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Abstract: The statistical error associated with sampling in the DSMC can be categorized as type I and 

II, which are caused by the incorrect rejection and acceptance of the null hypothesis, respectively. In 

this study, robust global and local automatic steady state detection methods were developed based on 

an ingenious method based purely on the statistics and kinetics of particles. The key concept is built 

upon probabilistic automatic reset sampling (PARS) to minimize the type II error caused by incorrect 

acceptance of the samples that do not belong to the steady state. The global steady state method is 

based on a relative standard variation of collisional invariants, while the local steady state method is 

based on local variations in the distribution function of particles at each cell. In order to verify the 

capability of the new methods, two benchmark cases—the one-dimensional shear-driven Couette flow 

and the two-dimensional high speed flow past a vertical wall—were extensively investigated. Owing 

to the combined effects of the automatic detection and local reset sampling, the local steady state 

detection method yielded a substantial gain of 30-36% in computational cost for the problem studied. 

Moreover, the local reset feature outperformed the automatic detection feature in overall 

computational savings. 
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1. Introduction 

The direct simulation Monte Carlo (DSMC) method is considered as one of the most successful 

computational methods to solve the Boltzmann equation based on direct statistical simulation of the 

molecular processes described by the gas kinetic theory [1, 2]. It has also been mathematically and 

empirically proved that the DSMC solution will converge to the true solution of the Boltzmann 

equation for a gas undergoing binary collisions between gas particles, if critical computational 

parameters—time-step, cell-size, and the number of particles—are chosen properly and when no wall 

surface boundary condition is involved in the simulation [3, 4]. Owing to robustness and ease of 

incorporating various collision mechanisms into the algorithm, DSMC has expanded its way into 

diverse applications including hypersonic gas flows, micro-scale gases, chemical reactions, and 

material processing [5-8]. 

Four types of computational error are in general present in the DSMC simulation [4]: 

decomposition (or discretization), statistical [9, 10], machine (or round-off), and boundary condition 

errors, as summarized in Fig. 1. In particular, the statistical error—the focus of the present work—is 

caused by the random fluctuations and statistical uncertainty inherent in the DSMC method. In a 

recent study of the verification method for DSMC [4], based on the exact physical laws of 

conservation, it was shown that the statistical error is dominant in the first phase of error convergence 

and the rate of its decrease is inversely proportional to the square root of the sample steps. In the 

second phase, the combination of boundary condition and decomposition errors becomes prominent in 

comparison with the statistical error. To reduce the statistical uncertainty and noise arising in 

evaluating the mean value of the random variables during the DSMC simulation, an appropriate 

probability sampling process is required [1, 4, 11]. 

The statistical error associated with the sampling procedure can be further categorized as type I 

and type II. In order to statistically analyze these errors, a null hypothesis [12] is defined as the 

DSMC samples belonging to the steady state. An incorrect rejection of the null hypothesis—not 

considering the samples that belong to the steady state—leads to type I error, which can be minimized 

by including more independent steady state samples. On the other hand, an incorrect acceptance of 
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the null hypothesis—considering the samples that do not belong to the steady state—leads to type II 

error, which can be minimized by accurately detecting the onset of the steady state and by starting 

sampling after completely reaching the steady state. 

Minimization of the type I error was already investigated in many previous studies on the DSMC  

[4, 13-18]. However, very few efforts have been directed to the type II error in the DSMC simulation. 

When the system properties vary continuously, sampling in the unsteady phase can lead to a wrong 

contribution to the steady state solution of the DSMC simulation. Therefore, it is of critical 

importance to determine precisely when to initiate a sampling for a steady state solution. 

Consequently, correctly identifying the termination of the unsteady phase, which is directly related to 

the type II error, can be used as the onset criterion for starting a sampling. This necessitates the 

concept of restarting sampling automatically in the DSMC simulation. 

In traditional DSMC methods, the number of time steps required to reach a steady state is 

specified by user as an input parameter [1, 19]. This adjustable parameter is basically estimated by 

considering the trade-off between accuracy and efficiency. However, designating more time steps will 

demand higher computational cost while premature initiation of sampling will compromise the 

accuracy due to the type II error. Hence, the conventional methods relying completely on the user’s 

input are not effective, since predicting the exact number of time steps to start a sampling is not only 

difficult but also highly problem-dependent. Moreover, the drawback of problem-dependency persists 

in an alternative method of estimating the number of required time steps by multiplying a constant 

value to the time required for the thermal information to traverse the simulated flow domain by means 

of acoustic waves [20].  

