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Abstract: 

Computational errors in the direct simulation Monte Carlo method can be categorized 

into four types; decomposition (or discretization), statistical, machine, and boundary 

condition errors. They arise due to variety of reasons including decoupling of movement and 

collision phases into two separate steps, finiteness of molecule numbers and domain cell-size, 

existence of statistical fluctuations and uncertainty, using machines to solve physical 

problems numerically, computational implementation of boundary conditions of approximate 

nature, and, finally, assumptions and simplifications adopted in the inter-molecular collision 

models. In this study, a verification method based on the physical laws of conservation, 

which are an exact consequence of the Boltzmann equation, is introduced in order to quantify 

the errors of the DSMC method. A convergence history according to the new verification 

method is then presented that can illustrate the effects of all type of errors during the 

simulation run. Convergence analysis indicates that the DSMC method can satisfy the 

conservation laws with an acceptable level of precision for the flow problems studied. Finally, 

it is shown that the overall deviation from conservation laws increases with decreasing 

sample size value and number of particles, and with increasing length of cells and time-step 

interval size. 
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1. Introduction 

The kinetic Boltzmann equation is considered the foundation for theoretical studies of 

rarefied gas flows. However, solving the Boltzmann equation directly in phase space is not an 

easy task because of the complexity and non-linearity of the collisional term [1]. For this 

reason, analytical study of the equation has been limited to simple flows. As an alternative, 

the direct simulation Monte Carlo (DSMC) was introduced by Bird to simulate directly the 

molecular behavior of non-equilibrium gas flows [2-4]. In the DSMC method, a large number 

of particles are represented by one simulated particle so that the cost of the DSMC method is 

considerably lower than the molecular dynamics simulation of particles. Owing to its 

computational simplicity and accuracy, the DSMC method is now being used in various 

applications: not only for traditional rarefied hypersonic gas flows, but also for micro-scale 

gases, material processing, acoustic agglomeration processes, and gaseous mixing [5-10]. 

 Generally, computational errors in the DSMC method can be categorized into four 

types; decomposition (or discretization), statistical, machine, and boundary condition errors. 

The four types of error and associated computational parameters are depicted in Fig. 1. The 

decomposition error arises from decoupling of the motion and collision phases into two 

segregated steps in the DSMC method. The statistical error is generated due to the statistical 

nature of the DSMC method. The machine error, so-called ‘round-off-error,’ is inevitable in 

any numerical method. However, the machine error can easily be minimized using 64-bit data 

type variables [11].  

In the past, much effort has been devoted to the analysis of decomposition and statistical 

errors in order to enhance the accuracy of the DSMC method. The decomposition error—the 
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most important type—is basically a function of three computational parameters: time-step 

(∆t), cell-size (∆x), and the number of particles (N) [3]. As Wagner [12] proved theoretically, 

the DSMC solution will converge to the solution of Boltzmann equation of a gas undergoing 

binary collisions between gas particles, if the value of these parameters are chosen properly 

(and when no wall surface boundary condition is involved in the simulation). In passing it 

must be noted that the Boltzmann theory has not been fully worked out for modifying the 

collision term that should correctly reflect the molecular collision with the wall surface atoms. 

This—subtle, but often neglected—point has already been noticed by various previous 

studies like Cercignani [13] and Villani [14], in which it was stated: “These conservation 

laws should hold true when there are no boundaries. In presence of boundaries, conservation 

laws may be violated: momentum is not preserved by specular reflection, neither is energy if 

the gas is in interaction with a wall kept at a fixed temperature.” Thus, the DSMC solution of 

gaseous flow problems (with no wall surface boundary conditions) can be considered a 

statistical solution of the Boltzmann equation when infinite numbers of particles are used, and 

when the values of time-step and cell-size approach zero. Nevertheless, the values of time-

step and cell-size cannot be taken as infinitesimally small in reality, due to limitation of 

numerical computation. Consequently, the decomposition error will always exist and 

influence the accuracy of the DSMC method. Bird [3] presented two conditions that the time-

step value must be a fraction of the mean collision time and the cell-size value should be 

smaller than the mean free path. He also suggested that the number of particles per cell 

should be greater than 20. Later, Meiburg [15] showed that these parameters need to be 

examined more carefully in order to yield accurate results.  

Many studies have been also conducted to investigate the effects of computational 

parameters on decomposition error, and to quantify the amount of error associated with them. 

For example, Alexander et al. [16] studied a one-dimensional stationary problem, in the limit 
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of infinite number of particles and vanishing time-step value, in order to analyze the role of 

cell-size on decomposition error. They found that the error comes from the collision pair 

selection division where particle partners are selected from any place throughout the collision 

cell. Hadjiconstantinou [17] derived an explicit expression for describing the influence of 

time-step value on the decomposition error. Garcia et al. [18] compared the measured 

transport coefficients by DSMC with the results obtained from the Green-Kubo theory. They 

found that the time-step error is closely connected to re-collision phenomena. Rader et al. 

