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Abstract: This study extensively investigates the physics of microscale shock-vortex interaction of 

argon gas by solving conservation laws with non-Newtonian constitutive relations. In order to solve 

the conservation laws and associated implicit type constitutive equations of viscous stress and heat 

flux numerically, a mixed discontinuous Galerkin (DG) formulation is developed. Three major 

characteristics are found in the microscale shock-vortex interaction in thermal nonequilibrium: the 

absence of quadrupolar acoustic wave structure, which is the major feature in macroscale near-

equilibrium; the increase in the dissipation rate during the strong interaction; and the decrease in 

enstrophy during the weak interaction. Moreover, we show that the strong shock-vortex interaction in 

high shock or vortex Mach numbers can cause an increase in enstrophy. We also find the viscous 

effect to be dominant in the net vorticity generation. Among shock and vortex parameters, the shock 

Mach number, vortex Mach number and vortex size turn out to play a critical role in the deformation 

of the vortex and the strength of interaction, which in turn govern the net viscous vorticity generation, 

the change in the dissipation rate and the increase or decrease in enstrophy during the interaction. 
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1 Introduction 

Shock-vortex interactions have been extensively investigated in the past decades because they can 

provide fundamental knowledge on flow physics of high speed gas flows. The shock wave and the 

vortex are deformed and/or disrupted during the interaction, and it alters or destroys the shock wave 

and the vortex structure. Most of the previous studies on this problem have been conducted for the 

purpose of understanding the noise production mechanism and deformation of the shock wave and 

vortex. Since thermal nonequilibrium effects are in general negligible at the macroscale, virtually all 

the previous studies are based on compressible Euler or Navier-Stokes-Fourier (NSF) equations [1-6], 

which are derived from the Boltzmann equation with the assumption of near-thermal-equilibrium, for 

analyzing the physical phenomena. 

Previous computational investigations showed that strong shock-vortex interactions cause 

significant shock deformation and result in the formation of secondary shock structures [1]. 

Subsequently, Inoue and Hattori [3] predicted that a third sound wave was generated in the interaction 

of an initially planar shockwave and a single vortex. Later, Zhang and Shu [7] reported that additional 

sound waves would be generated in the subsequent secondary (and tertiary) interactions involving 

reflected shocks, shock lets, and the deformed vortex. In addition, Chatterjee and Vijayaraj [8] 

captured multiple acoustic waves, quadrupolar in nature and with successive layout of phase. The 

number of acoustic waves captured was more than the maximum of three reported in previous studies. 

The additional sound waves are due to acoustic addition from the rotating elliptical vortex following 

the interaction. Chang, Barik and Chang [9] study various cases of shock-vortex interactions. These 

studies found that the most remarkable flow elements of the shock-vortex interaction are the induced 

expansion wave and shock wave.
 

Although numerous computational studies have been conducted on the shock-vortex interaction at 

the macroscale, the microscale shock-vortex interaction in thermal nonequilibrium is not yet well 

understood. Up to now, only a few microscale cases involving limited Mach and Knudsen numbers 

have been conducted by Koffi et al. using direct simulation Monte Carlo (DSMC) [10-11]. That study 
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showed that, within the range of the parameters considered, the viscous attenuation of the vortex was 

found to dominate the gas flow in the microscale shock-vortex interaction. At microscale, the 

attenuation overwhelmed the enstrophy generation, which is in stark contrast to the enstrophy 

production in the macroscale shock-vortex interaction. However, critical questions of the microscale 

shock-vortex interaction, including whether enstrophy attenuation persists at higher shock and vortex 

Mach numbers or a larger vortex, remain unsolved. 

At the microscale, the gas flow regimes are determined by the local Knudsen number, which is 

defined as the ratio of the mean free path to the characteristic length. In the present microscale shock-

vortex interaction with local Knudsen numbers falling in the non-continuum transitional flow regime, 

the use of the NSF model based on a linear framework becomes questionable. The DSMC developed 

by Bird [12] is the most popular method that can be used in the rarefied and microscale gas flows [13]. 

On the other hand, our study introduces a new computational model based on a nonlinear coupled 

non-Newtonian frame work to more efficiently investigate compressible shock-vortex interactions at 

the microscale for a far greater range of shock and vortex parameters than in the previous studies. In 

order to solve the highly nonlinear continuum-based implicit model numerically, the mixed 

discontinuous Galerkin (DG) formulation is employed. In the new model consisting of the 

conservation laws and nonlinear coupled constitutive relations (NCCR), the relationship of viscous 

stress and thermal conduction is expressed in terms of implicit nonlinear coupled algebraic functions 

of the velocity and temperature gradients [14]. Extensive validation studies of the phenomenological 

nonlinear coupled model had been conducted by investigating the compressive shock dominated gas 

flows [14-18] and the velocity-shear dominated force-driven Poiseuille gas flow [19]. The present 

shock-vortex interaction study may be regarded as the first computational attempt of investigating the 

strong interaction of two important thermal nonequilibrium phenomena on the basis of continuum 

high order constitutive equations; compressive shock structure and velocity-shear of the vortex. 

The investigation in this work involves detailed computational study of the dynamics at vortex 

radial length scales on the order of the shock thickness. It is well known that high-order methods are 

critical for resolving shock wave interactions. Shock-fitting algorithms have also been developed as 
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an alternative and can achieve uniform high-order accuracy [20-21]. However, a shock-capturing 

method coupled with the mixed DG method is used in this work owing to its relatively simple 

implementation and shock capturing capability. By extending previous three cases treated by the 

DSMC, interactions of up to Mach 3.5 shock waves with supersonic or subsonic vortex, 90 cases in 

total, are examined in much greater detail.  

This paper is organized as follows. Sec. 2 presents physical system of the microscale shock-vortex 

interaction. Subsequently, a computational method based on the mixed DG formulation for the two 

dimensional conservation laws and NCCR model for argon gas is described. In Sec. 3 we present the 

validation results of the DG method for NSF and NCCR models. In Sec.4, by studying extensive cases 

of microscale shock-vortex interaction, different vortex deformation behaviors through a shock are 

found. Furthermore, we study the overall dynamics of net production and the dissipation of vorticity 

in detail. In Sec. 5, the effects of interaction parameters on the microscale shock-vortex interaction are 

examined. Finally, conclusions and remarks are given in Sec. 6. 