To overcome this shortfall, Bird [21, 22] proposed an automatic method for estimating steady 

state convergence on the basis of the variation of total number of simulated particle (i.e., the first 

component of the Boltzmann collisional invariants) throughout the simulation domain. However, the 

effect of variation of higher order collisional invariants (momentum and kinetic energy) were not 

considered, which led to inability of the method in the case of constant number of particles or in 

presence of highly unsteady regions.  Burt and Boyd [23] also proposed a method that tackles 

insensitivity of the Bird’s method to weak transient behavior in small regions of relatively low density 
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or recirculating flow. The method was mainly based on the variation of particle fluxes on the 

boundaries at two successive time steps, and introduction of the convergence criterion integrating the 

particle flux differences variance. The method, though benefited some saving in computational cost 

and simplicity of implementation, was found to suffer from the problem dependency and inability to 

deal with problems allowing scatter-induced fluctuations in the location of high gradient regions such 

as oblique shocks or shock-boundary layer interaction [23]. 

At present, a number of important issues still remain unsolved regarding developing an accurate 

and efficient steady state detection method. The main drawback of the existing non-automatic 

methods is that a great deal of knowledge and experience on the DSMC method and flow behavior are 

required in order to determine the exact number of time steps needed to start a sampling. Moreover, 

the previous automatic methods faces important drawbacks: the impossibility of application to 

problems with a constant number of particles in the domain, such as one dimensional (1-D) Couette 

flow, Fourier heat flow, and shock wave structure. Further, the method was ineffective when the flow 

characteristics were still evolving after the total number of particles had already reached an 

asymptotic value. Such situation can be found in external flows around an object with recirculating 

regions, flows containing separation regions, or highly localized regions involving a large variation in 

the density of gas. 

In this study, we present a probabilistic automatic steady state detection method on the basis of the 

statistical features of the gas particles that include the effect of the variation of the momentum and 

energy along with the number of particles. The method can be easily implemented in the current 

DSMC algorithms and applied to handle local recirculating flows or low energy regions without any 

difficulty. 

Furthermore, since each cell can be considered as an independent statistical sample cell in the new 

method, an effective strategy to apply the sampling process—in terms of the number of samples and 

times the sample is reset—specifically to local cells can be developed. This will be called variable 

sampling procedure or local steady state detection method. Note that the number of particles within 

the cell multiplied by the number of samples taken for the cell—the sample size—is a unique property 

of each cell which itself is an independent statistical population. In the previous methods, the idea of 
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using a different value of sample size to each cell was not fully developed, which led to significant 

degradation in computational efficiency. The main features, advantages, and drawbacks of the 

existing and new steady state detection methods are summarized in table 1 for a detailed comparison. 

Finally, in order to confirm the capability of the new method, two cases—the 1-D shear-driven 

Couette flow and the two-dimensional (2-D) high speed flow past a vertical wall—were extensively 

investigated. 

2. Steady State Detection Method 

2.1. Phase portrait analysis of the DSMC sampling 

In order to compute the macroscopic properties accurately, an efficient implementation of the 

probabilistic sampling process in the DSMC algorithm is essential. As explained in the Introduction, 

the type II error arising from incorrect acceptance of the samples that do not belong to steady state can 

be minimized by correctly identifying the termination of unsteady phase. Several possible statistical 

approaches for analyzing sampling process are available. Here, phase portraits of the sampling 

estimators and distribution of samples are considered to investigate the effect of incorrect inclusion of 

the samples that do not belong to steady state in sampling procedure. 

The phase diagrams of variables used in the DSMC sampling procedure are illustrated for a 

system (1-D Couette flow) with 2,000 particles per cell in Fig. 2. For the case in which variables are 

correlated, the cloud tends to form an elliptical shape as seen in Fig. 2 (b). Moreover, the portraits in 

phase ( x yC ,C ), (
2

x xC ,C ), (
2 2

x yC ,C ) show the evolution of system from initial state (marked in the 

figure as ‘start point’) to steady state. The points forming a cloud may be used as an indicator of 

steady state. For example, unsteady transition from initial condition is apparent in the phase portraits. 

In particular, the higher order phase portrait defined in the squared particle velocities (
2 2

x yC ,C ) in Fig. 

2 (c) provides the best illustration of transition phase. 

The phase portraits for different number of particles per cell are plotted in Fig. 3. As the number 

of particles decreases, the length of unsteady phase becomes shorter, and the steady phase cloud 

becomes larger, making it impractical to distinguish these two phases from each other. Therefore, 
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application of phase diagram for automatically detecting steady state convergence is not possible 

when the number of particles is not large enough.  

Figure 4 represents the distribution of samples from the statistical perspective for a system with 

different numbers of particles (Ni) per cell. From statistics, when the sampling procedure is free from 

errors and the sample size is large enough, the distribution function of samples is expected to be 

Gaussian.  However, Fig. 4 shows that, even for a system with as many as 100,000 samples, which is 

enough in most problems, the distribution of samples is not Gaussian. In particular, the distribution 

functions of samples in the momentum (Pi) and energy (εi) are shifted to the right as a result of 

inclusion of unsteady samples in the calculation—the type II error. To neutralize the effect of the type 

II error, more number of samples from the steady state will be needed. This is achieved in Fig. 4 (b) 

where the flow is sampled 10,000,000 times. The effect of the type II error on accuracy of the 

sampling procedure would be more critical in a system with a higher number of particles as can be 

seen in Fig. 4 (c). 