[19] compared the value of bulk thermal conductivity calculated by the DSMC simulation 

with results of the Chapman-Enskog theory. The difference between the DSMC and the 

theoretical result was found less than 0.2% at a given fine value of computational parameters. 

Interestingly, they also reported that the convergence behavior of error becomes much more 

complicated when all three parameters are considered simultaneously. Rader et al. [11] also 

studied the convergence behavior as function of temperature and heat flux in various 

configurations of the DSMC algorithms. They found that the computational parameters can 

affect the accuracy of the high order moment properties (e.g., heat flux), more than the first 

order moment, conserved, properties (e.g., temperature). 

The DSMC method utilizes stochastic numerical procedures; hence, it inherits the 

statistical features of probabilistic methods such as random fluctuation and statistical 

uncertainty. Moreover, the probability sampling process is added to filter out statistical 

uncertainty and to estimate the mean value of the estimators. The statistical error can be, in 

general, reduced by increasing the sample size. However, the statistical uncertainty will not 

vanish completely because of the finite sample size in the DSMC process. The sample size is 

basically a function of number of particles and sample steps. Therefore, the magnitude of 

statistical error is inversely proportional to the square root of the number of particles and the 

sample steps [3, 20].  



5 
 

Recently, there have been several studies on the analysis of statistical error in the DSMC 

method. Mansour et al. [21] estimated the amount of statistical error for temperature variable 

by considering hydrodynamic fluctuations in dilute gas. Chen et al. [20] analyzed the effect 

of the number of particles, and the number of sample steps on the statistical error. 

Hadjiconstantinou et al. [22] also studied the behavior of statistical fluctuations utilizing  

equilibrium statistical mechanics. They derived a mathematical expression of statistical error 

for hydrodynamic variables in order to predict the required number of sample steps. 

In all previous studies, however, just one type of error (i.e., either decomposition or 

statistical error) was considered in the analysis while other types of error were neglected by 

assuming given values for relevant parameters. Moreover, only limited quantities (e.g., 

transport coefficients and temperature) in simple situations were considered, even though all 

hydrodynamic variables (e.g., density, velocity, shear stress) are required for full 

understanding of the behavior of errors. In the present work, in order to overcome these 

shortcomings, a new verification method based on the exact physical laws of conservation—

mass, linear momentum, and total energy—is introduced. To the best knowledge of the 

authors, no verification method and consequent convergence analysis of DSMC based on the 

physical laws of conservation have been reported in the literature. It must be reiterated that 

the physical laws of conservation is an exact consequence of the Boltzmann equation owing 

to the property of collisional invariances of mass, momentum, and total energy. Therefore, all 

the computational methods intended to solve the Boltzmann equation accurately must satisfy 

in principle the laws of conservation as well. 

The verification may be defined as the process of determining that a computational 

model implementation accurately represents the developer’s conceptual (or mathematical) 

description of the model, and the solution to the model [23]. In the case of verification of 

computational models of fluid dynamics based on the Navier-Stokes-Fourier equations, there 
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already exist several well-established practices [23] developed in past decades. These include 

making sure there is a correct numerical framework, such as the conservative form of 

equations, thereby guaranteeing that numerical solutions strictly satisfying the physical laws 

of conservation; convergence study with several grids with different cell-sizes; and 

application of benchmark problems with known exact (analytic) solutions. The DSMC 

method converges to the Boltzmann equation by directly simulating particles with no need of 

solving partial differential equations. Nonetheless, the DSMC method is not immune to 

verification and validation since it is also subject to certain physical laws, the boundary 

condition, and the post-processing method employed.  

A key observation in developing a new verification method for the DSMC method is that 

the DSMC should satisfy certain physical laws from both macroscopic and microscopic point 

of views. In the DSMC method, the post-collision particle’s properties are calculated in such 

a way that linear momentum and total energy are preserved during inter-particle collisions. 

The angular momentum is not conserved in most collision models; however, this does not 

have a significant effect on non-rotating flows. Therefore, the physical laws are almost 

satisfied locally in microscopic aspect. However, the local physical laws of conservation in 

microscopic space do not guarantee the global physical laws of conservation in macroscopic 

space. In particular, introduction of computational boundary conditions of approximate nature 

may have a significant effect on the outcomes in macroscopic space. Additionally, the DSMC 

method is a statistical method in which statistical uncertainty exists at each of the simulation 

cells and spreads out through the simulation domain. The amount of statistical error also 

varies among simulation cells due to different sample size at each simulation cell. Moreover, 

a large number of particles are being used in most DSMC simulations. Therefore, the 

aggregation of insignificant errors related to the local and global non-conservation may lead 
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to considerable error in final solutions. Based on this observation, the level of deviation from 

conservation laws may be used as an indicator of verification for the DSMC method. 

