derivatives, or generally both, are considered 

discontinuous across the element boundaries, while the computational domain continuity is 

maintained. The calculations for higher dimensions require interpolation functions or shape 

functions defined in multi-dimensions. The extension of the 1D shape functions to multi-

dimensional elements can be obtained using the tensor product approach [14]. Therefore, it can be 

effectively used in convection-dominant applications, while maintaining multi-dimensional 

geometric flexibility and higher local approximations through the use of higher order elements. 

This feature makes it uniquely useful for computational fluid dynamics and heat transfer [14,20]. 

In the DG method, field variables are considered discontinuous across elemental boundaries, 

circumventing the need of assembling a computationally demanding global matrix and leading to 

less in-core memory required in computation in comparison with the continuous Galerkin method. 

Moreover, this method can be easily parallelized due to its locality property and is thus well 

suited for parallel computer platforms [14]. This feature is particularly useful for computations in 

multi-dimensional domains because of the increase of the number of elements. These advantages, 

together with its ability to deal with high and low Mach number flows with a single framework, 

are the motivations for selecting the DG method for numerical solutions of the multi-dimensional 

conservation laws with the NCCR models in the present work. However, it should be mentioned 

that the DG method has a number of its own weaknesses. In particular, it involves high 

computational cost, memory requirement, and programming complexity in comparison with the 

FVM. In addition, it shows less tolerance to under-resolved solution features and requires high-

order geometry representation. 

There remains at present a critical computational issue regarding the application of the DG 

method to the conservation laws with the NCCR models. The essential feature of the DG method 

for the convection-diffusion type Newtonian linear NSF equations can be explained by 

considering the following viscous 1D Burgers equation: 
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Likewise, the essential element of the new DG method suitable for the conservation laws with the 

non-Newtonian NCCR models can be illustrated by solving the following 1D NCCR-Burgers 

equation in implicit functional form [2]: 
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In passing, it should be mentioned that a similar non-Newtonian constitutive relation can be 

found in the viscoelastic flow [21]. The extension of the DG scheme initially developed for the 

simple Newtonian Burgers equation (1.1) to the more complicated non-Newtonian NCCR-

Burgers equation (1.2) may seem straightforward, but there are two critical issues that require 

fundamental change of the scheme. First, the auxiliary variable S in the DG scheme of equation 

(1.2) should be S = μux, instead of S = ux, which is commonly used in the DG scheme, since the 

viscosity μ is no longer constant, due to its temperature dependence, and thus depends on the 

primary variable u itself, and the constitutive relation in equation (1.2) is expressed in terms of 

μux. Second, the functional form of the constitutive relation in equation (1.2) is highly nonlinear 

and implicit, and requires an additional computational algorithm. 

In this study, with special attention attached to these issues, we aim to develop an explicit 

modal DG scheme for solving multi-dimensional conservation laws in conjunction with the 

NCCR models. The main emphasis is placed on how to treat the complex non-Newtonian type 
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constitutive relations arising from the high degree of thermal nonequilibrium in multi-

dimensional gas flow situation within the Galerkin framework. To the best knowledge of the 

authors, no triangular modal DG method for non-Newtonian implicit constitutive models of 

hypersonic rarefied and low-speed microscale multi-dimensional gas flows has been reported in 

the literature. 

For the verification and validation study, we apply the scheme to the problems of the very stiff 

1D shock wave structure for all Mach numbers [22-25] and the 2D hypersonic rarefied and low-

speed microscale gas flows past a circular cylinder [26-30]. In particular, we consider the 

compressible low Mach number gas flow with high Knudsen number [26] in detail, one of most 

studied problem in microscale gas dynamics and yet remaining as extremely challenging from 

numerical viewpoint since the conventional NSF-FVM scheme and the DSMC suffer very poor 

accuracy and extraordinarily slow convergence. 

The present paper is organized as follows. In Section 2 an explicit modal DG scheme with an 

auxiliary variable 
s

T S U  is developed. The positivity preserving and slope limiters [13,31,32] 

and shock detection [10] are adopted for the present DG scheme for non-Newtonian constitutive 

models of rarefied and microscale multi-dimensional gas flows. The Langmuir velocity slip and 

temperature jump models [3,5,33,34], which are essential in any efficient computational 

simulation of rarefied microscale gas flows, are also implemented for the gas-surface molecular 

interaction in the DG framework. In Section 3 the DG scheme is extended to the multi-

dimensional conservation laws with the NCCR models through two steps: first, considering a 

canonical scalar case (the 1D Newtonian and non-Newtonian Burgers equations) to develop the 

basic building blocks for the DG scheme, and second, application to the full system of multi-

dimensional nonequilibrium gas dynamics. In Section 4 we present numerical results of the 1D 

shock wave structure problems, and the 2D hypersonic rarefied and microscale gas flows past a 

circular cylinder as the verification and validation of the new DG scheme. In addition, by 
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observing the degree of non-equilibrium and the nonlinear constitutive relations in gaseous 

expansion and compression cases, we explain the ultimate reason why the NCCR model always 

yields, in comparison with the NSF model, solutions that are in better agreement with DSMC 

results. In the last section we give the conclusions and discuss issues of further development in 

line of the present study. 

2 Modal DG scheme with an auxiliary unknown sT S U  

2.1 One dimensional NSF equations 

The non-dimensional vector form of the conservation laws can be expressed as 

                                          inv vi , 0,t s    U F U F U U                                               (2.1) 

where variables in 1D case are defined as 
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Here  is the mass density; u is the fluid velocity in the x-direction; p is the pressure; E is the total 

energy density;  is the xx-component of the shear stress tensor, and Q is the x-component of the 

heat flux vector. The M, Re, N


, Ec and Pr are dimensionless gas dynamic parameters: Mach, 

Reynolds, composite, Eckert, and Prandtl numbers, respectively [2,5]: 
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where the parameter γ is the specific heat ratio of gas, R is a gas constant, 
pC  denotes the heat 

capacity per mass at a constant pressure, and the subscript r represents the reference state. Also µ 

and κ are the viscosity and the thermal conductivity, respectively, expressed as 



8 
 

,s
T    

where s is a gas constant associated with the inverse power laws of gas molecules and T is the gas 

temperature. For the classical NSF model, the shear stress, П, and the heat flux, Q, are computed 

as follows: 

                                                         
4

,
3

.
u T

Q
x x

 
 

    
 

                                           (2.2) 

Finally the equation of state T = p/ρ is used in the conservation laws. 

2.1.1 One dimensional spatial discretization 

The mixed DG formulation proposed in [8] is employed in spatial discretization of the NSF 

equations. This formulation will solve the second-order derivatives in viscous terms by adding 

auxiliary unknown S, because the second-order derivative cannot be accommodated directly in a 

weak formulation using a discontinuous function space. Therefore, S can be chosen to be the 

derivative of either primitive variables u, T or conservative variables U. In this work, S is chosen 

to be derivatives of the conserved variables U, that is, 
s

T S U . This will result in a coupled 

system for S and U 
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The spatial derivatives of primitive variables such as ux is then computed by expanding the 

derivatives of the conservable variables, for example T
s
ux = (1/ρ)[T

s
(ρu)x – T

s
ρxu]. Constitutive 

relations are given as (П, Q)NSF = flinear(S(U)) for the NSF model, while they are given as (П, 

Q)NCCR = fnon-linear(S(U), p, T) for the NCCR model. Notice that the introduction of an auxiliary 

variable such as one in (2.3) is necessary for the nonlinear implicit type NCCR constitutive model. 