The distribution function of the DSMC sampling indicates that the influence of the type II error on 

sampling accuracy becomes more important as the number of particles increases. In addition, the 

length of the unsteady transition phase becomes longer as the number of particles increases. This is 

caused by increment of the solution resolution and reduction of the statistical uncertainty. However, 

though the analysis of the distribution of samples provides much useful information regarding the 

sampling procedure, it cannot be used as a convergence criterion for steady state detection.  This is 

because the generation of sample distribution functions is computationally expensive and the 

determination of deviation of a sample distribution from the Gaussian distribution is complicated. It is 

also due to the fact that the accuracy of the analysis of the distribution of samples is highly dependent 

on the number of particles. Hence, a new method to detect the onset of steady state by considering 

both the statistical characteristics of sampling and physical aspects of the problem is required.  

2.2. Probabilistic automatic reset sampling (PARS) 

This paper presents a new automatic method for detecting the onset of the steady state on the basis 

of the statistical features of the gas particles. We aim to develop a self-starter algorithm with no 
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dependency on flow geometry and irrespective of the number of simulated particles. The method is 

then expected to be capable of detecting the onset of the steady state even when the number of 

simulated particles remains constant. In order to achieve a probabilistic automatic reset sampling (or 

an automatic steady state detection), two distinctive approaches—global and local—are developed. 

2.2.1 Global steady state detection 

Global steady state detection (or reset sampling) is based on the observation that collisional 

invariants—the number of particles, momentum, and kinetic energy—are continuously changing in 

the unsteady phase. In the unsteady phase, even though the number of particles remains constant, 

other components of collisional invariants may still be evolving. This behavior is clearly 

demonstrated in Fig. 5 of the test case of the 1-D Couette flow simulation. As explained in Fig. 2, 

higher order phase portraits provide more useful information for steady state detection. Therefore, if 

we consider the second and third components of collisional invariants (momentum and kinetic energy), 

instead of the first component (number of particles), which is the case of Bird’s steady state detection 

method [21], a clear identification of the steady state is possible. In this (global) steady state detection 

method, three independent criteria corresponding to each of three collisional invariants can be derived. 

It is clear in Figs. 2 and 5 that variations of the number of particles, momentum and kinetic energy are 

bounded (with oscillations around the mean value) in the steady phase, while they are large in the 

unsteady phase. This statistical feature plays an essential role in the new automatic steady state 

detection method. 

In the PARS algorithm, two set of time intervals, corresponding to a large number of simulation 

time steps, are needed in order to decide whether restarting or continuing the sample process. As a 

consequence, two set of variables are needed to be employed through the decision process. The first 

set of information is the reference value that can be obtained from the solution itself, and is being 

updated every time when the sampling process is restarted. The other set of information is the 

expected mean value of the particle number, momentum, and energy.  In the PARS algorithm, the 

expected mean value, rather than instantaneous value, is used to calculate the desired properties. This 

method is adopted in order to avoid an inaccurate judgment about steady state and to take into account 

the statistical fluctuation of the properties in steady state. Hence, it is necessary to define a time 
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interval period after the mean value is calculated. The value of the time interval should be chosen 

carefully, since the application of mean value throughout time interval may result in the false 

detection of the start point of the steady state, if the start point is within the time interval. Time 

intervals in the range of 100 to 1000 time steps are found appropriate for most DSMC applications. 

Figure 6 describes the implementation of the new (global) steady state convergence detection 

algorithm in the existing DSMC method. First, the value of the total number of particles, momentum 

and kinetic energy are calculated based on the initial information. These values are then set as initial 

reference quantities. Next, the move and collision steps in the DSMC proceed. In contrast to the 

conventional DSMC algorithm, a steady state convergence detection module is called before sampling. 

In the convergence detection module, the collisional invariants are summed for all the particles in the 

simulation domain. The next step of the global PARS algorithm involves the calculation of expected 

averages and variance of collisional invariants according to the following relations [24, 25], 
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Here, θi, υi, εi are the sum of the number of particles, momentum (mν), and energy (mν
2
) with m and ν 

being the molecular mass and velocity. Ns is the total number of samples during the simulation. 

( )Var  and  are the variance and the expected mean average of the variable, respectively. Ni is the 

total number of particles at present sample step.  

One way to determine the standard deviation, sample means, and confidence intervals is to 

calculate them theoretically. Assuming a simple mono-component gas in a sample cell with constant 

volume [26], it is possible to define the theoretical variance and standard deviation of the collisional 

invariants. By considering a simple ideal gas, represented within the grand canonical ensemble, the 
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probability of finding the system with Ni particles can be determined by the Poisson distribution [1, 

27]. In most situations, a Poisson distribution function to model the unidirectional flux of particles 

crossing a plane is found fairly accurate approximation [23, 28, 29].  