In this study, a new verification method based on conservation laws was applied to 

investigate the behavior of various errors by solving two well-known benchmark problems: 

the high Mach number shock structure and planar compressible Couette flow problems. The 

shock structure problem was considered in order to isolate the inherent characteristics of 

DSMC method from the wall boundary condition effects, while the Couette flow problem 

was chosen to investigate the effects of numerical wall boundary conditions on the accuracy 

of the DSMC method in detail. In addition, a convergence history plot was presented with the 

purpose that it can illustrate the total amount of deviation from conservative laws in each step 

of the simulation. This convergence history plot is expected to be easily utilized for all kinds 

of problems, with any spatial dimension and geometry, and for studying the behavior of 

various errors—decomposition, statistical, machine, and boundary condition—in the DSMC 

method. 

2. New verification method based on conservation laws 

The Navier-Stokes-Fourier equations are being used to describe the behavior of 

Newtonian fluids in a wide spectrum of applications such as aircraft, automotive, petroleum, 

and turbo machinery. However, this linear continuum approach is no longer valid under 

rarefied and highly non-equilibrium conditions. In order to describe more accurately the 

behavior of constitutive molecules in these conditions, fundamental kinetic theory is needed 

[24]. The gas kinetic theory can provide proper relationships between conserved properties 

(i.e., velocity, density and temperature) and non-conserved properties (i.e., shear stress and 

heat flux). These relationships can be based on either particle distribution function or moment 

equations [25-31].  
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On the other hand, the DSMC method tries to directly model the physical behavior of 

gases by simulating the motion of representative particles at microscopic level. However, it 

must be noted that the final solution of the DSMC method, similar to other methods based on 

the gas kinetic theory, is macroscopic properties of gases. Therefore, these macroscopic 

properties must also satisfy the exact physical laws in a self-consistent way, irrespective of 

computational models, which means that the following conservation laws must be satisfied 

by the DSMC method [32, 33]; 

    0,
t x y z

   
   

   

U E F G
 (2.1) 

where U represents the conserved variables, E, F, and G are the fluxes. The components of 

equation (2.1) are defined as follows: 
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where , , , , , , ,ij iu v w p E Q , and are density, velocity components, pressure, energy, shear 

stress tensor, and heat flux vector, respectively. Also, these equations can be written in the 

form of integral terms which can be more useful for two and three dimensional problems: 

        0
V S

d dS
t


  

  U F nV  (2.2) 

where S  represents the surface bounding around the control volume V .  

These forms of conservation laws among the variables , , , ,pu Π Q —including 2D and 

3D flow cases—can then be used as a self-consistent method to verify the DSMC method by 

checking the total amount of errors. In case of the pure one-dimensional steady state flow 

problem, the conservation laws (2.1) are reduced to the following system of ordinary 

differential equations: 
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It must be emphasized that these physical conservation laws are the exact consequence of the 

kinetic Boltzmann equation, 

2[ , ],
f

f C f f
t


  


v  

valid for all degrees of non-equilibrium. Here the term 
2[ , ]C f f  represents the Boltzmann 

collision integral of the interaction among the particles. Only after some approximations like 

the linear Navier and Fourier (or Chapman-Enskog in kinetic theory terms) constitutive 

relations, ,  ,T Π u Q  are introduced for the stress tensor and the heat flux vector, they 

become approximate, thereby valid only at near-thermal-equilibrium. 

The conservation laws (2.3) can be derived directly from the kinetic Boltzmann equation 

as follows: for example, in the case of momentum conservation law, differentiating the 
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statistical definition of the momentum with time and combining with the Boltzmann equation 

yield 

  2[ , ] .
f

m f m m f m C f f
t t
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Then the first term on the right-hand side becomes 
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The symbols , , ,v c u  denote the particle velocity, the peculiar velocity, the average bulk 

velocity, and the integral in velocity space, respectively. After the decomposition of the stress 

P into the pressure p and the viscous stress Π  ( 
(2)
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the tensor),  
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and using the collisional invariance of the momentum, 
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an exact consequence of the original kinetic Boltzmann equation. A similar method with the 

statistical definition of the heat flux, 2 / 2mc fQ c , can be applied to the derivation of the 

energy conservation law. Note that the equation (2.3) is nothing but the one-dimensional 

steady-state version of the conservation laws. For this reason, the exact physical conservation 

laws (2.3) to the Boltzmann equation will be utilized for studying two benchmark problems 

in the next section.  

2.1. Shock structure problem 

The stationary shock wave structure is a pure one-dimensional compressive gas flow 

defined as a very thin (order of mean free path) stationary gas flow region between the 

supersonic upstream and subsonic downstream [34]. The shock wave structure is one of the 
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most-studied problems in gas dynamics, since it is not only important from the technological 

viewpoint, but it has also been a major stumbling block for theoreticians for a long time [35-

40]. In addition, the wall boundary condition is not present in this one-dimensional problem 

so that one may study the inherent behavior of a numerical method free from the 

contamination caused by the solid wall boundary condition. 

