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ABSTRACT 

Discontinuous Galerkin methods for the second-order Boltzmann-

based hydrodynamic models 

Abolfazl Karchani 

Department of Mechanical and Aerospace Engineering 

Graduate School, Gyeongsang National University 

Supervised by Prof. Rho Shin Myong 

 

Moments of the Boltzmann kinetic equation can be obtained by multiplying 

the classical Boltzmann equation with the microscopic quantity and integrating 

the product over all velocity space. In the thermal equilibrium state, the first five 

moments of the Boltzmann equation reduce to the closed nonlinear hyperbolic 

system, called as compressible Euler system in which collisional terms and all 

of the high-order terms vanish due to Maxwell distribution function and 

collisional invariants. 

In this study, discontinuous Galerkin (DG) methods were first employed for 

solving the Euler system in order to obtain the solution of the one- and two-

dimensional Riemann problems. The basic structure of this hyperbolic system, 

such as contact discontinuity, shock wave, and rarefaction wave, was studied 

numerically. Various limiters and numerical flux functions were examined to 

capture the discontinuities sharply in steady and unsteady conditions. Although 

modern DG method has been successfully applied for solving the Euler equation, 

the validity of the Euler equation is restricted to equilibrium state and it is not 

valid for non-equilibrium flows.  

In order to investigate non-equilibrium gas flows, a new set of DG methods 

based on mixed DG-framework are developed for solving the classical Navier-

Stokes-Fourier (NSF) and second-order Boltzmann-based equations. The final 

judgment on the accuracy of the computational models is obtained through a 

rigorous study of verification and validation (V&V). The NSF and second-order 



 

xiii 

 

Boltzmann-based models are compared with solution of DSMC and experiments 

by considering various problems. DG methods are comprehensively verified and 

validated for steady-state and unsteady transient flow problems as well as smooth 

and stiff solutions of the conservation laws. The analytical exact solutions of 

NSF in the shock wave structure are considered as a verification study on 

conservative, primitive, and non-conservative variables. The error norm analysis 

is extensively used to examine the performance of various limiters, including a 

new differentiable slope limiter, and numerical fluxes in DG framework.  

The accuracy of finite volume method and DG method in capturing flow 

structure is also examined. A self-contained summary of numerical 

implementation of various limiters, numerical flux functions, and boundary 

conditions is provided for pedagogical purpose. Further, influence of curved 

boundaries on the accuracy of the Euler and NSF solutions is investigated at 

various Reynolds numbers. It is shown that, as the Reynolds number decreases, 

the numerical artifacts produced by linear mapping of curved boundaries 

decreases. In addition, the three-dimensional Maxwell slip boundary conditions 

are provided for arbitrary geometries. Efficient numerical methods for solving 

non-linear implicit algebraic equations arising from the second-order 

Boltzmann-based constitutive relations are described, and the solutions of the 

constitutive relations are analyzed in detail. 

The computational cost of the first-order Boltzmann-based model (NSF) 

and nonlinear coupled constitutive relation (NCCR) solvers is investigated in the 

serial and parallel frameworks. It was shown that the computational cost of the 

NCCR solver behaves nonlinearly with respect to the number of elements, due 

to the dependence of the number of iterations of the NCCR solver on the flow 

structure and the degree of thermal non-equilibrium. Finally, a super-parallel 

performance of a mixed explicit discontinuous Galerkin method is reported for 

the second-order Boltzmann-based nonlinear coupled constitutive models of 

rarefied and microscale gases. 
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초록 

(Abstract in Korean) 

2차 볼츠만 기반 Hydrodynamic 모델에 관한 Discontinuous 

Galerkin 기법 

아볼파즈 카르차니  

경상대학교 공과대학 

기계항공공학과 항공우주 전공 

지도교수 : 명 노 신 

볼츠만 방정식의 모우멘트는 볼츠만 방정식에 미시변수를 곱한 다음 모든 속도 공간에 대

해 적분하여 유도된다. 유동이 열평형 상태의 경우, 볼츠만 방정식의 처음 다섯 개의 운동량은 

압축성 오일러 시스템으로 불리는 닫힌 비선형 쌍곡선 시스템을 이루게 된다. 오일러 시스템

에서는 물리학적 보존법칙 및 평형상태에 의해서 충돌 적분항이 없어진다.  

본 연구에서는 먼저 오일러 시스템의 1차원, 2차원 Riemann 문제의 해를 구하기 위해 DG 

기법을 연구하였다. 접촉 불연속, 충격파, 팽창파 등의 쌍곡선 시스템의 기본 구조를 수치적으

로 분석하였다. 정상 및 비정상 상태에서 불연속면을 정확하게 계산하기 위해 다양한 Limiter

와 Numerical Flux 기능을 비교하였다. 최신 DG 기법이 오일러 방정식을 해석하는 데는 성공

했지만, 오일러 방정식의 타당성은 평형 상태로 제한되어 있으며 비평성 유동에는 유효하지 않

다.  

비평형 기체 유동을 해석하기 위해 고전 Navier-Stokes-Fourier (NSF) 및 2차 볼츠만 기

반 방정식에 적용할 수 있는 Mixed DG 구조를 기반으로 하는 일련의 신규 DG 기법을 개발하

였다. 전산 모델의 정확성에 대한 최종적인 판단은 엄격한 Verification 및 Validation (V&V) 과

정을 통하여 얻을 수 있다. 1차 및 2차 볼츠만 기반 모델을 다양한 문제에 적용한 다음, 그 결

과를 DSMC 예측결과 및 실험 데이터와 비교하였다. 개발된 DG 기법은 정상 상태 및 비정상 

Transient 유동 문제와 함께 보존법칙의 Smooth 및 Stiff 해를 고려하여 심층적으로 검증하였

다. 충격파 내부구조에 대한 NSF의 해석해를 이용하여 보존, 원시, 비보존 변수에 대한 검증 

연구를 수행하였다. 그리고 신규 미분가능 기울기 Limiter를 포함한 각종 Limiter와 Numerical 

Flux의 성능을  Error Norm 분석 기법을 사용하여 심층적으로 분석하였다. 

유한체적과 DG 기법의 정확성을 분석한 다음, 다양한 Limiter, Numerical Flux 함수, 경계

조건을 실제 적용하는 방법에 대해 정리하였다. 다양한 레이놀즈 수에서의 오일러, NSF 방정

식의 해에 대한 곡선 경계의 영향을 분석하였다. 레이놀스 수가 감소함에 따라 곡선 경계의 선

형 Mapping에 의해 생성되는 수치적인 오류가 감소하는 것으로 나타났다. 또한 임의의 기하

학적 형상에도 적용할 수 있는 3차원 맥스웰 Slip 경계 조건을 제시하였다. 2차 볼츠만 기반 구

성 관계식에서 유도된 비선형 음함수 대수 방정식을 효율적으로 해석하는 수치기법을 묘사한 

다음 해당 해들을 물리적으로 상세히 분석하였다. 

1차 볼츠만 모델 (NSF) 과 비선형 결합 구성 관계식 (NCCR) Solver의 계산 비용을 직렬 

및 병렬 코드 경우에 대해 분석하였다. NCCR Solver의 계산 비용은 NCCR 계산의 반복 횟수

가 유동 구조 및 열적 비평형의 정도에 의존하기 때문에 계산의 수에 비선형 거동하는 것으로 

나타난다. 마지막으로 희박 및 마이크로 기체에 관한 2차 볼츠만 기반 비선형 결합 구성 모델

에 대해 개발된 Mixed Explicit DG 기법의 초 병렬 성능을 묘사하였다. 
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CHAPTER 1.  Introduction 

Francis Bacon (1561-1628): 
“I found that I was fitted for nothing so well as the study of Truth; as having a nimble 

mind and versatile enough to catch the resemblance of things (which is the chief point), 

and at the same time steady enough to fix and distinguish their subtle differences...” 

 

1.1 Objectives  

As flow deviates from equilibrium state, classical continuum description of fluid 

may not provide an accurate information about the flow.  Hence, application of kinetic 

theory, Boltzmann kinetic equation, or methods based on simplified kinetic theory are 

necessary to describe the flow with an acceptable level of accuracy. This work was 

motivated to elaborate the gas flows at equilibrium and not-far-from-equilibrium states 

using classical and non-classical constitutive relations derived from the Boltzmann 

equation, so-called Boltzmann-based models. The Boltzmann-based models considered 

in the present study are derived from Eu’s hydrodynamics equations [1-3]. The resulting 

highly non-linear partial differential equations are solved using advanced mathematical 

and computational methods. 

Along with the aforementioned objective, an attempt is made to describe the 

computational schemes used for solving Boltzmann-based models in deep level. 

Accordingly, detailed information in the development of a modal DG method for one-, 

two-, and three- dimensional systems, and application of various numerical flux 

functions, spurious Gibbs controllers, and boundary conditions are provided. As the 

DG method is still under development and most of the available books on this topic 

focus on the mathematical aspect, I aim to provide a self-contained material with 

comprehensive explanation on both numerical and mathematical aspect of the DG 

methods to help the researchers in the development of advanced high-order numerical 

schemes.   

1.2 Outlines  

The remaining part of the thesis is organized in eight chapters. Chapter 2 addresses 

the basics of the kinetic theory. In Section 2.1, the definition of the equilibrium and 
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non-equilibrium processes is explained, and gas flows are categorized based on the 

level of non-equilibrium. The physical constraints and limitations of continuum theory 

and kinetic theory are discussed in Section 2.2. Approximation of mean free path, the 

definition of microscopic and macroscopic properties based on phase density 

distribution, and description of the Boltzmann kinetic equation are discussed in 

following sections of Chapter 2.  

Chapter 3 is split into three parts; derivation of Boltzmann-based models, the 

numerical methods for solving algebraic constitutive relations, and explanation of the 

physics of the Boltzmann-based constitutive models. In Chapter 4, the development of 

a modal discontinuous Galerkin method for one-, and multi-dimensional system is 

presented. The presentation starts with introducing basics of numerical analysis and 

moves to reviewing first-order, and high-order numerical schemes. Afterwards,  

categories of spectral methods and difference of continuous and discontinuous Galerkin 

methods are reviewed. Later, the efficient discretization of a problem in space and time 

based on discontinuous Galerkin formulation is discussed in detail.  

In Chapter 5, special attention is paid to verification of DG methods using stiff and 

smooth solution of Euler, and Navier-stokes-Fourier (NSF) equations. A summary of 

the trouble-cell-indicators, spurious limiter functions, and positivity preserving 

schemes are provided. A detail explanation on the discretization of the viscous and 

inviscid flux functions and a performance analysis on the order of accuracy of DG 

method using several viscous and inviscid flux functions is provided. In the end of 

Chapter 5, the importance of curvature boundaries for Euler and NSF equations is 

discussed, and general information on conventional boundary conditions for studying 

rarefied gas flows is provided. 

Chapter 6 deals with verification and validation of DG methods for one-, and multi-

dimensional problems. Various benchmark problems were solved and then their 

numerical results are compared with experiments, DSMC, and other numerical 

solutions. In Chapter 7, the new modal DG solver is employed for solving rarefied and 

microscale gas flow problems and results of Boltzmann-based models are compared 

with DSMC method. Chapter 8 provides detailed information of parallelization of DG 

methods using SPMD method and the computational cost of Boltzmann-based models 

using serial and parallel solvers. Finally, in Chapter 9, outlook on further development 

in the line of the present study is discussed. 
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CHAPTER 2. Kinetic theory of gases 

Albert Einstein (1879-1955): 

”If the facts don’t fit the theory, change the facts.” 

2.1 Classification of flow regimes 

2.1.1 Traditional flow classification 

Knudsen number is a dimensionless parameter, defined as the ratio of the molecular 

mean free path, λ, and a characteristic length, traditionally used to classify gas flow 

regimes. The value of Knudsen number was commonly served as the primary parameter 

to determine the degree of rarefaction and the degree of validity of Boltzmann-based 

models. 

 

 

Figure 2-1 Traditional classification of the gas flow based on Knudsen number 

 

As it is shown in Figure 2-1, the flow is commonly labeled as continuum 

(hydrodynamics), slip, transition, and free molecular regimes [1, 4]. Although this 

classification has been used widely in the high-speed rarefied community, it may not 

be suitable for categorizing flow regimes in general form. According to Buckingham's 

π-theorem [5] and Bridgman's principle [6], there are at least two parameters required 

for describing a simple monatomic gas flow in continuum fluid mechanics. Due to this 

fact in fluid mechanics, flow is usually classified based on the Reynolds number and 

velocity of the flow, as it is shown in Figure 2-2 [7, 8]. In order to elaborate the gas 

flows in all flow regimes from equilibrium to highly non-equilibrium states, it may be 

necessary to re-categorize the flow regimes based on the level of deviation from the 

equilibrium state [9, 10].  
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Figure 2-2 Approximate spectrum of Reynolds number versus velocity of objects or fluids 

for various systems2  

To classify gas flows based the distance from the equilibrium state, it is important 

to know the physical meaning of the equilibrium, local equilibrium, and far from 

equilibrium state. In this section, the difference between the equilibrium and non-

equilibrium conditions are provided in detail to proceed the section and introducing a 

classification of the flow regimes based on the dimensionless variables.   

2.1.2 Equilibrium condition 

A macroscopic system preserves some ‘memory’ of their recent history. Nonetheless, 

the memory eventually fades out and the system likes to descend to very simple state 

which is independent of its specific history. In some systems, the evaluation toward the 

simple state takes very short time, while for other systems it can be very slow. Although 

the evaluation time may be different for different systems, in all systems, there is an 

inclination to progress toward states in which the macroscopic properties are 

determined by intrinsic parameters and not by formerly applied external forces [11]. 

These simple terminal states are called equilibrium states, and thermodynamics aids to 

describe a system from this static ‘equilibrium’ states to which the systems eventually 

evolve. 

                                                 
2 Adapted based on Lissaman 1983, and Glazner 2014. 
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A system is indeed in an equilibrium state when its potential is located in the 

minimum level and no change in the intensive parameters be observed, and when it is 

isolated from its surroundings. Note that, changes in a system may become time 

independent after a transient period and this condition is called steady state; however, 

it does not guarantee that the system is in the thermodynamics equilibrium state.  

A system is considered to be in a thermodynamic equilibrium state when it is in 

thermal-, mechanical-, electrical-, and chemical equilibrium. The number of parameters 

required to characterize a thermodynamic equilibrium state may increase based on the 

level of the complexity of the interested closed system. The mechanical equilibrium 

means that all forces in the interior of a closed system or between a system and its 

surroundings are equally distributed and balanced. The chemical equilibrium states that 

there is no spontaneous change in chemical components of a system. The thermal 

equilibrium means that all modes of the energy including translational, rotational, 

vibrational, and electrical modes are equal and all energy in a system is equally 

distributed between all the modes [11-15].  

In general, there are two kinds of thermodynamic equilibrium, namely global and 

local thermodynamic equilibrium in which energy, force, and a number of moles 

exchanges between systems are controlled by intensive parameters. In global (absolute) 

thermodynamic equilibrium, all interested intensive parameters are homogeneous in 

every part of a system and all the macroscopic intensive quantities have ceased to 

change during time evolution. On the other hand, in local thermodynamic equilibrium, 

the intensive quantities are varying locally and slowly such that the process occurs in 

times long compared to relaxation time evalutiont   for any point in space and time. 

Therefore, the system being allowed to come into a new equilibrium state at each step 

and one can assume a thermodynamic equilibrium in some neighborhood about that 

point. The whole system does not require to be stationary when it is placed in local 

thermodynamic equilibrium. Instead of having a constant temperature throughout the 

system, each location of the whole system may have a specific temperature. 

Nonetheless, the diversity of temperature should be such that temperature at each small 

locality of system changes slowly enough to essentially sustain its local Maxwell–

Boltzmann distribution of molecular velocities.  
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2.1.3 Non-equilibrium condition 

Non-equilibrium process is an inhomogeneous and time-dependent process that 

occurs: in open systems, in the irreversible transformations, and in the transition 

between equilibrium states. A proper description of these processes necessitates values 

of the properties at all locations in the system. The detailed description of non-

equilibrium processes is more complex than the description of quasi-static processes. 