With the assumption of the Poisson distribution function, the variance,
2

N , and standard deviation 

of the particles, N , can be calculated based on the statistics and probability theory [25], 

2 ,  N ref N refN N N      . (3) 

After defining the particle statistical properties, it is necessary to find the particle velocity and 

translational energy. The speed of the particles is governed by the Maxwell-Boltzmann distribution at 

equilibrium [1, 27, 30, 31] with the statistics defined as below, 
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where m, v, T, and kB represent the particle mass, velocity, Boltzmann constant and bulk temperature, 

respectively. The ( )f v  is the Maxwell-Boltzmann distribution function, and v  , 
2v  are the first 

and second moment of the velocity distribution function, respectively. The standard deviation of the 

particle velocity distribution function is denoted by v . The translational energy distribution, ( )f E , 

can also be derived from the particle velocity distribution function as follows,  

2
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By defining 1 Bk T , the kinetic energy distribution can be written as a chi-squared distribution 

function with three degrees of freedom [25],  
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2
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The standard deviation of the particle number N , momentum P , and kinetic energy E  can be 

calculated by considering (2), (3), (6) , and (11), 
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Here ( , )Cov  denotes the covariance of two random variables. The standard deviation of collisional 

invariants can also be calculated either empirically or theoretically in order to utilize in the calculation 

of the confidence intervals; 
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The next phase after computation of the expected averages and variance involves defining a restarting 

criterion based on the confidence intervals. The simplest way to define the reset criterion is to 

consider the variations of the number of particles, momentum, and energy with respect to the expected 

mean values as follows, 
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Here, , ,
ref ref refN P E    represent the standard deviation of the number of particles, momentum, and 

translational energy. The Zα stands for z-score (real constant) of a Gaussian distribution function 

which can be adjusted to make the tradeoff between accuracy and efficiency. If the variations of the 

number of particles, momentum, and energy are higher than pre-defined ranges, the sampling process 

should be reset. These criteria are conceptually simple and easy to code, and, at the same time, they 

allow a broad range of variations for the momentum and energy. However, they may not be practical 

in dealing with the local unsteady regions where the variations of momentum and energy in the 

system are small. Moreover, the momentum and energy do not necessarily follow a Gaussian 

distribution function, thus selecting the values of 
2

Z and 
3

Z  is not an easy task. In this regard, 

another reset criterion, based on significance test with the assumption of the negligible variations of 

particles, momentum, and energy variance at each time step, can be introduced. Here, rather than the 

absolute value of variance, a relative standard variation (coefficient of variation) of collisional 

invariants,  , is applied in order to integrate all three reset criteria into one, making it more sensitive 

to the momentum and energy variations during unsteady phase: 

1
min , ,i iE P

reset

i ii

a
E PN

  
   

    
 (15) 

where reseta  is a constant value (close to 1) that can be adjusted by user to make a trade-off between 

accuracy and efficiency. It is recommended to define value of reseta  for the particle, momentum and 

energy criteria individually. Therefore, the sampling process may not be reset due to small statistical 

fluctuations in the particle number, momentum and energy. The recommended range of this parameter 

is 1.0 4.0reseta    for most of the applications. The larger values lead to more speed up and less 

accuracy. The abovementioned relations are reduced to the following simple criterion:  

1.0 max( , , ),  min( , , ) 1.0 .Particle Momentum Energy Particle Momentum Energy      (16) 
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 In this expression in a range from 1.0  to 1.0 , the parameters  are defined as the ratio of 

collision invariants to their corresponding reference values: 

,  ,  .Particle Momentum Energy

ref ref ref

N P E

N P E

     
    (17) 

Here Nref, Pref, and Eref stand for the reference number of particles, momentum, and translational 

energy. Notice that the ratios of the averaged parameter to reference value are utilized in deciding 

whether or not the samples should be reset. The use of an averaged parameter, instead of each step 

values, in the nominator of the ratios makes it possible to avoid an unnecessary sample reset due to 

statistical fluctuations. 

2.2.2. Local steady state detection 

The sample size in the DSMC simulation is determined by the number of particles (N) and 

sampling times performed for a cell (NSPC). Since the cell is considered an independent statistical 

population in the DSMC, macroscopic properties of each cell can be calculated based on the sample 

information of the cell only, independent of other cells. Thus, each cell can have its own sample size, 

making it possible to develop the concept of local sampling with a variable sample size.  The variable 

sample size can be achieved in two ways: one, by using a different number of particles (in each cell) 

at each time step, and another by using a different number of time steps that each cell is sampled. In 

the conventional DSMC algorithms, the local sampling was possible only through the former, thereby 

completely overlooking the possibility of achieving higher computational efficiency through the latter. 

In order to fully utilize the latter type of local sampling, it is necessary to accurately detect steady 

state at each cell and then perform sampling for that cell individually. Figure 7 summarizes the 

concept of local reset sampling in comparison with the conventional sampling procedure and explains 

schematically how a significant saving in overall computational cost can be achieved by adopting the 

local reset sampling. 