In the case of the shock wave structure problem, the one-dimensional conservation laws 

(2.3) are reduced as follows: still exact to the original Boltzmann equation, 
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Then, the errors associated with the conservation laws may be defined at each point of 

simulation domain as: 

 

 

2 2

error

error

error

error

error ( ) ( )

error             Round-off error

mass

x momentum xx xx

y momentum xy xy

z momentum xz xz

energy xx x xx x

EOS

u u

u p u p

E p u u Q E p u u Q

p RT

 

 

 









 

     

  

  

       

  

 (2.5) 

where the symbol   denotes representatives reference values of conservative values  and 

they can be taken as either average values of macroscopic properties in the whole domain, or 

as the upstream values. In this study, the  values are calculated based on the average values 

of macroscopic properties in the whole domain, which should be distinguished from the 

cumulative averaging method commonly used in the sampling procedure of the DSMC 

method.  
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2.2. Compressible Couette flow problem 

The Couette flow is defined as the flow trapped between two infinite, parallel, flat plates 

at x H   driven by the shear motion of one or both of the plates in opposite directions with 

constant velocity, while the temperature of the walls is constant. It is also assumed that the 

fluid moves in the y-direction only, as shown in Fig. 2. The flow is considered to be steady 

state, one-dimensional, compressible and without any external forces. Therefore, this shear-

driven flow problem is an excellent benchmark case for studying the effects of the solid wall 

boundary condition on the accuracy of the DSMC method. In the case of the Couette flow 

problem, the one-dimensional conservation laws (2.3) are reduced: still exact to the original 

Boltzmann equation, 
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The errors associated with the conservation laws are then defined as follows: 
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where iC and
'

iC are integration constants called conservative values in the following sections 

since they remain constant throughout the simulation domain. 

3. Results and discussion 

3.1. Verification of DSMC 

In order to verify the direct simulation Monte Carlo method, hard sphere gas molecule 

was used. The values of time-step and cell-size were chosen extremely small, while the mean 
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number of particles in each cell was selected large enough to minimize the simulation error. 

In addition, the sampling procedure was being continued until the statistical fluctuation 

became negligible. Moreover, the references mean collision time,  , and mean free path,  , 

were calculated based the hard sphere relationship [3] and the free stream macroscopic 

properties, respectively. 

3.1.1. Shock structure problem 

According to the conservation laws (2.4), the values of mass, momentum and total energy 

should be constant throughout the simulation domain. In order to investigate the accuracy of 

the DSMC method in detail, deviations from conservation laws were measured throughout 

the domain based on equation (2.5) for a representative monatomic gas (molecular diameter 

104 10 meter and molecular mass 266.64 10 kg). The upstream Mach number is set to be 

two, and a stabilizer [3] was used to fix the location of the stationary shock. The two and 

infinity norms of error were calculated to monitor the total error values for each test case.  

Figure 3 shows that the absolute and relative errors associated with conservation laws 

(notably, mass, x-momentum, y-momentum, z-momentum, and total energy), remained 

mostly constant throughout the domain. Interestingly, a small hike in the error of x-

momentum conservation is found at the center of the shock structure, as highlighted by a 

square box in Fig. 3, while there is no such abnormality in other errors. This spike in the x-

momentum error may be related to insufficient collisions between particles to maintain local 

equilibrium in the shock region since the macroscopic properties vary in the scale of local 

mean free path. In addition, the shear stress—second order moments of the distribution 

function—is rapidly increasing inside the shock region, leading to the high degree of non-

equilibrium and decrease of the local mean collision time and ultimately higher x-momentum 

error. Hence, in order to reduce computational errors in this region, proper cell-size and, in 

particular, small time-step size may be required. 
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Figure 3 also indicates that, due to different units in the conservation equations, the error 

produced by the energy equation seems considerably high, in comparison with other 

equations. However, the relative error, free from this unit gap, may be more convenient for 

examining the behavior of errors in detail. The results show that the relative errors are very 

small in case of the shock structure problem for all conservation laws (in the case of L2 norm, 

5.0397×10
-5

, 1.1544×10
-4

, 1.5637×10
-4

, for mass, x-momentum, and energy, respectively). 

Thus, the present DSMC results obtained for the proper ranges of time-step, cell-size, number 

of particles per cell, and the number of sample steps ( 0.01 ,  1/ 32 ,t x        

8320, 10 )SN N   can be considered as a correct solution, in the sense that they satisfy the 

physical laws of conservation with a very high level of accuracy. This outcome may be 

regarded as a computational proof of the DSMC method, similar to a mathematical proof 

derived by Wagner [12]. Round-off error represented by the equation of state is also reported 

to quantify the maximum limit of precision in the simulation. 

3.1.2. Compressible Couette flow problem 

In order to investigate the effect of the gas-surface molecular interaction, on the accuracy 

of the DSMC method, the Couette flow driven by shear motion was considered. In the 

Couette flow simulation, two diffuse walls having constant temperature (293 K) are moving 

in opposite directions with constant velocity corresponding to Mach number 1 (relative Mach 

number two). The same monatomic gas properties used in the simulation of the shock 

structure problem were applied here. The Knudsen number based on the gap between walls 

was assumed to be 1.0. The values of 80.01 ,  1/ 32 ,  320, 10St x N N          were 

used for time-step, cell-size, number of particles per cell, and the number of sample steps, 

respectively. The conservative values, calculated using equation (2.6), are depicted in Fig. 4. 