In order to discretize the coupled system (2.3), the numerical solutions of U and S are 

approximated by Uh and Sh, respectively, 
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where φ is the basis function for finite element space and k is the order of approximation. It is 

assumed that the mesh covers the computational domain containing N elements (cells) Ij [xj-1/2, 

xj+1/2], for 1 ≤ j ≤ N. The element is equally spaced ∆x = xj+1/2 - xj-1/2 and the finite element space is 

defined as polynomials space:  
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(Ij) denotes the set of polynomials of degree up to k on the element Ij. The semi-discrete 

modal DG method for solving the coupled system (2.3) finds Uh and Sh 
k

h
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where xj is the center of the element. The first three orthogonal polynomials in [33] are used in 

this work, which correspond to the second-order approximation, 
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The coupled system (2.3) is multiplied with the basis function φ, and then integrated by parts for 

derivative terms over element I, the weak formulation of the coupled system can be derived to 

find Uh and Sh 
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where ∂I denotes the boundaries of the element I and n is the outward unit normal vector. 

Equations of auxiliary unknowns are resolved first to compute the derivatives of conservative 

variables, in which the variable T(x, t) is updated at each time step. The volume integrals within 
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the element I are resolved by the Gaussian quadrature with (2k + 1) Gaussian points to ensure 

accuracy [9]. The flux function U·n, Finv·n and Fvis·n in the boundary integrals of each element 

are replaced by a numerical flux function h, respectively.   

2.1.2 One dimensional numerical fluxes 

For the conservation laws there exist many numerical flux functions, such as Godunov, Roe, 

HLLE and Lax-Friedrichs. In the present study, the local Lax-Friedrichs (LxF) flux, hinv, is 

applied for inviscid terms. This is a monotone flux and is commonly used in the DG method. The 

LxF flux is the most dissipative flux that leads to a stable scheme in the DG framework. Note that 

the LxF flux is as dissipative as a stable explicit method can be for basic methods [36]. 
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Here as = T
1/2

 is the speed of sound at an elemental interface. The signs – and + denote the left 

and right sides at an elemental interface. The term as/M instead of as appears in formulation of the 

coefficient C because of the definition of the characteristic speed in dimensionless form. For 

viscous terms, the central flux is applied to the remaining boundary integrals
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2.1.3 High order slope limiter and shock detection 

The shock detection and high order slope limiter proposed in [10,32] are adopted for the 

present 1D DG scheme. The limiter is applied to eliminate oscillations in the shock simulations. 

The components of U can be limited as follows: 

 1 1 1 1
1 1minmod , , , 1, , ,   
    i i i i i i

j j j j j jU U U U U U i k  



11 
 

with the minmod function 
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A shock detection proposed in [10] is also developed to identify the trouble cells (discontinuities) 

and to turn on the limiter to resolve the discontinuities. It is implemented into the DG scheme as 

follows: 
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of only one point. The discontinuity detection scheme in [10] can be summarized as follows: 
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2.1.4 Numerical boundary conditions 

At the upstream boundary in 1D flow problem, all Euler characteristics are incoming for 

supersonic flow and therefore their initial values can be predetermined. Otherwise, at the 

subsonic downstream boundary, only one characteristic is incoming and thus one physical 

condition must be imposed [37]. In the present study of the shock wave structure, the downstream 

velocity specified by the Rankine-Hugoniot condition is retained to maintain the shock stationary. 

Other variables are extrapolated using the interior adjacent values. The computation at the 

downstream boundary cell IN [xN-1/2, xN+1/2] can be explained as follows: 
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Then the Dirichlet boundary condition is implemented at the downstream boundary xN+1/2 by 

defining the exterior ghost states  
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and the boundary condition for the Sh at the downstream boundary is set by   
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A similar fashion of boundary conditions for Uh and Sh is also applied at the upstream boundary. 

Finally, the coupled system (2.3) can be obtained on each element 
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which is resolved by the Runge-Kutta time integration. The time step ∆t is computed as [16]
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where CFL is the Courant-Friedrichs-Lewy condition (CFL ≤ 1).
  

2.2 Two dimensional NSF equations 

We now extend the 1D DG scheme to develop a 2D DG scheme for multi-dimensional 
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conservation laws.  The 2D NSF equations, in dimensionless form, are expressed as, 
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where the stresses and heat fluxes are computed as 
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2.2.1 Two dimensional spatial discretization 

Using the same approach for 1D DG scheme, we obtain a similar coupled system in element I 

as in equation (2.3). The auxiliary variable S continues to be chosen as the derivative for 
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conservative variables 
s

T S U . The spatial derivatives of primitive variables are also computed 

by expanding the derivatives of the conservable variables. Constitutive relations are defined as (П, 

Q)NSF = flinear(S(U)) for the NSF model, while for the NCCR model they are given  as (П, Q)NCCR 

= fnon-linear(S(U), p, T). The numerical solutions of U and S are approximated by Uh and Sh, 

respectively 

                           

       
0 0

( , ) , ( , ) ,
 

    U x x S x x x
k k

i i i i
h j h j

i i

t U t t S t I  ,           (2.10) 

where φ(x) is now the Dubiner basis functions for 2D solutions. 

The choice of polynomial basis functions does not have much impact on the accuracy of the 

resulting scheme in the DG method. But an appropriate choice of basis functions may facilitate 

the implementation of the scheme. An important factor in using unstructured expansion for time-

dependent calculations is the numerical efficiency of the algorithm in the context of cost per time 

step. Therefore, an unstructured expansion must be as numerically efficient as the structured 

expansion [38]. A suitable modal basis proposed by Dubiner for 2D problem [39] is adopted in 

the present work. 

On the basis of a coordinate system for the unstructured expansions we construct a set of 

orthogonal polynomial expansions for unstructured grid system [38,39]. In the standard 

rectangular domain, the coordinates (a, b) are bound by constant limits, that is  

                                                     ( , ) 1 , 1 .a b a b   R  

In order to develop a suitable basis for unstructured triangular regions described in Fig. 1, we 

need to develop a new coordinate system where the local coordinates have independent bounds. 

A suitable coordinate system, which describes the triangular region between constant independent 

limits, is defined by the inverse transformation [38,39], 
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(1 )(1 )

1,   
2

a b
r w b.

 
    

New local coordinates (r, w) define the standard triangular region by 

 ( , ) 1 , ;  0 ,r w r w r w    T  

which is referred as the collapsed coordinate system shown in Fig. 1. The polynomial basis 

expansion  
,   lm l m

g


 with  0,  0,  ,  ,  l m l L l m W L W        are expressed as,  

0,0 2 1,0( , ) ( )(1 ) ( ),l l

lm l mg a b P a b P b                                      (2.11) 

where   , ( )nP x    is 
thn order Jacobian polynomials [39].  For linear element P

1
 polynomials 

approximation (W = 1), the orthogonal basis function φ can be expressed as 

     
3

00 01 10 00 10 011
, ,  or , ,i

i
g g g g g g


   

and the basis functions in the present case are [16] 

1

2

3

1,

1 2 (1 ),

3 1 3 1

2 2
.

r w a b

w b



    

 
 







 

The coupled system (2.3) is multiplied with the basis function φ, and then integrated by parts 

for derivative terms over element I, the weak formulation of the coupled system in equation (2.3) 

is derived to find Uh and Sh 

inv inv vis vis 0,

0,

I I I I I

s s

I I I

φdV φ dV φ d φ dV φ d
t

φdV T φ dV T φ d

 




          


      


    

  

U F F n F F n

S U U n
                   

(2.12) 

where V  and Γ denote  volume and boundaries of the element I, respectively. Then, the 

essentially same treatment of auxiliary variables, volume integral, and boundary integral, which 

was developed for the 1D spatial discretization, is carried over to the 2D case. 