A non-equilibrium process is an irreversible process that connects two or more 

homogeneous equilibrium states. When the intensive parameters are varying 

sufficiently fast and the process occurs in times short compared to relaxation time

evalutiont  the system is not in an equilibrium state.  The state of the system is placed 

in between of two equilibrium states while it is deviating from them considerably. 

When a system that is in a non-equilibrium state, discrepancies and inconsistencies 

come into the formalism and predicted results are at difference with experimental 

observations [11, 16]. This failure of the classical theories is utilized by the 

experimentalist as an inductive criterion for the detection of non-equilibrium states. In 

this situation, a more incisive quantum statistical theory and microscopic analysis of 

process usually deliver valid reasons for the failure of the system to attain equilibrium 

[11].  

2.1.4 Near-equilibrium condition 

A class of non-equilibrium processes deals with systems that are only very slightly 

deviated from equilibrium states are called the near-equilibrium state processes. In a 

system at near-equilibrium state, the intensive parameters change slowly, but not 

sufficiently to molecular velocity distributions be described with Maxwell-Boltzmann 

distribution. A time required for evaluation of a near-equilibrium process is in the same 

order of magnitude of the relaxation time evalutiont  . At near-equilibrium state, the 

response of the system can be explained based on the classical linear theory by 

assuming that deviation from equilibrium state is negligible or at least it is very small 

[17].  

http://en.wikipedia.org/wiki/Linear_response_theory
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2.1.5 Flow classification based on degree of non-equilibrium 

When the variation of the intensive parameters in a system is considerably large, the 

assumptions based on the definition of the intensive parameters in a system breaks 

down, and the system will not be in global or local equilibrium state.  

Introducing a general criterion to indicate the level of deviation from equilibrium is 

very challenging, and it is an open business in kinetic theory[10]. In the present section, 

it is tried to summarize the breakdown parameters very briefly by considering different 

prospective of the breakdown parameters based on thermodynamics, continuum theory, 

and kinetic theory. 

According to the statistical thermodynamics, the process deviates from equilibrium 

state 1evaluationt , when the evaluation time evaluationt  is not sufficiently larger than the 

relaxation time  . The first way comes to mind for measuring the degree of non-

equilibrium is to measure the ratio of variation of these two time scales. From kinetic 

theory, it is known that the relaxation time is equivalent to mean collision time

thermalc  . The mean collision time can be defined as a function of free stream mean 

free path and mean thermal speed of the particles 8thermal Bc k T m . However, in 

contrast to relaxation time, characterizing the evaluation time is not easy. The relaxation 

time is in the order of the time required for the rarefaction to propagate across a system. 

whereas, the evaluation time required for reaching to an equilibrium state depends on 

several parameters including; the initial deviation from the equilibrium state, the 

geometry, and material [16]. For instance, change of heat or temperature at boundary 

of a system has diffusive nature and it diffuses slowly in the system, therefore, 

evaluation time is so slow for this phenomena. On the other hand, the propagation of 

the pressure change occurred at boundary of a system is very fast since pressure waves 

transfer information into the system with speed of sound. In addition, it is not possible 

to exactly determine the evaluation time for a non-equilibrium process in which 

intensive properties change so fast and there is no time for the system to reach 

equilibrium state during the process. Now the question is how to measure the level of 

non-equilibrium in an aero-thermodynamic process? 

One way to estimate the level of departure from equilibrium is to approximate the 

value of the evaluation time, and relaxation time based on either microscopic or 

macroscopic properties. The simplest (and the most general) criterion for measuring the 
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level of non-equilibrium is to calculate Knudsen number. The Knudsen number is the 

ratio of the relaxation time to the evaluation time in which the evaluation time is 

approximated by assuming that the intensive parameters inside a system with 

characteristics length of L  changes with the rate of the average thermal particle speed. 

Smaller Knudsen number means slower thermodynamic process, and larger Knudsen 

number shows larger deviation from equilibrium state as the evaluation time is much 

smaller than the relaxation time. 

,
evaluation

Kn
L t

 
    2-1 

where the relaxation time is equal to 1 , total rn c c   the mean distance traveled 

by a particle between collisions is , total rc n c  and the evaluation time is 

.evaluationt L c It is obvious that this approximation may not be quite appropriate and 

sufficient to measure the level of non-equilibrium for the process with time evaluation 

with rate solver than thermal velocity.  

There are two commonly used parameters in rarefied gas flow, namely Knudsen 

number, and speed ratio /uS c . These parameters can be related to fluid dynamic 

dimensionless parameters due to the relationship between the molecular transport 

properties and mean collision time. For instance, the first coefficient of viscosity, 

defined as 
2 2 c p   , is a function of the mean collision time of the system 

which shows high potential for detecting the degree of non-equilibrium [10]. There are 

numerous ways to approximate the value of these two time scales; however, a few of 

them which has been often used in the literatures are studied in here. 

Bird [4, 18] introduces a breakdown parameter based on new length scale definition. 

Therefore, the evaluation time is approximated based on the gradients of the intensive 

parameters rather than the magnitude of those intensive parameters. This breakdown 

parameter  d

dx
B

Kn 

  considers the flow in local equilibrium condition when 

0.1
B

Kn  . 

By combining the Bird’s breakdown parameter with Damkohler number of chemically 

reaction flows, a rarefaction parameter defined as the average number of collisions per 

molecule during the time flow passes the body, can be represented as  
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2

.
Reevaluation flow

M
Kn M

t t

 
     2-2 

Tsein’s parameter, suggested in 1946 as a non-equilibrium criterion [9], was 

established by replacing the characteristics length scale L  of the system with the 

thickness of boundary layer of the body ReL LL  . In this breakdown parameter, 

the evaluation time is approximated by 25 2evaluation reft L u  . The Tsein’s parameter is 

related to Mach number and Reynolds number by ReM . The Bigger value of 

Tsein’s parameter indicates a higher degree of rarefaction and larger distance from an 

equilibrium state as it is shown in Figure 2-3. This parameter can predict the degree of 

non-equilibrium fairly for high-speed flow problems. However, the disadvantage of this 

parameter is revealed when Reynolds number is very low and Re 1M  . It has been 

shown that this parameter reduces into classical Knudsen parameter (Eq. 2-1) for very 

low Reynolds number values[10].  

 

Figure 2-3 A classification of the flow regime based on Tsein parameter 3 

Alternatively, it is possible to show that the rarefaction parameter is 

 shear stress pressure  and it is related to the square of the Tsein’s parameter [10]. A 

                                                 
3 Adapted based on Tsein 1946, and Macrossan 2006. 
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dimensionless parameter called N
  is defined to link hydrostatic pressure and viscous 

forces as 

2

.
Re

M
N


   2-3 

Classification of the flow regimes based on this parameter is shown in Figure 2-4. It is 

very similar to the Cheng's parameter [19] whereas the correction factor in Cheng’s 

parameter is not equal to specific heat ratio, and it is function of the collision cross 

section and molecular transport properties as 

 
2

.
Re

r

r

T M

T





   2-4 

where the reference parameters are chosen based on the configuration of the system.  

 

 

Figure 2-4 A classification of the flow regime based on Nδ parameter 

In the following chapters, the degree of rarefaction and non-equilibrium are measured 

based on (Eq. 2-3). 

2.2 Physical constraints of kinetic theory  

2.2.1 Level of flow description 

    A gas flow can be described at both macroscopic and microscopic levels 

depending on the detail of gas and the level of departure from equilibrium state. A 
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macroscopic explanation of fluid considers flow as continuum material and tries to 

describe the behavior of that in terms of the spatial and temporal variation of the 

intensive parameters and macroscopic properties in a system. In this kind of description, 

the spatial coordinates and time are the only independent variables. The conventional 

mathematical model for describing the flow behavior is Euler and Navier-Stokes-

Fourier equations. In contrast to macroscopic methods, the molecular approach studies 

the fluid at microscopic level. The flow is recognized by the particulate structure in 

phase space and the necessary information for analyzing gas flow are obtained from the 

position, velocity, and state of the internal modes of the molecules. Therefore, there are 

several independent variables on which the state of the system is defined. Liouville and 

Boltzmann equations are the models utilized for describing flows at microscopic level.  

 

 

Figure 2-5 Levels of flow descriptions based on various theories 

2.2.2 Assumptions in continuum mechanics 

Figure 2-5 illustrates the level of description of physics of fluid based on the 

application of the mathematical models. In case that the number of molecules within 

the fluid element are sufficiently large, the thermodynamic process evolves so slowly, 

the flow can be considered as continuum material. So the classical continuum flow 
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theory can be served for describing the solution, although the continuum description of 

gas flows may breakdown when the inter-particle collisions are not sufficiently high 

[20]. In this condition, the gradient of the macroscopic flow properties becomes so big 

that their scale is of the same order of the distance traveled by the molecules between 

collisions ( ). Therefore, application of kinetic theory or quantum mechanics becomes 

essential for describing the flow behaviors.  

2.2.3 Assumptions in kinetic theory 

There are some physical constraints that should be satisfied by a system in order to 

describe it using classical physics rather employing complicated and advanced quantum 

mechanics theory. 

2.2.3.1 Heisenberg constraint 

The Heisenberg uncertainty principle, the first constraint for describing gas flows 

using kinetic theory, can be interpreted as 

m h c  . 2-5 

According to Heisenberg uncertainty principle [21], the product of the uncertainty in 

position r  and momentum of the molecules m c  is of the order of the Planck's 

constant 34 26.62607004  10  ( / s)mh kg  . Hence, in order to describe the molecular 

position and momentum of fluid based on classical physics, the mean molecular spacing 

  should be so much bigger than the uncertainties in position r , and the mean 

molecular momentum of the system must be considerably smaller than the momentum 

of the molecules m c [22].  

2.2.3.2 Molecular diameter constraint 

Satisfying the Heisenberg uncertainty principle necessitates that mean molecular 

spacing be so much larger than the mean de-Broglie Wavelength of the molecules  

.
h

d
mc

  2-6 

This constraint (Eq. 2-6) is implicitly related to the dilute gas condition, and it means 

that the effective molecular diameter must sufficiently be larger than de-Broglie 

wavelength in order to employ classical physics for describing gas molecules.  
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2.2.3.3 Molecular velocity constraint 

Molecular velocity similar to molecular diameter should be large enough to satisfy 

Heisenberg uncertainty principle (Eq. 2-5). It is possible to characterize the molecular 

speed constraint by, 

mc
1s

h

 
  2-7 

From kinetic theory relation, it is known that the mean square of molecular speed 

cs in the equilibrium state is a function of the temperature and molecular mass, and can 

be defined as 

2 3
c   B

s

k T
c

m
 . 2-8 

where 2c is mean square molecular speed. Combining (Eq.2-7) with definition of the 

mean of the molecular speed (Eq. 2-8), and replacing the mean molecular spacing with 

inverse of cube root of the number density of gas flow 1/3n  , the molecular velocity 

constraint is defined as 

1/3

3 m
1Bk T

n h
  2-9 

The molecular velocity constraint holds for standard flow condition [22].  

2.2.3.4 Dilute gas constraint 

The number of molecules in one mole of a gas is always a constant value, called 

Avogadro's number which states that the volume occupied by a mole of the gas at 

standard temperature and pressure is equivalent for all gases. In classical physics, it is 

always assumed that a molecule is surrounded by a force field which rules the dynamics 

of the inter-molecular collisions. This field is assumed to be spherically and symmetric, 

in most of the cases, and the general amount of the force between two neutral molecules 

is assumed to be an inverse function of the distance between the nuclei nucleir and the 

cross section of the collision total .  

If a small portion of the space of a system (V ) is occupied by the gas molecules, it is 

valid to assume that molecular spacing 1/3n  is sufficiently large compared with the 

effective molecular diameter d. Therefore, only very small proportion of the space is 

occupied by the molecules and each molecule is practically outside of the range of 

influence the other molecules force field. As a result of that, most of the inter-particle 
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collisions are binary and two particles only participated in a collision process. This 

situation is known as the dilute gas condition and can be characterized by  

1/3V d  . 2-10 

2.2.3.5 Molecular degree of freedom constraint 

The final constraint for the validity of the classical physics and kinetic theory is that 

the number of available quantum states should be larger than the number of available 

molecules in the system. The standard number of available translational states to the 

molecules is of the order of unity. Therefore, classical physics is applicable to the 

translational motions which contributes three degrees of freedom to the gas. It also 

holds true for diatomic and polyatomic gases when rotational, vibrational and electrical 

quantum states are taken into account.  

In summary, application of classical physics and kinetic theory holds if a system 

satisfy the Heisenberg constraints (Eq. 2-5), dilute gas constraint (Eq. 2-10), and it is in 

standard flow condition with a mean molecular diameter larger than the de-Broglie 

wavelength (Eq. 2-6). In the preceding chapters, it is implicitly assumed that the 

molecules are described by classical physics [22] and kinetic theory is applicable for 

studying gas behaviors. It is also assumed that a molecule does not change its identities 

before/after an inter-molecular collision.  

2.3 Boltzmann kinetic equation 

2.3.1 Estimation of mean free path  

Consider a frame in phase space in which a class of molecules moves with a relative 

velocity of rc  while the other classes are assumed to be stationary. If look at a molecule 

in this class over a time interval smaller than the relaxation time of the system t , they 

may collide to any molecule which its nuclei is located inside a cylinder with volume 

of r totalc t . Therefore, the chance of a successful collision between target molecule 

with a molecule of the same class is given by total rn c t  . In dilute gas flows where 

only small portion of the molecular trajectory is affected by a collision, it is valid to 

remove time step restriction and re-write the probability of a collision as total rn c , and 

the mean collision time can be estimated by summing all class of molecules and their 

relative velocities as 
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1

total rn c
n

n








 . 

2-11 

As number density ration inside the summation denotes the fraction of molecules 

with total cross section of total and relative velocity of rc , total number of binary 

collisions per unit of time and volume is 
22 2collision total r

N n n c    , and the mean 

collision time (relaxation time) is defined as 

1

total rn c



  . 2-12 

Since the mean distance traveled by a molecule between collisions is function of mean 

collision time of a system, it is possible to define it in general framework as 

 
total r

c
c

n c
 


 . 2-13 

where the mean magnitude of the relative velocity of the colliding molecules molecular 

is related to mean thermal velocityc . Considering the relation between thermal velocity 

and mean magnitude of the relative velocity (Eq. 2-32), and assuming the total cross 

sections for the molecules is constant and equal to 
2

total d  , the mean free path 

relation for hard-sphere gas is defined as 

2

1 16

5 2 22

HS

B

m

k Tn d RT

  


  
    . 2-14 

Note that, the realistic mean free path value may not be equal to (Eq. 2-14) if the 

temperature variance is very high in a system or diameter of a molecule is changing due 

to a special condition in the system. For this conditions, it is better to estimate the value 

of total cross section using more advanced inter-molecular model. For instance, the 

mean free path value for variable hard-sphere (VHS) model is equal to 

1
2

2

1

2

VHS

ref

T
n d

T









 
  
 

 . 

2-15 

where the power index of temperature ratio    3 2 2     is a function of the 

power index of inverse power law model . In this dissertation, for simplicity and 

clarity, the hard-sphere definition of the mean free path is used for all cases. 
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2.3.2 Microscopic properties 

2.3.2.1 Basic molecular parameters 

A monatomic molecule can be described based on three basic molecular parameters; 

m mass of molecules, d effective diameter of molecular, and molecular velocity v where 

can be written as a summation of stream velocity u and c peculiar velocity. A Molecule 

has several quantum energy states   which can be described based on the relation 

between the internal degrees of freedoms of the molecule. The linear Momentum ( mv ) 

is determined by the molecular parameters while the energy of a molecule ( 
2

2mv  ) 

can be split into internal (m(c2+2uc)/2), kinetic (mu2/2) and potential energies.  