As explained previously, these values should be constant throughout the simulation domain 
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in order that conservation laws may be satisfied in the simulation. Figure 4 shows that the 

conservative values were almost constant everywhere in the computational domain, except in 

the cells near the wall. To further investigate, absolute and relative errors were calculated 

based on equation (2.7) and their values are shown in Fig. 5. The results indicate several 

things. First, they show that there exist errors arising from wall boundary condition. Second, 

that the errors produced by the y-momentum and energy equations are relatively high, and 

third, that the errors in energy and y-momentum equations increase near the wall (as high as 

two orders of magnitude) in comparison with the bulk flow region. However, the exact cause 

of these deviations from conservation laws appearing coupled with decomposition errors in 

the simulation is not yet known, implying that further investigations are needed to obtain a 

definite conclusion. 

3.2. Viscosity index effect 

The effect of different values of viscosity index (ω) on the error of conservation laws 

was also investigated by solving the shock structure problem. The absolute and relative errors 

are depicted in Fig. 6, for x-momentum and energy equations. The results show that the 

magnitude of error remains almost the same for all viscosity indices ω. The error in x-

momentum equation is more sensitive to the viscosity index, in particular, in domain of steep 

spatial gradient within the shock structure, while the error in energy equation does not show 

such behavior for all viscosity indices. Therefore, it may be better to measure error in x-

momentum to analyze the effect of the viscosity index on the accuracy of the DSMC method. 

Furthermore, the amount of error in x-momentum equation decreases with increasing 

viscosity index. As a result, the Maxwellian and hard sphere gas molecules showed the 

lowest and highest levels of deviation from conservation laws, respectively. Nonetheless, the 

absolute value of deviations remained small for all viscosity indices. This finding coincides 
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with the study of Torczynski et al. [41] in which the Sonine polynomial coefficients of 

Chapman-Enskog theory for heat flux were compared with DSMC results. 

3.3. Convergence analysis 

The CFD methods based on deterministic partial differential equations can naturally 

report the run-time residual to examine the stability and error behaviors of the numerical 

method. However, it is not obvious how to report such convergence history in the case of the 

DSMC method. The DSMC method itself is computationally efficient and very robust, in the 

sense that it never exhibits instability during simulation. Therefore there is less interest in 

reporting the convergence history plot to check instability. However, measuring and reporting 

the amount of error at every simulation step remains crucial, even in the DSMC method. 

The DSMC method is a statistical approach which directly simulates the physics, instead 

of solving partial differential equations. Consequently, it is not an easy task to define a 

convergence history plot for a DSMC simulation. The convergence history plot should be 

able to describe the contribution of various error sources when the simulation is running. 

Only a small amount of research has been conducted to predict the number of sample steps 

required to minimize the statistical noise and fluctuations in the DSMC method[22]. However, 

these studies only estimated the value of statistical error (based on equilibrium statistical 

mechanics) among four types of error, and did not consider the others. 

In the present study, a convergence history based on the physical laws of conservation 

was introduced for analyzing convergence behavior of the DSMC during a simulation run. 

Even though a one-dimensional problem was considered here for the sake of simplicity, it can 

easily be extended to multi-dimensional flow problems. The method is expected to describe 

the inherent characteristics of physical and statistical behavior of the DSMC method. 

Statistical methods like DSMC employ a sampling procedure to reduce statistical noise, 

and to obtain population (or macroscopic) properties. The standard error of the mean (SEM), 
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which describes the standard deviation of the error in the sample mean relative to the 

population mean, can be reduced by increasing the sample size. The SEM is a function of the 

inverse square root of the sample size (the number of particles and the number of sample 

steps) in the DSMC method. In addition, it is known that each hydrodynamic variable shows 

unique behavior in statistical error [22]. Thus, the combination of these variables may lead to 

unique statistical behavior. As a result, the convergence behavior will be different for each of 

the conservation equations, since different conservation equations involve different 

combinations of hydrodynamic variables. In the following sections, results are presented of 

tests on the new method, for various conditions used to analyze the behavior of convergence. 

3.3.1. Number of sample steps 

The influence of the number of sample steps on convergence is presented first. Figures 7 

and 8 illustrate the convergence history of a DSMC simulation of compressible Couette flow 

( 2.0,  Kn=1.0 , 0.01 ,  1/ 32 ,  320M t x N         ). The two and infinity norms of 

errors were calculated for all conservation equations at each simulation step. The 

convergence behavior seems to be composed of two separate phases. In the first phase, 

statistical error is dominant. This phase continues until the number of sample steps reaches 

certain values, so that the contribution of the statistical error to total error becomes negligible. 