Local steady state detection (or reset sampling) is based on a local variation of particles in each 

cell and there is no need of using the velocity and energy distribution functions; therefore sampling 

would start at each cell independently. Particles in the cell are assumed to follow the Poisson 

distribution function. This is the only assumption in the development of the local PARS method. First, 
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a time period corresponding to the number of samples,  , is defined to eliminate statistical 

fluctuations in the evaluation of the steady state at a cell. Therefore the algorithm can deal with the 

mean of the number of particles in a specific time interval rather than the instantaneous number of 

particles at each time step.  The next step is to define the confidence interval of valid fluctuation of 

the particles in each cell. According to the Cramer-Rao lower band and minimum variance unbiased 

estimation [12], the sum of the mean of samples is a sufficient and complete quantity for describing 

the mean of the Poisson distribution function. Hence, the mean of population ( N ) can be 

approximated using the maximum likelihood estimate, 

1 ,
i

i

N

N







 

(18) 

and the corresponding Poisson distribution may also be expressed as 

( )
( ) ,

!

R NN e
P R






 (19) 

where R represents the power of the mean of the distribution function, and  stands for the number 

of trials or samples. The variance and standard deviation of the mean of the population distribution 

can also be calculated as follows: 

2 ,  .N NN N    (20) 

In order to find the trigger point for restarting sample process in the PARS algorithm, it is essential to 

find a relation between the variations of the mean of the particles at two different time periods, and to 

calculate the rest margin. Therefore, it is necessary to obtain the confidence interval of the mean of 

the Poisson distribution function by employing the relation between the chi-squared and cumulative 

Poisson distribution functions [32, 33]. The following confidence interval provides the allowable level 

of particle functions in the steady state.  

   2 2
2 20.5 ,2 ,0.5 1 , 2 .n n   

    
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Here χ
2
(a,b) is a quantile function corresponding to a lower tail area (a) of the chi-squared distribution 

with b degrees of freedom. The α appearing in the first parameter of the chi-squared distribution is 

directly related to the confidence level of accuracy, 1-α, specified by user. 

Nonetheless, the calculation of a desired confidence interval range using (21) is rather 

complicated [34, 35]. An alternate approximate formula may be derived by noting the relationship 

between the chi-squared and gamma distribution functions, 

1 1
2 2[ ( ; ,1), (1 ; 1,1)],F n F n      (22) 

where F
-1

(a;b,1) is a quantile function of gamma with the shape factor of b, scale factor of 1, and 

lower tail area of a. This formula, however, turns out to be still computationally expensive. Thus, a 

more simplified formula of the confidence level can be obtained by the Wilson-Hilferty 

transformation as follows [36], 
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 (23) 

Here Zα/2 is the standard normal deviation with upper tail area α/2 and n represents the mean of 

number of particles in the cell (n= N̅a). Finally, based on this formula, the lower and upper limits of 

the confidence level are defined as follows, 
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 (24) 

In the local steady state detection algorithm, two successive time periods (each containing 

multiple DSMC steps) are used to investigate the onset of steady state. The mean of the number of 

particles in a cell, N̅a , is calculated at the end of the first period and is set as the reference parameter, 

Nref. Based on this reference value, the upper and lower limits of the confidence level are also 

calculated by using (24). Then, another mean number of particles in the cell, N̅b, is calculated at the 

end of the second period, and is checked to determine whether or not it is inside the confidence 

interval. If the N̅b is inside the confidence interval, it implies that the local cell already reached the 
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steady state. Otherwise, sampling should be reset and the N̅b is set as the new reference value. 

Consequently, the upper and lower limits of confidence levels are updated based on new reference 

value. The process is repeated until the N̅b is inside the interval. This completes the algorithm of the 

local steady state detection. 

3. Results and Discussions 

In order to confirm the capability of the new steady state detection method base on the automatic 

reset sampling, a benchmark problem, the 1-D shear-driven Couette flow is investigated. The Couette 

flow is defined as the flow trapped between two infinite, parallel, flat plates at x H   driven by the 

shear motion of one of the plates with a Mach number (M=1 in the present case), while the 

temperature of the walls is maintained constant (293 K in the present case). It is also assumed that the 

fluid moves in the y-direction only. The Knudsen number based on the characteristics length, i.e. the 

gap between plates, is set 0.25 in the test cases. The study on the simple 1-D Couette flow allows us to 

avoid the geometrical complexity and focus solely on the sampling procedure. Moreover, one of the 

main limitations of the existing methods is their inability to handle problems with a constant number 

of particles. Therefore, the 1-D Couette flow is ideal for evaluating the performance of various 

(existing and new) methods. 

Figure 8 shows the typical variations of various macroscopic properties at the central cell of the 

domain with respect to the number of sample steps. An important property, the total kinetic energy of 

the system, is also included for detailed comparison. In this no-reset simulation, all the macroscopic 

properties approach asymptotic values as the total kinetic energy level is stabilized. This is due to the 

fact that all the properties, including the kinetic energy, are directly dependent on the molecular 

velocity. 

