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Abstract: A second-order positivity-preserving finite volume upwind scheme based on the 

approximate Riemann solver is developed for computing the Eulerian two-phase flow composed 

of air and small water droplets in atmospheric icing. In order to circumvent a numerical problem 

due to the non-strictly hyperbolic nature of the original Eulerian droplet equations, a simple 

technique based on splitting of the original system into the well-posed hyperbolic part and the 

source term is proposed. The positivity-preserving Harten-Lax-van Leer-Contact approximate 

Riemann solver is then applied to the well-posed hyperbolic part of the Eulerian droplet equations. 

It is demonstrated that the new scheme satisfies the positivity condition for the liquid water 

contents. The numerical results of one and two-dimensional test problems are also presented as 

the verification and validation of the new scheme. Lastly, the exact analytical Riemann solutions 

of the well-posed hyperbolic part of the droplet equations in wet and dry regions are given for the 

verification study. 
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1 Introduction 

Two-phase flows are very common in many scientific and engineering applications ranging 

from fluid dynamics, chemical engineering, combustion and many more. Accurate mathematical 

and computational modeling of these two-phase flow phenomena is currently a very active field 

of research. For example, Toumi and Kumbaro [1] developed an approximate linearized Riemann 

solver for the numerical simulation of an isentropic two-component two-phase flow. Saurel and 

Abgrall [2] also proposed a new isentropic two-phase model and an associated Godunov method 

for compressible multi-fluid and multi-phase flows. It was later recognized by Tian et al. [3] that 

the compressible two-phase model equations cannot always be written in conservative form, 

though they may be hyperbolic. In order to resolve this problem, they developed a path-

conservative method for a five-equation model of two-phase flow with an approximate Harten-

Lax-van Leer-Contact(HLLC)-type Riemann solver. In these works, two-phase flows are treated 

in a strongly coupled manner so that the equations of each phase are fully solved and thus both 

phases (gas and liquid) affect each other strongly, even though no viscous effects are assumed to 

be present in the physical system. 

There is a very important two-phase flow in which a drastic physical simplification is possible. 

Such a case is found in the air-mixed droplet flow field that describes the gas-liquid two-phase 

diluted flows around aircraft flying inside a cloud composed of compressible air and small super-

cooled droplets of liquid water in the atmosphere. This is called atmospheric in-flight icing in the 

field and remains as a critical technological issue in the safety of aircraft [4-6]. A similar problem 

can be found in wind turbine blades operating in cold climate. It is called simply atmospheric 

icing in the field [7]. The two-phase flow in those situations can be simulated using a weakly 

coupled (or one-way coupling) algorithm since the effects of a droplet on the air flow can be 

ignored. In general, the mass loading ratio of the bulk density of the droplets over the bulk 
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density of air is on the order of 10
-3

 under icing conditions. This observation can therefore justify 

a weakly coupled algorithm in which separate calculations are made of the atmosphere cloud 

condition mixed with the air and a super-cooled water droplet. Under this condition, the Eulerian 

droplet equations of two-phase flow can be written as [8,9] 

( ) 0,

( ) ( ) ( , , , , , ).

t

t g g gT

 

   

 

 

u

u uu S u u g
                (1.1) 

In these convection-type equations with no diffusion terms, the ρ and u are the droplet density in 

terms of liquid water content (LWC) and the velocity of the droplet, respectively. The ρg, Tg, ug 

and g are the air density, the air temperature, the air velocity, and the acceleration vector due to 

gravity, respectively. The vector S represents the source effects which include the aerodynamic 

drag term, gravity term, and buoyancy term of the droplet. The effects of the air flow in the one-

way coupling algorithm appear only through the source term. 

There are at present two unsolved computational issues regarding this weakly coupled air-

droplet model. The first issue concerns the accuracy of numerical solutions to the droplet 

equations (1.1). In particular, a very low density of droplets can be observed around a solid 

surface after the droplets impinge on the surface of a moving object such as flying aircraft. 

Without proper positivity-preserving schemes, the water droplet density near the surface may 

become negative, which is unphysical. Even worse, this numerical breakdown is not rare in case 

of air-mixed droplet flow and, as a consequence, it becomes one of the most critical issues in 

developing proper numerical schemes. However, owing to the difficulty to solve this rather tricky 

problem, most of previous computational codes on the Eulerian droplet equations have not been 

shown positivity-preserving and, instead, remain first-order in order to slow the appearance of 

breakdown [10]. To the best knowledge of the authors, no second-order positivity-preserving 

finite volume upwind scheme for air-mixed droplet flow in in-flight and atmospheric icing has 
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been reported in the literature. The positivity-preserving property is also closely related to the 

capability of numerical schemes in accurately resolving nonlinear wave regions: shock fronts, 

rarefactions, and contact discontinuities. It is well established that transitional layers exist at the 

interface of the shadow and non-shadow areas in the droplet fields and the accurate prediction of 

shadow boundaries around an aircraft plays a vital role in selecting the proper location of the ice 

detector. 