The results also show that, as expected, the total error in the first phase decreased with 

increasing the number of sample steps. Furthermore, the rate of this decrease is inversely 

proportional to the square root of the sample steps (1/ sN ). The second phase starts when 

the combination of boundary condition and decomposition errors becomes prominent, in 

comparison with statistical error. The decomposition and boundary condition errors do not 

decrease with increasing sample size, since these errors do not depend on sample steps. The 

decomposition error can be changed by adjusting the physical parameters like time-step 

interval size. 
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3.3.2. Number of particles 

The number of particles is another important factor in statistical error. It is directly 

proportional to the sample size and thus can influence the rate of convergence as the number 

of sample steps does [3, 42]. The decrease of statistical error is proportional to 1/ mN  , 

where m is a constant value multiplied by the initial number of particles N. In order to check 

the capability of the present method to capture this statistical feature, several simulations with 

different numbers of particles were conducted for problems in which 

( 2.0,  Kn=1.0,M 
80.01 ,  1/ 32 ,  10St x N        ). Figure 9 shows the convergence 

history for x-momentum and energy conservation equations. Here, statistical error is shown to 

play a dominant role compared to other types of error. The results also show the convergence 

rates for various cases with different number of particles. The solid line represents the test 

case with an average of 40 particles in each cell. The solid lines with circular, triangular and 

diamond symbols represent test cases with approximately 80, 160, 320 particles per cell, 

respectively. The simulation with approximately 40 particles per cell was used as a reference, 

and dotted lines drawn based on the relation between the number of particles and the SEM 

value, 1/ mN . These dotted lines represent the theoretical statistical convergence rate for the 

DSMC method when different numbers of particles are used in the simulation. Overall, the 

results show that the present method can properly describe the effect of different numbers of 

particles on convergence. 

In Figs. 10 and 11, the convergence history is also plotted for cases with larger sample 

steps. The results show that the total error decreases quickly with increasing sample size, but 

does not vanish completely. Owing to the presence of the decomposition and boundary 

condition errors, the total error converges to a finite constant value, even when an infinite 

number of samples, or particles, is used. In other words, more particles can result in a faster 
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convergence rate for the statistical part, but this does not change the decomposition and 

boundary condition errors. 

The round-off error may also be observed by examining error values for the equation of 

state in Fig. 11. The values show the maximum limit of accuracy of the current simulation, 

and that it is not changed by increasing sample steps or number of particles. Moreover, the 

statistical error in the z-momentum equation does not converge to any constant value; it still 

declines, even after more than 10
8
 samples. A possible explanation for this behavior is that 

the z spatial direction does not exist in the present 1D-Coutte flow problem. Particles are not 

moving and colliding in the z spatial coordinate, so that the convergence rate of z-momentum 

error will follow the statistical error pattern and flatten after reaching to the limit of round-off 

error limit. 

3.4. Computational parameters associated with decomposition error 

Computational parameters associated with decomposition error—time-step interval size, 

cell-length size, and number of particles—can influence the accuracy of the DSMC method 

significantly. In this section, the use of the physical laws of conservation is applied in order to 

check the accuracy of the DSMC method for various computational parameters. It is expected 

that the present study could be useful to find a proper value for computational parameters 

such that conservation laws are satisfied by the DSMC in acceptable level. The shock 

structure problem with the upstream Mach number 2.0 was chosen in order to avoid 

excessive error from the wall boundary condition. Several simulations with different time-

step interval sizes, cell-length sizes and numbers of particles were considered. 

3.4.1. Time-step 

The time-step size, t , is one of the most important computational parameters that can 

affect the decomposition error. This computational parameter plays a critical role in 

decoupling the movement and collision steps in the DSMC method. The errors measured 
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based on deviations from conservation laws, with 81/ 32 ,  320, 10Sx N N     , are shown 

in Fig. 12. It can be observed that the error decreased as the time-step size decreased. Also, 

the errors in three important conservation equations—mass, x-momentum, and energy—

became noticeable for larger values of time-step. The figure also illustrates that, as expected, 

the round off error does not depend on the time-step value.  

 Figure 13 shows the shock structure profiles of density, velocity, normal stress, and heat 

flux for cases with different values of t . These results illustrate that the non-conserved 

normal stress, and the heat flux, variables are more sensitive to the time-step compared to 

other conserved variables. The simulation solutions with larger time-steps led to overly 

smoothed profiles of normal stress and heat flux, probably due to excessively larger 

numerical viscosity than to actual physical viscosity caused by the larger time-step. Since the 

non-conserved normal stress and the heat flux are directly related to spatial gradients in the 

flow field, it would be instructive to compare the effect of the time-step on the gradients of 

the hydrodynamic variables. Figure 14 depicts the velocity gradient versus the density 

gradient for four different test cases. The gradients increased dramatically as the time-step 

decreased, then reached asymptotic value, meaning that an accurate solution free from the 

decomposition error of time-step may be obtained. 

Finally, the relative errors were calculated for four different time-steps, as shown in Fig. 