Figure 9 shows the variations of various macroscopic properties with respect to the number of 

sample steps with and without applying the global PARS so that the effects of the global PARS may 

be clearly identified. When the PARS is active, the macroscopic variables in general tend to approach 

the final converged values with fewer samples taken in the simulation and, at the same time, less 

fluctuation around the true average values. However, the final solution will become identical for both 
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methods, and unsteady sampling effects will vanish, since very large number of samples is taken 

during the simulation. In particular, this feature is apparent for the properties of the density, pressure, 

temperature, v-velocity and shear stress. On the other hand, the x, z components of the particle 

velocity, and the heat flux—which is the function of all velocity components, including x, z 

components—do not respond as fast as the other macroscopic properties do. This is due to the 

peculiarity of the present 1-D Couette flow problem in which the macroscopic properties vary in the 

y-coordinate only.  In passing, it should be noted that fluctuations appearing near the converged 

values are generic in the DSMC and they will attenuate to negligible level once enough samples are 

taken. 

Figure 10 illustrates the effects of the number of particles on the total kinetic energy when no reset 

sampling is applied. First, since the total kinetic energy is the sum of the energy of all particles of the 

system, the system with different numbers of particles will possess different energy levels, as 

confirmed in Fig. 10 (a). Second, it can be observed that the standard deviation of the energy depends 

highly on the number of particles and the total kinetic energy exhibits highly oscillatory behavior, in 

particular, for the system with a small number of particles. Therefore, the instantaneous level of the 

total kinetic energy may not be suitable for detecting the steady state. Instead, the ratio of the average 

kinetic energy would be preferable, the behavior of which is shown in Fig. 10 (b). In contrast to Fig. 

10 (a) of the total kinetic energy, all the ratios for different numbers of particles collapse on a single 

curve.  

It is expected that the energy ratio should approach unity if both the average energy and the 

reference value belong to the steady state. As shown clearly in Fig. 10 (b), however, the energy ratio 

does not converge to unity when no reset sampling is applied, irrespective of the number of particles 

per cell. This is exactly why the reset sampling is required for accurately detecting the steady state. 

Figure 11 compares the ratio of the average kinetic energy with and without applying the reset 

sampling. It demonstrates that the energy ratio converges nicely to the expected value after some 

oscillations around unity. Note also that each peak represents the point at which the reset sampling is 

applied. 
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Figure 12 shows the variations of normalized momentum and kinetic energy with respect to the 

number of sample steps for two different numbers of particles. Each symbol represents the reset 

iteration point at which the global PARS is applied. It can be seen that the system with smaller 

number of particles reaches the steady state earlier. This can be explained as follows: in case of 

simulations with smaller number of particles, there may be only few particles in unsteady regions, 

leading to premature satisfaction of the steady state condition. On the other hand, the statistical 

properties in simulations with smaller sample size, i.e., simulations with less than 20 particles per cell, 

are contaminated with the large amount of statistical uncertainty, leading again to premature 

satisfaction of the criteria. 

In order to analyze the concept of local steady state detection in detail, the 2-D high speed flow 

past a vertical wall is investigated with and without applying the local PARS. This flow geometry is 

chosen because, while it is simple, it is nonetheless able to produce fairly rich flow features, such as 

gaseous compression, expansion, recirculation, and also low density regions behind the wall. Indeed, 

the vertical wall flow was suitable for verifying the concept of local PARS. Figure 13 compares the 

simulation results of conventional Bird’s and new local PARS algorithms at the Mach number 2.0 and 

the Knudsen number 0.04. The free-stream number density and temperature are set to be 
191.0 10  

and 300 K, respectively. The time step is chosen to be sufficiently smaller than the mean collision 

time in order to satisfy the time step constraint. Figure 13 (a) is obtained for the system with 

maximum 340 particles per cell by Bird’s conventional method in which the sampling procedure 

starts after all the sample cells converge to the steady state. On the other hand, Figs. 13 (b) and (c) are 

obtained by the local reset sampling method for the system with maximum 340 and 30 particles per 

cell, respectively. 

The comparison of three Mach number contours in Fig. 13 indicates that the macroscopic 

properties are not degraded even with fewer iteration, in the case of the local steady stated detection 

method. The comparison of cases with different numbers of particles (Figs. 13 (b) and (c)) reveals that 

the new method works successfully even for the system with few particles as small as 20. It can also 

be observed that the efficiency of the model decreases with a decreasing number of particles per cell. 
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Moreover, due to a large confidence interval for the system with a small number of particles, the 

unsteady regions are not fully resolved. However, considering the fact that at least 20 particles per cell 

is necessary for a proper DSMC simulation, there are, in principle, no limitations for the method. In 

addition, it can be seen in the contours of NSPC (i.e., the number of samples at each cell) that the steady 

state is reached upstream from the vertical wall earlier than in other regions, while downstream 

behind the vertical wall remains highly unsteady with a smaller number of samples taken. Note also 

that the contours of the samples in the local reset sampling method not only detect local unsteady 

regions but also help in determining the ideal size of the computational domain, since the flow reaches 

the steady state from the far-field earlier than other regions.  