The second unsolved computational issue is the need for a unified solver for the Eulerian 

droplet equations and the Navier-Stokes-Fourier equations of air flow. One of the main 

advantages of Eulerian over Lagrangian in the mathematical form of droplet equations is that 

exactly the same numerical scheme initially developed for the strictly hyperbolic conservation 

laws in the Navier-Stokes-Fourier equations of air flow and associated computational grid can be 

applied to numerical solutions of the droplet equations as well. This feature should not be under-

estimated since the droplet and air solvers are repeatedly used in the computational simulation of 

icing accretion which typically runs on the order of minutes. Therefore a unified solver can be 

considered a vital part of any efficient icing simulation code. 

The Eulerian droplet equations (1.1) as they stand may, however, not be suitable for tackling 

the aforementioned computational issues. The reason is that the convective system of the Eulerian 

droplet equations, the left-hand side of the equations (1.1), is not strictly hyperbolic. Even though 

the system has real eigenvalues, λi=1,2,3=u, are not distinct, that is, degenerate. This means that the 

well-known methods based on the well-posed strictly hyperbolic system may not be applicable 

and the special scheme based on other concepts such as the kinetic approximation [11] is required.  

In order to circumvent this problem, a new method based on a strategy developed originally in 

computational magnetohydrodynamics (MHD) is proposed in the present study. The idea can be 

traced to the eight-wave system of the upwind-type MHD schemes in which a vector term 
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involving the divergence of the magnetic field, ( )B B , is added and subtracted to the 

momentum equation for purely numerical purpose. The method was pioneered by Powell and Roe 

et al. [12,13] and has been used extensively in the computational MHD community [14]. By 

taking advantage of the idea, a vector term of similar spirit, ( )gd  I  in the present problem, is 

added and subtracted to the left-hand side of the Eulerian droplet momentum equation (1.1): 

0
,

( , , , , , )g g gt
Tgd gd

 

    

    
      

      

u

S u u gu uu I I
      (1.2) 

Equivalently in split form, 
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         
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u

S u u gu uu I I
 

where d represents a reference size of droplets.  

Now the original not-strictly hyperbolic pressure-less system is divided into the well-posed 

hyperbolic part and a term of source nature. It should be noted that a similar splitting technique 

was also developed by Myong and Roe [15] in computational magnetohydrodynamics to define 

numerical flux based on the well-posed planar Riemann problem and the evolution of Alfvén 

waves. The choice of the specific form of the term ( ) ( )gd gd    I I  is motivated by the 

fact that the pressure term ( )p I  disappears when the weakly coupled two-phase model (1.1) 

is derived from the strongly coupled two-phase model, such as the Saurel-Abgrall model [2]. 

After introducing an approximation p   and multiplying a constant gd  to make the 

dimension of term equal, the present choice is shown to be equivalent to the pressure term in 

principle. In this stage one might consider the liquid pressure term ( )p I , instead of 

( )gd I , but this will impose an unnecessary burden of deriving additional equation of state 
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for the droplet density ρ, let alone making the problem more complicated by losing sight of 

original pure numerical objective of the splitting technique. Then the first and second terms of the 

left-hand side of the system (1.2) are well-posed and consequently it can be easily treated within 

the computational framework of the approximate Riemann solver. On the other hand, the term 

subtracted to the left-hand side can be treated numerically as a simple source term. In passing, it 

should be emphasized that, since the same term is added and subtracted, the resulting equation 

(1.2) is mathematically equivalent to the original equation (1.1). For this reason, all other aspects 

of the scheme, such as the numerical boundary conditions, remain exactly the same. The well-

posed hyperbolic part of the model (1.2) will be designated as the shallow water type droplet 

equations (SWDEs) since it resembles the shallow water equations (SWEs) studied extensively in 

ocean and hydraulic engineering [16-19]. The SWDEs are almost identical to the SWEs, with an 

equivalence relation ρ (LWC of the droplet) ↔ h (height of water), both of which are positive 

scalar. 

Even though the SWDEs satisfies the strictly hyperbolic property, there still remains a 

question of whether the upwind-type schemes, to meet the positivity-preserving property, can be 

developed. In any in-flight and atmospheric icing code, the capability of computing the shadow 

area, defined as the region around the solid surface with very low droplet density, is essential. 