16 
 

2.2.2 Two dimensional numerical fluxes 

Similar to 1D case, the LxF numerical flux is also adopted for computing directional fluxes of 

the inviscid terms,  

      

       

       

inv1 inv1 inv1 inv1
inv1

inv2 inv2 inv2 inv2
inv2

1
, , ,

2

1
, , ,

2

max , ,

     

     

 
 

      
 

      
 

 
   

 

F nx h U U nx F U F U U U

F ny h U U ny F U F U U U

u us s

C

C

a a
C

M M

                 
(2.13)

 

where nx and ny are outward normal vectors in direction x and y, respectively. The central flux is 

selected to calculate the numerical fluxes for solution of auxiliary variables and the viscous terms 

          

     

     
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   

    
 

    
 
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F nx h U S ,U ,S nx F U S F U S

F ny h U S ,U ,S ny F U S F U S

U n h U U n U U
s sT T

                       

(2.14) 

Here the signs – and + denote the inside and outside of an elemental interface. 

2.2.3 Extension of positivity preserving limiter to triangular element 

In DG scheme numerical solutions may lead to negative density and pressure during the time 

marching. Therefore, the positivity preserving limiter is needed to enforce positive pressure and 

density at every element. By extending the work of Zhang and Shu [31] for quadrilateral elements 

in DG method, Kontzialis and Ekaterinar [13] developed a positivity preserving limiter for 

triangular elements based on the calculation at quadrature points. In the present study, we extend 

this positivity preserving limiter into 2D DG scheme according to our new approach, which is 

based on the calculation at three vertices and the centroid point of triangle. The limiting 

procedure contains two steps as follows: 

The first step is to limit the density at every element. The density values at three vertices of 
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element, as shown in Fig. 2, are computed to determine the minimum density value, ρmin= min(ρ1, 

ρ2, ρ3). The limited coefficient θ1 is then evaluated as 

                                                            

1

min

min ,1
 

  
 

 


 
 

Where 
13min(10 , , )p   and  , p are the mean density and pressure values of element, 

respectively. The high order components of the density variable are then limited by 

                                           

0

1

1

0
( , ) ( ) ( ) ( ) ( ).

k
i i

j

i

jt U t U t 


  U x x x

                                     

(2.15)                    

The second step is to limit the pressure at every element. To do so, all remaining conserved 

variables U must be limited at this step. The pressure values at three vertices of element are 

computed to determine the minimum pressure value pmin = min(p1, p2, p3). If  pmin < ω  then it is 

equal to find σ1 (0 ≤ σ1 ≤ 1) at the point * on the line C-1 to satisfy 
*( )p x  , as seen in Fig. 2, 

* * *
1 1 1(1 ) ,Cx x x                                                     (2.16) 

where 
*

1x   is the coordinates at the vertex 1 and 
*

Cx   is the coordinates at the centroid of element. 

Calculations are repeated for the lines C-2 and C-3 to find σ2 and σ3 and then, σ = min(σ1, σ2, σ3) 

with 0 ≤ σ ≤ 1, and the limited coefficient θ2 = min(σ,1). The high order components of 

conservative variables are limited by  

                                          

0 0

2

1

( , ) ( ) ( ) ( ) ( ).
k

i i

j j

i

t U t U t 


   U x x x

                                     

(2.17)
 

2.2.4 Langmuir  velocity slip and  temperature jump boundary conditions 

At this stage, it is necessary to introduce the velocity slip and temperature jump boundary 

conditions at the wall for the study of rarefied and microscale gases. Among various slip models, 

the Langmuir slip model based on the physical adsorption isotherm [33] is chosen in the present 

study for several reasons. First, it is mathematically simple, Dirichlet type rather than Neumann 

type, so that it is far easier to implement numerically. Second, the main interest in the present 
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study is to investigate the effect of the NCCR model relative to the NSF model, not the boundary 

wall effect. Lastly, the Langmuir model turned out to be qualitatively the same as the 

conventional Maxwell slip model in most cases [33]. The so-called Langmuir slip model was 

developed based on the Langmuir adsorption isotherm in [3,5,33,34], and was shown to yield 

good results for rarefied and microscale gas flows. This model takes the interfacial gas-surface 

molecular interaction into account. A coverage fraction, α (0 ≤ α ≤ 1), of monatomic molecules 

reaching thermal equilibrium on the surface can be expressed, in dimensional form, as  

1

p

p








                                                              (2.18)

 

where p is the surface pressure and β depends on the surface wall temperature Tw and the 

interfacial interaction parameters. By considering the gas-surface molecular interaction process as 

a chemical reaction, the parameter β can be expressed [3,5,33,34], 

2

1
exp ,

32

er

w u w r

DTπ π
β

c T R T p Kn


 
 
 

                                          (2.19)

 

where c is gas constant of the exponent of the inverse power law for the particle interaction 

potential, pr and Tr are reference pressure and temperature, Ru is universal gas constant, Kn is 

global Knudsen number defined as the ratio of the molecular mean free path λ and the 

characteristic length L, and De is the heat of adsorption; for example, De = 5,255 J/mol for Ar-Al 

molecular interaction model [33,34]. The velocity slip and temperature jump boundary conditions 

in the Langmuir model are determined according to the fraction, α,  

                                                           
w g

w g

(1 ) ,

(1 ) ,

α α

T αT α T

  

  

u u u

                                                    

(2.20)                                                                                               

where u is velocity vector, uw is the wall velocity vector, ug and Tg are gas velocity vector and 

temperature at reference location. All reference values are chosen from the far field conditions in 

the present work. The exterior ghost states are imposed to evaluate U
+
, U

-
, S

+
 and S

-
 at boundaries 
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as the 1D DG scheme. Finally, the system of 2D conservation laws can be obtained on each 

element 

 ,h
h h

t






U
R U  

which is resolved by the fifth order Runge-Kutta time integration with ∆t determined by equation 

(2.9).  