2 Physical system and computational method 

2.1 Physical system 

The physical system of the two-dimensional microscale shock-vortex interaction is shown in Fig.1. 

In the case of a moving shock instead of a standing shock, start-up errors might exist. However, in 

order to compare with previous DSMC results obtained by Koffi et al. [10-11], a moving shock and a 

stationary vortex are considered in the present simulation. A microscale discrete vortex is formed by 

prescribing its initial flow to be that of a composite vortex [9,11,22]. The physical size of the 

composite vortex in area is about one-fourth that of a Taylor-type vortex with the same core size. It is 

chosen for its computational advantages. The rotation center of the vortex is initially stationary and a 

velocity distribution between a core radius ( 1r r ) and an outer radius ( 2r r ) is prescribed for the 

vortex.  
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In this physical system, the maximum tangential velocity is found at the core radius. Inside the 

core ( 1r r ), the velocity goes linearly to zero at = 0r . Outside 2r  ( 2r r ), the tangential velocity is 

set to zero. The tangential velocity distribution is as follows, 
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Here a, cV , and VM represent the local speed of sound, the maximum tangential velocity, and the 

vortex Mach number, respectively. 

The temperature and pressure in the quiescent field surrounding the vortex are prescribed. Inside 

the vortex, pressure, density, and energy are determined by balancing the pressure gradients with the 

centripetal force, which is equivalent to solving the following system, 

,  ,  constant.
Vdp p

p RT
dr r






   

  

Rectangular 200 200  grids are used for defining the computational domain. The monatomic gas 

considered in the computational simulations is assumed argon, and its initial quiescent state 

surrounding the vortex has a pressure of 1,013 Pa and a temperature of 273K. For this initial condition, 

the mean free path is 
66.26 10 m   . In our simulations, the composite vortex outer radius is double 

of the size of the core radius.  

2.2 Computational Method 

2.2.1 Mixed DG scheme for the two dimensional conservation laws 
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After the following dimensionless variables are introduced, 

* * * * * * *

* * 2 * *

/ ( / ),  / ,  / ,  / ,  / ,  / ,  / ,

/ ,  / ,  / ( / ),  / ( / ),  
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            

     

u u

Π Π Q Q
 

where the subscript  represents the reference state (for example, the condition before the shockwave), 

the non-dimensional conservation laws for monatomic gas flows (with the asterisks omitted for 

notational brevity) can be written as [14,15,23], 

inv vis 0,
t


  



U
F (U) F (U)

                                                
(2.2) 

where conservative and flux variables are defined  as, 

inv vis2
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   
    
    
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Here  is the mass density, u is the fluid velocity, p is the pressure, T is the gas temperature, E is the 

total energy density, П is the shear stress, Q is the heat flux, and I denotes the unit second-rank tensor. 

The are the Chapman-Enskog shear viscosity and thermal conductivity, respectively. The M, Re, 

Ec and Pr are dimensionless gas dynamic parameters: Mach, Reynolds, Eckert, and Prandtl numbers, 

respectively: 

2

1/2
,  Re ,  Ec ( -1) ,  Pr= ,

( )

pr rr r r

r r r

Cu u L
M M

RT k


   

 
 

where Cp denotes the heat capacity per mass at a constant pressure. In present work, the speed of 

sound of argon gas before the shock wave is chosen as the reference velocity ur, resulting in M=1. 

Nonetheless, we will keep the reference Mach number M in the equations in order to show its role in 

the formulation. Also the core radius of the vortex 1r  is used for the reference length L. For the 

conventional linear uncoupled Newtonian model, the constitutive relations are defined as follows， 

 
(2)

2 ,   ,k T      Π u Q  
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where the symbol [ ]
(2)

 denotes the traceless symmetric part of the second-rank tensor. In the 

dimensionless expression, the viscosity and the conductivity can be written as 

,  ,s sT k T   

where s= 0.75 is used for the argon molecule. 

Bassi and Rebay [24] introduced a mixed formulation for the treatment of the second-order 

viscous terms to solve the Navier–Stokes equations, which differs from the conventional DG method 

[25-27]. The formulation introduces auxiliary variables to resolve the governing equations as a first-

order coupled system for the local DG approach. In this work, an auxiliary variable S is introduced to 

be the derivatives of the conserved variables U, setting S(U)=T
s
 U. Then a coupled system for S and 

U can be derived as 

s

inv vis

( ) ,

, 0.

T

t

 



  


S U U

U
F (U) F (U S)

                                         

(2.3) 

The spatial derivatives of primitive variables such as ux is then computed by expanding the derivatives 

of the conservable variables, for example T
s
ux = (1/ρ)[T

s
(ρu)x – T

s
ρxu]. Constitutive relations for the 

two models are expressed as follows: for the NSF model (П, Q) = flinear(S (U)), and for the NCCR 

model (П, Q) NCCR = fnonlinear(S (U), p, T). Note that the introduction of an auxiliary variable such as 

one in (2.3) is necessary for the nonlinear implicit type NCCR constitutive model. 

The computational domain contains elements (cells) that are equally spaced. In order 

to discretize the coupled system (2.3), the numerical solutions of U and S are approximated by Uh and 

Shin the j ( ) element, respectively, 

K K
i i i i

j j
i 1 i 1

, , ) U ( )φ ( , ), , , ) ( )φ ( , ),( ( Sh hx y t t x y x y t t x y
 

  U S  

where  is a genuine two-dimensional polynomial basis of the order of approximation I. K and 

I are related by [26] 

 (I+1) I+2
K= .

2
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Here, we use P
2
 approximation, meaning I=2 and K=6. In this study, the scaled Legendre basis 

functions are adopted for the function φ. 