15. This shows that the error is much greater in the momentum conservation equation than in 

the other conservation equations for all t . In addition, the relative x-momentum error 

reaches as high as 5% at t    and falls drastically to reach 0.6% at 0.1 t    before 

declining slightly afterward. This means that the error of the DSMC method can be 

significantly reduced by using a smaller time-step value. Also, the conservation of x-

momentum is more sensitive to time-step in comparison with the conservation of energy and 

mass; at least for the present Mach number, cell-size, and number of particles.  
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3.4.2. Cell length size 

The cell-size x is another important computational parameter that can influence the 

decomposition error. Here different cell-sizes are considered in order to study the effect of 

cell-size on the behavior of error in the DSMC method. All other computational parameters 

were selected properly so that the effect of cell size may be pronounced 

( 80.01 ,  320, 10St N N     ). The shock structure profiles of density, velocity, normal 

stress, and heat flux for six cases with different cell-sizes are plotted in Fig. 16. The results 

show that difference in cell-size does not yield much difference in the profiles, including 

normal stress and heat flux, which is in contrast with the previous case of varying the time 

step. This means that the error of the DSMC method is sensitive to both of the time-step and 

the cell-size. Also, the resolution of simulation results increases linearly as the cell size 

decreases. Figure 17 depicts the velocity gradient versus the density gradient for six cases 

with different cell-size. The bigger cell-size led to smaller gradients, probably due to larger 

numerical viscosity involved during the simulation. The gradients of hydrodynamic variables 

did not change significantly when the cell-size is smaller than 0.125  , where   was the 

mean free path of the free stream. As a result, cell-size may be selected in such a way that the 

simulation outcomes are not changed by reducing the cell-size.  

Figure 18 shows the relative errors when x  changes from   to / 32 . It can be seen 

that the error in the x-momentum conservation equation is much higher than those of other 

two conservation equations for all x . Also, the amount of error for the x-momentum 

equation, initially 0.07% at x    , decreased slightly to reach 0.057% at 0 / 8x   , 

followed by a dramatic drop at 0 /16x    and flattening-off afterward. However, the error 

of the mass conservation equation showed a slight decrease before dropping sharply at 

/ 2x     and then decreasing gradually to reach a minimum value of 0.012% at 
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/ 32x    . On the other hand, the error of the energy conservation equation decreased 

moderately to reach a minimum value of 0.008% at / 32x    . Overall, it was found that 

the momentum conservation equation is more sensitive to the size of the cells than were the 

other conservation equations. The bigger cells, as expected, produced greater error, but the 

amount of error remained negligible for all cases considered. 

3.4.3. Number of particles 

The last computational parameter associated with decomposition error is the number of 

particles, N, in simulation domain. Several test cases with different numbers of particles per 

cell (and with 80.01 ,  1/ 32 , 10St x N        ) were considered to examine the effect of 

number of particles on decomposition error, and on the convergence behavior of the DSMC 

method. The shock structure profiles of the hydrodynamic variables and their gradients are 

shown in Figs. 19 and 20. These show that different numbers of particles does not yield much 

difference in the profiles, including normal stress and heat flux, which is similar to the 

previous case of varying the cell-size. However, comparison of velocity and density gradients 

demonstrated a non-negligible difference among cases with 5 and 20 particles per cell. 

Figure 21 shows the relative error when the number of particles per cell changes from 

N=5 to N=1,280. It can be seen that the error of the x-momentum conservation equation is in 

general much greater than that of the other two conservation equations. Also, as the number 

of particles increased from N=5 to N=40, the errors decreased drastically and then flattened 

off, implying the existence of an asymptotic value. Overall, similar to the previous case of 

varying the cell-size, the momentum conservation equation is more sensitive to the number of 

particles compared to other conservation equations, and the amount of error remains 

negligible for all cases considered. 
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4. Summary and concluding remarks 

Verification and validation become critical practical issues when laboratory level 

research of computational models is used in the mature, real world (application) problems. 

However, such study is often both complicated and subtle since verification and validation of 

computational models depend on the properties considered and, in many cases, overall multi-

faceted agreement is very difficult to achieve. For example, the CFD dispersion of lift in 

aerodynamics is already within the goal dispersion, whereas the CFD dispersion of drag is far 

from the goal dispersion. 

The primary goal of the present study was to present a new method as a step toward 

developing a verification tool for pure simulation methods like the DSMC. Though other 

studies have been devoted to this issue from both mathematical and computational viewpoints 

in the past, there remain unsolved problems regarding verification of the DSMC method, as it 

is difficult to find exact solutions free from computational errors—essential in the verification 

study—for the DSMC method. For the VHS collision model, the conventional Bird’s 

algorithm based on NTC (no time counter) was employed in the present study for its 

simplicity.  For other collision models, the results of error characteristics may be different, 

but we believe that the essence of the present study will remain unchanged since the errors 

based on the laws of conservation—exact consequence of the Boltzmann equation—can be 

defined universally, irrespective of the details of collision model. 