3 Extension to the conservation laws with implicit NCCR 

The conservation laws of gas flows (2.1) are still too complicated to study the DG method in 

detail. If a simplified model that contains the essence of the original convection-diffusion 

equations is derived, it can serve as a very useful guide. Such a model, called the Burgers 

equation, is already available, and it has been studied extensively in the field of wave propagation 

and turbulence [40]. In the present study, the following classical 1D Burgers equation (1.1) is first 

considered in order to develop the basic building blocks of an explicit modal DG scheme: in the 

usual convection-diffusion form, 

                                                          
2

2
,

u u u
u

t x x


  
 

  
                                                           (3.1) 

or, in the form of the conservation law and the constitutive relation, 

                                              

2

0

0

0,
2

,x

u u

t x

S u

  
   

   

    

                                                        (3.2) 

with the exact solution 

 
  

, , ,
21 exp 2

l r l r
r

l r

u u u u
u t x u u

u u x ut 

 
  

    

 

where ul and ur are the fixed boundary values, and u  is the speed of shock and μ is the assumed 

constant. This equation will be designated as the linear 1D Burgers equation since the linear 
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constitutive relation is used in the scalar conservation law. The subscript 0 in 
0Π  represents the 

linear constitutive relation. The numerical solutions of u and S are numerically approximated by 

uh and Sh as in equation (2.4). The LxF flux is selected for solving the boundary integral of 

nonlinear term (u
2
/2) with the coefficient C = max(u

-
, u

+
). The central flux is applied for the 

remaining boundary integrals to find uh and Sh in weak formulation. The exterior ghost states are 

also defined to compute uh and Sh at boundary conditions. The orthogonal Legendre basis 

functions presented above are used for calculations. The linear element and first-order Runge-

Kutta time integration are applied to resolve (∂uh/∂t) = Rh(uh). Elements are equally spaced in the 

computational domain. 

On the other hand, the following 1D implicit NCCR-Burgers equation (1.2) is also 

implemented in the DG scheme: 

       

 

2

0 0

0

0,
2

( ) sinh
( ) ( 1) ,  or  ,  where ,

1

.x

u u

t x

q
q q

S u

  
   

   

  
         

  

    

                    (3.3) 

The values П for a given known value of П0 are represented by the components S
i
 of Sh in the DG 

scheme. They are obtained by solving the nonlinear implicit algebraic equation (3.3) via the 

iterative method [2,5]: for positive and negative П, respectively, 

                       
 

 
1 0

1 0 1

0

sinh 1 ,   and  .n n n

nq


 


          

                               (3.4) 

Solution of the iterative method for the 1D NCCR equation (3.3) is considered converged when 

5

1
10 .

n n




    

3.2 System of 1D conservation laws with implicit NCCR model 
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The following 1D NCCR model for the conservation laws developed on the basis of the 

moment method in [2, 5, 6] is implemented in 1D DG scheme: 

 

2 1 1
Re Re

1 1 1
Re Re Re Pr

0,
N

t
N Ec

x

u

u u p

E
E p u u Q

 
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      
         

 







 




 

and 

0

0

0 0

ˆˆ ˆ ˆ( ) ( 1) ,    

ˆ ˆˆ ˆ( ) ( 1) ,

4
, ,

3

q cR

Qq cR Q

u T
Q

x x

    

  

 
    

 
 

                                       (3.5) 

where the nonlinear factor ˆ( )q cR , describing the mode of energy dissipation accompanying the 

irreversible processes and the tenet of the modified moment method [7], is defined as  

2 2 2
ˆsinh( ) 3 ˆˆ ˆ ˆ( ) , .

ˆ 2

cR
q cR   R Q

cR
     

The ultimate origin of such factor lies with the consideration of entropy production and the 

cumulant expansion that provides a resummation procedure for an expansion in the Knudsen 

number series of the Boltzmann collision integral. Without such resummation procedure or 

similar procedure developed by Karlin et al. [41], which yields a non-Newtonian type explicit 

constitutive relation 

   2
0 0 0 0

ˆ ˆ ˆ ˆ ˆ3 2 3 1 4 / 3 4 4 ,            

it will not be possible to derive such nonlinear factor. Such factor is also echoed in the well-

known Eyring formula in non-Newtonian fluids [42], which describes shear thinning, i.e. the 

decrease of the viscosity with increasing the velocity gradient (or shear rate). Here gas constant c 

becomes 1.0138c   for the Maxwellian monatomic gas molecule [43]. The caret ^ over a symbol 
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in the constitutive relations (3.5) represents the quantity with the following: 

, .
2Prp

Q
 

p p C T


 

It can be rewritten using the dimensionless parameters as follows: 

 

1ˆˆ ,   ,   where  .
Pr Ec // 2

N N Q
Q

p p T TT

  

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

 

The initial shear stress and heat flux in the NCCR model are computed by the values П and Q 

at the elemental interfaces and the Gaussian points from the linear NSF model 

  
 

  0 Π-linear 0 -linear

1ˆˆ , .
/ 2

Q

N N
f   Q f

p p T
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For positive and negative Π̂  and Q̂ , the iterative procedures can be summarized as follows [2,3]: 
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                          (3.6) 

and 

1 0 1 0

0
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n n
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Q Q
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 

 
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                               (3.7) 

In these expressions, 
1Π̂  and 1Q̂  are given by the equations 

1 1

0 0 0 0

1 1

0 0

ˆˆ ˆˆsinh ( ) sinh ( )ˆˆ ,   .
ˆ ˆ

cR cR Q
Q

cR cR

 
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Solution of the iterative method for NCCR equations is considered converged when 

5

1
ˆ ˆ 10 .n nR R



    The converged values at the iteration (n+1) are then embedded back into the DG 

scheme via the following relations: 
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3.3 System of 2D conservation laws with implicit NCCR model 

In the case of 2D problem the stress and heat flux components (Пxx, Пxy, Qx) on a line in the 2D 

physical plane induced by thermodynamic forces (ux, vx, Tx) can be approximated as the sum of 

two solvers: (1) one on (ux, 0, Tx) and (2) another on (0, vx, 0) [3,5]. From 1D NCCR, the 

equations for the first solver are given by 
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where  
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The factor 3/2 in 
2R̂ originates from the symmetry relation 
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The equation for the second solver is given in the form 
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which follows from the symmetry relation 
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and the constraint 
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                               (3.8) 

The initial shear stresses and heat fluxes in 2D NCCR model are computed by the values Пxx, Пxy 

and Qx at the Gaussian points in both volume and boundary integrals from the linear NSF model 
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These equations can be solved by the method of iteration that yields converged solution within a 

few iterations. The iteration procedures can be summarized as follows [3,5]. In the first solver (ux, 

0, Tx) for positive ˆ
xx   and ˆ

xQ  
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for negative ˆ
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In these expressions  
1

ˆ
xx   and 

1
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In the solver on (0, vx, 0) the   ˆ

xx  can be obtained for a given  
0

ˆ
xy  through the equation 
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and the  ˆ
xy  can be calculated by using the constraint (3.8). Solution of the iterative method for 

2D NCCR equations is considered converged when 
5

1
ˆ ˆ 10 .n nR R



    The converged values at the 

last iteration (n+1) are then implemented back into the 2D DG scheme as follows: 
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4 Numerical results: verification, validation, and discussion 

4.1 Scalar Burgers equation with linear and nonlinear constitutive relations: verification 

As the first verification case, the shock structure profile of the 1D Burgers equation is 

computed by the 1D DG scheme. Fig. 3 shows the numerical results of the linear 1D Burgers 

equation at various values of the viscosity μ = 0.01, 0.1, 0.5 with N = 200, ∆x = 0.05, and ∆t = 

0.0001 [14]. Initial values are set with u = 1 for x < 0 and u = –1 for x > 0.  The values u = 1 and 

u = –1 are fixed at boundaries throughout the whole calculation. Steady state solution is reached 

when rms norm of u is below 10
-8

. The 1D DG scheme of the linear 1D Burgers equation 

accurately predicts the profile in comparison with the exact analytic solutions. Figures 4 and 5 

show the nonlinear effect of the 1D NCCR model in computational results for the cases μ = 0.1 

and 0.5. Figure 6 also presents the normal stress П profiles for the linear 1D Burgers and 1D 

NCCR-Burgers equations. The larger П value in numerical solutions of the 1D NCCR-Burgers 

equation can be explained from a simple observation on the constitutive relations (3.2) and (3.3) 

that ПNCCR> П0 when 0 < (–)μux < 3.4, ПNCCR <  П0 when 3.4 < (–)μux. 