Total energy of system can be described by 

total Kinetic potential internalE E E E   , 2-16 

and the specific energy defined as the energy density per unit mass is given by 

 total Kinetic potential internal      . 2-17 

Specific energy and total energy are related through below relation 

total total
V

E dV  . 2-18 

The potential energy is the energy generated due to external forces acting on a unit 

mass; it is realistic to assume that potential energies are conservative and they are 

negligible since the external forces were usually neglected. On the other hand, the 

internal energy is generated due to the inter-molecular interaction of the substance, and 

it can be split into the lower level of energy states; translational, rotational, vibrational, 

electrical energy states. The internal energy modes are defined as a summation of 

various internal states; 

internal tr inter atomic tr rot vib electerical             , 2-19 

The translational states of internal energy are given by 

2

2 2
  tr

tr tr

m
E c RT


   2-20 

where translation degree of freedom of any molecule is equal to 3
tr

 . The rest of the 

internal state of internal energy can be written as 

2 2

inter atomic
inter atomic inter atomic inter atomic inter atomic

m
E RT


  

      , 2-21 

where the value of inter atomic  depends on the temperature of the gas compared to the 

characteristics temperatures Θ required for exciting the inter-atomic states of quantum 
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energy levels. For instance, inter atomic
E is equal to the rotational internal energy state when 

the gas temperature is larger than the characteristics temperature of rotation
rot and there 

is no other additional inter-atomic energy state. Rotational energy is usually excited for 

most of the diatomic gases in room temperature as the characteristics temperature for 

excitement of rotational energy is of the order of 10 Kelvin.  

Note that the rotational degree of freedom leads to the generation of the angular 

momentum ( Iω ) and angular energy of molecules (
2

2ωI ); however, they can be 

neglected for monatomic molecules, and for diatomic molecules about the internuclear 

axis. It is due to fact that monatomic molecules have only one atom and most of the 

diatomic gases are symmetrical respect to the internuclear axis, therefore, the moment 

of inertia I about the inter-nuclear axis is so small. A symmetric diatomic molecule 

owns two degrees of freedom associated with the inter-atomic axis normal to the inter-

nuclear axis. While the rotational degree of freedom for anti-symmetric diatomic 

molecules, triatomic and polyatomic molecules is varying between two and three. 

2.3.2.2 Gas properties 

The specific heat ratio of a gas molecule is related to the number of the excited 

internal degrees of freedoms, and it must be considered as variable in case that 

temperature is in order of vib . The specific heat ratio, mass of unit molecule, and 

ordinary gas constant can be defined as 

A
/ ,m M N  2-22 

( 5) ( 3) ,
atomic atomic

      2-23 

,
B

R k m  2-24 

and Prandtl number can be approximated using Eucken’s formulation as 

4
Pr .

9 5







 2-25 

Here NA denotes Avogadro’s number and M represents the molecular weight of the gas.  

The transport properties of a gas can be defined based the model used for describing 

inter-molecular potential forces. In case of power-law (Lenard-Jones 12-0) model 

which is a short range repulsive inter-molecular model, the first coefficient of viscosity 

and can be defined as 
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1

,    =ref ref

ref ref

T T

T T



   
       

   

 

    . 2-26 

where 
2

15
, .

Pr2 (5 2 )(7 2 )
 

 

B ref ref p

ref ref

ref

mk T C

d


 

  
 

2.3.3 Phase density distribution 

In order to describe the microscopic properties in terms of macroscopic quantities, 

it is necessary to establish a formal relation between microscopic and macroscopic 

quantities. This can be achieved by studying the behavior of the gas molecules in 

statistical viewpoint.  

The behavior of gases can be illustrated by listing the basic molecular parameters 

(i.e., position, velocity, and internal energy state) of all molecules at given time. 

However, the number of molecules in a system is usually very high so that it is not 

possible to trace each and every particle individually. Instead, it could be resort 

information into a statistical description in terms of either single particle probability 

distribution function ( , , )x vf t  or velocity distribution function ( )f v . These two density 

functions are commonly being used in the kinetic theory textbooks; Bird [4] and 

Kennard [23] used velocity distribution function whereas Cercignani [24] and Eu [25] 

used single particle distribution functions. These two distribution functions related by 

)  ( ) ( , ,f v x vf tn .  2-27 

The velocity distribution function is normalized probability distribution function 

(PDF) since its integral in velocity space is unity ( ) 1

  

  

   f v vd . However, the single 

particle distribution function is not normalized PDF, and its integration in phase space 

is equal to a number of molecules in the physical space, ( , , ) .

  

  

   x v v xf t d d N  

Although these distribution functions have unique statistical characteristics, both of 

them characterize the behavior of the molecules in velocity and phases space, 

respectively. They cannot be negative or unbounded functions in whole space. They 

both tends to zero value when the molecular velocity approach to infinity.  

In order to measure the macroscopic properties at each point in the system, it is 

necessary to find a relationship between the probability distribution functions and the 

average of the molecular quantities  at that point in physical space. This can happen 
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by establishing of the moments of the distribution function. It is equivalent to the 

ensemble averaging over the molecular velocities of the molecules in an infinitesimal 

control volume in physical space xd  at instantaneous time step dt  which is served in 

particle-based method to obtain the macroscopic quantities. 

The first moment of a probability distribution function provides the mean average 

of quantity   in macroscopic world; 

 ( , , )  ( )

     

     

       ψ x v v ψ f v vf f t d N d  .  2-28 

2.3.3.1 Some useful expressions 

Before starting derivation of more complicated kinetic theory relations, let’s define 

several useful expressions which are commonly used in context of derivation of the 

conservation laws based on the fact that the molecular velocity v  can be written as 

function of stream velocity u and thermal velocity c; 

 v u c , 2-29 

and mean thermal velocity and mean magnitude of the relative velocity of the colliding 

molecules can be related by 

8
, Bk T

c
m

 , 2-30 

16
,B

r

k T
c

m
  2-31 

2rc c . 2-32 

As the mean square thermal velocity is function of density and pressure properties, 

it can be also defined as 

 
2 33
  Bk Tp

c
m

 , 2-33 

where the root mean square of velocity is 2 sc c .  The other important molecular 

velocities relations are given as follows; 

i iv f u  2-34 

0    i i i icf v f u u u  2-35 

( )( )      i k i i k k i k k i i k i kv v u c u c u u u c u c c c  2-36 

 i i ic v u , 2-37 

 
22  i ic v u  2-38 
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   
22 2 2 2 2 22       i i i i i i i ic f c v u f v v u u f v f u  2-39 

where  ( , , )  ( )

     

     

       x v v f v vf f t d N d     denotes the statistical average of a 

microscopic quantity α, in three-dimensional velocity space. 

2.3.4 Macroscopic properties 

For simplicity, clarity, and the sake of readers, several important and commonly used 

definitions in the content of this dissertation are defined in this section. 

2.3.4.1 Density 

The first macroscopic is density which expresses in terms of the number of 

molecules in unit volume n, and mass of the individual molecule m as 

( , , ) ( )nm mf t d n m d
     

     

       r v v f v v . 2-40 

2.3.4.2 Temperature 

Temperature is an intensive property of a system which can be defined only if a 

system is in global (or local) equilibrium condition. In the equilibrium state, the amount 

of energy distributed between excited modes of the internal energy states is identical, 

and all internal energy states contribute the same amount of energy to the system. The 

temperature defined for each state of energy is equal, hence, it is possible to define a 

unique temperature for the system. This temperature is called thermodynamic 

temperature [4] and it can be defined based on an equation of the states for an ideal gas 

(Eq.2-41) or (Eq.2-43) as 

2

3
  trep

T
R R

, 2-41 

where p  is hydrostatic pressure and   is density of gas; tre  denotes translational 

energy density. Temperature can be written in terms of probability distribution function 

as 

2 22 2
( , , ) ( ) .

3 2 3 2

     

     

      x v v f v v
mc c

T f t d d
R R

, 2-42 

In non-equilibrium condition, for diatomic and polyatomic gases, it is possible to 

measure temperature quantity for each state of the energy level as 
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2
thermodynamics2

,  tr tr

tr B B tr

m m c
T e T

k k 
 2-43 

2
,rot rot

rot B

m
T e

k
   2-44 

2
,vib vib

vib B

m
T e

k
   2-45 

2
.electerical electerical

electerical B

m
T e

k
  2-46 

The overall temperature value in non-equilibrium condition [4] can be calculated based 

on weight averaging formulation as 

tr tr rot rot vib vib electerical electerical
overall

tr rot vib electerical

T T T T
T

   

   

  


  
 2-47 

2.3.4.3 Energy 

The macroscopic internal energy, total energy, and enthalpy, for ideal gases, can also 

be defined in (local) thermodynamic equilibrium condition as 

,internal internal VE e C T    2-48 

2

2

,
2

2

total kinetic internal potential internal

total V height

E E E E e

E C T gH

 

  

    

  

u

u
 2-49 

2

2
total total V

p p
H E C T

 
    

u
 2-50 

The total energy can be determined using the first moment of the probability 

distribution function as 

2

2 2

,
2

( , , ) ( ) ,
2 2

     

     



      

v

v v
x v v f v v

total

total

m
E f

m m
E f t d n d

 2-51 

Internal energy states can also be presented based ensemble averaging and the first 

moment of single particle probability distribution function as 

2

,
2

internal inter atomic

m
E E f

 
  

 

c
 2-52 
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2

2

( , , )
2

( ).
2

internal inter atomic

internal inter atomic

m
E E f t d

m
E n E

  



  

  



  

 
  

 

 
  

 

  

  

c
x v v

c
f v

 

Here, inter atomic
E denotes the inter-atomic energy generated by internal quantum energy 

states. The inter-atomic energy and its energy density value are zero for monatomic 

gases, therefore, internal energy for monatomic gases can be defined as 

2

2 2

,
2

( , , ) ( ).
2 2

     

     



      

c

c c
x v v f v

internal

internal

m
E f

m m
E f t d n

 2-53 

2.3.4.4 Stream velocity 

Stream velocity (i.e., barycentric, or mass velocity), momentum density and the 

mean peculiar velocity are given by 

1
( , , ) ( ) ,

     

     

       u v v x v v vf v vf f t d d
n

 2-54 

( , , ) ( ) ,

     

     

       u v v x v v vf v vm f m f t d n m d  2-55 

   
1

( , , ) ( ) 0,

     

     

         v u x v v v u f v vmcf m f t d m d
n

 2-56 

2.3.4.5 Pressure tensor 

Pressure tensor is a flux tensor which expresses the transport of momentum by the 

motion of thermal (peculiar) velocity. As the momentum of thermal velocity is a vector 

quantity, the pressure tensor is a second rank tensor given by 

( , , ) ( ) .

     

     

 

      

P cc

P x v v f v v

i j

i j i j

m f mc c f

mc c f t d n mc c d
 2-57 

Pressure tensor can be written as a sum of symmetric and anti-symmetric parts 

,symmetric anti symmetric P P P  2-58 

where anti-symmetric part diminishes when flow is assumed to be homogenous. The 

symmetric part of pressure tensor can be written as the following form 



23 

 

23 

 

IsotripoicDeviatoric
symmetric symmetricsymmetric  P P P  2-59 

where deviatoric symmetry part is equivalent to traceless part of the symmetric pressure 

tensor, and isotropic part of the symmetric pressure tensor (Eq. 2-592-61) give scalar 

pressure (hydrostatic pressure) quantity; 

,
trace freeDeviatoric

symmetric symmetric


 P P Π  2-60 

.
Isotripoic
symmetric pP I  2-61 

2.3.4.6 Viscous stress tensor 

Viscous stress tensor can be defined as the traceless part of the symmetric pressure 

tensor. It can be defined based on moment of distribution functions as  

(2)

(2) (2)

,

( , , ) ( ) .

     

     

   

             

Π

x v v f v v

i j

ij i j i j

m c c f

m c c f t d n m c c d

 2-62 

Here,  
(2)

denotes the traceless part of the thermal velocity production tensor   i jc c , 

and it is equal to 

 
(2) 1 1

2 3
     i j i j j i k k ijc c c c c c c c  . 2-63 

2.3.4.7 Thermodynamic & Mechanical pressure 

The thermodynamic (scalar) pressure can be defined according to equation of state 

of ideal gases as 

trp RT . 2-64 

Mechanical pressure is derived from isotropic part of symmetric pressure tensor;  

1 1
( , , ) ( ) .

3 3 3


     

     

       x v v f v v
trace free
symmetric

ii k k k k

n
p P mc c f t d mc c d  2-65 

The mechanical pressure is average normal stress on the fluid element which can be 

written based on fluids kinematic as sum up thermodynamic pressure and pressure of 

sound absorption and attenuation.  

 11 22 33 2
.

3 3
tr inter atomicp RT RT p   

    
       

 
u . 2-66 

When gas is in an equilibrium state, the mechanical pressure is equal to hydrostatic 

pressure [26], and it is equal to any normal component of the stress tensor. However, it 

may not be equivalent to thermodynamic pressure for diatomic, polyatomic gases. 

Although the difference between thermodynamic pressure and mechanical pressure is 
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not significant in most of the gas flows, the exact meaning of mechanical pressure is 

still challenging issue [26]. In this dissertation, as gases are considered to be monatomic, 

the mechanical pressure and hydrostatic pressure are identical. 

2.3.4.8 Heat flux vector 

Heat flux vector is a flux vector which expresses the transport of energy of all states 

of the molecules by the motion of thermal (peculiar) velocity. 
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where inter-atomic energy diminishes for monatomic gases, and then heat flux vector 

reads as 

2
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2.3.5 Classical Boltzmann kinetic equation 

Boltzmann considered the dynamics of the inter-molecular binary collisions within 

the framework of the classical physics (deterministic) and combining it with a 

molecular chaos (statistical) assumption which is not coming from the mechanical 

origin and obviously cannot be derived from classical physics’ principles alone. He 

obtained the time irreversible evolution equations for single particle distribution 

function in the concept of kinetic theory. 

A single particle distribution function suffices for describing a molecule’s state in 

phase space and for determining the macroscopic properties of the gas in the system, if 

the gas is sufficiently dilute, and the inter-molecular correlations are not significant. Let 

( , , )x vf t  denotes the single particle distribution, and , ,v x t  represent the particle 

velocity, position and time, respectively.  

The single particle distribution provides the probability of finding a particle in the 

class of range of dv v v  and x xd at time t. A change in the particle probability 
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distribution in a small control volume v xd d  located at phase space at infinitesimally 

small time interval dt  can be written in the form of 

   
  

   
v x

external

i i

i i

f f f
v F d d dt

t x v
. 2-69 

where high-order terms of order of 
2

( )O t  are truncated. Here 
external

i
F is the vector of 

external forces on unit mass. This expression accounts for a change in probability 

density function due to the streaming motion of the particles in the phase space. When 

there is no collision between molecules, the changes in the single particle distribution 

( , , )x vf t  can be interpreted by a single particle Liouville equation called the 

collisionless Boltzmann equation, 

0
   

   
   

external

i i

i i

f f f
v F

t x v
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Single particle Liouville equation does not contract the information of the system. It 

preserves the information of the system, and it describes the evolution of an 

incompressible probability fluid [23]. Nonetheless, in reality, the molecules collide 

each other and the probability density function will change inside the control volume 

of the phase space due to the inter-molecular collisions. Therefore, it is necessary to 

find a relation between the pre-collision ( , , )tf x v , and post-collision ˆ ( , , )f tx v probability 

density functions.  

The collision operator  ˆ,f f  is the Boltzmann's lasting contribution to the kinetic 

theory which is not the invariant to the time reversal. It connects the dynamics of the 

inter-molecular collisions, the pre-collision-, and post-collision probability density 

functions such that the evaluation of the particle density function in time and phase 

space can be written as 

 ˆ,
   

   
   

external

i i

i i

f f f
v F f f

t x v
. 2-71 

The collision operator   depends on the way of approximating the collisional effects, 

and the statistical assumptions were made regarding the correlations of the particles in 

a binary collision. Boltzmann derived a classical form for   using his Stosszahl ansatz 

where the final form of this expression is given by 

   
2

2 2

0 0

ˆ ˆ̂,

 



    c vrf f ff ff d d bdb



  . 2-72 
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Here b , is the first impact parameter, represents the distance of closest approach of the 

undisturbed trajectories in the center of mass reference frame; ε, is the second impact 

parameter, denotes the azimuthal angle of scattering. It illustrates the angle between 

collision plane and a reference plane. The pre-collision velocities of the two collision 

partners in a binary collision are defined by v and 2v while the post-collision properties 

are denoted by a caret. The relative velocity cr  between two collision pair is defined 

by 

2 c v vr . 2-73 

The relative velocity is unchanged during inter-molecular collision due to the 

conservation of the linear momentum and energy during the collision process. On 

substitution of Boltzmann collision integral (Eq. 2-72) into (Eq. 2-71), the classical 

Boltzmann kinetic equation is obtained; 
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i i r

i i

f f f
v F ff ff d d bdb

t x v


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The Boltzmann kinetic equation is a well-known in kinetic theory. It has been 

considered as a proper nonlinear equation for studying rarefied gas flows. It can 

interpret the inter-molecular collisions and can describe the statistical behavior of 

molecules [27, 28]. However, solving the Boltzmann kinetic equation directly is not an 

easy task and usually, the analytical solution is limited to simple geometries due to the 

presence of the large number of independent variables in the equation, and the 

complexity and non-linearity of the collisional term [29]. 