Figure 14 shows the steady state convergence trend of the local reset sampling for different 

numbers of particles per cell. In this figure, the number of cells that is still in the unsteady phase is 

reported before the steady state is reached. The number of unsteady cells decreases as the simulation 

proceeds. While the majority of cells reach the steady state in less than 2,000 iterations, few cells (less 

than 300 hundreds) need much more time to converge to the steady state. In addition, the system with 

fewer particles per cell converges to the steady state faster, which is consistent with the result 

obtained from the global steady state detection method. This is again due to the increased confidence 

interval in the system with fewer particles.  

Finally, Fig. 15 compares the computational cost of conventional, global and local PARS steady 

state detection methods in the 2-D high speed flow past a vertical wall. The relative CPU time is 

obtained by normalizing the computational time based on the non-automatic conventional steady state 

convergence method. For this calculation, the same number of iteration, 10,000, is used for NSPC in the 

global and local PARS methods and the number of samples in the conventional method. In the case of 

the local steady state detection method, the sampling procedure starts when 99% of the sampled cells 

converge to the steady state. The results show that application of the global steady state detection 

method leads to 6.4%, 6% and 14% gain for systems with a maximum of 340, 170, and 30 particles 

per cell, respectively. These gains are due to the automatic detection of steady state convergence over 

the predefined (non-automatic) start of sampling. 
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On the other hand, application of the local steady state detection method leads to the substantial 

gain of 30%, 32% and 36%, respectively. These gains are possible by the combined effects of the 

automatic detection and local reset sampling. Note also that the local reset sampling—easily 

implementable on parallel platforms—outperforms the automatic detection of steady state 

convergence in computational savings, 36% versus 14%, in the case of a maximum of 30 particles per 

cell. This comparison states that the global steady state detection method outperforms the traditional 

steady state method; however, it is not as efficient as the local steady state detection method. This is 

because, in the global detection method, the sampling process is postponed until the whole domain 

reaches the steady state condition, whereas, in the local detection method, the sampling process starts 

immediately for the cells that satisfy the steady state condition.   

4. Conclusions 

Owing to significant efforts in algorithm development and the rapid progress in computing power 

in past decades, the DSMC is now established as a primary workhorse to computationally solve the 

kinetic Boltzmann equation and is routinely being applied to various flow problems of scientific and 

technological interests. However, as is common when the laboratory level research of computational 

models enters the real world, there are several hurdles for the DSMC practitioners to overcome before 

they can use it for complicated applications in an effective way. 

One such example is the case of how to determine precisely when to initiate (or stop) the sampling 

for obtaining a steady state solution. In the case of lacking fully automatic robust methods to handle 

such problems, effective and uninterrupted use of the DSMC is achievable after many trial and errors 

for a considerable period of time. Moreover, as applications of the DSMC diversify, there is 

additional need to handle challenging boundary conditions such as adjusting the pressure at a 

pressure-outlet zone of an air intake in order to meet the desired mass flow rate, demanding the 

capability of the user-input-free black-box style like recent commercial CFD codes. 

The main goal of the present study was to propose an ingenious method based purely on the 

statistical features of the gas particles as a step toward developing a robust fully automatic steady state 

detection method. The key concept was built upon automatic restarting sampling to minimize the type 
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II error caused by incorrect acceptance of the samples that do not belong to the steady state. In order 

to investigate in detail the effect of incorrect inclusion of samples, phase portraits of the sampling 

estimators and distribution of samples were considered. The higher order phase portraits were found 

to provide the best illustration of the transition phase. However, though the phase portrait analysis 

provided much useful information regarding the sampling procedure, we judged it not applicable to 

deriving a robust convergence criterion for steady state detection, primarily due to the fact that the 

accuracy of the phase portrait analysis is highly dependent on the number of particles. 

On the basis of the observation that the Boltzmann collisional invariants are continuously 

changing in the unsteady phase, new fully-automatic global and local steady state detection methods 

were developed. The global steady state method is based on a relative standard variation of collisional 

invariants, enabling it to be more sensitive to the momentum and energy variations during the 

unsteady phase. To verify the capability of the new method, the 1-D shear-driven Couette flow was 

extensively investigated. It was shown that, with the new method, the macroscopic variables tend to 

approach the final converged values with fewer samples taken in the simulation. 

Moreover, by recognizing the fact that the cell in the DSMC can be considered an independent 

statistical population, the local steady state method based on local variations in the distribution 

function of particles at each cell was developed. A simple formula based on the Wilson-Hilferty 

transformation was derived to provide information on the confidence interval for the reset sampling 

procedure. To verify the concept of local steady state detection, the 2-D high speed flow past a 

vertical wall was also investigated. It was shown that the local method works successfully even for the 

system with few particles as small as 2. Even though the application of local PARS algorithm was 

reported only for external supersonic flow in the present study for the sake of simplicity, it is 

applicable for internal and external low speed flows as well (for example, lid-driven cavity flows). 