4.2 System of 1D conservation laws with NSF and NCCR: verification and validation 

As a further verification and validation study of the 1D DG scheme, the celebrated hypersonic 

shock wave structure is considered. This problem has been a major stumbling block for 

theoreticians for a long time; for example, Grad [44] found that the shock structure solutions of 

his 13 moments equations break down completely, and from the theoretical phase portrait analysis 

of a dynamical system defined by ordinary differential equation of the shock structure, he proved 

that no solution exists for stronger shocks beyond the Mach number 1.65. 
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The shock wave structure problem considered here is defined as a very thin (order of mean free 

path; in other words, Knudsen number close to 1.0) stationary gas flow region between 

supersonic upstream and subsonic downstream. The upstream and downstream states, denoted by 

the subscripts 1 and 2, respectively, are determined by the so-called Rankine-Hugoniot condition: 
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The stiffness of the shock wave structure due to the rapid change of physical properties in the thin 

region is the major cause of numerical difficulty in the problem. In this study, the upstream 

boundary values in the numerical calculation are set with p1 = u1 = ρ1 = T1 = 1 at the initial 

condition and are maintained throughout the whole computational procedure. A computational 

domain 60λ is used in all cases, covering the entire shock structure. The Maxwellian monatomic 

gas with s = 1.0, c = 1.0138, Pr = 0.75, CFL = 0.5, and ∆x = 0.2 are used for simulations. A 

steady state solution is reached when the rms norm of the density is below 10
-9

. The linear 

element (P1) with the first-order Runge-Kutta method (RK1) and the quadratic element (P2) with 

the second-order Runge-Kutta method (RK2) are tested for the case M = 5. As shown in Fig. 7, 

the numerical results are found indistinguishable, so the scheme with the linear element and the 

first-order Runge-Kutta method are selected for all remaining shock structure calculations. The 

results are normalized with respect to the upstream value; for example, in case of the density 

profile, 

1

2 1

.
 


 





 

The central position x = 0 is defined as the location where the local density becomes equal to the 

arithmetic average of the upstream and downstream density. In the plots we use x/λ, where the 

mean free path is λ=μ/(π/2RT)
1/2

/ρ, as space variable.  
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The numerical solutions of shock structures are also compared with a full analytical NSF 

solution of dimensionless density r in closed elementary functional form in case of Pr=3/4 and 

Maxwellian molecule, which was recently derived by Myong [45], 
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Here the upper sign is for the upstream 1 and the lower sign is for the downstream 2. Numerical 

solutions of the 1D DG and 1D FVM schemes for the NSF and NCCR models are compared in 

Figs. 8-11. For the NSF model, the numerical results agree well with the exact analytical 

solutions, even in very stiff Maxwellian molecule case with high Mach number 15. The DG 

NCCR results also show good agreement with the FVM NCCR results obtained in previous 

studies [2,5]. The difference between the numerical results of the NSF and NCCR models in Figs. 

9 and 11 is due to the nonlinearity of the NCCR model. This nonlinearity in the constitutive 

relation is best illustrated in Fig. 12 of the numerical results of heat fluxes and shear stresses. 

There is a noticeable difference in the trajectories of the NSF and NCCR results in the phase 

diagram of shear stress and heat flux. For completeness, the normalized density profiles at various 

Mach numbers (M = 1.5, 10, and 12) for the NCCR model are presented in Fig. 13. Finally, as a 

validation study of shock structure, the inverse of the shock density thickness with the NSF and 

NCCR models is shown in Fig. 14. The inverse of the shock density thickness δ is defined as 
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This quantity, among others such as the shock asymmetry and the density-temperature separation 

distance [45], has been considered the primary parameter to characterize the shock structure 

profile. The computational results show good agreement between the exact analytic solution and 

DG results for the NSF model. Moreover, it can be observed that the results of the NCCR model 

are smaller than the solutions of the NSF model, which may be considered an important outcome 

to support the validity of the NCCR computational model. Indeed, it can be confirmed from Figs. 

15 and 16 of monatomic gases that the NCCR results are in better agreement with the Burnett and 

DSMC data [46] and experimental data [22-24] than the NSF results.  

4.3 System of 2D conservation laws with NSF and NCCR: verification and validation 

In this subsection, 2D DG scheme is validated for viscous compressible gas flows past a 

circular cylinder for both hypersonic rarefied [28] and low speed microscale [26] flows. The input 

parameters and far field values denoted by the subscript, ∞, for hypersonic cases are M∞ = 5.48, 

p∞ = 5Pa, T∞ = 26.6K, Tw = 293.15K, CFL = 0.1, and radii of the cylinders R = 1.9mm, 0.19mm 

corresponding to Kn = 0.05, Kn = 0.5, respectively.  In the microscale case those values are M∞ = 

0.1, p∞ = 101,325Pa, T∞ = Tw = 273K, CFL = 1.0 and the cylinder radius R = 0.313µm, yielding 

Kn = 0.1. Working gas is assumed argon for both cases with Pr = 2/3, c = 1.0179 and s = 0.75 for 

all 2D cases. The typical triangular meshes are depicted in Fig. 17 and the outer radius of the 

computational domain is chosen Router = 30R. The computational domain is defined by 

unstructured meshes with 120×60 in which 120 and 60 points are placed in circumferential and 

radial directions of the cylinder, respectively. The Langmuir slip and jump boundary conditions 

are applied at the solid surface and the far field boundary condition is imposed on the outer 

boundary of computational domain. The results of both the NSF and NCCR models are compared 
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with DSMC data generated by the sophisticated DSMC code [47] with full tangential momentum 

and thermal accommodation coefficients for slip and jump boundary conditions for all cases. 

Even though the linear element (P1) and the quadratic element (P2) are tested for 2D cases, the 

numerical results of the linear element only are presented since both results turn out to be 

indistinguishable. 