 As it is shown in Figure 2-6, there are several methods for approximation of the 

collisional integral such as BGK, ES-NGK, Shakhov, Fokker-Planck, and so on. The 

Boltzmann kinetic equation is commonly solved either by simplification and 

linearization of the collisional integral or direct physical simulation of the whole 

process. The other way to approximate the solution of the Boltzmann kinetic equations 

near the equilibrium condition is to derive moments of the Boltzmann equations and 

then approximate the shape of the probability distribution function.  
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Figure 2-6 Available methods for solving Boltzmann kinetic equation 

2.4 Direct simulation of Boltzmann equation 

2.4.1 DSMC method 

Monte Carlo (MC) method was initially served around sixty years ago in order to 

study statistical mechanics and to integrate highly nonlinear integrals statistically. 

Despite the fact that MC is a very powerful method, it cannot demonstrate the 

evaluation of a system. An alternative for studying the microscopic behavior of 

materials is to use the molecular dynamic (MD) method which is a deterministic 

approach [30, 31]. However, it is a very costly and it is usually being used for simulating 

very small scale problems such as nano-materials, nano-tubes, and microsystems. Bird 

tried to overcome the difficulties in MD method by employing MC method 

inappropriate way [32]. As a result of that, the direct simulation Monte Carlo (DSMC) 

was introduced to study the molecular behavior of the rarefied and non-equilibrium 

flow [33].  

DSMC is inherently a probabilistic method in which a large number of real particles 

are represented by one simulated particle. The cost of DSMC simulation is considerably 

less than molecular dynamic method [4]. The capability and the simplicity of the DSMC 

method persuade many researchers to utilize it as the standard solver for studying non-

continuum gas flows. It has being used to study various applications, such as micro gas 

flows, material processing, acoustics, high-speed gas flows, and gas mixing [34-40].  

The conventional DSMC algorithms consider gases as a group of finite number of 

particle and describe the phase of the system by calculating the position and velocity of 

the particles. The continuous motion and collision of the gas particles are discretized 
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within a small time step, ∆t, and they are described in two consecutive and decoupled 

steps: movement and collision. These stages are equivalent to the advection and the 

collision term of the Boltzmann kinetic equation, respectively. In each time step ∆t, the 

particles moves based on their own velocities throughout the gas flow without 

considering the interaction with other particles. Subsequently, if any particle reaches to 

a boundary, the proper action according to the type of boundary condition are taken into 

account and the particle positions are updated. Afterwards, the collision step is 

simulated by utilizing a Markov process in the collision cell during a given time interval. 

Therefore, the collision pairs are chosen randomly from particles within the same 

collision cell and the collision probability is calculated based on kinetic theory. 

Successful collisions are identified using acceptance-rejection method and finally, the 

post-collision properties are calculated in regard to the employed inter-particle potential 

model.  

Generally, the movement phase is deterministic and does not involve any noticeable 

difficulties, while the collision phase is a probabilistic process. Collision process is 

composed of three important steps; counting the number of collisions, pair collision 

selection, and calculating the post-collision properties using inter-particle potential. In 

order to obtain an acceptable efficiency and accuracy in collision process, four features 

should be considered simultaneously: the computational efficiency, physical accuracy, 

reliability and implementing the collision step in the easiest way. Therefore, numbers 

of assumptions and simplifications should be taken into account. These assumptions or 

simplifications led to set up some requirements for physical parameters. For instance, 

time step should be selected small enough so that a particle just travels a fraction of 

collision cell length within a time step. The number of particles should be large enough 

to quantify the number of binary collisions among the particles during a given interval 

more accurately. Finally, in order to minimize the statistical uncertainty and estimate 

the mean value of the estimators, the probability sampling process is added to the 

DSMC process [41, 42]. 

In fact, DSMC can be considered as a statistical solution of the Boltzmann equation 

in the case that the infinite number of particles are used and time step and grid size 

tending to zero [43]. However, Boltzmann kinetic equation cannot elaborate all aspects 

of DSMC approach [44]. The ability of the simulating the internal energy modes, 

chemical reactions and thermal radiations make DSMC more interesting for researchers. 

The statistical behavior of DSMC brings the ability to model the real hydrodynamic 
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fluctuations [45, 46] in high-density conditions, although it can be considered as a 

drawback of the method due to produce undesirable statistical fluctuation in low-speed 

flow regimes. The biggest issue with DSMC method is that it is very expensive when 

the degree of non-equilibrium is low. This encouraged researcher to use moment-based 

methods for simulation of low speed or slightly deviated flows from equilibrium 

conditions.  

2.4.2 Convergence of DSMC method 

As Wagner [43] theoretically proved, the DSMC solution will converge to the 

solution of Boltzmann equation of a gas undergoing binary collisions between gas 

particles, if the value of time-step (∆t), cell-size (∆x), and the number of particles (N) 

parameters are chosen properly (and when no wall surface boundary condition is 

involved in the simulation) [41, 42, 47].  

Bird [4] presented two conditions that the time-step value must be a fraction of the 

mean collision rate and the cell size value should be smaller than the mean free path. 

He suggested that the number of particles per cell should be greater than 20. Later, 

Meiburg [48] showed that these parameters need to be examined more carefully in order 

to yield accurate results. Many studies have been conducted to investigate the effects 

of computational parameters on either decomposition error or statistical error, and to 

quantify the amount of error associated with them [49-55]. Recently, a new verification 

method based on the exact physical laws of conservation—mass, linear momentum, 

and total energy—was introduced by the author to overcome the shortcomings of the 

previous researches and to investigate the behavior of various errors presented in a 

DSMC simulation [41, 42].  

  
             (a) 

 
 (b) 

Figure 2-7 The percentage of absolute (a), and relative (b) errors for four different time steps 
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As it is shown in Figure 2-7, and Figure 2-8, our study confirmed that the error level 

of the DSMC method is negligible when the critical computational parameters—time-

step, cell size, the number of particles—selected in the simulation, are well within the 

asymptotic range. This finding agrees with the results obtained theoretically by Wagner 

[12]. It was shown that the magnitude of error in DSMC simulation is not tangible if 

the number of particles in a cell are greater than 100, the time step is less than 10-1 τ 

and cell size are in order of 10-1 of mean free path. Hence, in all of our DSMC 

simulations presented in this dissertation, the numbers of particles, and the values of 

time-step and cell-size is set such that above conditions hold. 

 
            (a) 

 
          (b) 

Figure 2-8 The percentage of relative errors for (a) different cell length sizes; (b) different 

number of particles per cell. 

2.5 The moments of Boltzmann kinetic equation 

2.5.1 The equation of transfer 

The classical Boltzmann kinetic equation (Eq. 2-74) can be written in the Cartesian 

coordinates ( , , )tx v as 
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where
external

i
F is an external force, f denotes pre-collision, f̂ presents after collision 

distribution functions; σ, χ, and ε stand for collision cross section, deflection angle, the 

azimuthal angle of collisions, respectively.  
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The equation of transfer can be obtained by multiplying  into classical Boltzmann 

kinetic equation (Eq. 2-75) and integration overall velocity speeds as 

 .
  
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k external

k k

k k k
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As it is assumed that the external forces are independent of molecular velocity v, the 

(Eq. 2-76) can be simplified further as 
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Here the dissipation term Δ[ψ] is defined as 
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The collisional term can be written in various alternative forms due to two 

characteristics of the collisional term; the collisional inverse and symmetries associated 

with the dynamic of the binary collision  2 2
ˆ ˆv , v v , v . For example, the 

collisional term can be written as following forms for further applications in next 

chapters, 
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2.5.2 Collisional invariants 

There are physical properties hidden in the definition of the collisional term that can 

be revealed based on the application of a different form of the collisional relation.  For 

example,  
2 2

ˆ ˆ       reveals that the amount of change of a microscopic property 

 during a collision between two class of molecules v, v2.  
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If any quantity satisfies 2 2
ˆ ˆ 0,        the collisional integral vanishes from 

Boltzmann transfer equation and  is called collisional invariant. According to the 

classical physics, few molecular properties (mass m, momentum mv, and energy mv2/2) 

are conserved during the molecular interaction, therefore, the collisional term and 

2 2
ˆ ˆ       vanish for these three molecular quantities and any linear combination 

of them. They are the only collisional invariant of the collisional integral. 

2.5.3 Conservation laws 

As collisional integral vanishes for mass, momentum, and energy of a molecule, it 

is possible to derive the conservation of laws based on Boltzmann transfer equation. 

Defining the macroscopic quantity equal to 2, , 2im mv mv     , and multiply it into 

(Eq. 2-75) and integrating over velocity space. Then simplifying the equations by 

considering that  depends only on the particle position and time ( , )tx , lead to the 

differential form of the conservation of mass, momentum, energy (see appendix C): 
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where total energy is equal to (Eq. 2-49); Π and Q  are viscous stress tensor, and heat 

flux vectors, which are not defined yet. It must be emphasized that these physical 

conservation laws are the exact consequence of the Boltzmann kinetic equation, and 

they are valid for all degrees of non-equilibrium. Only after some approximations in 

the derivation of Π and Q  quantities, they become approximate. In next chapter, non-

conservative variables and the way to obtain an approximate constitutive relation for 

these variables are discussed in detail.
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CHAPTER 3. Boltzmann-based hydrodynamic 

models 

Albert Einstein (1879-1955): 

“Imagination is more important than knowledge. Knowledge is limited. Imagination 

encircles the world.” 

 

 

As it was defined in the previous Chapter, the average of an extensive macroscopic 

quantity f  can be obtained by taking the first moment of a distribution function 

times the microscopic quantity ( ) v . It was shown that the conservation laws can be 

obtained from the moment of Boltzmann equation without extra efforts for solving 

collision integral. However, the conservation laws remain open until some expressions 

for non-conserved variables are defined. In this chapter, it is assumed that the external 

forces are negligible and gas is consist of non-reacting monatomic molecules. The 

moment methods are applied to Boltzmann kinetic equation, and the extended 

hydrodynamic equations for non-conserved variables are derived. Afterwards, this 

exact but open equations are approximated based on Eu’s closure, and Myong’s 

balanced closure and then Boltzmann-based models are obtained.  

3.1 Extended hydrodynamic equations based on the moment 

method 

Let’s define 
(n)

( ) ψv to denote the molecular expression for the nth non-conserved 

macroscopic variable 
(n)

ψ such that, 

(n) (n)ψ fψ . 3-1 

Thus, the moment equations can be obtained by differentiating the 
(n)ψ  with respect to 

time and substituting df dt  from Boltzmann Kinetic equation (Eq. 2-71) as 
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The external forces are assumed to be negligible, and the collisional term is symbolized 

by  (n) (n) ˆψ ψ , ,     f f  so above expression is reformed into 

(n) (n) (n) (n)ψ ψ ψf f f
t t


 
       

v . 3-3 

Considering the relation between microscopic, thermal, and stream velocities 

( v = c +u ), the above expression reads as 
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If the high-order moment term is denoted as (n 1) (n)ψ ψ fc , the (Eq. 3-4) reads as 
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ψ ψ ψ ψ. 

 








           
ψ + uc

ψ =

u
t

t

f f f f
. 3-5 

As we are interested in derivation of first few leading high-order moment equations, 

let’s set the molecular expression to be equal to the definition of viscous stress tensor 

(Eq. 2-62) and heat flux vector (Eq. 2-67), such that 

(1) (2)

(2)

ψ [ ]

1
ψ [ ] .

2




 

c c

c c c

i j

k k inter atomic j

m

m E



. 3-6 

The equation of moment for viscous stress tensor 
(1)
 ψ

ij ij
and heat flux vector  

(2)
ψ

i i
Q  

read as: 

 (1) (1) (1) (1)(2)
ψ ψ ψ ψ. ,


         ψ u c

ijd d
f f f

dt dt
 3-7 

 (2) (2) (2) (2)(3)
ψ ψ ψ ψ. ,          ψ u cidQ d

f f f
dt dt

. 3-8 

After massaging (Eq. 3-7) and (Eq. 3-8) and using the mass and momentum balance 

equation, and considering the macroscopic definition of conserved and non-conserved 
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variables defined in Section 2.3.4, the final form of stress and heat flux moment 

equations is obtained (see Appendix D); 

   
(2) (2)(2) (1)2 2 . ψ ,

d

p
dt




 
 
            

Π

ψ u Π u  
3-9 

 

 

(3) (3)
. : .

.( ) . .
p

d

p
dt

c T p





        

     

 
 
 

Q

Π
ψ ψ u Π I

Π I Q u Q
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The conservation laws introduced in Section 2.5.3, together with extended 

hydrodynamics equations can be written in complete and compact form as; 

0 0

0

       
        

  
       
               

u

u uu I Π

e e u u Π u Qtotal total

+ p
t

+ p



 

 

  

3-11 
   

(2) (2)(2) (1)2 2 . ψ ,

d

p
dt




 
 
            

Π

ψ u Π u  

 

 

(3) (3)
. : .

.( ) . .
p

d

p
dt

c T p





        

     

 
 
 

Q

Π
ψ ψ u Π I

Π I Q u Q

 

Here 
(2) ψ is (2). [ ] k i jm fc c c in which the power of thermal velocity is three, and 

(3) 1
. [ ] ( )

2
k k inter atomic l m pm E f c T p

 
      

 
ψ c c c c I Π  is a fourth-order function 

with respect to thermal velocity, see 2.3.4. The second high-order moment term,

(3) ψ cccm f , appeared in heat flux vector moment equation is also a cubic function 

of the thermal velocity of molecules.  

It is clear that the higher-order moment terms and the integro-differential collisional 

term are not yet defined properly, therefore, the extended moment equations contain 

are still open. While there are several ways to close this system, we are going to use 

Eu’s closure for closing this system of equations.  
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3.2 Eu’s generalized hydrodynamic equations 

3.2.1 Chapman-Enskog method 

In 1912, Hilbert applied the Hilbert-Schmidt theory to Boltzmann equation, and 

expand phase distribution function in a power series of α. The resulting distribution 

function was the lowest-order solution of the Boltzmann kinetic equation which 

describes the local equilibrium states of gases. Application of this distribution function 

into (Eq. 3-9) and (Eq. 3-10), provides zero values of stress tensor and heat flux vector. 

Accordingly, the conservation laws will reduce into Euler hydrodynamic equations, 

zero-order Boltzmann-based model. 

In 1917, Enskog[56] motivated by Hilbert theory, solved Boltzmann equation 

systematically, by increasing the power of expansion series of α, while Chapman [57] 

was working independently on the similar distribution function using Maxwell 

equations. They assumed that the phase distribution function is perturbed by a small 

amount from the equilibrium Maxwell distribution function, and derived the first-order 

approximation of Boltzmann equation (called Navier-Stokes-Fourier equations). In 

their approach, the distribution function f is expanded in powers of a smallness 

parameter α as follows; 

      0 1 221 .....f f f f     . 3-12 

where, f(0), f(1), and f(2) denote the first, second and third order approximation to the 

distribution function, respectively; the parameter α is defined based on Knudsen 

number. 

Chapman-Enskog expansions for the stress tensor and for heat flux vector are 

defined as a linear expression of velocity and temperature gradients, respectively: 

0 1 22

0 1 22

...

....