Because the present method is based on statistical variation of the particles in a sample cell, not 

macroscopic field properties, the local PARS algorithm is expected to perform properly for all speed 

regimes. Nonetheless, the efficiency of the method in low speed flows may depend highly on the 

number of particles per cell and speed of information transition in the computational domain. In case 

of lid-driven cavity flow, the local steady state detection method turned out to lead to the gain of 8.5% 
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compared to the traditional steady state counterpart. The decrease of the gain may be explained by the 

fact that, due to higher statistical fluctuations present in low speed flow conditions, larger number of 

simulation particles is required for accurately locating the unsteady regions. 

In summary, owing to the combined effects of the automatic detection and local reset sampling, 

the local steady state detection method was found to yield a substantial gain of 30-36% for the 

problem studied. Interestingly, the local reset feature was found to outperform the automatic detection 

feature in overall computational savings. This suggests that further potential saving in computational 

cost may be made by refining the local reset sampling concept. 
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Table 1. A summary of steady-state detection methods for the DSMC method 

Methods Features 

Conventional non-automatic method [1] 

 Simple concept 

 User input necessary 

 Problem-dependency 

First automatic method [21] 

 Detection based on variation of the total number of particles in the domain 

 Free from the user input 

 Not applicable to local steady-state detection  

 Difficulty in handling highly unsteady regions (i.e., recirculating flow) 

Automatic method based on boundary 

properties [23] 

 Detection based on maximum local time variation in outward-directed number flux along the 

boundaries of the simulation domain and Skellam distribution 

 Free from the user input 

 Not applicable to local steady state detection 

 Large interval time step requirement 

New automatic method – global 

 Detection based on the statistical variation of collisional invariants and chi-square 

distributions of particle energy 

 Free from the user input 

 Applicable to problems with a constant number of particles in the domain 

 Not applicable to local steady state detection 

New automatic method – local 

 Detection based on the local variation of particles in the cells 

 Free from the user input 

 Capable of detecting highly local unsteady regions 

 Potential application in parallel codes 

 Substantial computational saving 
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Fig. 1. Computational errors, including the statistical error, in the DSMC simulation. 
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Fig. 2. Phase portrait of random variables in the DSMC without the reset sampling (2,000 particles per 

cell). Among 15 possible combinations of variables ( x y zC ,C ,C ) and (
2 2 2

x y zC ,C ,C ), only 3 representative 

cases are plotted. 
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(a) 20 particles per cell (b) 200 particles per cell 

 

 
(c) 2,000 particles per cell 

 

Fig. 3. Effect of the number of particles on the phase portrait diagram. The portrait (with 

enough number of particles) in (
2 2

x yC ,C ) is suitable for detecting the steady-state. 
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(a) N=200 and 100,000 samples 
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(b) N=200 and 10,000,000 samples 
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(c) N=2,000 and 100,000 samples 

 

Fig. 4. Distribution of samples from the statistical perspective for systems with different 

numbers of particles per cell and samples. 
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(a) 

 
(b) 

 
(c) 

 

Fig. 5. Variations of collisional invariants in the DSMC simulation with a constant 

number of particles (the one-dimensional Couette flow problem); (a) total number of 

particles, (b) velocity, and (c) energy. 
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Fig. 6. Implementation of the new (global) automatic steady state detection algorithm in the 

existing DSMC method; (a) conventional DSMC algorithm, (b) additional algorithm for 

automatic detection. 
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Fig. 7.  Explanation of the core concept of the local reset sampling and how a saving in overall 

computational cost can be achieved by adopting the local reset sampling in comparison with the 

conventional sampling procedure. 
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Fig. 8. Convergence behavior of macroscopic properties (by the broken lines) versus the number of 

sample steps. The total kinetic energy of system by the solid lines is also included for comparison. 
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Fig. 9. Comparison of convergence behavior of macroscopic properties with (by the broken lines) and 

without applying the global PARS (by the solid lines). 
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(b) 

 

Fig. 10. The effect of the number of particles; (a) total kinetic energy; (b) ratio of the average 

kinetic energy. 



35 

 

 

 

 

 
Fig. 11. Comparison of the ratio of the average kinetic energy with and without applying the 

PARS (Nper cell=20). 
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(a) 

 
(b) 

Fig. 12. Reset iteration number‒at which the sampling procedure is reset‒for different 

numbers of particles; (a) normalized momentum; (b) normalized energy. 
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Fig. 13. Verification of the variable sampling procedure (i.e., local sampling) in two-

dimensional DSMC problem for the system with different numbers of particles per cell; (a) no 

variable (conventional Bird) sampling (a maximum of 340 particles per cell); (b) variable 

sampling (a maximum of 340 particles per cell); (c) variable sampling (a maximum of 30 

particles per cell). NSPC denotes the number of samples at each cell. 
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Fig. 14. Steady state convergence trend for two-dimensional benchmark problem (with the 

local reset sampling). 
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Fig. 15. Comparison of conventional, global, and local steady state detection methods in 

terms of computational cost for two-dimensional benchmark problem. 

 

 