However, it is well-known that the positivity of numerical solutions of the Roe-type flux 

difference splitting scheme is not guaranteed. While the flux vector splitting schemes are known 

to be free from this drawback [20], any such scheme also suffers an intrinsic incompatibility 

between the desirable positivity-preserving property and the accurate resolution of contact 

discontinuities [21]. Einfelt et al. [22] introduced the class of positively conservative schemes 

that always generate non-negative density from physical data. They proved that the Godunov 

scheme is positively conservative, but no scheme whose interface flux derives from a linearized 

Riemann solution can be positively conservative. In addition, they showed that the Harten-Lax-
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van Leer (HLLE) scheme [23] is positively conservative, provided the absolute values of the 

maximal and minimal wave speeds satisfy certain stability bounds. On the basis of these findings, 

Toro et al. [24] developed the so-called Harten-Lax-van Leer-Contact (HLLC) approximate 

Riemann solver, which restores the contact surface in the HLL-Riemann scheme, and applied it to 

the SWEs [16]. 

In this study the positivity-preserving HLLC scheme based on the characteristics 

decomposition is applied to the well-posed hyperbolic part of the model (1.2), that is, the SWDEs. 

It will be shown that this numerical scheme satisfies the density positivity condition and can serve 

as the basic building block for the second-order unified solver of air-mixed droplet flow over 

arbitrarily complex bodies or in internal passages. In Section 2 we review the mathematical 

model of the air-droplet two-phase flow and present the well-posed hyperbolic part of the 

Eulerian droplet equations. We also study the eigen-structure of the system as a foundation for the 

HLLC Riemann solver. In Section 3 we present the second-order finite volume method based on 

the HLLC approximate Riemann solver for the Eulerian droplet equations. In Section 4 we 

present numerical results of one and two-dimensional test problems as the verification and 

validation of the new scheme. Lastly, the exact analytical Riemann solutions of the well-posed 

hyperbolic part of the droplet equations in wet and dry regions are given in Appendices for the 

purpose of the verification study. 

2 Governing equations of air-droplet two-phase flow 

2.1 Compressible Navier-Stokes-Fourier equations for air flow 

Prior to the simulation of the droplet flow fields, the air flow should be computed to provide 

the droplet solver with the air flow information, through the source term in the Eulerian droplet 

equations (1.1) or (1.2). The compressible Navier-Stokes-Fourier equations are employed for this 
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purpose: 

0

,
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       
            

u

u u u I τ

u τ u Q

              (2.1) 

where 

(2)

2 ,  .g k T      τ u Q
 

Here ρg, ug, p, and E represent the density, the velocity, the pressure, and the total energy of the 

air, respectively. The non-conserved variables τ and Q denote the viscous shear stress tensor and 

the heat flux, respectively. The symbol [A]
(2)

 in the shear stress tensor stands for the traceless 

symmetric part of the tensor A. The   and k  are the viscosity and thermal conductivity, 

respectively, and depend on the air temperature. For the air flow, the ideal equation of state 

p=ρgRT is used. 

2.2 Eulerian droplet equations 

The basis of the Eulerian droplet equations is the treatment of the dispersed phase as a 

continuum. Since the mass loading of the bulk density of the droplets is negligible in in-flight 

icing, the weakly coupled two-phase model may be adopted. A number of phenomena and forces 

may be considered, but the following assumptions are sensible for in-flight icing situations: the 

droplets are spherical without deformation or breaking; there is no collision, coalescence or 

splashing of droplets; there is no heat or mass exchange between the droplets and the surrounding 

air; the turbulence effects on the droplets are negligible; and the only forces acting on the droplets 

are due to aerodynamic drag, gravity, and buoyancy. 

The two-dimensional continuity and momentum equations of the droplets in the Eulerian form 
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(1.1) can be written as 

2

2

 ,

t x y

u v

u u uv

v uv v

  
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  
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     
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S                     (2.2) 

where the source term associated with air flow and the gravity and buoyancy of droplets is given 

by 

 

   

0

.

1

u g

v g g w

A u u

A v v g  

 
 
  
 
   
 

S  

The u and v are x and y directional velocities of the droplet, respectively. The Au(ug-u) and Av(vg-

v) in the source term denote the drag caused by the air flow while the ρg(1-ρg/ρw) denotes the 

resultant force of the gravity and buoyancy of droplets. The coefficients Au and Av are defined as 

2

0.75 Re
,  Re ,uD u g

u u g

w

C MVD
A u u

MVD

  

 

    
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
           (2.3) 

2

0.75 Re
,  Re ,vD v g

v u g

w

C MVD
A v v

MVD

  

 

    
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
           (2.4) 

where Reu and Rev are the Reynolds number of the droplets, CDu and CDv are the drag coefficients 

of the spherical droplets, and MVD is the mean volume diameter of the droplet. By using 

Langmuir et al.’s results [25], the following expressions for the drag coefficients can be derived: 

 0.63 4 1.3824
1 0.0197 Re 2.6 10 Re ,

ReuD u u

u

C                   (2.5) 
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 0.63 4 1.3824
1 0.0197 Re 2.6 10 Re ,

RevD v v

v

C                   (2.6) 

which are valid for Reu and Rev < 1000. 