4.3.1 Hypersonic rarefied case: M = 5.48 and Kn = 0.05, 0.5 

The normalized densities and temperatures predicted by DG (NSF, NCCR) and DSMC 

methods along the stagnation streamline are compared in Figs. 18 and 19 for the hypersonic 

rarefied case, M = 5.48, Kn = 0.05. A comparison with another similar model—gas kinetic 

scheme result of nonlinear model Boltzmann equations by Yang and Huang [27]—for the 

cylinder flow case is presented in Fig. 18. The flow consists of a compressive bow shock 

structure, a stagnation region near the frontal part of the cylinder, and a gaseous expansion region 

near the rear part of the cylinder. The density and temperature remain initially constant at the 

free-stream region and then experience a rapid change of flow properties across the bow shock 

very close to the value given by the Rankine-Hugoniot relations in all methods. There is, however, 

significant discrepancy in the location and inner profiles of the bow shock between the near-local-

equilibrium NSF solutions and the far-from-equilibrium NCCR/DSMC solutions. Notice that the 

new NCCR model yields density and temperature profiles in better agreement with DSMC data 

than the conventional NSF model. Also, as shown in Fig. 20, the normalized slip velocities 

increase gradually for the angle, θ, from 0
o
 ≤ θ ≤ 130

o
 and reach peak normalized values around 

the location θ = 130
o
 (0.426 for the NSF model, 0.390 for the NCCR model, and 0.366 for 

DSMC). After reaching these normalized peak values, slip velocities decrease quickly to zero 

value at θ = 180
o
. Again, the NCCR model is shown in better agreement with DSMC data of 

velocity slip than the NSF model. 
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For completeness, detailed comparisons of normalized density contours of two hypersonic 

rarefied cases Kn = 0.05 and Kn = 0.5 are presented in Figs. 21 and 22, respectively. The results 

of the case Kn = 0.05 show that the density contours and the stand-off shock structure predicted 

by the NCCR model and the DSMC, as seen in Fig. 21, are in almost perfect agreement. At the 

same time, it can be noted that non-negligible discrepancies already begin to show up in case of 

the NSF model. In order to highlight the difference between the NSF and NCCR models, an 

additional higher Knudsen number case, Kn = 0.5, is considered. Figure 20 clearly shows that the 

normalized density field and the stand-off shock structure predicted by the NCCR model remain 

very close to those of DSMC data even in this high transitional regime, while those of the NSF 

model are in significant disagreement. The thickness of stand-off shock structure predicted by the 

NSF model is much smaller than that of the NCCR model and DSMC, as seen in Fig. 22. In 

addition, the degree of gaseous expansion near the rear part of the cylinder predicted by the NSF 

model is considerably higher than that of the NCCR model and DSMC. On the whole, the results 

of the non-Newtonian NCCR model show better agreement with DSMC data than the Newtonian 

NSF results in hypersonic rarefied cases studied. 

4.3.2 Low-speed microscale case: M = 0.1 and Kn = 0.1 

As mentioned in the Introduction, the compressible low Mach and high Knudsen number gas 

flow occupies a special place in numerical studies of rarefied and microscale gases, since the 

conventional FVM scheme and the DSMC suffer very poor accuracy and extremely slow 

convergence. In fact, this low-speed microscale case provides a rare instance that the NCCR 

model can not only handle the high Knudsen number flow in high transitional regime, but can 

also outperform the DSMC in aspect of quality of solutions obtained. 

The normalized slip velocities predicted by NSF, NCCR, and DSMC methods on the solid 

surface of the cylinder are compared in Fig. 23 for the low-speed microscale case, M = 0.1, Kn = 
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0.1. The flow consists of smooth compression and stagnation regions near the frontal part of the 

cylinder, and a modest expansion region near the rear part of the cylinder. The NSF and NCCR 

normalized slip velocities rise gradually until the location θ = 130
o
 and reach peak normalized 

values: 0.0975 for the NSF model, and 0.1188 for the NCCR model. Past these peak values, the 

NSF and NCCR slip velocities decrease quickly to zero value at θ = 180
o
. The DSMC slip 

velocity increases gradually in the region 0
o
 ≤ θ ≤ 110

o
 and thereafter decreases to zero value at θ 

= 180
o
. However, there exist significant uncertainties, as high as 45 percent, in case of DSMC slip 

velocity data caused mainly by low Mach number, casting serious doubt on any definite 

conclusions that might be drawn from them. This problem of poor performance in the DSMC 

method is well documented in literature [26]; indeed, this is exactly the reason why the high order 

continuum based method like the NCCR model is required to solve the compressible low Mach 

and high Knudsen number gas flow.  

Nonetheless, some instructive results can still be drawn when the normalized density contours 

as presented in Fig. 24, instead of slip velocities, are examined. It can be noticed that the DSMC 

data produce relatively smooth contours near the cylinder and thus the direct comparison with the 

NSF and NCCR results becomes meaningful. The figure shows that (1) the NCCR results are 

more close to DSMC data; for example, the location and shape of density contour with ρ = ρ∞; (2) 

similar to the hypersonic case, the degree of gaseous expansion near the rear part of the cylinder 

predicted by the NSF model is considerably higher than that of the NCCR model and DSMC. 

Overall, the non-Newtonian NCCR model yields uncertainty-free results in better agreement with 

the DSMC data than the Newtonian NSF model.  

4.4 Discussion 

Numerical computations of the flow problems studied so far indicated that the computing time 

of the two-dimensional DG-NCCR code is comparable to that of the DG-NSF code. The only 
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excess load, which is caused by the addition of few iterations (less than 10 in most cases) when 

the stress and heat flux are calculated from the implicit algebraic constitutive equations for given 

thermodynamic forces, occupies a small fraction of computing time in the code (about 30 

percent). 

Finally, it is worthwhile discussing a reason behind the better performance of the new NCCR 

model over the conventional NSF model in deeper level. In Fig. 25 (a), the contours of velocity 

magnitude and several representative streamlines in high transitional regime are shown in order to 

provide detailed information of what gas particles experience–for example, acceleration or 

deceleration–and of how the NSF and NCCR models describe them differently. In addition, in Fig. 

25 (b), the contours of the degree of thermal nonequilibrium [2], R̂ , which was derived from the 

Rayleigh-Onsager dissipation function [7], are shown in order to identify what regions are 

expected to deviate significantly from near-local-equilibrium assumption: 
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Here ,N   are the reference values, while , , ,p T Π Q   are local cell values. Note that the degree 

of thermal nonequilibrium in macroscopic thermodynamic space is best represented by the 

composite number N , not the Knudsen number alone, since the viscous force is a direct 

consequence of the thermal nonequilibrium effect [2]. In Fig. 25, it can be found that (1) there 

exist two distinctive regions of deceleration and acceleration (or gaseous compression and 

expansion) in the frontal and rear parts of the cylinder, respectively; (2) the degree of thermal 

nonequilibrium is high at the bow shock structure and at the rear part of cylinder where the strong 

expansion produces the most visible nonequilibrium as high as ˆ 17R  ; and (3) the NSF model in 

general over-estimates the degree of nonequilibrium, which can be considered the ultimate reason 
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behind its poor performance in high Knudsen and Mach number flows. 

The last point may be further analyzed by recalling the non-Newtonian constitutive relation of 

the NCCR model [2], which is reproduced in Fig. 26. It is obvious that the constitutive relation is 

generally nonlinear and asymmetric, in particular, away from thermal equilibrium. Since gas 

particles experience deceleration (gas compression) at the bow shock structure, the normal stress 

in streamline direction, through ПNSF/p=(–)μux/p,  remains positive, meaning that the gas flow in 

that region is governed by the positive branch of NCCR in Fig. 26. In particular, the relatively 

larger shock structure thickness of the NCCR model observed in Figs. 22 and 25 (a) is due to the 

nonlinearity present in this positive branch of NCCR. Similarly, since gas particles experience 

rapid acceleration (severe expansion) at the rear part of the cylinder, the normal stress in 

streamline direction has negative sign, indicating that the gas flow in that region is governed by 

the negative branch of NCCR in Fig. 26. According to this explanation, relatively weaker gas 

expansion of the NCCR model (equivalently relatively stronger gas expansion of the NSF model) 

observed in Figs. 22 and 25 (a) is due to the smaller values of stress determined by the negative 

branch of NCCR. In summary, the ultimate origin of improved solutions of the NCCR model over 

the NSF model can be explained in concise manner by examining the degree of thermal 

nonequilibrium and the non-Newtonian nonlinear coupled constitutive relations. 