      

   

ij ij ij ij

i i i iQ Q Q Q

 

 
, 3-13 

where, 
 (2)

[ ]Π m f


cc ,
 2

1

2

Q m c f


c . The coefficient of the gradients, known 

as the familiar coefficient of viscosity and thermal conductivity, are obtained as series 

of Sonine polynomials. Although their approach is very valuable and helpful for 
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extending continuum based methods, most of the high-order Chapman-Enskog models 

are unstable and violate the second law of thermodynamics.  

3.2.2 Grad’s 13-moment equations 

An open set of high-order moment equations from the moment of Boltzmann 

equation was derived by Harold Grad in 1949 [58, 59]. Grad was motivated by work of 

Maxwell on transfer Boltzmann equation and tried to employ distribution function only 

when it is required. In grad moment equation, distribution function does not appear 

apparently in most of the terms of the moment equations; however, it has been served 

for evaluation of statistical formula m fc c and the collisional (dissipation) term. Grad 

[58] expanded the distribution functions in Hermite polynomials for thermal velocity 

such that the coefficients of which are linear combinations of the moments as  

         (2)0 1 2 3 21 5
1 : .

2 2

  
          

  
A c A cc A c c

c

Bf f m m k T  3-14 

Here  

3/2
2

0
exp

2 2

   
    

   

c

B B

m m
f n

k T k T
is Maxwell-Boltzmann distribution function, 

 1
,

c
A

m f

p
 2 1

2
A

p

 , and  

 

2

3

3

2 5

25
 
   

  
  

cQ
A

B

B

m fk Tm

mk T  
. Considering the 

fact that 0cm f  for single species gases, defining  
1/2

2 Bm k T  , and substituting 

 i
A into (Eq. 3-14), the Grad distribution function reads as 

   
(2)0 4 28 5

1 : ( ) ,
5 2

 
      

 

Π
Q

cf f   


 3-15 

where Π  and Q  are evaluated from non-conserved moment equations. Grad’s 

distribution function indirectly influences the solution of the moment method by 

evolving the solution of non-conserved variables. Truncating this expansion up to 

fourth leading element terms and substituting the truncated expansion into collisional 

term of non-conserved moment equations, we can obtain Grad’s dissipation function as 

a quadratic function, 

     (1)

1

ψ . ,


         Π Π Π QQ
r

pp pp qq

ij ij ij

j

R R R  3-16 

     (2)

1

ψ . . .


         Q Q Π Π Q
r

qq qp pq

ij ij ij

j

R R R  3-17 
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Although Grad’s moment method is basically different from Chapmann-Enskog 

theory, it shares the idea of functional hypothesis with Chapmann-Enskog method. As 

Eu’s monograph [1] explained, the coefficients 
   

, ,
pp pq

ij ijR R and 
 qp

ijR are related to 

second-order Chapmann-Enskog approximation, and the distribution function evolves 

as a function of macroscopic conserved and non-conserved variables. The idea of Grad 

was great and promising; however, unfortunately, Grad distribution function, similarly 

to Chapmann-Enskog distribution function may or may not satisfy the laws of 

thermodynamics [1, 13]. It is proven that Grad’s moment method fails in resolving of 

highly non-equilibrium phenomena [13, 60], and its entropy production, similar to 

Burnett equations, is inconsistence with second law of thermodynamics [1, 61, 62], 

Hence, employing an alternative closure for closing system of (Eq. 3-11) is demanding. 

3.2.3 Eu’s moment equations4 

In Eu’s theory [1], the kinetic theory of fluids is strictly connected to irreversible 

thermodynamics. The second law of thermodynamics is employed as a guiding 

principle for studying the fluid motion, and in particular, in high thermal non-

equilibrium state. The beginning point of Eu’s method is the balance equation for the 

calortropy ̂ ,  

ˆ ( , ) ln ( , , ) 1 ( , , ) ,    
 

 x v x v x
c

Bt k f t f t  3-18 

where ̂ is basically different from the Boltzmann H-theorem. Here the non-

equilibrium canonical distribution function cf  represents the thermodynamic branch of 

the solution of the Boltzmann kinetic distribution function f . Applying moment 

method described in Section 3.1 and differentiating the local calortropy density ̂  with 

time, we obtain; 

 
ˆ

(ln 1) ln ,
  
       

 
c c  

c c
B B c

d d
k f f k f f

dt dt
   3-19 

where  ˆln ln , .        
c c

c B
f k f f f  

In calculating the dissipation term, the distribution function f is written as sum up 

of the canonical distribution function and the fluctuations of the distribution function

cf f f  .  If cf f f   is neglected, the absolutely positive calortropy production 

                                                 
4 More elaborative description can be found in Eu’s ‘kinetic theory and irreversible thermodynamics’ 

book and Myong’s paper on shock structure singularity.  
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function c  on the right-hand side of (Eq. 3-19) can further be expressed as relative 

velocity between collision pair particles c
r using the govern collisional inverse and 

symmetries relations associated with dynamic of binary collision, and employing the 

collisional terms presented in (Eq. 2-82) ; 

4

2 2 2 2 2
0 0

1 ˆ ˆ ˆ ˆln( / )( ) 0.
4

 


 

     v v  c
c c c c c c c c

c B rk d d d f f f f f f f f db b


   3-20 

In case that the calortropy production  c  is calculated before calculation of the 

dissipation term ( ) ,n  
 

 a thermodynamically consistent form of ( )n  
 

 and a clear 

relation between c  and collisional (dissipation) term can be obtained. It is possible to 

write the distribution function cf  in the exponential form, rather than in form of 

quadratic polynomials function (Eq. 3-15), if the logarithmic form of the calortropy 

production ln cf defined in (Eq. 3-19) is employed such that 

0

0

2 ( ) ( )

1

2 ( ) ( )

2
1

1
exp ,

2

1 1 2
exp( ) exp , .

2









  
     
    

  
       

    
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

c  

c  

c n n

n

n n

mpsn

f m X A

A m X
n mc

 

   
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In this expression 2mps Bc k T m  is most probable molecular thermal speed, n is the 

number density, and ( )nX , unknown macroscopic quantities, are the conjugate variables 

to the molecular expressions for moment ( )n , and A0 is constant which may be 

eliminated through the normalization condition 1cf d





 v . This requires that  

0
2 ( ) ( )

1

1
exp 1.

2

 



  
     
    

 c v
n n

n

m X A d   
3-22 

In the mathematical sense, this distribution function is desirable as it guarantees the 

non-negativity of the distribution function regardless of the level of approximations. In 

the physical sense, this exponential form is the only form that satisfies the additive 

property of the calortropy and calortropy production, all of which are in the logarithmic 

form. It must also be noted that the number of moments in (Eq. 3-21) goes to infinity 

and there is no finite approximation for moments there. This is in contrast with a 

common practice in considering only the first 13th moments from the outset in the 

formulation of the theory.  
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Let’s drop the superscripts c in the distribution function cf  for simplicity and use a 

short notation for the exponent. Therefore, the distribution function can be rewritten as 

0
(0) ( ) ( )

1

exp( ) where .n n

n

f f x x X A 




 
    
 
 
     3-23 

With further introduction of notations and dimensionless variables  

12 1 2 12 1 2 12 2 2

1
ˆ, , , , ,

2
           c

c
B B

m b
x x x y y y x g b

k g k T dn d


  

3-24 
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the calortropy production can be expressed as 
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Or simply 

  12 12 12 12

1
exp( ) exp( ) .

4
c c

x y y x      3-26 

This form of mathematical equation is suitable for so-called cumulant expansion, and 

it can be written in form of  

  
1/2
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1 1 12 121 2
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The positivity of the calortropy production regardless of the level of approximations 

is guaranteed using this expansion form [13]. The collisional term ( )n 
 

 can be found 

as a function of calotropy function by inserting the distribution function (Eq. 3-21) into 

(Eq. 3-26) as 
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The explicit form of the dissipation term 
( )

  
 

n
  can be derived from (Eq. 3-27) and 

(Eq. 3-28) by computing the first reduced collision integral 1  in terms of ( )nX as x 
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On rearrangement of the terms, it may become as 
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where ( )
12

nlR  are scalar coefficients made up of collision bracket integrals of  ( )n , and 

( )
2
l  for an isotropic system of dilute gases. After comparing (Eq. 3-27), (Eq. 3-28), 

(Eq. 3-30), 
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the following dissipation term  can be derived; 
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The unknown macroscopic variables ( )nX  can be defined in different ways. Eu [1] 

developed a way based on the equilibrium Gibbs ensemble theory to non-equilibrium 

processes and it can be summarized as 

( )

( )
ln

 
   

 

n

B n

f
k T Z

X




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where 

2 ( ) ( )

1

1 1 1
exp

2





  
    

    
 n n

B n

Z mc X
n k T

  3-34 



42 

 

42 

 

Therefore, the ( )nX  can be determined in terms of the macroscopic flux ( ) ( )n n fψ  

by solving (Eq. 3-33). The leading approximate solutions terms of ( )nX  are known to 

be 

(1) (2),  .
2

   
Π Q

p

X X
p pC T
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As
(n)

ψ is an extensive physical property of the system, it is dependent on the size of 

the system or the amount of gases in the system. It is possible to write macroscopic 

properties in term of bulk (i.e. intensive) properties (i.e.,
(n)

ψ  ), and finally, re-write 

the viscous stress moment equations by replacing collisional (dissipation) term with 

(Eq. 3-32) as 

   
(2) (2)(2)

3 3

(2 ) ( ) ( ) ( )

12 2 1 22 2

1

( / )
2 2

2
( , , ).
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       



Π
ψ Π u u

B l l

l

d
p

dt

k T
R X q

n d m
 



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 (3) (3)

3 3

(2 ) ( ) ( ) ( )

12 2 1 22 2

1

2
( , , ).
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 



 
 

               
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Q Π

u I Π Q u Π

B l l

l

p p

k T
R X q

n d m

d
p c T pc T
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where (3) 21
( ).

2
pmc f c T p   ψ cc I Π Note that this still exact to the original 

Boltzmann equation since the number of terms in expanded dissipation series goes to 

infinity, and the kinematic high-order term is not yet approximated. Nevertheless, 

(Eq. 3-49) is in suitable shape for balanced treatment in approximating the kinematic 

high-order term in the left-hand side, and the dissipation term on the right-hand side.  

3.3 Boltzmann-based constitutive models via the balanced closure 

3.3.1 Zero-order Boltzmann-based model 

As explained in Section 3.2.1, the zero-order Boltzmann-based model (Euler 

constitutive relations) is a direct consequence of assuming flow in an equilibrium state, 

and considering the density distribution to be a Maxwellian equilibrium distribution 

function. The statistical formulation of viscous stress tensor and heat flux vector using 

Maxwellian distribution function has simple, exact solution; 
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3.3.2 First-order Boltzmann-based model 

The left-hand side of Boltzmann kinetic equation which demonstrates the change of 

particles due to the collisionless (transport) motion of the particles, changes with a time 

scale of the order of 2
B

nm k TL . On the other hand, the right-hand side of Boltzmann 

kinetic equation demonstrates the net change in the number of gas molecules due to 

inter-molecule collisions. It is basically described by gain minus loss (exp(nonequilibrium)-

exp(-nonequilibrium)), has the time scale of 2
B

n m k T . Eu showed that the time scale of 

conserved variables and non-conserved variables are not similar. He estimates that the 

relaxation time of non-conserved variable is in the order of 10-10 seconds, and it is much 

shorter than conserved variables. Therefore evaluation of non-conserved variables near 

equilibrium state becomes linear and cumulant expansion of collisional term recovers 

the first-order Chapmann-Enskog approximation. It is possible to approximate the 

entropy production and consequently non-conserved evolution equations, such that the 

viscous stress tensor-, and heat flux vector moment equations are linearized by 

truncating collisional term ─ considering the first term of cumulant expansion 

3 3

( )

12 2

(21) (1)
12 2

2
( )

Bk T
q

n d m
R X 

 ─ and approximating transport process. The approximate 

collisional (dissipation) terms can be written as following  

1

(1)

1ψ ( ),


     Π
st order

q
p



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1 1

(2)

1 1ψ Pr ( ) ( ).
 

       Q Q
st order st order

p
q

k
q

pcp



  3-40 

where 
1 1( ) 1,




st order
q   and k  are the first coefficient of viscosity and thermal 

conductivity derived from Chapmann-Enskog transport analysis. In addition, Eu [1] 

showed that linearization of non-conserved moment equation implies exponentially 

decaying of the non-conserved variables as the time passes, although the conserved 

variables remain approximately unchanged [1]. It means that non-conserved variables 

change considerably faster than conserved variables, and they reach to steady state 
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condition much earlier than the conserved variables. It is valid to simplify the non-

conserved equation by omitting the substantial time derivative from the equations;  

   
1

(2) (2)(2)

12 2 ( ),
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To close the system of equations, the high-order moments appearing on the left-hand 

side of below equations must be known. According to balanced treatment introduced 

by Myong [13], the first-order approximation of collisional term requires the same order 

of approximation on the left-hand side of non-conserved moment equations. Therefore, 

not only (2) ψ , (3) (3), :  ψ ψ u  will be removed from the first-order constitutive 

relations, but also  
(2)

2 Π u and        


Π
I Π Q u Πpp c T are needed to be 

eliminated for first-order approximation since thermal velocity appeared in their 

statistical formulations is of the order of two or more which can destroy the balance of 

the equations. As a result of that, first-order linear Boltzmann-based model (i.e., Navier-

Stokes-Fourier constitute relations) are given by 

 
(2)

2 ,  uΠ   3-43 

.  Q k T  3-44 

3.3.3 Second-order Boltzmann-based model 

A system far from equilibrium state has nonlinear behaviors which are preferable to 

retain in a higher approximation of the moment methods. Similarly to first-order 

Boltzmann-based approximation, it is possible to reduce non-conserved evaluation 

moment equations into the second-order model by applying adiabatic assumption and 

treating the high-order moments based on the balanced treatment [13]. The resulting 

equation can be expressed as  

   
(2) (2)

122 2 ( ),    Π u u Π nd orderp q
p



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  2 1( ),          


Π
I Π Q u Π Q

p

p or erp nd d
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p c T c p T q

k
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where the first-order cumulant expansion
2 1 1 1

( ) sinh ,



nd order

q    takes a form of 

hyperbolic sine function whose 1  argument is basically given in terms of a Rayleigh 

dissipation function [1, 13, 63]; 

1/21/4 1/4

1

( ) :
.

2

 
  

 

Π Π Q Q /Bmk T T

p kd



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These algebraic second-order Boltzmann-based relations, so-called nonlinear 

coupled constitutive relations (NCCR), can be solved using an appropriate numerical 

method while the conserved variables are held constant during the evaluation process. 

The only remaining task is to solve these equations besides the conservation of laws 

using appropriate numerical methods.  

 

Figure 3-1 A set of Boltzmann-based constitutive models up to second-order 

3.4 Governing equations for numerical simulation 

The conservation laws represent a system of five differential equations, in three 

dimensions. However, the number of unknown field variables is thirteen, namely:

, , , , , ,  and .i Total ij iu e p T Q    The non-conservative variables (symmetric stress 

tensor Π , and heat flux vector Q) read from Boltzmann-based constitutive relations 

introduced as shown in Figure 3-1. Volume (or density), pressure and temperature are 

thermodynamic state variables, therefore, one can be obtained by the others using 

equation of states. In dilute gas conditions, where mean molecular spacing (
1

3n


 ) is 
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much bigger than molecular diameter d, it is fine to assume that the gas is a calorically 

perfect gas and behaves ideally;  

 1
2

k k
B total

u u
p nk T e 

 
    

 
 3-48 

where B
k is Boltzmann’s constant, is n number density of the gas, defined in (Eq.2-40) 

and p vc c  is specific heat ratio (Eq.2-23). In addition to thirteen field unknown 

variables, there are few more unknowns related to microscopic properties of gas, called 

transport coefficients; the first coefficient of viscosity (or dynamic viscosity) μ, the first 

coefficient of thermal conductivity κ and the second coefficient of viscosity λ. They 

can be obtained from either inter-molecular force relations or Chapmann-Enskog 

relations.  