2.3 Convective part of the Eulerian droplet equations 

Through simple checking of the eigenvalues of the system (2.2), 

0 0

0 0 0 ,  

0 0 0
t x

u

u u u

v u v
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 
       
              

 

it can be confirmed that the system is not well-posed. Instead, by adopting the splitting technique 

explained in (1.2) of the introduction section, the following well-posed hyperbolic part can be 

obtained: 

,t x U F 0                               (2.7) 

where 

2,  . 

u

u u gd

v uv

 
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 

   
   

  
   
      

U F  

This system will be the basis for developing the positivity-preserving HLLC approximate 

Riemann solver for the Eulerian droplet equations. 

3 Finite volume method based on the approximate Riemann solver  

3.1 HLLC approximate Riemann solver for the well-posed hyperbolic part 
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For the well-posed hyperbolic part, the very low depth caused by the rarefaction waves is 

analogous to the shadow area, which refers to the very low density of the droplets around a solid 

surface after the droplets impinge on the solid surface. Fig. 1 illustrates the shadow and non-

shadow areas around an airfoil. Although various numerical methods for the SWEs have been 

published in the past, only a few methods satisfy the depth positivity in a dry bed. In particular, 

the HLLC approximate Riemann solver developed by Toro et al. [24] has shown good behavior 

and satisfies the depth positivity. The HLLC scheme is a modification of the basic HLLE scheme; 

it accounts for the influence of the intermediate waves.  

Fig. 2 clearly demonstrates the need of a positivity-preserving scheme for Eulerian droplet 

equations. The Roe solver breaks down completely near the solid wall of the airfoil where the 

negative-density generating rarefaction waves are formed. Owing to this numerical breakdown, 

most of previous codes on the Eulerian droplet equations remain first-order in order to slow the 

appearance of breakdown [10], which compromises the accuracy of numerical solutions like the 

collection efficiency on the solid surface. 

Fig. 3 illustrates the assumed wave structure in the HLLC approximate Riemann solver. There 

are two distinct fluxes for the star region. In the exact Riemann solver, the middle wave speed S* 

can be estimated for the particle velocity in the middle state (S*=u*). The structure of the HLLC 

scheme can be derived for the well-posed hyperbolic part of the droplet equations (2.7). The 

governing equations in one-dimensional case may be rewritten as follows with a change of 

notation ψ=v: 

2

0

0 .

0
t x

u

u u gd

u

 

  

  

     
     

  
     
          

                     (3.1) 

The tangential velocity component ψ(x, t) represents the concentration of a pollutant or some 
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other passive scalar. The quantity ψ gives rise to the middle eigenvalue, λ2=u. For this hyperbolic 

system, the following HLLC flux may be defined at the interface of the left and right cells 

* *

1

* *2

if 0 ,

if 0 ,

if 0 ,

if 0 ,

L L

L L

i
R R

R R

A S

A S S
A

A S S

A S






 
 

 
 

             (3.2) 

where 

   * * * *,L L L L L R R R R RA A S U U A A S U U      . 

The states, U*L, U*R, and the wave speed, SL, SR, are given by, 

* *

*

1

,  ,  ,K K
K k L L L L R R R R

K

K

S u
U S S u a q S u a q

S S




 
           

  

       (3.3) 

where aL=aR= gd . In these expressions, the left and right wave speeds are determined by an 

eigenvalues-based minimum and maximum signal velocities proposed by Davis [26] on the basis 

of the Roe average [27,28]. On the other hand, the middle wave speed, S*, can be determined by 

direct wave speed estimates using Rankine-Hugoniot conditions proposed by Toro [17]. In this 

study, the following direct wave speed estimate is employed to define the wave speed on the star 

region: 

   
   * ,L R R R R L L L

R R R L L L

S u S S u S
S

u S u S

 

 

  


  
                  (3.4) 

which is obtained from manipulations of equations (3.1). This wave speed estimate for S* has the 

remarkable property of being exact when one of the data states is a dry bed state. In equation (3.3), 

qK is defined by 
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*
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*
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1 if ,
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K K

K

q


 



 



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



                       (3.5) 

where ρ* is an estimate of the exact solution for ρ in the star region. From the depth positivity 

condition, ρ* and u* for depth and particle velocity in the star region are derived as follows: 

   *

1 1

2 4

L R
L R R L

L R

u u
a a

 
  


   


,    *

1 1

2 4

L R
L R R L

L R

a a
u u u  

 


   


.  (3.6) 

The third component of the flux can be expressed in terms of the first component and the variable 

ψ, that is A
3
=A

1
ψ, where A

3
 is defined as follows: 

1

1 *

3 2

1 1

2 1 *

2

if 0,

if 0.