 
* * * * * *φ φ φ φ φ φ1 2 3 4 2 5 6 21 1

1, x , y , x , x y , y ,
3 3

          

where
* ox x

x
x / 2


 ,

* oy y
y

y / 2


 . The o o x ,y  are the coordinates at the center of local mesh, 

and x , y  are the local mesh sizes. The basis functions are defined in global sense, meaning that the 

same basis functions are used in each local mesh. The coupled system (2.3) is multiplied by the basis 

function φ and then integrated by parts for derivative terms over element Ω, and the weak formulation 

of the coupled system can be derived to find Uh and Sh 

inv inv vis vis

,

0,

0s s
dV T dV

dV dV ds dV ds
t

T ds
  

    

    


          









Sφ φU

Uφ φF φF φF φF

φU =

                           (2.4) 

where  denotes the boundaries of the element Ω. 

The equations of auxiliary unknowns are resolved first to compute the derivatives of conservative 

variables in which the variable (x, y, t) is updated at each time step. The boundary integrals of each 

element are replaced by a numerical flux function as follows. For inviscid terms, the local Lax-

Friedrichs (LxF) flux, hinv, is applied: 

inv inv inv

1
( , , ) ( ) ( )  (   ) , where max , ,

2 M M

a a
C C u u

 
       

    
 

     
 

h U U n F U F U U U  

where a = T
1/2

 is the non-dimensional speed of sound at the control volume interface. The signs – and 

+ denote the insides and outsides of an elemental interface. The Mach number M in a/M instead of a 

appears in the formulation of the coefficient C from the characteristic speed in dimensionless form. 

The central flux is applied to the remaining boundary integrals. For the viscous term, 

vis vis vis vis

1
( , , , ; ) ( , ) ( , ) ,

2
dx



       
     h U S U S n φF F U S F U S  

and for terms in the auxiliary unknown equations, 



9 
 

aux

1
( , ; )  .

2

s s s+
T dx T T





   
    

 h U U n φU U U  

The volume integrals within the element Ω are resolved by the Gaussian quadrature with nine 

Gaussian points. Finally, the coupled system (2.4) can be written in semi-discrete form as 

S

U

( ),

( ),
t






 R U

U
L R U

LS

 

which can be solved by the fourth-order Runge-Kutta time integration. Owing to the orthogonal 

property of basis functions, the diagonal matrix L is readily invertible. 

In the initial condition, the coefficients of conservation variables are specified on the basis of 

upstream or downstream of the shock wave; 

1 i

j up,down,vortex j( 0)= ( 0) 0 (i=2, ,6)., t t  U U U  

The coefficients of auxiliary unknown are set to zero: 

i

j ( 0) 0 (i=1, ,6).t  S  

The time step ∆t is computed as [26]
 

   
2 2

, ,
1 2 1 2

CFL CFL
min( ), 

I 1 I 1

1 1
,

x y
t = t t t =  t =

a a+ +u + + u + +
M x M y

 
    

 

 
 

where CFL is the Courant-Friedrichs-Lewy condition. 

For a single simulation run, about two hours on 64 bit Intel(R) Core(TM) i7-2600 CPU are 

required to have converged solutions. Numerical computations studied so far indicated that the 

computing time of the DG-NCCR code is comparable to that of the DG-NSF code. The only excess 

load, which is caused by the addition of few iterations (less than 10 in most cases) when the stress and 

heat flux are calculated from the implicit algebraic constitutive equations, occupies a small fraction of 

computing time in the code (about 30 percent). 
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2.2.2 Numerical boundary conditions and limiter 

As shown in Fig.1, the right boundary of the computational domain is defined as the condition 

before the shock wave while the left boundaries defined as the condition after the shock wave. 

Numerical boundary condition at the right boundary is set by the stationary condition before the shock 

wave. Numerical boundary condition at the left boundary is set by the moving shock Mach number 

and associated thermodynamic condition specified by the Rankine-Hugoniot relations. These are 

basically similar to DSMC work [11]. Furthermore, i
j( )=0 (i=2, ,6)tU  is set in DG implementation, 

since the flow condition is assumed constant at the boundary cells. The upper and lower boundaries 

are set according to the flow condition; before and after the shock wave. Since the shock wave is 

moving, the upper and lower boundaries are updated in every time step. 

A high order slope limiter and shock detection [26] are adopted for the present DG scheme. The 

limiter is applied to eliminate oscillations in the shock simulations. The components of U can be 

limited as follows: 

 m m 1 1 1 1

j j j+1 j j j-1min mod , , m 2,3     U U U U U U （ ） 

with the min mod function  

 
   1 2 3 1 2 3

1 2 3

sgn min , , if sgn sgn sgn sgn ,
min mod , ,

0 otherwise.

d d d d d d
d d d

   
 
  

The shock detection is implemented into the DG scheme as follows; 

 

 

-
j

j nbj

I

j I 1 /2

j j

D ,
I

d

x



 

 


 

 U U

U
 

where Unbj indicates the neighboring element of Uj with a common boundary jI  , and ||Uj|| is the 

norm of Uj. The discontinuity detection scheme can be summarized as follows: 

j

j

If D 1 is discontinuous,

If D 1 is smooth.          
h

h

 
  

U

U
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2.2.3 NCCR for modeling gas flows in thermal nonequilibrium 

For the NCCR model, (П, Q) NCCR = fnon-linear(S(U), p, T), the relationship of П and Q is expressed 

in terms of nonlinear coupled functions. The NCCR model in component form [14,15,23] 

(2)

0

0 0

ˆ ˆ ˆ ˆˆ[ ] ( ),

ˆ ˆ ˆˆ ˆ( ),

q cR

q cR

  

  

Π u Π Π

Π Q Q Q
                                                  (2.5) 

can be derived as an approximate model suitable for multi-dimensional computations, after applying 

closure to the high order and dissipation terms in the following exact constitutive equations of the 

Boltzmann equation [23,28] 

     

 

(2) (2) ( )

2

(Q)

( / )
Tr( ) / 3 2 2 ,

( / )
/ 2 ( ) :

( ) .

p

p

d
m f m f p

dt

d d
mc f C T p m f

dt dt

p C T

      

        

   

Π
ccc ccc I Π u u Λ

Q u
cc I Π ccc u Π Q u

I Π Λ





  

In equations (2.5), 0Π̂ and 0Q̂  are determined by the Newtonian law of viscosity and the Fourier law 

of heat conduction, respectively. The symbols
( ,Q), , , ,m f 

c Λ denote the mass of gas molecule, the 

peculiar velocity, the distribution function, the integral in velocity space, and the dissipation terms of 

shear stress and heat flux, respectively. In addition, the other non-dimensional variables are defined as 

ˆˆ ˆ,  ,  2 ,
/ (2 )

N N N

p p pT

        


Q
Π Π Q u u  

/ 2 1
Kn ,  ,

Pr Ec /

r r

r r

u L
N M

p T T


 
   

   

2
ˆsinh( ) ˆ ˆˆ ˆ ˆ ˆ( ) ,  : .