5 Concluding remarks 

An explicit modal DG scheme on triangular meshes has been developed for simulating all 

flow regimes of hypersonic rarefied and low speed microscale gases with a single framework. 

The new mixed DG scheme, which is based on the idea of adding auxiliary unknowns of high 

order non-conserved variables (stresses and heat fluxes), was developed for the spatial 

discretization of the conservation laws with complex non-Newtonian implicit NCCR models 

arising from the high degree of thermal nonequilibrium. The scheme retains all the advantages of 
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the original DG method including the generality of methodology for structured, unstructured, 

hybrid meshes with large complex grids. 

The verification of the DG scheme was achieved by comparing numerical solutions of the 

NSF equation with the recently derived analytical counterpart for a stiff problem of the shock 

structure for all Mach numbers. In addition, the DG scheme on unstructured triangular meshes is 

validated by investigating the 2D hypersonic rarefied and low-speed microscale gas flows past a 

circular cylinder. It turned out that the DG results of the non-Newtonian NCCR model, while 

working for all Mach numbers, gave better agreement with experimental or DSMC data than the 

Newtonian linear NSF results in all cases of the problem studied. 

In the conservation laws with the non-Newtonian NCCR, the viscous terms of diffusive nature 

play an even more important role in the numerical solutions than the Newtonian linear NSF 

equations. In the present study, the numerical treatment of viscous terms developed by Bassi and 

Rebey [8] was used for its simplicity and significance in the DG development. However, there 

have been other developments such as the method proposed by Cockburn and Shu [9]. 

Applications of these methods to the rarefied and microscale gas flow will be the next topic of the 

present line of research. 

Acknowledgements 

This work was supported by the National Research Foundation of Korea funded by the 

Ministry of Education, Science and Technology (Priority Research Centers Program NRF 2012-

048078 and Basic Science Research Program 2012- R1A2A2A02-046270), South Korea. The 

authors gratefully acknowledge the substantial contributions of A. Karchani for producing the 

DSMC results using the sophisticated Bird’s code. The authors also thank the referees of this 

paper for their valuable and very helpful comments. 



35 
 

References 

[1] J.M. Reese, M.A. Gallis, D.A. Lockerby, New directions in fluid dynamics: non-

equilibrium aerodynamic and microsystem flows, Phil. Trans. Roy. Soc. Lond. A 361 

(2003) 2967-2988. 

[2] R.S. Myong, Thermodynamically consistent hydrodynamic computational models for 

high-Knudsen-number gas flows, Phys. Fluids.  11 (1999) 2788-2802. 

[3] R.S. Myong, A generalized hydrodynamic computational model for rarefied and 

microscale diatomic gas flows, J. Comput. Phys. 195 (2004) 655-676. 

[4] J.W. Ahn, C. Kim, An axisymmetric computational model for generalized hydrodynamic 

theory of rarefied and multi-species gas flows, J. Comput. Phys. 228 (2009) 4088-4117. 

[5] R.S. Myong, A computational method for Eu’s generalized hydrodynamic equations of 

rarefied and microscale gasdynamics, J. Comput. Phys. 168 (2001) 47-72. 

[6] R.S. Myong, Impact of computational physics on multi-scale CFD and related numerical 

algorithms, Comput. Fluids. 45 (2011) 64-69. 

[7] B.C. Eu, Kinetic Theory and Irreversible Thermodynamics, Wiley, 1992. 

[8] F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the 

numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys. 131 

(1997) 267-279. 

[9] B. Cockburn, C.W. Shu, Runge-Kutta discontinuous Galerkin methods for convection 

dominated problems, J. Sci. Comput. 16 (2001) 173-261. 

[10] L. Krivodonova,  J. Xin, J.F. Remacle, N. Chevaugeonz, J.E. Flaherty, Shock detection 



36 
 

and limiting with discontinuous Galerkin methods for hyperbolic conservation laws, App. 

Numer. Math. 48 (2004) 323-338. 

[11] H. Luo, J.D. Baum, R. Lohner, A discontinuous Galerkin method based on a Taylor basis 

for the compressible flows on arbitrary grids, J. Comput. Phys. 227 (2008) 8875-8893. 

[12] H. Liu, K. Xu, A Runge-Kutta discontinuous Galerkin method for viscous flow equations, 

J. Comput. Phys. 224 (2007) 1223-1242. 

[13] K. Kontzialis, J.A. Ekaterinaris, High order discontinuous Galerkin discretizations with a 

new limiting approach and positivity preservation for strong moving shocks, Comput. 

Fluids. 71 (2013) 98-112. 

[14] B.Q. Li, Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer, Springer, 

2006. 

[15] J. Iannelli, An implicit Galerkin finite element Runge-Kutta algorithm for shock structure 

investigations, J. Comput. Phys. 230 (2011) 260-286. 

[16] J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods, Springer, 2008. 

[17] F.X. Gilardo, High-order triangle-based discontinuous Galerkin methods for hyperbolic 

equations on a rotating sphere, J. Comput. Phys. 214 (2006) 447-465. 

[18] F.X. Gilardo FX, T. Warburton, A high-order triangular discontinuous Galerkin oceanic 

shallow water model, Int. J. Numer. Meth. Fluids. 56 (2008) 899-925. 

[19] H. Luo, K. Xu, A discontinuous Galerkin method based on a gas kinetic scheme for the 

Navier-Stokes equations on arbitrary grids, Computational Fluid Dynamics (2009) 423-

428. 



37 
 

[20] M. Raalte, B. van Leer, Bilinear forms for the recovery-based discontinuous Galerkin 

method for diffusion, Comm. Comput. Phys. 5 (2009) 683-693. 

[21] F.P.T Baaijens, Mixed finite element methods for viscoelastic flow analysis: a review, J. 

Non-Newtonian Fluid Mech. 79 (1998) 361-385. 

[22] M. Linzer, D.F. Hornig, Structure of shock fronts in argon and nitrogen, Phys. Fluids 6 

(1963) 1661-1668. 

[23] B. Schmidt, Electron beam density measurements in shock waves in argon, J. Fluid Mech. 

39 (1969) 361-373. 

[24] H. Alsmeyer, Density profiles in argon and nitrogen shock waves measured by the 

absorption of an electron beam, J. Fluid Mech. 74 (1976) 497-513. 

[25] J.M. Reese, L.C. Woods, F.J. Thivet, S.M. Candel, A second-order description of shock 

structure, J. Comput. Phys. 117 (1995) 240-250. 

[26] K. Morinishi, Numerical simulation for gas microflows using Boltzmann, Comput. Fluids, 

35 (2006) 978-985.    

[27] J.Y. Yang, J.C. Huang, Rarefied flow computations using nonlinear model Boltzmann 

equations, J. Comput. Phys. 120 (1995) 323-339.  

[28]  F.W. Vogenitz, G.A. Bird, J.E. Broadwell, H. Rungaldier, Theoretical and experimental 

study of rarefied supersonic flows about several simple shapes, AIAA J. 6 (1968) 2388-

2394.  