L
i

i
R

i

A u

A
A u











 

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

                     (3.7) 

In order to enhance the accuracy, Monotone Upstream Scheme for Conservation Law (MUSCL) 

proposed by van Leer [29] together with van Albada limiter [30] is employed: 

   1 2 1 1

1 1
,

2 2
R i R i i L i L i i          W W W W W W W W ,      (3.8) 

where W=[ρ, u, ψ]
T
 denotes primitive variables. The van Albada limiter is defined as 

   / / /

1
1 1

2
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2

2
( )

1

r
r

r
 


,            (3.9) 

where κ represents an extrapolation parameter and 
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W W
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A general procedure to precisely solve the Riemann problem for one-dimensional droplet 

equations (3.1) is summarized in Appendices A and B and Fig. 4. The star region values ρ* and u* 

can be determined using equations (A.1) to (A.3), and (A.4), respectively. The left and right 

rarefaction and shock waves can be determined using equations (A.9) and (A.12), and (A.5) and 

(A.10), respectively.   

3.2 Two-dimensional finite volume formulation 

The present finite volume formulation for the Eulerian droplet equations is based on a cell-

centered scheme and structured grid. The complete set for the two-dimensional Eulerian droplet 

equations with the source terms can be written as 

( )d dl d
t   


   

   U H S Q ,                (3.10) 

where H=Fcosθ+Gsinθ, and 
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Note that the subtracted term ( )gd I  in (1.2), denoted by Q in (3.10), is moved from the left-

hand side to the right-hand side for convenience. Here  represents the bounding surface of the 

control volume Ω. The two-dimensional finite volume formulation in general non-Cartesian 

domains can be derived by exploiting the rotational invariance property of the Eulerian droplet 

equations, F(U)cosθ+ G(U)sinθ =T
-1

F(TU), where T=T(θ) represents the rotation matrix. The 
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equations (3.10) can then be expressed as 

1
( )dl d

t  

      
    

U
H S Q .                  (3.11) 

The line integral on the right-hand side can be approximated by a sum of the fluxes crossing the 

faces of the control volume. It is usually assumed that the flux is constant along the individual 

interface and is evaluated at the mid-point of the interface. Finally, we have the following 

discretized equation 

1 1

01 n n

k k k k

k k k

d
l gd l

dt


 

  
       

   
 

U
H S

n
.              (3.12) 

The value of density at the interface is determined as follows 

* *

* *

if 0 ,

if 0 ,

if 0 ,

if 0 .

L L

L L

k

R R

R R

S

S S

S S

S




 
 

 
 










                   (3.13) 

In equation (3.12), the numerical flux Hk at k-th interface is determined by the HLLC 

approximate Riemann solver. Although the implementation of explicit schemes is much easier 

than that of implicit schemes, explicit schemes require careful time step selection in order to 

fulfill the stability requirement. The droplet flow fields in this study are calculated under the 

maximum allowable time steps used in the work of Erduran et al. [19]. The local time stepping is 

achieved using the fifth stage Runge-Kutta scheme.  

The collection efficiency, a main feature in in-flight and atmospheric icing, is determined using 

the density and velocity fields near the solid surface. Therefore, the setting of the solid surface 

condition is an important factor in solving droplet flow fields. In present study, a conventional 
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boundary condition used in the previous works [5-7,10] is employed. When the projection of a 

normal vector on a solid surface and the droplet velocity in an adjacent cell on the solid surface is 

positive, the droplets should not collide with the solid surface. This behaviour leads to a boundary 

condition on the solid surface following the sign of the projection as follows (see Fig. 5): 

0 if 0,

if 0,

wall

wall

  

  

U V n

U U V n
                      (3.14) 

where n=(nx,ny) denotes the normal vector on the surface. For the inflow and outflow, the values 

of all eigenvalues turn out to have the same sign in the problem considered in the present study. 

In passing, it must be noted that the term (Hk–gdρk[0, nk]
T
) in the final scheme (3.12), which is 

obtained by summing up the numerical flux again after the splitting through the well-posed 

hyperbolic part and the source term, retains the eigenvalues of the original droplet equations, 

meaning that the same boundary conditions are applicable. Therefore, the conservative variables 

on the boundary can be determined solely by the free-stream values. 

4 Verification and Validation 

Two types of problems are selected to validate the second-order positivity-preserving finite 

volume upwind scheme of Eulerian droplet equations for air-mixed droplet flow. The first 

problem is intended to compare the exact analytical and numerical solutions as a verification 

study. The second problem is the air-mixed droplet flow around an airfoil taken from Papadakis 

et al. [31] as a validation study. The conditions of the problems are summarized in Tables 1 and 2. 