3.4.1 Conservative form of the conservation laws 

The D-dimensional conservation laws conservation laws for monatomic gas can be 

represented in differential from by  

      in ( , ) (0, ) , ,

( ,0) ( )  in ,

inviscid viscous

k k k
k

x x

w
s t t

t x x

  
           

 0

F F

w x w x
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where  2inviscid  
F

D D  and  2viscous  
F

D Dare flux functions. The former is related 

to convective transport of macroscopic quantities in the fluid. It is usually called vector 

of convective fluxes. The latter flux tensor named as a vector of viscous fluxes, and it 

contains the viscous stresses as well as heat diffusion terms. The source term  2
s

D  

comprises all sources including body forces, electrical forces, and volumetric heating. 

  is a bounded computational domain, and  2
W

D  is a vector of conservative 

variables ― Mass per unit volume, momentum vector, and energy ― which are 

continuously differentiable in the domain.  

  ,
T

k k totalw u e     

  ,
Tinviscid

k k k i ik total ku u u p e p u       F  

 0 ,     F
Tviscous

k ik ik k ku Q  

 0 ,  
 

T

k k k k ks F F u Q   

with , , 1i j k  D.  
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3.4.2 Dimensionless form of the governing equations 

In general, any dimensional homogeneous system of equation can be written in an 

entirely equivalent non-dimensional form which is more compact, and simpler to give 

a quick insight into the physical relationship. In order to derive the dimensionless form 

of the conservation laws, it is necessary to define relevant dimensionless variables, 

denoting them by an asterisk as 

* * * * * *, , , , , ,
ref ref ref ref ref

t T p
t T p

t L u T p





     

x u
x u  

3-

50 

* * * * *, , , , ,      


Π Q
Π Q

ref ref ref ref ref

E
E

E q

 
 

 
 

* * *, , .
p v

p v

p v
ref ref

c c
c c L

c c
      

Here, reference parameters, denoted by subscript ,ref are defined using four base 

quantities (mass, length, time, and temperature) in (MLT) unit system as 

2, ,ref ref ref

ref

L
t E u

u
   , .

ref ref ref ref

ref ref

u k T
q

L L

 
    3-51 

Substitute the dimensionless variables from (Eq.3-50) into equations (Eq. 3-49) and 

divide it through by the leading dimensional coefficient resulting dimensionless form 

of the governing equation as 

*
* * * * *. . ,inviscid viscous

t


  



w
F F s  3-52 

where the non-dimensional conservative variables *
w are given by 

* * * * * * .
T

totale    w = u  3-53 

The dimensionless form of the inviscid and viscous flux vectors can be defined as, 

* * * * * * * * * * *
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where fluid dynamics dimensionless parameters – Mach M, Reynolds Re, Prandtl Pr, 

Knudsen Kn, composite number Nδ, specific heat ratio  , Eckert Ec, and Pecklet 

number Pe – are defined as 

2M = ,  Re = ,  Pr = ,  = ( 1) ,
ref p

ref ref ref

ref ref ref

Cu u L
Ec M

a




 
  3-55 
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2 2
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The dimensionless form of the transport equations based on inverse power-law inter-

molecular model read as, 

* *s * *s,    = .T T    3-56 

The dimensionless form of dissipation factor *  can be defined as 
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This equation can be written in compact form as the inverse power-law inter-molecular 

model is used in present work and Nc


is defined as 

 
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The dimensionless form the constitutive relations can be obtained based on proposed 

dimensionless variables, as shown in Figure 3-2.  

 

Figure 3-2 A set of dimensionless Boltzmann-based constitutive models 

In the rest part of present work, the non-dimensional equations are utilized, and the 

asterisk symbol is omitted in order to condense the notations. To solve (Eq. 3-52) using 
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advanced numerical methods. A numerical method for solving algebraic constitutive 

relations is provided in the remaining of this chapters; however, an explanation about 

available numerical methods for solving the partial differential equation of conservation 

laws is postponed to the next chapters. 

3.5 An analysis on the Boltzmann-based constitutive models 

As shown in Figure 3-2, the second-order constitutive relationships are a nonlinear 

and implicit function of pressure, velocity, velocity gradients, temperature, and 

temperature gradients; therefore, solving these relations numerically requires special 

attention. It is possible to recast these relations in reduced form by expressing them in 

terms of nonlinear coupled algebraic relations: 

2 1 2

2 1 2 1
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2
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Here the caret (^) over the symbol represents the quantities with the dimension of the 

ratio of the stress to the pressure which are defined as 

ˆˆ ˆˆ, , 2
/ (2 ) / (2 )


        Π Π u u,

N N N N T
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p p p pT T

   
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Q
Q . 3-61 

1

ˆ
st order

  and 
1

ˆ
st order

Q  values are reduced form of the first-order Boltzmann-based 

relations which are defined as 
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The nonlinear coupling factor ˆ( )q cR  and dimensionless form of the dissipation function

R̂  derived from the Rayleigh–Onsager dissipation function [1] are given by 

 
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  Q Q
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3.5.1 One-dimensional compression-expansion constitutive relation 

Considering the 1-D shock structure problem in which flow only evolves in x1 

direction, the viscous stress and heat flux constitutive relations (Eq. 3-60) can be written 

as 
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where dissipation function reads as 

2 2

11 1

3 ˆˆ ˆ
2  
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second order second order

R Q , 3-66 

and normal stress in y and z directions are defined as
33 22 11

1ˆ ˆ ˆ
2

     due to the 

traceless property of viscous stress tensor. 

To obtain a general sense on the constitutive relations, the constitutive relation of 

Grad, and Burnett, and Boltzmann-based models are compared in Figure 3-3. It is 

shown that there exists a shock singularity in the constitutive profile of grad’s model; 

however, the Boltzmann-based models are not influenced by an increment of 

compression force and there is no singularity in their solutions. They are well-posed 

(existence, uniqueness, and continuous dependence on the data) for all inputs, and they 

remove the high Mach number shock structure singularity completely [13, 64]. The 

solutions also show the free-molecular asymptotic behavior with increasing degree of 

expansion and velocity-shear, satisfying 11  → −1 or 11  + p → 0. This is due to the 

consistency of Eu’s hydrodynamic equations with second laws of thermodynamics.   

 
Figure 3-3 Comparison of Boltzmann-based constitutive models for shock-structure problem 
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3.5.2 One-dimensional shear-velocity constitutive relation 

Considering the 1-D shear dominant flow problem in which flow only evolves in x1 

direction, while temperature gradients are negligible and velocity components are zero 

in x2 and x3 directions. The reduced form of viscous stress and heat flux constitutive 

relations can be derived from (Eq. 3-60) as 
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where dissipation function reads as 

11 11
ˆ ˆ ˆ3 ( 1)

second order second order
R

 
    , 3-68 

and normal stress in y and z directions are defined as 33 22 11
ˆ ˆ ˆ2     due to the 

traceless property of viscous stress tensor.  

Note that the second-order constitutive relations are implicitly coupled to each other, 

therefore, they can be solved using the method of iterations. The general properties of 

the second-order constitutive relations for a monatomic gas are shown in Figure 3-4. It 

is obvious that the shear stress predicted by second-order model becomes very small 

compared to the first-order approximation since the large tangential velocity gradients 

are damped out due to sinus hyperbolic function in the second-order model. Such an 

asymptotic behavior indicates that the velocity slip phenomenon caused by the non-

Newtonian effect can be explained in a very simple way. The ultimate origin of this 

behavior can be traced to the kinematic term – specifically, the constraint on the normal 

 22̂   and shear  12
ˆ    stresses. 
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Normal stress value Shear stress value 

Figure 3-4 Comparison of Boltzmann-based constitutive models for 1-D shear-velocity 

problem 

3.5.3 Two-dimensional decomposed constitutive relation 

The full form of second-order constitutive relation in reduced form are given by 
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It is possible to rewrite these relations in expanded form as 
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with 
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In order to study the natural behavior of the Boltzmann-based constitutive models 

for a range of flow variations, the non-conserved variables obtained by first-order and 

second-order Boltzmann-based model are compared for a monatomic gas in Figure 3-5. 

It is obvious that the response of the first-order constitutive model to the applied stress- 

and thermal forces are linear whereas the second-order model behaves nonlinearly.  

The viscous stress tensor is not a function of the thermal force for the first-order 

linear model. The stress values are found to be symmetry with respect to the adiabatic 

line, and they are not influenced by the thermal forces. For the second-order model, the 

viscous stress tensor is a function of the shear forces and the thermal forces due to 

strong coupling between non-conserved variables through the Rayleigh-Onsager 

dissipation function. The stress values are influenced more by the stress forces than the 

thermal forces. Similarly to the first-order model, the monotonicity of the solution is 

preserved and the solution is symmetrical with respect to the adiabatic line while the 

solution is changing nonlinearly respect to the forces. 

  
First-order Boltzmann-based 

model 

Second-order Boltzmann-based 

model 

Figure 3-5 Comparison of the non-conservative stress variable determined by first-order and 

second-order Boltzmann-based constitutive models. 

The response of heat flux vector to the thermal- and stress forces is shown in 

Figure 3-6. In the first-order constitutive model, the heat flux shows a linear and 

monotone behavior respect to thermal force. On the other hand, the second-order heat 

flux constitutive relations are influenced nonlinearly with respect to the both forces.  
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First-order Boltzmann-based 

model 

Second-order Boltzmann-based 

model 
Figure 3-6 Comparison of the non-conservative heat flux variable determined by first-order 

and second-order Boltzmann-based constitutive models. 

Figure 3-7 illustrates a comparison between computed Rayleigh-Onsager dissipation 

parameter ˆ,R using first-order and second-order constitutive models. As is known, R̂  

implicitly represents the degree of thermal nonequilibrium for a process.  In first-order 

models, the dissipation parameter has a circular shape which presents a uniform 

distribution of thermal nonequilibrium along the thermal stress and stress forces in all 

directions. On the other hand, in the second-order Boltzmann-based model, the 

deviation from equilibrium is not equally distributed state. It is shown that the weight 

of the stress forces on deviation from equilibrium state is more, and the thermal forces 

are considered as a secondary parameter which can influence the flow. 

  
First-order Boltzmann-based 

model 

Second-order Boltzmann-based 

model 

Figure 3-7 Comparison of the dimensionless dissipation parameter 1  computed by first-

order and second-order Boltzmann-based constitutive models. 
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3.5.4 Three-dimensional constitutive relation 

The final and complete form of the constitutive relations in three-dimensional 

coordinates is given by 
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It can be written in index notation form as 
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and ˆ ˆˆ ˆ ˆ: .     Q Qsecond order second order second order second orderR    Knowing that 

 33 11 22
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  
    

second order second order second order
 due to the traceless property of the stress tensor, 

R̂  can be written in more compact form as 
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First-order (linear, uncoupled, explicit) model Second-order (nonlinear, coupled, implicit) 

model 

  
the stress acts on a plane normal to the x-axis, in the  x- direction. 

  
the stress acts on a plane normal to the x-axis, in the y- direction. 

  
the stress acts on a plane normal to the x-axis, in the z- direction. 
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the stress acts on a plane normal to the y-axis, in the y- direction. 

  
the stress acts on a plane normal to the y-axis, in the z-direction. 

Figure 3-8 Comparison of the stress tensor for first-order and second-order constitutive models 

in 3-D phase space. 

 

Figure 3-8 depicts a quantitative comparison of stress tensor between first-order 

(NSF) and second-order (NCCR) constitutive models in three-dimensional space. The 

3-D NCCR relations are solved directly using a coupled solver based on Brydon’s 

method, while first-order models are computed explicitly. The first-order model shows 

a linear behavior of the stress tensor; however, nonlinear behavior of NCCR model in 

the computation of the stress tensor is tangible. The magnitude of stress value computed 

by the second-order model is considerably less than of that determined by the first-order 

model. In the first-order model, the variation of stress tensor in xz-direction is not 

observed, whilst this variation is not negligible for the second-order model.  

Figure 3-9 shows the response of Boltzmann-based models to the thermal-, and 

stress forces implied in the z-direction. It is shown that the first-order model does not 

predict any heat flux in x and y directions since thermal forces in these directions are 

zero. In contrary, the second-order model predicts the considerable amount of heat flux 

in those directions due to the coupling of the thermal- and stress forces through 

Rayleigh-Onsager dissipation parameter. 
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First-order (linear, uncoupled, explicit) model Second-order (nonlinear, coupled, implicit) 

model 

  
Heat flux value in x-direction  

 

  
Heat flux value in y-direction  

  
Heat flux value in z-direction  

Figure 3-9 Comparison of the heat flux for first-order (NSF) and second-order (NCCR) 

constitutive models in 3-D Space. 
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3.6 Numerical solvers for solving nonlinear coupled constitutive 

relations  

3.6.1 Iterative method 

The second-order Boltzmann-based model consists of nine nonlinear implicit 

algebraic equations of the non-conserved variables
11 12 13 22 23 33 1 2 3

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( , , , , , , , , )Q Q Q       

for the eleven known variables  , , ,p T T u . Owing to the highly nonlinear terms 

(e.g., 2nd
ˆ( )q cR function), developing a proper numerical method for solving the 

nonlinear system appears to be a daunting task. Nevertheless, it was shown that this 

task can be done by serving the method of iterations [14, 64, 65].  

In the case of the three-dimensional problems, the viscous stress and heat flux 

components 11 12 13 1
ˆˆ ˆ ˆ, , ,   Q  on a line in the physical plane induced by thermodynamic 

forces (velocity and temperature gradients, 1 1 2 1 3 1 1/ , / , / , / )u x u x u x T x         can be 

approximated as the sum of three solvers; a solver on 1 1 1/ ,0,0, /( )u x T x     and solvers 

on 2 10, / ,0)( ,0  u x  and 3 1(0,0, / ,0)u x  .  

Hence, the shear stress  , , ,xx xy xz xQ    in the case of x-direction can be 

decomposed as function of   , v ,w ,Tx x x xu ;  

       1 2 3, v ,w ,T ,0,0,T 0,v ,0,0 0,0,w ,0x x x x x x x xf u f u f f   . 

The iteration procedures can be designed for these solvers, individually. In the first 

solver which represents the compression and expansion of a monatomic gas, the 

positive shear stress П̂xx  and heat flux ˆ
xQ values are determined based on 
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and negative value of П̂xx and ˆ
xq  are calculated by 
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In the second, and the third solver of the shear flow, the П̂xx can be obtained for a given 

0
П̂xy ,

0
П̂xz through the iterative relation 

0

0

1 1 1 1

0

1/ 22

2

2

3
ˆ ˆ ˆ ˆsign( ) ( 1)

2

ˆ
ˆ ,  .

ˆ ˆ3 ( ) / 2   



      
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 


 
  n n n nxy xy xx xx

xy

xx

nd order N n xy
cq R



 (2.15) 

Here 
1

ˆ
xx and 

1

ˆ
xQ denote the initial guesses of the solution. The summary of these 

solvers and their outcomes are shown in below; 
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Similarly, it is possible to find the value of stress and heat flux in two other primary 

directions. In the case of y-direction, the shear stress ˆˆ ˆ ˆ, , ,  yx yy yz yQ  on a line in the 

physical plane induced by thermodynamic forces (velocity and temperature gradients, 

1 2 2 2 3 2 2/ , / , / , / )u x u x u x T x         can be approximated as the sum of three solvers;   

       1 2 3, v ,w ,T 0,v ,0,T ,0,0,0 0,0,w ,0y y y y y y y yf u f f u f    

where  

 1 0, v ,0,Ty yf   2 ,0,0,0yf u   3 0,0, w ,0yf  

1 1 1

1 1

1 1 1

1

1ˆ ˆ ˆ, ,
2

ˆ ˆ0, 0,

1ˆ ˆ ˆ0, ,
2

ˆ ˆ ,

  

 

  

    

   

     



yy y xx y yy y

xy y xz y

yz y zz y yy y

y yQ Q

 

2 2

2 2

2 2

2 2

2

ˆ ˆ, ,

ˆ ˆ0, 0

ˆ ˆ2 ,

ˆ ˆ ,

ˆ 0,

 

 

 

 

 

   

   

  



xy y yy y

xz y yz y

xx y yy y

zz y yy y

yQ

 

3 3

3 3

3 3

3 3

3

ˆ ˆ, ,

ˆ ˆ0, 0,

ˆ ˆ ,

ˆ ˆ2 ,

ˆ 0.