ˆ

cR
q cR R

cR
   Π Π Q Q

 

The gas constant c has a value 1.0179 for argon gas molecule [14]. The factor ˆ( )q cR collectively 

represents the nonlinear nature of transport coefficients associated with the high-order and dissipation 

terms in the moment equations. The origin and necessity of such nonlinear factor in shock-dominated 

gas flows was proved recently by Myong [28]. The ultimate source of the high Mach number shock 

structure singularity arising in moment equations of the Boltzmann equation was shown to be the 
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unbalanced treatment between two high order kinematic and dissipation terms caused by the 

overreach of Maxwellian molecule assumption. In compressive gaseous flow, the high order stress-

strain coupling term of quadratic nature will grow far faster than the strain term, resulting in an 

imbalance with the linear dissipation term and eventually a blow-up singularity in high thermal 

nonequilibrium. Therefore, the nonlinear factor plays an essential role in the well-posedness of 

constitutive equations in compressive gases. Physically, the nonlinear factor describes the mode of 

energy dissipation accompanying the irreversible processes. The origin of such factor lies with the 

consideration of entropy production and the cumulant expansion that provides a resummation 

procedure for an expansion in the Knudsen number series of the Boltzmann collision integral [23].  

It is worthwhile mentioning that a nonlinear factor was already shown to be necessary in the case 

of general molecules by Grad [29]. The dissipation term, (A5.1) of Grad [29, page 404], can be easily 

related to the nonlinear factor as follows (
( , )

1

Q
B


 being constant) 

( ) ( )

1 1
( ) ( )

1
( )

1

( ) (quadratic terms)
6

= 1 high order terms
6

Q
B B

mB
m

B
m



 



 

  



 
 
 
 
 

Λ Π

Π







. 

This is equivalent to express the dissipation term with a nonlinear factor F as 

( ) ( )

1 1

( )

1

( )
( , , , , )

( ) (quadratic terms

( , , , , ) 1 high order terms
6

where .

Q

NSF

F p T

B B
mF p T

B
m

p







 

  



 

 
 
 
 
 

Π Q

)

Π Q

Π

Λ Π

 







 

A similar nonlinear factor can be also found in the theory developed by Karlin, Dukek and 

Nonnenmacher [30]. The factor is directly related to the nonlinear viscosity and thermal conductivity 

in high thermal nonequilibrium states and is also echoed in the well-known Eyring formula in non-

Newtonian fluids [31], which describes shear thinning, i.e. the decrease of the viscosity with 

increasing the velocity gradient (or shear rate). 
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The non-Newtonian implicit type Eq. (2.5) provides the viscous stress and heat flux, which are 

essential to define the numerical flux through the cell interfaces. This process becomes trivial in the 

NSF equations since the viscous stress and heat flux are proportional to the thermodynamic forces. 

However, owing to the nonlinearity of the constitutive equations, an additional process must be 

developed for this method. Here, an iterative method will be used to solve the constitutive equations 

for the given thermodynamic variables (pressure and temperature) and the gradients of velocity and 

temperature. In the case of a two-dimensional problem, the viscous stress and heat flux components 

( ) on a line in the two-dimensional physical plane induced by thermodynamic forces 

(  ) can be approximated as the sum of two solvers: (1) one on 

( ), and (2) another on ( ).The first solver is the compression–expansion 

case and the second is the velocity-shear flow. Both of these solvers can be easily computed within a 

few iterations [15,16]. 

3 Validation of the methods 

For validating the study of the models, we first considered the DG method for the NSF model, 

which is the classical approach for macroscale flow simulation. Next, we consider the DG method for 

the NCCR model, which is proposed for microscale flow simulation. To validate the present methods, 

we chose two types of shock-vortex interaction as benchmark cases. The first type was the macroscale 

shock-vortex interaction results of Inoue and Hattori [3] based on the NSF model and the second type 

was the microscale shock-vortex interaction results of Koffi et al. [11] based on the DSMC. 

3.1 Validation of the DG method for the NSF model 

In the computational work of Inoue and Hattori [3], shock and Taylor vortex interaction was 

studied. The conditions of this benchmark case are Ms=1.2(shock Mach number), Mv=0.25, and 

Re=800. The Reynolds number here is defined by the characteristic size of the core radius of the 

vortex. Boundary conditions are the fixed upstream boundary conditions in the x-axis direction and 
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are the periodic boundary conditions in the y-axis.  The sound pressure, defined below, was used to 

examine the basic structure of vortex deformation: 

,s

s

p p
p

p


 

                                                                      
(3.1) 

where  is the local pressure and   is the pressure after shock wave. 

Figs. 2 and 3 show the results of Inoue and Hattori [3] as well as the results of present DG method 

for the NSF model. The symbol + represents the compression regions, while the symbol –represents 

the rarefaction regions. The comparison shows that the size, structure and locations of the quadrupolar 

sound waves, compression regions and rarefaction regions are almost identical. All these features 

validate the accuracy of the DG method for the NSF model developed in this study. 

3.2 Validation of the DG method for the NCCR model 

In order to validate the DG method for conservation laws with the NCCR, we select three cases of 

microscale shock-vortex interaction (see Table 1) investigated by Koffi et al. [11]. Argon gas in its 

quiescent state surrounding the vortex at an initial temperature of 273K and an initial pressure of 

1,013Pa is considered. The core radius varies from 8λ to 12λ. 