[29]  W. Wetzel, H. Oertel, Direct Monte Carlo simulations of hypersonic flows past blunt 

bodies, Progr. Astronaut. Aeronaut.  118 (1989) 432-446. 



38 
 

[30] M. Fossati, A. Guardone, L. Vigevano, K. Xu, Kinetic node-pair formulation for two-

dimensional flows from continuum to transitional regime, AIAA J. 51-4 (2013) 784-796. 

[31] X. Zhang, C. W. Shu, On positivity-preserving high order discontinuous Galerkin schemes 

for compressible Euler equations on rectangular meshes, J. Comput. Phys. 229 (2010) 

8918-8934. 

[32] L. Krivodonova, Limiters for high-order discontinuous Galerkin methods, J. Comput. Phys. 

226 (2007) 879-896. 

[33] R.S. Myong, Gaseous slip model based on the Langmuir adsorption isotherm, Phys.  

Fluids 16 (2004) 104-117.   

[34] N.T.P Le, C. White, J.M. Reese, R.S. Myong, Langmuir-Maxwell and Langmuir-

Smoluchowski boundary conditions for thermal gas flow simulations in hypersonic 

aerodynamics, Int. J.  Heat Mass Trans. 55 (2012) 4929-5378. 

[35] J.A. Trangenstein, Numerical Solution of Hyperbolic Partial Differential Equations, 

Cambridge University Press, 2007. 

[36] W.J. Rider, R.B. Lowrie, The use of classical Lax-Friedrichs Riemann solvers with 

discontinuous Glaerkin method, Int. J. Numer. Meth. Fluids 40 (2002) 479-486. 

[37] K.A. Hoffmann, Computational Fluid Dynamics, Engineering Education System, 1989. 

[38]  G.E. Karniadakis, S.J. Sherwin, Spectral/hp Element Methods for CFD, Oxford 

University Press, 1999. 

[39] M. Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput. 6 (1991) 

345-390. 



39 
 

[40] E. Hopf, The partial differential equation ut + uux = μuxx, Comm. Pure. Appl. Math. 3 

(1950) 201-230. 

[41] I.V. Karlin, G. Dukek, T.F. Nonnenmacher, Invariance principle for extension of 

hydrodynamics: nonlinear viscosity, Phys. Rev. E 55-2 (1997) 1573-1576. 

[42] D. Jou, J. Casas-Vazquez, G. Lebon, Extended Irreversible Thermodynamics, Springer, 

New York, 2006. 

[43] S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases, Third 

Edition, Cambridge University Press, 1970. 

[44] H. Grad, The profile of a steady plane shock wave, Comm. Pure. Appl. Math. 5 (1952) 

257-300. 

[45] R.S. Myong, Analytical solutions of shock structure thickness and asymmetry within 

Navier-Stokes/Fourier framework, AIAA J. (2014) DOI: 10.2514/1.J052583., 

http://acml.gnu.ac.kr (11/2013). 

[46] F.E. Lumpkin, D.R. Chapman, Accuracy of the Burnett equations for hypersonic real gas 

flows, J. Thermo. Heat Trans. 3 (1992) 419-425. 

[47] G.A. Bird, http://www.gab.com.au (05/2013).

http://acml.gnu.ac.kr/
http://www.gab.com.au/


40 
 

Figures 

 

 

 

 

 

                                 Fig. 1. Reference element for defining the basis function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. New scheme of positivity preserving limiter for triangular element. 
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Fig. 3. Computed shock structure profiles for the linear 1D Burgers equation at various values of 

the viscosity  μ. 

 

 

Fig. 4. Comparison of the numerical solutions of the linear 1D Burgers and 1D NCCR-Burgers 

equations for a viscosity value  μ = 0.1. 
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Fig. 5. Comparison of the numerical solutions of the linear 1D Burgers and 1D NCCR-Burgers 

equations for a viscosity value  μ = 0.5. 

 

 

Fig. 6. Numerical solutions of the stress П for the linear 1D Burgers and 1D NCCR-Burgers 

equations. 
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Fig. 7. Computed shock structure profiles of the NSF model for different types of elements and 

the Runge-Kutta time-marching methods (M = 5). 

 

Fig. 8. Comparison of the numerical solutions of the 1D DG and 1D FVM schemes for the NSF 

model (M = 8). 
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Fig. 9. Computed shock structure profiles of the NSF (DG) and NCCR (DG, FVM) models (M = 

8). 

 

Fig. 10. Comparison of the numerical solutions of the 1D DG and 1D FVM schemes for the NSF 

model (M = 15). 
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Fig. 11. Computed shock structure profiles of the NSF (DG) and NCCR (DG, FVM) models (M = 

15). 

 

Fig. 12. Computed heat flux and shear stress of the NSF and NCCR models (M = 8, 15). 
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Fig. 13. Normalized density profiles at various Mach numbers for the NCCR model. 

 

Fig. 14. Comparison of the inverse shock density thickness for the DG NSF and NCCR models 

and experimental data (Maxwellian gas, s = 1.0, c = 1.0138,  Pr = 0.75).  
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Fig. 15. Comparison of the inverse shock density thickness for the DG NSF and NCCR models 

and the Burnett and DSMC data [42] (Maxwellian gas, s = 1.0, c = 1.0138,  Pr = 2/3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Comparison of the inverse shock density thickness for the DG NSF and NCCR models 

and experimental data [21-23] (argon gas, s = 0.8, c = 1.0179,  Pr = 2/3). 
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Fig. 17. An example of unstructured triangular meshes for the cylinder case. 
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Fig. 18. Normalized density distribution along the normalized stagnation line of the hypersonic  

case, M = 5.48 and Kn = 0.05. 

 

 

Fig. 19. Normalized temperature distribution along the normalized stagnation line of the 

hypersonic case, M = 5.48 and Kn = 0.05. 
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 Fig. 20. Normalized slip velocity around the cylinder surface of the hypersonics case, M = 5.48 

and Kn = 0.05. 

 

          

                         a)                                                                                              b) 

Fig. 21. Normalized density (ρ/ρ∞) fields and contours of the hypersonic case, M = 5.48 and Kn = 

0.05: a) NCCR and DSMC, and b) NSF and DSMC. 
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a)                                                                                    b) 

Fig. 22. Normalized density (ρ/ρ∞) fields and contours of the hypersonic case, M = 5.48 and Kn = 

0.5: a) NCCR and DSMC, and b) NSF and DSMC. 
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Fig. 23. Normalized slip velocity around the cylinder surface of the microscale case, M = 0.1 and 

Kn = 0.1. 
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                              a)                                                                                     b) 

Fig. 24. Normalized density (ρ/ρ∞) contours of the microscale case, M = 0.1 and Kn = 0.1: a) 

DSMC and NCCR and b) DSMC and NSF.  
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a)                                                                            b) 

Fig. 25. Contours of scalar values and streamlines, M = 5.48 and Kn = 0.5: a) velocity magnitude 

and b) degree of non-equilibrium R̂ . 

 

 



55 
 

 

 

 

 

Fig. 26. Constitutive relations in compression and expansion flows. The horizontal axis 

represents the thermodynamic force by velocity gradient 
0Π̂ , while the vertical axis represents 

the normal stress Π̂ . 

 