 

 

 

 

 

   

  

   



yy y yz y

xy y xz y

xx y yy y

zz y yy y

yQ

 
 

In the case of z-direction, the shear stress , , ,qzx zy zz z    are decomposed into 

three functions;  

       1 2 3, v ,w ,T 0,0,w ,T ,0,0,0 0,v ,0,0z z z z z z z zf u f f u f    
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such that 
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Finally, we have 
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After convergence, the converged values are implemented back into dimensionless 

space as  
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3.6.2 Broyden method 

Broyden's method is a quasi-Newton method which is used for finding roots of a 

nonlinear system of equations. In Newton's method, the exact Jacobian matrix is 

required for solving a nonlinear system f(x) = 0 at each iteration. However, computing 

this Jacobian is a difficult and expensive operation for most of the nonlinear systems. 

Broyden's method computes the whole Jacobian only at the first iteration and updates 

it at the other iterations.  

To solve nonlinear system of constitutive equations based on Broyden method, first 

it is necessary to bring all terms on left-hand side and makes a list of functions and 

unknown variables  11 12 13 22 23 1 2 3

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , , , ,Q Q Q    x   
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Then, the Jacobian matrix is determined iteratively based on a secant equation as 

1 1
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where n denotes the iteration index. The inverse of Jacobian matrix can be updated 

using Sherman-Morrison formulation to obtain well behavior Broyden scheme, 
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Finally, the unknowns are updating in Newton direction as 

1 ( )
inversen n nn f  x x xJ , 3-92 

and the process is repeated until the solver converges. 
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CHAPTER 4. Discontinuous Galerkin method: 

Foundations 

Percy W. Bridgman (1882-1961): 
“...what a man means by a term is to be found by observing what he does with it, not 

by what he says about it.” 

4.1 Basic of numerical analysis 

The initial step of a numerical analysis is to employ or develop an appropriate 

mathematical model for describing the physics of a given problem. The model must be 

able to explain the physics in an acceptable level of accuracy, and must be as simple as 

possible. This branch of fluid dynamics has been under development from two centuries 

ago[1, 13, 14, 28, 58, 66-70]. As a result of the mathematical modeling, a set of the 

nonlinear partial differential equation is obtained and solved by the aid of the legitimate 

numerical method. 

Several compromises need to be involved in design process of a numerical method, 

as clarified in Figure 4-1. It is well known that there is no perfect numerical method. 

Every method has its drawbacks.  

 

 

Figure 4-1 Required steps to develop a reliable and accurate numerical model 

Accuracy of a numerical method for solving the convective-diffusive system 

depends on two factors; the way of domain decomposition (i.e., triangulation), and the 

properties of the employed discretization techniques. It can be shown that there exists 

at least one weak solution for a system of equations, if the numerical flux functions are 

Lipschitz continuous [71, 72]. The convective-dominant flows are commonly highly 

nonlinear, and the vigorous entropy violation commonly presents in the vicinity of the 

steep and sharp gradients like strong discontinuities, boundary layers, and stagnation 

points [73]. Thus, finding an appropriate way to direct the numerical solution into the 

entropy solution is more emphasized. 
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Considering the weak form the hyperbolic system of partial differential equations, 

and applying the method of line (MOL) to decouple the time and spatial coordinates, 

the decoupled system in time and space achieves in which time and space are discretized 

independently. As a consequence of sequence arrangement of the numerical efforts, a 

system of algebraic equation can be obtained 

cous. ( ) . ( , )      =inviscid vis

t


   




w
F w F w w s Aw B  4-1 

where the coefficient of the matrix A , and B are tied-up to both the applied 

discretization method and the way of the numerical interpolation.  

The properties of the matrix A  and the discrete operators involved in the assembly 

of the right-hand side B may make or break the entire numerical simulation. It is 

necessary to define certain physical and numerical criteria [74] that guarantee the well-

posedness and robustness of the designed numerical method with an acceptable level 

of accuracy for a wide range of the applications.  

To guarantee the well-posedness of the numerical method, at least few constraints 

must be satisfied. According to Lax-Richtmyer theorem, the linear stability and 

consistency are necessary and sufficient conditions for convergence of the initial 

boundary value problems (IBV) to a solution [75]. However, the satisfaction of these 

constraints does not guarantee that the obtained weak solution is the entropy solution.  

It is needed to enforce a set of constraints ─ conservation, Boundedness, and 

positivity ─ at the discrete level in order to converge the conservation laws into the 

entropy solution [71, 76]. The obligation of the physical and numerical constraints5,6 to 

the numerical method, results in a physical numerical solution for conservation laws, 

only if the time step and cell size h  have been chosen sufficiently small.  

As defining ‘the sufficiently small’ value is highly problem dependent, the final 

judgment on the accuracy of the mathematical, and numerical models should be 

postponed until the validation and verification (V&V) are fulfilled [77]. The importance 

of these constraints and their effect on the accuracy of the approximate solution are 

investigated in the development of the present Modal DG methods.  

                                                 
5 Kruzkov’s theorem said that there exist the unique weak solution of the conservation laws, on the 

condition that numerical solution satisfies the cell entropy inequality 
6 Lax-Wendroff  states that any bounded, consistent, and conservative method converges to the weak 

solution (i.e., entropy solution) of the nonlinear conservation law. 
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4.2 First-order numerical methods 

In the early 20th century, many researches were established to design the robust and 

efficient numerical methods [78-80]. Most of the studies were directed to solve either 

the scalar model equations (i.e., burger and viscous burgers) or Euler gas dynamics 

equations [80]. The extension of the numerical models for solving Navier-stokes-

Fourier (NSF) equations started from the end of the twentieth century and continues 

until today.  

 

Figure 4-2 Taxonomy of first-order numerical methods 

There are numerous first-order methods in which the exact solution is approximated 

by a piecewise constant polynomial, as shown in Figure 4-2. The first-order methods 

are not accurate enough to be served solely for studying nonlinear hyperbolic systems 

where any compression wave will turn into a discontinuity regardless to matter that how 

much initial condition is smooth. In estimated solution by first order methods, the 

discontinuities are smeared and a substantial amount of artificial diffusion are generated 

in a numerical process due to the dissipative properties of these methods. Thus, they 

are commonly considered as a building block for development of the high-order 

methods and are served to obtain a very crude approximation of the true solution. 
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4.3 High-order numerical methods 

Higher-order methods are beneficial and advantageous in sense of computational 

costs and accuracy, even though, they are very sensitive to the initial conditions and 

highly motivated to generate spurious oscillations near discontinuities [81].  

Many researches have been conducted for the development of the high-order 

methods during the past 50 years [76, 82-92]; however, there are few available detailed 

summaries on high-order methods in the books. As one of the motivations of the present 

work is to provide a self-contained summary of the numerical methods, a taxonomy of 

high-order methods is depicted in Figure 4-3. As it is obvious, there are several ways 

for obtaining high-order solutions such as; expanding a Taylor series; reconstructing a 

high-order flux function at interface of the control volumes; correcting the numerical 

flux functions using anti-diffusion treatment; reconstruction high-order solution based 

on nonlinear stencils; employing the spectral methods. 

Among all high-order methods, there is a class of numerical schemes, called the 

spectral hp methods which are particularly efficient for the high-order approximation 

of the CFD applications. According to the terminology defined in [93, 94], spectral 

methods are those in which the numerical solution is fitted by series of functions and 

the accuracy of the approximate solution improves with increasing the number of modal 

functions. Based on the definition of the polynomial space (ansatz) function, spectral 

hp methods can be classified into several categories. 

4.4 Spectral categories 

The choice of test functions distinguishes the number of standard formulations for 

the spectral methods, such as collocation, Petrov-Galerkin, Galerkin methods. 

Although Galerkin method provides the most robust FEM formulation and it is 

recommended for most of the problems, it may not a bad idea to address the features of 

the other methods very briefly. 

In collocation method, the test functions are defined as delta functions at discretely 

chosen points, so-called collocation points. In this method, the differential equations 

are needed to be satisfied exactly at the collocation points. However, in Galerkin and 

Petrov-Galerkin methods, the differential equations are solved using the method of 

weighted residual (MWR) requiring that the integral of the residual of the FEM 

formulation becomes zero inside the computational domain. In Galerkin method, test 
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functions are chosen to be the same as the basis function. They are selected to be 

infinitely smooth functions in order to satisfy some or all of the boundary conditions. 

However, in Petrov-Galerkin formulation, the basis functions are different from the test 

functions, and none of the test functions need to satisfy the boundary conditions. Thus, 

an additional set of equations is considered for enforcing the boundary conditions [95]. 

 
Figure 4-3 Taxonomy of high-order numerical schemes 
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4.5 Spectral hp methods  

In spectral hp methods, the computational domain is divided into a number of local 

elements with a size of h and the solution in each local element is approximated using 

a polynomial expansion of degree p . In these methods, attaining a high-order solution 

by increasing the degree of p can be computationally more expensive than reducing 

the size of h  by the same factor [94, 96, 97]. However, the accuracy gain obtained with 

p enhancement is normally greater than the gain obtained with the h  refinement [93]. 

The choice of the polynomial space function is the main feature that distinguishes 

high-order methods from finite difference and finite volume methods. Spectral hp 

methods can be classified based on the definition of the polynomial space (ansatz) 

function into several categories including; discontinuous Galerkin (DG), spectral 

difference (SD), spectral volume (SV) and correction procedure via reconstruction 

(CPR) methods. 

4.6 Discontinuous Galerkin (DG) versus continuous Galerkin (CG) 

Finite element Galerkin method is divided into two branches: continuous Galerkin 

(CG) and discontinuous Galerkin (DG) methods. The difference between DG and CG 

polynomial space functions is depicted in Figure 4-4.  

 

Figure 4-4 Discontinuous Galerkin solution versus continuous Galerkin solution 

In CG methods, the global solution is discretized using the finite dimensional 

functions which are locally continuous in character with finite regularities that attempt 

to represent the shape of the true solution. Therefore, they may not always produce the 

true solution at some flow conditions like high-speed conditions [95]. A Hilbert space 

 1
H   is used to approximate the finite polynomial space function. It means that, if 
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function  f x  belongs to Hilbert space  1
H  , it has to be continuous across the 

elements and satisfy 

  2
( ). ( ) .   f x f x f x d


  4-2 

On the other hand, the DG spectral methods consider globally smooth functions as 

the test functions and allow more freedom to define polynomial space function which 

provides enough capability to study the high-speed problems. They use a least-square 

space function  2
L  for approximating the polynomial space function, therefore, the 

space function needs to be continuous inside the element space but not over the 

elemental interfaces  

 
2

.f x d     4-3 

In DG method, the degree of freedoms (DOFs) are overlapped on the elemental 

edges and vertices. Therefore, the computational cost of DG method for inverting the 

mass matrix is higher than that of CG method. Nonetheless, DG may not always be 

more expensive than CG method since the application of additional DOFs in DG 

method yields more accurate solutions than CG method on the same mesh. In addition, 

owing to the discontinuous polynomial space function and usage of an upwind 

monotone numerical flux function at the interface of the elements [98], DG method is 

often considered the best choice for numerically solving convective-dominated 

problems. 

4.7 Discontinuous Galerkin method 

4.7.1 History of DG methods 

The first mathematical analysis on DG method was investigated by Le-Saint and 

Raviart [99]. They reported the order of accuracy of 2 1p   for original DG method 

when polynomials up to degree p are used. In 1986, Johnson and Pitkaranta [100] 

employed the original DG method to study a linear scalar hyperbolic problem with a 

smooth solution. They proved the rate of convergence of 1 2p   for general 

triangulations discretization.  

Next, Richter [101] proposed the extension of the original DG method to linear 

scalar convection-diffusion equation, and showed that the order of convergence of the 
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original DG method is 1 2p   when the viscosity coefficient is in the same order of the 

mesh size, and convection is dominant. Cockburn and Shu [92, 98, 102] matured the 

original DG method and introduced the explicit Runge-Kutta discontinuous Galerkin 

method (RK-DG). Bassi and Rebay [103], and Cockburn and Shu [104] studied the 

hyperbolic systems with very smooth solutions using the RK-DG method. They 

reported the order of convergence of 1p   for very smooth solutions of DG method.  

Later, many other researchers study the convergence behavior of DG methods on 

both Cartesian and unstructured grids and reports mostly the order of 1 2p   for DG 

methods [105, 106]. Although there are numerous available convergence analyses for 

DG method, they have a common point. All reported convergence analysis assumed 

that the solution of the interested problem is sufficiently smooth and there is no shock 

in the domain. As the best knowledge of the author, there is no reported convergence 

analysis of DG methods for viscous shock problem in the literature.   

As a part of this dissertation, it is decided to conduct a performance analysis on DG 

method at presence of the strong and stiff flow conditions. Thus, in the following 

chapters, the order of accuracy of DG method for both very smooth and very stiff 

solutions are examined and reported [107, 108].   

4.7.2 Modal DG method versus nodal DG method 

In Galerkin framework, there are two general approaches to characterize the 

polynomial approximate solutions wh: nodal and modal approaches.  Modal DG 

methods are generalization of the nodal DG methods. The modal solutions can be 

converted into the nodal solutions using Vandermonde transformation tensor. However, 

it is not possible to obtain modal solutions from nodal solutions.  

Modal DG methods are more advantageous than nodal DGs for nonlinear problems 

[93]. They had been widely used in the development of the RK-DG method and had 

been employed for solving hyperbolic systems, and gas dynamics equations [98, 102, 

103, 109-112]. In present work, the modal DG approach is desired and used; 

nevertheless, a very brief explanation about nodal DGs is presented in below.  

In nodal approach, elemental space are represented by multiple nodes and local 

polynomial functions are determined based on nodal deformation as 

1

ˆ( , ) ( , ) ( , ) ( ),


 w x w x x x
pN

h j j

j

t t w t l  4-4 



72 

 

72 

 

where ˆ ( , )x
j

w t represents the nodal degree of freedoms and ( ) xj i ijl   is a Lagrange 

polynomial function. The advantage of nodal basis function is that enforcement of the 

boundary conditions at nodal point on the boundaries are relatively simple, and 

allowing use of less expensive smoothers/preconditioners. The nodal coefficients 

ˆ ( , )xjw t  are a function of space and time, and they are equal to zero on everywhere in 

the element except at a particular node [95].  

In modal DG method, p adaptation is simple and straightforward since the existing 

basis functions do not need to change with the increase of the order of polynomial 

approximation in the element. The solution is represented by sum of modal coefficients 

(local degree of freedoms) multiplied by a set of smooth polynomial functions as 

1

ˆ( , ) ( , ) ( ) ( ),
pN

h j j

j

t t t


 w x w x w x  4-5 

where Modal coefficients ˆ ( )jw t  are only a function of time, and they are usually non-

zero on the entire element. j( ) x  symbolizes the modal basis functions and they can be 

any orthogonal polynomials Eigenfunctions of singular Sturm-Liouville problems.  

4.7.3 Modal Discontinuous Galerkin features 

Discontinuous Galerkin (DG) method is known as one of the most conducive and 

robust high-order methods. It has recently found its way into the mainstream of CFD 

as an alternative to finite volume method. DG method combines essential features of 

the finite volume and finite element methods and has been employed to solve many 

scientific and industrial problems. It is not only very compact method; also it is a 

conserved, stable and robust method with strong mathematical supports.  

Furthermore, it is suitable for unstructured triangulation, parallelization, and hp-

adaptivity. It requires very simple treatment at the boundaries, and achieves the uniform 

high-order of accuracy throughout the domain, at least for smooth problems. 