In Fig. 4 (a), the time evolution of the enstropy, defined as the area integral of the square of the 

vorticity in the flow field, is compared in order to validate the present NCCR method. These results, 

including the general trend of the enstropy change with time, were found very close to DSMC results. 

In order to show another validation result of the NCCR model, a hypersonic gas flow of M=5.48, 

Kn=0.05 around the cylinder [32] is also considered. Non-dimensional density and temperature 

distributions at stagnation line in the cylinder gas flow are compared for NCCR, NSF, and DSMC in a 

previous study [32]. Furthermore, non-dimensional pressure contours are also compared for NCCR, 

NSF, and DSMC in Fig. 4 (b) for the hypersonic cylinder gas flow of M=5.48, Kn=0.5. Both results 

show clearly that NCCR performs better than NSF and is very close to DSMC in this high Mach and 

Knudsen number gas flow. In summary, all these validation studies confirm that all results of the DG 

method for conservation laws with the NCCR are in qualitative agreement with the DSMC results, 
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including Koffi et al. [11] in the cases considered. It is clear that the DG NCCR method is effective in 

both simulations of macroscale and microscale shock-vortex interaction. 

4 Microscale shock-vortex interaction 

In our simulation, three types of vortexes are chosen for extensive studies. These consist of 

supersonic vortexes with Mv=1.2, followed by two types of subsonic vortexes with Mv=0.9 and 

Mv=0.6. In each given vortex Mach number, the core radius increases from 6  to16  with a radius 

step of 2 . Consequently, the shock Mach number (Ms) increases from 1.5 to 3.5 with a Mach number 

step of 0.5. The symbols ○ (3 cases in total) and  (90 cases in total) in Fig. 5 represent the DSMC 

cases of Koffi et al. [11] and this study, respectively. In the definition of the Knudsen number, the 

core vortex radius (r1) is considered the characteristic length. 

4.1 Vortex deformation through a shock 

Four snapshots of the interaction in sound pressure level are shown in Figs. 6-9 for different shock 

Mach numbers and vortex sizes. The interaction parameters are summarized in Table 2. These four 

cases are considered representative of the microscale shock-vortex interaction. The former two cases 

have the same shock Mach number and vortex Mach number (Ms=2.5, Mv=1.2) but different vortex 

sizes. The vortex core radii for case 1 and case 2 are 8λ and 12λ, respectively. The last two cases have 

the same shock Mach number and vortex Mach number (Ms=1.5, Mv=1.2) but different vortex sizes. 

The core radiuses of cases 3 and 4 are also 8λ and 12λ, respectively. Compared with the former two 

cases, cases 3 and 4 have weaker interactions, resulting from lower shock Mach numbers.  

In Fig. 6-9, the positive sound pressure value denotes the compression region, whereas the 

negative one denotes the rarefaction region. The results show that five regions are generated after the 

interactions in all four cases. In addition, the former two cases have three strong compression regions, 

while the last two cases have two weakened compression regions located between two rarefaction 

regions. Interestingly, quadrupolar acoustic wave source structures, which are typical in the 

macroscopic shock-vortex interaction, are not observed in any cases. For the comparison, the vortex 
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core radii at case 2 (Ms=2.5, Mv=1.2, r1=12λ) were increased to near macroscale. It was found from 

Figs. 10 and 11 of the time evolution of sound pressure after the shock wave crossing the center of the 

vortex that quadrupolar acoustic structures reemerge when the vortex core radii exceed 112λ. 

According to the linearized theory of Ribner [33], which predicts the quadrupolar acoustic wave in the 

macroscale shock-vortex interaction, the pressure jump varies around the vortex and generates a 

quadrupole field. The interaction also causes a  potential flow around the vortex core and the 

pressure of this potential flow field can be expressed as 

1/2

max 1 .
v r

p
V at

 
 
 

 

Here,  is the speed of sound at upstream of shock, t is the time,  is the radius of the vortex core, 

 is the peak velocity in the vortex field at upstream of the shock, and  is the upstream velocity 

of the shock. As obvious in the equation, the pressure jump is weakened in the microscale shock-

vortex interaction where the radius of the vortex core is very small, which results in the 

disappearance of the quadrupolar acoustic wave. 

The results of the generation of compression regions in the interaction conform that the physical 

phenomena are in general different for the weak and strong interactions. To better understand the 

nature of interaction, we introduce the vorticity as defined below 

.
y x

z

V V

x y

 
  

   

Cases 1 and 3 have the same initial vorticity (Mv=1.2 and r1=8λ) but differ in shock Mach numbers 

(Ms=2.5 for case 1 and Ms=1.5 for case 3). The vorticity distribution differs remarkably after 

interaction, as shown in Figs. 12 and 14 of vorticity contours when the vortex passes a shock wave. 

For case 1, which has a high shock Mach number, a large regime of negative vorticity is observed. 

The composite vortex used here has a negative vorticity in its core and a positive vorticity in the 

outside ring; thus, the decreasing vorticity value in the core indicates a non-negligible vorticity 

generation. As shown in Figs. 13 and 15, this phenomenon is also evident in the comparison between 
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cases 2 and 4, which have the same initial vorticity (Mv=1.2 and r1=12λ) but different shock Mach 

numbers (Ms=2.5 for case 2 and Ms=1.5 for case 4). 

Numerical experiments for different shock-vortex interactions show that the flow structure may 

differ notably for different shock Mach numbers or vortex sizes at the microscale. The vortex 

deformation through a shock wave, in particular, seems to be strongly dependent on the interaction 

strength. Thus, the quantitative results of vorticity change during the interaction may be obtained by 

investigating the overall dynamics of net production and the dissipation of vorticity. 

4.2 Overall dynamics through a shock wave 

As shown in Fig. 4(a), a substantial attenuation of enstrophy with time is also observed in the 

validation cases. These results are in stark contrast with those of the macroscale interaction that shows 

an increase in enstrophy when the vortex crosses a shock wave [22]. In addition, different interaction 

parameters cause different vortex deformations as demonstrated in the previous section. Quantitative 

studies of these features can be performed by investigating the area-weighted vortex dynamics. 