Furthermore, most of the previous research was directed to the study of the role of 

computational parameters on only one type of error, (i.e. either decomposition error or 

statistical error), while other types of error were ignored. In this study, the exact physical 

laws of conservation were utilized as a new verification tool to measure the errors in the 

DSMC method. 
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Results from the present study show that the error level of the DSMC method is 

negligible when the critical computational parameters—time-step, cell-size, number of 

particles—selected in the simulation are well within the asymptotic range. This finding 

agrees with the results obtained theoretically by Wagner. However, the study of compressible 

Couette flow driven by shear motion of the solid walls with isothermal and fully diffusive 

wall conditions seems to indicate that there exist small deviations arising from wall surface 

boundary conditions. The exact cause of these deviations appearing coupled with 

decomposition errors in the simulation is not yet known; it may be due to the approximate 

nature of the gas-surface molecular interaction models or not-perfect boundary treatment in 

the DSMC code. This makes essential the further investigation of wall surface boundary 

condition and its computational implementation in the future. 

Furthermore, a convergence history according to the new verification method is 

proposed for the DSMC method. Such a convergence history can provide information about 

the amount of deviation from conservation laws that occurs in a DSMC simulation, while all 

four types of error are present. Convergence behavior, with regard to simulation iterations in 

the DSMC simulation, can be categorized into two distinct phases. In the first phase, 

statistical error is dominant and the rate of its decrease is inversely proportional to the square 

root of the sample steps. In the second phase, the combination of boundary condition and 

decomposition errors becomes prominent, in compared with the statistical error. Also, the 

convergence history plot shows that the statistical error shows unique behavior for each of the 

conservation equations. The results also show that the total error decreases quickly with 

increasing sample size, but does not vanish. This is because decomposition and boundary 

condition errors always exist in the simulation domain. 

Finally, the effect of computational parameters associated with decomposition error on 

the accuracy of DSMC was investigated using a variety of test-case simulation. The relative 
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error measured on the basis of the deviation from conservation laws is sensitive to the time-

step, the cell-size, and number of particles. It was also found that the error decreases rather 

quickly in the initial stage with decreasing time-step and the cell-size and with increasing  

number of particles before it finally flattens off, implying the existence of an asymptotic 

value.  
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Fig. 2. The schematic of the shear-driven Couette flow. 
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Fig. 3. Absolute (top) and normalized (bottom) errors of all conservation equations in the shock 

structure problem. The horizontal axis represents x spatial coordinate. (Absolute values in the order of 

energy, x,z,y-momentum, mass, EOS, while normalized values in the order of x-momentum, energy, mass, 

z,y-momentum, EOS). 
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Fig. 4. The conservative values of all conservation equations and equation of state in the compressible 

Couette flow problem. 
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Fig. 5. Absolute (top) and normalized (bottom) errors of all conservation equations and equation of state in 

the compressible Couette flow problem. 
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Fig. 6. The effect of different values of viscosity index on the error of conservation laws in the shock 

structure problem; (a) x-momentum equation, (b) energy equation. The vertical axis shows the order of 

magnitude of absolute errors (left) and normalized errors (right) based on the two norm L2. 
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Fig. 7. The convergence history of DSMC simulation in the compressible Couette flow problem with regard 

to the number of sample steps. The vertical axis shows the order of magnitude of absolute errors (top) and 

normalized error (bottom) based on the two norm L2. 
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Fig. 8. The convergence history of DSMC simulation in the compressible Couette flow problem with regard 

to the number of sample steps. The vertical axis shows the order of magnitude of absolute errors (top) and 

normalized error (bottom) based on the infinity norm L. 
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Fig. 9. The effect of number of particles on statistical behavior of convergence history in the compressible 

Couette flow problem; (a) x-momentum and (b) energy conservation equations. 
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Fig. 10. The effect of number of particles on statistical behavior of convergence history in the compressible 

Couette flow problem, in particular, including the final stage behavior; (a) x-momentum and (b) energy 

conservation equations. 
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Fig. 11. The convergence history for all conservation equations and equation of state for different number of 

particles in the compressible Couette flow problem. The vertical axis shows the order of magnitude of 

absolute errors (top) and normalized error (bottom) based on the two norm L. 
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Fig. 12. The effect of time-step size on normalized errors percentages in the shock structure problem; (a) 

mass, (b) x-momentum, (c) y-momentum, (d) z-momentum, (e) energy conservation equations and (f) 

equation of state. 
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Fig. 13. The shock structure profiles in case with different values of t ; (a) density, (b) velocity, (c) normal 

stress, and (d) heat flux. 
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Fig. 14. The effect of time-step size on the gradient of the hydrodynamic variables in the shock structure 

problem (the velocity gradient versus the density gradient). 
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Fig. 15. The percentage of relative errors for four different time steps. 
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Fig. 16. The shock structure profiles in case with different values of cell length size; (a) density, (b) velocity, 

(c) normal stress, and (d) heat flux. 
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Fig. 17. The effect of cell size on the gradient of the hydrodynamic variables in the shock structure problem 

(the velocity gradient versus the density gradient). 
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Fig. 18. The percentage of relative errors for different cell length sizes. 
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Fig. 19. The shock structure profiles in case with different number of particles; (a) density, (b) velocity, (c) 

normal stress, and (d) heat flux. 
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Fig. 20. The effect of number of particles on the gradient of the hydrodynamic variables in the shock 

structure problem (the velocity gradient versus the density gradient). 
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Fig. 21. The percentage of error for different number of particles per cell. 