The exact and numerical solutions to the one-dimensional well-posed hyperbolic part of the 

droplet equations without pollutants are compared in Figs. 6 and 7. The computational domain 

size 50 and one hundred grid points with the CFL number 0.2 are used in these computations. It 

can be shown in Fig. 6 that the HLLC scheme indeed satisfies the density positivity condition; the 
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density remaining very low but always positive in the (dry) region between two identical 

rarefaction waves traveling in opposite directions. Furthermore, by recalling Fig. 1 of 

identification of the Riemann problem, it may be argued that the shadow boundary formed around 

an airfoil is nothing but the strong rarefaction waves found in the present Riemann problem. Also, 

the analogy between the Riemann problem of the well-posed hyperbolic part of the droplet 

equations and the density distribution of droplets around an airfoil may explain why the Roe flux 

difference splitting scheme breaks down first near the lower and rear solid wall of the airfoil—

since the region is the center of the severe dry bed, which is most vulnerable to the negative 

density. The new scheme is, in general, found to be very accurate including resolving rarefaction 

waves. The gap in the particle velocity is, nonetheless, found in the vicinity of the very low 

density. The numerical reason behind this shortcoming for the HLLC scheme is well understood 

[17] and under the more pressing need of the positivity property the issue is left for future study. 

On the other hand, if the Roe’s approximate Riemann solver is applied, the unphysical negative 

density appears from the center of the dry region. 

Another Riemann problem (case 2) and its solutions are illustrated in Fig. 7. The case is 

considered in order to investigate the evolution of nonlinear waves after the collision of two 

streams, which represents the local high LWC (wet) region near the stagnation point around an 

airfoil where droplets of the free stream collide with the solid wall surface. It is clearly shown in 

Fig. 7 that the density increases drastically in the star region, indicating a local high LWC region. 

The new scheme for this wet case is found to be very accurate in predicting the shock location 

and resolving the shock discontinuities. 

In order to validate the new scheme for droplet impingements in in-flight and atmospheric 

icing, experimental test cases are selected from the literature [31]. The following collection 

efficiency represents the droplet impingement intensity measured in the experiment: 
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V

V




 

 , 

where the velocity magnitude V is determined by a scalar product (unx+vny). This parameter plays 

a critical role in controlling the ice accretion on the surface. The experimental test was conducted 

in the test section of the NASA icing research tunnel. A CCD camera and laser system were used 

to measure the droplet impingement on NACA 652415 and GLC 305 airfoils. 

The air flow should be computed prior to the simulation of droplet flow fields in the case of 

the weakly coupled algorithm. The compressible Navier-Stokes-Fourier equations (2.1) are 

employed as the governing equations. The air flow solver is based on a second-order upwind-type 

finite volume scheme with the Roe’s approximate Riemann solver. The Green-Gauss approach is 

employed for evaluating the spatial gradient in viscous flux. The Spalart-Allmaras turbulent 

model is employed to simulate the turbulent effect in flow fields, since the effects of different 

turbulent models on the qualitative aspect of the collection efficiency are shown negligible. The 

fifth order Runge-Kutta explicit time marching is used for the temporal discretization. For the 

boundary conditions, non-slip and Riemann invariant conditions are applied to the solid surface 

and the far-fields, respectively. An ideal gas equation is used to close the system of equations. A 

structured grid with a C-type topology and a size of 421×65 and an equivalent unstructured 

triangular grid are used. 

The Mach number and Reynolds number considered in this validation flow problem are 0.23 

and 4.9×10
6
, respectively. A dilute case with 0.05 g/m

3
 (MVD 11.5 µm) and a dense case with 

0.19 g/m
3
 (MVD 21.0 µm) are considered. The MVD values are assumed to have a mono-

disperse distribution instead of a Langmuir distribution. A numerical simulation based on the new 

second-order positivity-preserving scheme is conducted with exactly the same structured and 

unstructured grids employed in the air solver. Figs. 8 and 9 show the collection efficiencies on the 
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NACA 642415 and GLC 305 airfoils, respectively. Here only results of the structured grid are 

shown, since the effects of grid types on the collection efficiency are shown small. The 

experimental, present computational, and LEWICE results are compared for angles of attack of 0˚, 

6˚, and 8˚. Even though there are some deviations in the peak collection efficiency, the present 

computational results are in close agreement with experimental data in both airfoils. Interestingly, 

better agreements are found for high LWC cases and in the upper surface part of the airfoil. Fig. 

10 shows the LWC distributions around the airfoils and the shadow areas formed mainly in the 

upper part of the airfoils. Lastly, in order to investigate the droplet impingement behavior in 

flows involving flow separation, a higher angle of attack case was analyzed with the present 

method. As shown in Fig. 11, the massively separated region and associated droplet trajectories 

are well captured, confirming the capability of the present droplet code to handle the separated 

flow. 