4.2.1 Enstrophy and dissipation rate 

The mechanisms leading to the generation or attenuation of vorticity in the interaction can be 

investigated by considering the time evolution of the enstrophy [11], which is defined as 

2Enstrophy ( ) ( , , ) .z

A

t x y t dxdy 
                                                   

(4.1) 

The viscous effect is investigated by introducing the area-weighted dissipation rate of the kinetic 

energy 

Dissipation rate ( ) ( , , ) .
A

t E x y t dxdy 
                                           

(4.2)

 

Here ( , , )E x y t represents the dissipation rate per unit volume and is defined as 

 

( , , ) ( ),xx xx xy xy yx yx yy yyE x y t S S S S     
                           

(4.3) 

where 
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The time evolutions of enstrophy and the dissipation rate are plotted in Figs. 16 and 17 for the four 

different cases. The shock wave begins to interact with the vortex around 200 ns and ends around 600 

ns. The trends are quite different for the first two (cases 1 and 2 with higher shock Mach numbers) 

cases and the last two cases (cases 3 and 4 with lower shock Mach numbers). An increase in 

enstrophy is observed in cases 1 and 2 during the interaction process (200-600 ns). On the other hand, 

a decrease of enstrophy is found in cases 3 and 4 throughout the entire interaction process. The 

difference is also evident in the time evolution of the dissipation rate illustrated in Fig. 17. The 

dissipation rates of the first two cases are much greater than those of the last two cases. In addition, 

there is an increase in the dissipation rate in cases 1 and 2 during the interaction process. On the other 

hand, the dissipation rates in cases 3 and 4 appear to remain constant over time during the entire 

interaction process. The reason may be that the viscous stress and its change due to high Knudsen 

numbers dominate the flow structure during the interaction and cause the generation (increase) or 

attenuation (decrease) of the overall dynamics (enstrophy and dissipation rate) [34]. Weak interactions 

with low shock Mach number or small vortex size result in weak viscous effects and then cause low 

dissipation rate. This is one of the major characteristics that are found in microscale shock-vortex 

interactions. 

Numerical experiments on enstrophy and the dissipation rate show that the overall dynamics 

differs considerably for strong and weak interactions. We therefore conduct a detailed study of 

vorticity transportation in order to gain a deeper understanding of the nature of interaction. 

4.2.2. Vorticity transportation 

The following relation can be derived in a straightforward approach in the two-dimensional case 

[11,35].
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(4.4) 

Equation (4.4) describes three dynamically significant processes for the vorticity component , 

namely, vorticity generation through the dilatation strain rate, baroclinic generation through the 

interaction of pressure and density gradients, and viscous vorticity generation through the viscous 

effects. 

The net area-weighted vorticity generation is defined as 

Net vorticity ( , , ) .z

A

D
x y t dxdy

Dt


 

                                          

(4.5) 

The net area-weighted dilatational vorticity generation is computed as follows: 

Dilatational vorticity ( , , ) .
yx

z

A

VV
x y t dxdy

x y

 
    

  


                        

(4.6) 

The net area-weighted baroclinic vorticity generation is given by 

          
2

1
( , , )Barocli (nic vorticit )y .

A

p p
x y t dxdy

x y y x

   
 

    
                      

(4.7)

 

The net area-weighted viscous vorticity generation is expressed as 

1
Viscous vorticity ( ,

1 1 1

ρ ρ ρ ρ
, ) .

xy yx yyxx
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y

x y t dx
x y x x y

dy
       

     
  


       



 
  (4.8) 

The time evolutions of the four different types of net vorticity transportation are plotted in Figs. 

18-21 for cases 1-4, which show that the net viscous vorticity generation is the most dominant 

mechanism, followed by net dilatational vorticity and baroclinic vorticity generations. Net vorticity 

changes through dilatational generation, baroclinic generation, and viscous generation are significant 

in the interaction process, in particular, for cases 1-2. For strong interactions with high shock Mach 

numbers, the viscous effects play a dominant role in the interaction (see Fig. 21), resulting in 
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significant increase in the dissipation rate (see Fig. 19). Thus, a large change in net area-weighted 

vorticity generation is observed for strong interactions (see Fig. 20). 

4.3 Summary of microscale shock-vortex interaction 

Unique physical phenomena, which may differ from the macroscale shocks-vortex interaction, can 

occur in the microscale shock-vortex interaction. For example, three compression regions and two 

rarefaction regions can be formed after the interaction at microscale. The strengths of these 

compression and rarefaction regions greatly depend on the interaction parameters, which are 

determined by the shock and vortex Mach numbers. Furthermore, net viscous vorticity generation is 

the most dominant factor in the net vorticity transportation processes, followed by dilatational 

vorticity generation and baroclinic vorticity generation. For strong interactions with high shock or 

vortex Mach numbers, viscous vorticity causes a significant increase in the dissipation rate during the 

interaction, which results in an increase in enstrophy. Although the increase in enstrophy for strong 

interaction at the microscale is similar to that at the macroscale, quadrupolar acoustic wave structure 

is not observed in any cases. For weak interactions with low shock or vortex Mach numbers, although 

the viscous effects are also dominant, viscous vorticity generation and dilatational vorticity generation 

occur at lower levels. Viscous effects also cause a small increase in the dissipation rate during the 

interaction, which results in the decrease in enstrophy throughout the entire process for weak 

interactions. 

5 The effects of interaction parameters on the microscale shock-vortex 

interaction 

In order to explain the effects of interaction parameters on the microscale shock-vortex interaction, 

a diagram which is observed in the present study is plotted in Fig. 22. The composite vortex, which 

rotates clockwise, is fixed, and the planar shock passes through from left to right. For convenience, 

we divide the composite vortex into four regions, similar to the quadrant division method in a 

Cartesian coordinate system. The plot of the velocity distribution curve in the vortex along the radius 
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is also shown in Fig.  22. The pressure distribution curve in the inner region of the vortex affected by 

the size and vortex Mach number is shown in Fig. 23. The pressure distribution curve along the radius 

appears in the s-curve, and the maximum pressure gradient appears at the core radius of the composite 

vortex 1r . 

Typical sound pressure structures observed in the present study are shown in Fig. 23. Because of 

clockwise velocity of the vortex, the shock becomes S-shaped after passing through the composite 

vortex. In addition, while the direction of the velocity of the bottom half is the same as that of the 

local flow velocity, the direction of the velocity of the upper half of the vortex is opposite to that of 

the local flow velocity in the x-axis direction, causing the deformation of the vortex and generation of 

five elliptical regions. Regions 1, 2, and 5 are compressive regions, whereas regions 3 and 4 are 

rarefaction regions. 

5.1 Effect of the shock Mach number 

We selected three cases to demonstrate the effects of the shock Mach number: Ms=1.5, 2.5, 3.5, 

with the same vortex Mach number Mv=1.2, vortex radiusr1=12 λ. As shown in Figs. 7, 9, and 24, the 

high shock Mach number causes stronger shock-vortex interaction. Besides, the high shock Mach 

number blocks the diffusion of the expansion wave caused by the vortex. Consequently, the high 

shock Mach number diminishes the vortex region and reduces rarefaction region 4 and strengths 

compressive regions 1 and 2. Furthermore, the high shock Mach number yields a tendency for region 

1 to break the siege boundary formed by the vortex.  

The overall dynamics also become different for different shock Mach numbers, as shown in Figs. 

25 and 26. With an increasing shock Mach number, the increase in the dissipation rate during the 

interaction is enhanced. For example, the increase is 200 Pa.m
2
/s for Ms=3.5, while it is reduced to 6 

Pa.m
2
/s for Ms=1.5. Furthermore, during the interaction, an enstrophy increase is observed in cases 2 

(Ms=2.5, Mv=1.2) and 5 (Ms=3.5 Mv=1.2), whereas an enstrophy decrease is observed in case 4 

(Ms=1.5, Mv=1.2).  
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5.2. Effect of the vortex size 

As shown in Figs. 6, 7 and 27, we selected three cases to demonstrate the effect of the vortex 

size: 1r =8λ, 12λ, 16λ, with the same shock Mach number Ms=2.5, vortex Mach number Mv=1.2. As the 

size of the vortex decreases, the pressure gradient at the core radius of the vortex increases 

significantly, and the unstable effect of gas in this zone becomes strong (see Fig. 23). Consequently, 

the extrusion of compressive region 2 to the inner of vortex is strengthened. At a certain degree of 

extrusion strength, compressive regions 2 and 5 become connected, while rarefaction regions 3 and 4 

become two independent islands. The results confirm that the overall dynamics differ for different 

vortex sizes (see Figs. 28 and 29). With a decreasing vortex size, the increase in the dissipation rate 

during the interaction is weakened. For example, the increase is 40 Pa.m
2
/s for r1=16λ, while it is 

reduced to15 Pa.m
2
/s for r1=8λ. Furthermore, the enstrophy increase is reduced with decreasing vortex 

size. Therefore, in case 1 involving the smaller vortex size r1=8λ, a very small enstrophy increase is 

observed, while large enstrophy increases are found in cases 2 (r1=12 λ) and 6(r1=16λ). 

5.3. Effect of the vortex Mach number 

We selected three cases to explain the effect of the vortex Mach number: Mv=1.2, 0.9, 0.6, with 

the same shock Mach number Ms=2.5, vortex radius size r1=12λ. As shown in Figs. 7, 30, and 31, the 

decreasing vortex Mach number weakens the shock-vortex interaction and the expanding vortex. It in 

turn causes a reduction in the size of compressive regions 1 and 2. In case of the overall dynamics 

(enstrophy and dissipation rate) shown in Figs. 32 and 33, the results show that, with a decreasing 

vortex Mach number, the increase of the dissipation rate during the interaction is weakened. For 

example, the increase is 39 Pa.m
2
/s for Mv=1.2, while it is reduced to5 Pa.m

2
/s for Mv=0.6. Moreover, 

the enstrophy increase is reduced with the decreasing vortex Mach number. During the interaction, 

considerable enstrophy increases are observed in cases 2 (Ms=2.5, Mv=1.2) and 7 (Ms=2.5, Mv=0.9), 

whereas a very small enstrophy increase is observed in case 8 (Ms=2.5, Mv=0.6).  

5.4 Summary of the effects of interaction parameters 
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The analysis demonstrates that vortex deformation in the microscale shock-vortex interaction is 

closely related to the vortex size and interaction parameters of the shock and vortex Mach numbers. 

During the interaction, the significant increase of the viscous dissipation rate can lead to an enstrophy 

increase (net vorticity generation), whereas different shock-vortex interaction parameters lead to 

different increases in the viscous dissipation rate. The study of the effects of interaction parameters 

confirms that the shock Mach number, vortex Mach number and vortex size determine the interaction 

strength and the associated change of dissipation rate during the interaction. For example, the 

enstrophy increase or decrease depends on these parameters; in general, it increases with increasing 

shock and vortex Mach numbers and the vortex size. Further, there exists the momentary rise in the 

evolution of enstrophy in such cases. 

6 Conclusions and remarks 

Extensive computational investigation on the basis of the conservation laws with non-Newtonian 

implicit type nonlinear coupled constitutive relations is reported to better understand the physics of 

microscale shock-vortex interaction of argon gas in thermal nonequilibrium. To validate the present 

mixed DG method, the macroscale shock-vortex interaction problem studied through a high-order 

NSF numerical method is first solved to validate the DG method of the NSF model. The present 

method is shown to reproduce all flow features identified in previous works, including the size, 

structure, and locations of the sound waves of the compression and rarefaction regions. Then, the 

microscale shock-vortex interaction problem studied through the DSMC method is considered to 

validate the present DG method of the NCCR model. All cases demonstrate that the main features 

identified in their work, including the enstrophy behavior, are also found in the present simulation. 