5 Concluding Remarks 

A second-order positivity-preserving finite volume upwind scheme to circumvent the non-

strictly hyperbolic nature of the original Eulerian droplet equations of the weakly coupled two-

phase flow model, which severely limits the application of well-established upwind schemes 

based on the characteristic decomposition such as the Roe’s approximate Riemann solver, is 

proposed. We believe it is a significant contribution since it resolves one of the major stumble 

blocks for developing the robust droplet code in in-flight and atmospheric icing. Without proper 

positivity-preserving treatment, the droplet codes not only suffer the complete breakdown due to 

the negative density but cannot also be extended to the second-order accuracy. It must be also 

noted that the breakdown in case of air-mixed droplet flow is not rare and is observed in virtually 

every airfoil type flows, while the breakdown in ordinary gas flow occurs only in very rare cases 

involving two strong rarefaction waves moving in opposite directions. 
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In the present study, the second-order positivity-preserving property is achieved by splitting 

the non-strictly hyperbolic part of the Eulerian droplet equations into the well-posed hyperbolic 

part and the source term. Indeed, by computing the verification and validation flow problems, it 

is demonstrated that the new scheme based on the split system satisfies the positivity property in 

the droplet density. During the process, two Riemann problems (dry and wet) are also identified 

to describe two dominant mechanisms (shadow area and high LWC area near the stagnation 

region) responsible for the generic pattern in the LWC distributions around an airfoil. 

Even though the HLLC approximate Riemann solver is used as the basis for developing a 

positivity-preserving scheme in the present study, other positivity-preserving numerical methods 

may be applicable as well. Notable are recent methods [32,33] that are based on the simple flux 

limiter by combining the high-order numerical flux with the first-order Lax–Friedrichs flux to 

satisfy a sufficient condition for preserving positivity. Also, question of relatively large numerical 

dissipation of the HLLC scheme is considered less important than the critical issue of positivity-

preserving. More importantly, it must be reiterated that the present method retains the same 

governing equations and thus it should not be misunderstood as a modification of governing 

equations. The differences, if there exist any, between the original non-strictly hyperbolic system 

and the split system consisting of the well-posed hyperbolic part and the source term, are of pure 

numerical nature and will appear only in the truncation error level. Also, it should be noted that 

question of the physical validity of the well-posed hyperbolic part is irrelevant to the present 

study, since it, just like the conventional shallow water equations, is mathematically well-posed 

and the well-posedness is the only question needed to answer for the numerical purpose. 

The present study is confined to the droplet impingement problem in which droplets are 

assumed to be a rigid sphere. In the future, the new scheme will be extended to compute the 

super-cooled large droplet flow fields involving the deformation, break, spread and rebound of 

droplets. 
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Appendix A: Exact Riemann Solution of the Well-Posed Hyperbolic Part in 

Wet Region 

The Riemann problem of two variables ρ and u for the one-dimensional well-posed hyperbolic 

part (3.1) can be written as  

2
0

 

  

   
    

   t x

u

u u gd
.                    (A.1) 

The solution ρ* of the Riemann problem may be determined by solving an implicit algebraic 

equation 

     , , 0,   ,L L R R R Lf f f u u u u                    (A.2) 

where the functions fL and fR are expressed as 
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The solution of the particle velocity u* in the star region follows: 

     * * *

1 1
, , .

2 2
L R R R L Lu u u f f                      (A.4) 

For the unknown ρ* in the star region, the Newton-Raphson iteration method can be used. The 

type of the left and right waves (shocks or rarefactions) can be determined by comparing the 

known ρ* from equations (A.2-A.4) with ρL and ρR. When ρ* > ρL, the left wave is a shock wave 

and its speed can be determined by using the Rankine-Hugoniot condition. By introducing the 

celerity aL= gd , the shock speed can be written as 

*,    .L L L L L

L

S u a q q



                          (A.5) 

When ρ* ≤ ρL, the left wave becomes a rarefaction wave. The speeds of the head and the tail of 

the rarefaction wave are given, respectively, 

* *,      .head L L tailS u a S u a                        (A.6) 

The solution inside the left rarefaction wave may be written as 

ˆ
.

ˆ

dx x
u a

dt t
                                (A.7) 

The generalized Riemann invariant of the left rarefaction wave is given as 

.  L Lu a u a                              (A.8) 

Finally, the solutions u and a within the left rarefaction wave can be calculated by combining 

equations (A.7) and (A.8) as follows 



 23 

ˆ ˆ1 1
,    .

ˆ ˆ2 2
L L L L

x x
u u a a u a

t t

   
        

   
                 (A.9) 

Similarly, the solution of the right wave may be obtained by considering a shock wave and a 

rarefaction wave. When ρ* > ρR, the right wave is a shock wave with the speed 

*,    ,R R R R R

R

S u a q q



                         (A.10) 

where the celerity is defined as aR= gd . When ρ* ≤ ρR, the right wave is a rarefaction wave and 

its head and tail speeds are 

* *,      .head R R tailS u a S u a                        (A.11) 

The analytical solutions u and a within the left rarefaction wave become 

ˆ ˆ1 1
,    .

ˆ ˆ2 2
R R R R

x x
u u a a u a

t t

   
         
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               (A.12) 

Appendix B: Exact Riemann Solution of the Well-Posed Hyperbolic Part in 

Dry Region 

The particle velocity in the dry regions where the density is zero by definition may be chosen 

arbitrary; for example, zero particle velocity. This choice, however, may cause a discontinuity 

jump in the particle velocity which might contribute to numerical difficulties in capturing this 

feature by numerical means. The dry region of the well-posed hyperbolic part of the droplet 

equations can be considered for three cases; single left rarefaction wave, single right rarefaction 

wave, and the middle between two rarefaction waves (Figs. 3 and 4). The first case (Fig. 4 left) is 

when the dry region is located on the right side. The solution consists of a single left rarefaction 
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wave associated with the left eigenvalue λ1=u-a. A contact discontinuity of speed S*L coincides 

with the tail of the rarefaction wave. Along the contact discontinuity, ρ*=0 and, thus, a=0. The 

speed of the contact discontinuity can be derived by using equation (A.8), 

* .L L LS u a                              (B.1) 

The complete solution can be expressed in terms of non-conserved variables (a, u) 
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The second case (Fig. 4 right) is when the dry region is located on the left side. The solution 

consists of a right rarefaction wave associated with λ2=u+a. A contact discontinuity with the 

speed S*R is given by  

* ,R R RS u a                                (B4) 

and the complete solution is  
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where  
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The last case (Fig. 4 middle) is when two rarefaction waves interact with different directions. The 

left and right rarefaction waves are associated with the eigenvalues λ1=u-a and λ2=u+a, 

respectively. The dry region appears between the two rarefaction waves and the solution can be 

written by utilizing the solutions of the previous two cases as follows: 

 
*

* *

*

( , ) if / ,

( , ) , 0 if / ,

( , ) if / ,

L L

L R

R R
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a u x t S x t S
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                (B.7) 

where (a, u)L and (a, u)R are given by equations (B.2) and (B.5), respectively. 
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Fig. 1. Liquid water contents distribution around an airfoil and identification of the Riemann 

problem. 
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Fig. 2. Negativity droplet density breakdown of Roe solver in the Eulerian droplet equations and 

its cure by developing a second-order positivity-preserving HLLC solver of Eulerian droplet 

equations. 
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Fig. 3. The HLLC approximate Riemann solver for the well-posed hyperbolic part of the droplet 

equations. 

 
 
 
 

   
Fig. 4. Three cases in which the solution of the Riemann problem involves a dry region: (left) the 

dry region on the right; (right) the dry region on the left; (middle) the dry region between two wet 

regions. 

 
 

 

 

 

Fig. 5. Permeable wall boundary condition for droplet impingement. 
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Test cases ρL uL ρR uR x0 t 

1 1.0 -5.0 1.0 5.0 25.0 2.5 

2 1.0 5.0 0.1 -3.0 25.0 2.5 

Table I. The verification case where x0 and t represent the position of the initial discontinuity and 

the output time in seconds, respectively. 

 

 

 

Airfoil model MVD (µm) LWC (g/m
3
) V∞ (m/s) c (m) Re(×10

6
) 

NACA 652415 

11.5 0.05 

78.7 0.928 4.85 

21 0.19 

GLC 305 

11.5 0.05 

78.7 0.914 4.83 

21 0.19 

Table II. The validation case: experimental conditions for airfoil test problems. 
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Fig. 6. The HLLC and the exact solutions of the density and velocity (test case 1). 

 

 

 

  
Fig. 7. The HLLC and the exact solutions of the density and velocity (test case 2) 
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Fig. 8. The numerical and experimental results for the collection efficiencies (NACA 652415 

airfoil): (top) MVD 11.5µm, LWC 0.05g/m
3
; (bottom) MVD 21µm, LWC 0.19g/m

3
. 
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Fig. 9. The present and experimental results for the collection efficiencies (GLC 305 airfoil): 

(top) MVD 11.5µm, LWC 0.05g/m
3
; (bottom) MVD 21µm, LWC 0.19g/m

3
. 
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Fig. 10. The LWC distributions around NACA 652415 (top) and GLC 305 (bottom) (MVD 21µm, 

LWC 0.19g/m
3
). 
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Fig. 11. Droplet trajectories and LWC distributions around NACA 652415 at high angle of attack 

(16 degrees, MVD 21µm, LWC 0.19g/m
3
). 

 