The present simulation method successfully characterizes a large number of flow cases of the 

interactions of a planar shock up to Mach 3.5 with a transverse composite micro vortex on the shock 

thickness scale. Through computational simulation, new physical features are found in the microscale 

shock-vortex interaction. For example, the quadrupolar acoustic wave structure, which is the major 

feature at the macroscale, is not observed. Our study also reveals that three compression regions and 
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two rarefaction regions are formed after interaction, irrespective of the interaction parameters. The 

strength of these compression and rarefaction regions greatly depends on the interaction parameters 

determined mainly by the shock and vortex Mach numbers. Furthermore, we found that the net 

viscous vorticity generation is the most dominant mechanism, followed by dilatational vorticity and 

baroclinic vorticity generations. 

Moreover, we found that the strong shock-vortex interaction in high shock or vortex Mach 

numbers can cause an increase in enstrophy. For strong interactions with high shock or vortex Mach 

numbers, net viscous vorticity generation causes significant increases in the dissipation rate during the 

interaction, which results in an increase in enstrophy during the interaction. For weak interactions 

with low shock or vortex Mach numbers, although viscous effects are dominant, viscous vorticity 

generation and dilatational vorticity generation are at low levels, which causes negligible changes in 

the dissipation rate during the interaction and the decrease in enstrophy throughout the entire process. 

Additionally, the effects of the shock Mach number, vortex Mach number, and vortex size on the 

microscale shock vortex interaction are explored in detail. The shock Mach number, vortex Mach 

number and vortex size turn out to play a critical role in the physical model of the deformation of the 

vortex and the strength of interaction. In addition, these interaction parameters are shown to govern 

the net viscous vorticity generation, the change of dissipation rate and the increase or decrease in 

enstrophy during the interaction. 

The present study has been limited to the investigation of monatomic argon gas for computational 

simplicity. It is well known, however, that the rotational modes of a diatomic molecule, in particular 

the bulk viscosity, play a non-negligible role in the nonequilibrium gases. Extension of the present 

line of investigation to the study of the microscale shock-vortex interaction in diatomic gases will be 

the subject of future work. 
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Case r1 Ms Mv  (Pre-shock, m)  (Post-shock, m) 

1 8  2 1.2   

2 12  2 1.2   

3 10  3 1.2   

Table I. Benchmark cases for validation of the NCCR model. 

 

 

Case r1 Ms Mv 

1 8  2.5 1.2 

2 12  2.5 1.2 

3 8  1.5 1.2 

4 12  1.5 1.2 

Table II. Cases of vortex deformation through a shock. 
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Fig. 1. Physical system of microscale shock-vortex interaction. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Sound pressure field in Inoue’s result [3].  Fig. 3. Sound pressure field in the present result. 
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Fig. 4(a). NCCR validation in micro shock vortex interaction ([11]; time evolution of area-weighted 

enstrophy). 
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Fig. 4(b). NCCR validation in hypersonic cylinder flow (non-dimensional pressure contours; argon 

gas; M = 5.48 and Kn = 0.5): left –NCCR with the nonlinear factor and DSMC; right – NSF and 

DSMC. 

 

 

 

 

 

 

 

 

Fig. 5. Simulation cases of the present study and Koffi et al. [11] study. 
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Ms=2.5, Mv=1.2, r1=8λ, Kn=0.125, t=715 ns 

Fig. 6. Sound pressure contour for case 1. 

 

Ms=2.5, Mv=1.2, r1=12λ, Kn=0.083, t=715 ns 

Fig. 7. Sound pressure contour for case 2. 
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Ms=1.5, Mv=1.2, r1=8λ, Kn=0.125, t=1,194 ns 

Fig. 8. Sound pressure contour for case 3. 

 

 

Ms=1.5, Mv=1.2, r1=12λ, Kn=0.083, t=1,194 ns 

Fig. 9. Sound pressure contour for case 4. 
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Fig.10. Time evolution of sound pressure for the case of Ms=2.5, Mv=1.2, r1=12λ. 

 

Fig.11. Time evolution of sound pressure for the case of Ms=2.5, Mv=1.2, r1=112λ. 
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Ms=2.5, Mv=1.2, r1=8λ, Kn=0.125, t=715 ns 

Fig. 12. Vorticity contour for case 1. 

 

 

Ms=2.5, Mv=1.2, r1=12λ, Kn=0.083, t=715 ns 

Fig. 13. Vorticity contour for case 2. 
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Ms=1.5, Mv=1.2, r1=8λ, Kn=0.125, t=1,194 ns 

Fig. 14. Vorticity contour for case 4. 

 

Ms=1.5, Mv=1.2, r1=12λ, Kn=0.083, t=1,194 ns 

Fig. 15. Vorticity contour for case 4. 
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Fig. 16. Time evolution of enstrophy (cases 1-4). 
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Fig. 17. Time evolution of dissipation rate (cases 1-4). 
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Fig. 18. Time evolution of net vorticity (cases 1-4). 
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Fig. 19. Time evolution of net viscous vorticity (cases 1-4). 
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Fig. 20. Time evolution of net dilatational vorticity (cases 1-4). 
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Fig.  21. Time evolution of net baroclinic vorticity (cases 1-4). 
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Fig.  22. Physical model of microscale shock-vortex interaction. 
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Fig. 23. Pressure distribution in the inner part of composite vortex. 
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MS=3.5, MV=1.2, r=12λ 

Fig. 24. Sound pressure contour for case 5. 
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Fig. 25. Time evolution of enstrophy (cases 2, 4, 5) 
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Fig. 26. Time evolution of dissipation rate (cases 2, 4, 5). 

 

 

MS=2.5, MV=1.2, r1=16λ 

Fig. 27. Sound pressure contour for case 6. 
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Fig. 28. Time evolution of enstrophy (cases 1, 2, 6). 
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Fig. 29. Time evolution of dissipation rate (cases 1, 2, 6). 
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MS=2.5, MV=0.9, r1=12λ 

Fig. 30. Sound pressure contour for case 7. 

 

 

 

MS=2.5, MV=0.6, r1=12λ 

Fig. 31. Sound pressure contour for case 8. 
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Fig. 32. Time evolution of enstrophy (cases 2, 7, 8). 
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Fig. 33. Time evolution of dissipation  rate (cases 2, 7, 8). 

 

 