Nevertheless, there are certain challenging issues [105] in development of the DG 

methods that are necessary to be addressed; a) how to efficiently discretize the diffusion 

terms required for the Navier-Stokes equations; b) how to control spurious oscillations 

effectively in the presence of strong discontinuities; c) how to treat with curved 

boundary; d) how to overcome the computational cost of DG methods efficiently.   
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4.7.4 Problem definition in DG framework 

In order to construct a DG discretized system for D-dimensional conservation laws 

(Eq. 3-52), let’s consider a bounded domain  Dwith boundary of  which is 

decomposed into a region of Dirichlet boundary conditions D
  and a region of 

Neumann boundary conditions N
 ; 

     

 

 

 

0 0

. . , , ,

,               at ,

( ),         for all ,

( ),      for all ,

inviscid viscous

D D

N N

t

t t

g

g


    



 

 

  

w
F w F w w s w w

w x w

w x w x

w x w x

 4-6 

where ( )
D

g w and ( )
N

g w  are boundary operators derived from the boundary conditions. 

These operators can be a function of information either at one side or both sides of the 

boundary interfaces. 

 As determination of the viscous flux vector which contains second-order derivatives 

of the conservative variables requires additional efforts, a set of auxiliary variables 

 2
,

 


D D

are defined to recast the second-order partial differential form of the 

conservation laws (Eq. 4-6) into two first-order differential systems as 

= 0.u  4-7 

Substituting (Eq. 4-7) into equation (Eq. 4-6) gives the mixed formulation of the 

conservation laws in global domain framework as 

 ( ) ( , ) , ,

0.

inviscid viscous

k k

i

t
 

  
     


  

 

w
F w F w s w

x x

w

x

 4-8 

Notice that introduction of an extra set of equations for the auxiliary variables is the 

main drawback of the mixed-DG formulations since the appearance of the auxiliary 

variables leads to additional computational cost.  

In FEM-based methods, auxiliary variables are only utilized as an intermediate step 

in the derivation of the discretized system. Later, they will eliminate it by reforming the 

equations from the flux formulation to the primal formulation. Nonetheless, 

unfortunately, it is not possible to eliminate the auxiliary system for solving high-order 

Boltzmann-based models in which viscous fluxes are a nonlinear and implicit function 

of the conservative variables and their derivatives. Thus, in present work, instead of 
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reformulating the governing equations in primal (bilinear) form, the mixed-DG 

formulation are utilized and auxiliary equations are solved besides the primary 

equations. 

4.7.5 Spatial discretization of the problem 

To discretize the conservation laws in global framework (Eq. 4-8), the global spatial 

domain   can be approximated by h
  such that h

   as 0.h Accordingly, the 

approximate domain h
  is tessellated in space = { }

h e
 , and it is paved by the Ne 

number of the non-overlapping bounded elementary control volumes (e.g., triangles, 

quadrilaterals, tetrahedrons)  
e h

  .  

The boundaries of every element e
  are divided into two parts: interfaces 

e

F
 and 

boundaries
e

B
 . Note that, the interfaces are those which are shared with the neighboring 

elements and the boundaries are the others. The jth face of the local element e
  is 

symboled by
j

e

F
 , and the adjacent elements associated with the jth face of the element 

e
  is denoted by NE,e,j

 .  

The global set of the interfaces and the boundary faces of the tessellated domain h  

are denoted by h
 and h , and are given by 

= { },e

h F
j

j
e

e
h

 

 

   
4-9 

= { }.e

h B
j

j
e

e
h

 

 

  
4-10 

If the space of the polynomial functions are defined appropriately in a standard 

region (master element region), the numerical solution in local element e
  can be 

expressed in terms of a polynomial field that accumulates the multiplication of local 

degree of freedoms (or modal moments, i.e., ,e e

l l

h hu ) with corresponding smooth 

polynomial functions of degree p as 

1 1

( , ) ( ) ( ), ( , ) ( ) ( ).
p p

e e
e e

N N
l l

h hl lh h
l l

t t t t
 

     w ξ w ξ ξ ξ  4-11 
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Here p
N denotes the number of basis (ansatz) functions required for approximating the 

smooth and continuous solution inside the space of the polynomial functions. 

The exact solution of the global variables and their derivatives can be approximated 

by the numerical solution obtained in every element as follows 

 

 

1

1

1

1

( , )  ( , ) ,

( , )  ( , ) .

e

e

e

e

N
Ne

h h h h

e

N
Ne

h h h h
e

t t

t t    





    

    





w x w w x w w

x x

 4-12 

( )
P

e
  and ( )

p

e
  are defined to denote the space of polynomial functions of 

degree at most p  in the element e
  such that, 

 
2 2

2: ( ) : | ( ) ,p

h h e e h
e

L
 


            V

D D

   4-13 

    2 2
2: ( ) : | ( ) ,p

h h e e h
e

L
   


             

D D D D
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the vector-valued h
V  and tensor-value h  spaces denote the least-square discrete finite 

element spaces of the discontinuous polynomial function of degree p  on a local 

element. 

4.7.5.1 Standard elements and basis (ansatz) functions  

4.7.5.1.1 One-dimensional problems 

In case of 1-D problems ( 1D  ), the local elements e
  are equally spaced

,
R L

x x x    and the space coordinates x in element e
  is linked to local spatial 

coordinates 
1

ξ
D

in a master element  
0

1
1,1


  
D

 through a sub-parametric mapping 

(transformation) function of 
1

xf




D
; 

1 1

0:  ( ) 2 1      L
e x e

R L

x x
f x x

x x

 




      



D D
, 4-15 

1 1 1

0 0

1 1
:  ( ) +      .

2 2
e x L Rf x x  



 
     D D D  4-16 

 

As it is shown in Figure 4-5, the local master element is defined in range of 

1 1   ; 

  1

0 1 1      D
. 4-17 



76 

 

76 

 

The polynomial space function  is set to be orthogonal scaled Legendre functions

( ) ( )
P

e p
  , and it can be defined as  

 

 
 

 

2

0

1 2

2 !
( ) ;0 ; ,

2 !

( , ) ( ), 1 .

p

p
p

i p

p
L p p

p

                                 1 i p








  
    

  

   

  

  
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Figure 4-6 depicts a set of the basic functions for an order of 5p   in master element. 

As it is obvious, the ansatz functions of υ and Φ are adopted to lie in this polynomial 

space function. 

 

Figure 4-5 Linear mapping from local element to 1-D master element 

 

 

Figure 4-6 Complete scaled Legendre polynomial space for one-dimensional element up to 

the order of p=5 
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4.7.5.1.2 Two-dimensional problems 

In the case of 2-D problems ( 2D  ), the space coordinates x in the local element

e
  are related to local spatial coordinates 

2
ξ

D

in a master element 
2

0



D

through a 

mapping process.  

 

Quadrilateral elements 

For quadrilateral elements, the space coordinates x in local element e
  are linked to 

local spatial coordinates 
2

ξ
D

 in a local master element  
0

22 1,1  D
based on a 

bilinear mapping (transformation) function 
2f 

ξ x

D
; 

2 2 1 2 1 2
0

1 2 1 2

1 1 1 1
:  ( )

2 2 2 2

1 1 1 1
                                      .

2 2 2 2

e e

e e

e A B

C D

f 



    
     

     


ξ x
ξ x x

x x

D D

 4-19 

Figure 4-7 illustrates the process of mapping for quadrilateral elements with the master 

rectangular element of 

  2,Rectangular

0 1 2 1 2, 1 , 1 .        D
 4-20 

This parametric mapping function is the simplest mapping for transforming an arbitrary 

shaped straight side quadrilateral element into the master element. It has been reported 

that DG methods are very sensitive to the shape of the geometry [111], therefore, it may 

be better to use an iso-parametric mapping function to handle curved side quadrilateral 

elements.  

 

Figure 4-7 Linear mapping from a quadrilateral element to rectangular master element 

In order to develop a set of multi-dimensional basis functions using full-tensorial (or 

serendipity) expansion of the orthogonal basis functions inside L²(Ω) space, it is 
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desirable to use the product of two    1 2,f f  unidirectional orthogonal polynomial 

functions [93, 113]. 

According to Pascal’s triangle, the polynomial function of order p is defined, 

, 1 2
( ) ( , )

P

e p q
    , such that 1 2 1 2

( , ) ( , )
j p q

      lies in the polynomial space defined 

inside the master element as 

      

 

2

, 1 2 1 2 1 2 0

2

1 2 , 1 2

( , ) : ;0 , ; , ,

( , ) ( , ),                                  1 1 .

p q

p q

i p q

L L p q p

i p

  

 

 

    

   

D     

   
 4-21 

were p’ and q’ are the modes of    
1 2

,
p q

L L 
 

 two Legendre functions. 

 

Figure 4-8 Complete polynomial space, based on Pascal’s triangle, for full quadrilateral 

expansion up to order of p=6 

 

Figure 4-8 depicts the modes of the quadrilateral basis functions inside the local 

master element of  
0

22 1,1  D
. Note that, for convenient, the multi-dimensional 

basis functions are sorted such that by a single index j all p’-q’ modes can be addressed. 

The full tensorial quadrilateral basis functions up to order of 2p   can be defined as 



79 

 

79 

 

 

 

  

2

1 2 0,0 1 2 1 2 0,2 1 2 2

2

1 2 0,1 1 2 2 1 2 1,2 1 2 2 1

2 2

1 2 1,1 1 2 1 2 1 2 2,2 1 2 2 1

1 2 1,0 1

1

2

5

2 6

3 7

4

1
( , ) ( , ) 1, ( , ) ( , ) 3 1 ,

2

1
( , ) ( , ) , ( , ) ( , ) 3 1 ,

2

1
( , ) ( , ) , ( , ) ( , ) 3 1 3 1 ,

4

( , ) ( , )

        



 

          

           

  



  

    

    

     

   

 

2

1 1 2 2,1 1 2 1 2

2

1 2 2 0

8

9 , 1 2 1

1
, ( , ) ( , ) 3 1 ,

2

1
( , ) ( , ) 3 1 .

2

     





    

  

  

 4-22 

As it is obvious in Figure 4-9, the mass matrix of quadrilateral basis functions is not 

diagonal due to bilinear mapping transformation, and computational cost of 

quadrilateral elements is higher than triangle elements. 

 

Figure 4-9 Plot of the mass matrix for complete polynomial space up to order p=6 for full 

quadrilateral expansion. 

 

Triangular elements 

The special coordinate mapping, named as collapsed coordinate transformation, in 

conjugation with an orthogonal set of basis functions can be utilized to benefiting a 

diagonal mass matrix in the triangular domain [93, 114].  

In collapsed coordinate transformation; the master triangular and rectangular 

elements are defined as 

  2,Triangualr

0 1 2 1 2 1 2, 1 , ; 0 ,

          D
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  2,Rectangular

0 1 2 1 2, 1 , 1 .        D
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The space coordinates x is linked to local spatial coordinates 
2

ξ
D

 through a two-

steps parametric mapping (transformation) function 
2 2 2f f f  

   
x ξ x η η ξ

D D D
; 

  

2 1 2 1 2

2

0
1 22
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1 1
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η x

ξ η

η x x x

ξ

D

D

D
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To understand this two-step transformation process, the transformation from 

physical coordinate system to collapsed coordinate system is depicted in Figure 4-10. 

As it is obvious, two vertices are collapsing into one as the quadrilateral becomes a 

triangle. This is the main reason for calling this two-step transformation as collapsed 

coordinate transformation.  

 

Figure 4-10 Special mapping from a triangular element to rectangular master element 

The collapsed coordinate transformation is very practical and it is utilized by several 

researchers; however, an extra work is required to be done for transformation a singular 

point from rectangular master element to triangular master element [114]. Due to 

appearance of a singular point in mapping function, it is necessary to re-define the 

mapping transformation at singular point such that  

 2

2
( ) 1,1 , 1f




    

ξ η
ξ

D
. 4-26 

 

The inverse mapping from collapse coordinate system into the master triangle, and 

then transformation from master triangle coordinate system to physical coordinate 

system can be defined as 
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Here determinants of the Jacobian of transformations are given by 
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where denotes the area of the original triangle in the physical coordinate system.  

In collapsed coordinates, the eigenfunctions of a particular Sturm-Liouville problem, 

PKD (Proriol, Koornwinder, and Dubiner) polynomials [115-117], are commonly 

employed as orthogonal basis functions. The orthogonal PKD basis functions are built 

using a simple product of two unidimensional polynomials ─two Jacobi polynomials 

with certain weights─ in L²(Ω) space. 

According to Pascal’s triangle, a complete polynomial space function of order p  

can be defined in rectangular reference by defining 
, 1 2

( ) ( , )
P

e p q
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Here, two indices (p’ and q’) are used to address specific basis functions in   polynomial 

space function ( ).
P

e
   
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The mass matrix of PKD basis functions is a diagonal matrix, as shown in Figure 4 

13, therefore, application of this basis functions for non-quadrilateral elements is 

computationally more efficient than orthogonal Legendre polynomials.  

 
Figure 4-11 Plot of mass matrix for complete polynomial space up to order p=6 for full 

triangle expansion 

The complete polynomial space in terms of Pascal's triangle is depicted for PKD 

basis functions in Figure 4-12. It is shown that the multi-dimensional PDK basis 

functions, similar to quadrilateral basis functions, are sorted such that all p’-q’ modes 

are addressed by a single index j.  

 
Figure 4-12 Complete polynomial space, based on Pascal’s triangle, for full triangular 

expansion up to order of p=6 
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The PKD basis functions up to order of 3p   are listed below and 
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4.7.5.1.3 Three-dimensional problems 

In case of 3-D problems ( 3D  ), the space coordinates x in tetrahedron element e
  

is linked to local spatial coordinates 
3

ξ
D

in a canonical master element 
0

3D based 

on a linear mapping (transformation) function 
3f 

ξ x

D
 as 
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Figure 4-13 Linear mapping from a tetrahedron element to canonical master element 
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The canonical master element can be defined as 
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and a linear mapping is used for transformation of a tetrahedron element into the 

canonical master element, as illustrated in Figure 4-13. It is possible to obtain an inverse 

mapping relation 
3

xf




D
 using crammer rule such that 

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

1 1 1 1 1 1

3 3

0 2 2 2 2 2 2

3 3 3 3 3 3

1 1 1 1 1

,

1
:  ( ) ,

e e e e e

e e e e e

e e e e e

e e e e e

e e e e e

e e e e e

e e e e

A C A D A

A C A D A

A C A D A

B A A D A

e B A A D A

B A A D A

B A C A

x x x x x x

x x x x x x

x x x x x x

x x x x x x

f x x x x x x
J

x x x x x x

x x x x x x

 





  

  

  

  

      

  

  

ξ x

x ξ

x
D D

1

2 2 2 2 2 2

3 3 3 3 3 3

.

e

e e e e e

e e e e e

A

B A C A A

B A C A A

x x x x x x

x x x x x x

 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
   
 

 4-35 

Here determinant of the Jacobean of the transformation J
x ξ

is given by 
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where
tet is the volume of real tetrahedral in x coordinate system.  

In order to develop a set of multi-dimensional orthogonal basis functions inside L²(Ω) 

space, three polynomial functions are defined in terms of Jacobi polynomials function

 ,

n
P x

 

 in three independent directions, and then the product of these unidirectional 

orthogonal polynomial functions are adopted as multi-dimensional basis functions.  

 

A complete polynomial space function of order p  can be defined inside the 

canonical tetrahedron system by defining 
, , 1 2 3

( ) ( , , )
P

e p q r
       such that 
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Here three principle functions are  
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and the Jacobi polynomial functions defined in the interval of  1,1  are expressed as 
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Similar to two-dimensional basis functions, three-dimensional basis functions are 

sorted such that all p’-q’-r’ modes can be addressed by a single index j.  
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The 3-D orthogonal hierarchical basis functions up to order of 2p   can be written as 
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The mass matrix is diagonal matrix due to the orthogonality of 3-D basis functions 

inside the canonical tetrahedron master element, as shown in Figure 4-14. 
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Figure 4-14 Plot of mass matrix for complete polynomial space up to order p=3 for full 

tetrahedron expansion 

4.7.5.2 Elemental formulation 

Taking the product of the conservation laws with vector  iυ   and the product of 

the auxiliary equations (Eq. 4-8) with tensor    ik k  Φ , and then integrating by 

parts over the solution domain results in 
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where it can be written in component form as 
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with 1 2i  D .  

Splitting the volume integral over h
   into sum of the integrals over the local 

elements e
  and application of divergence theorem to (Eq. 4-47) leads to elemental 

formulation of the governing equations as 
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Here e
d  denotes the boundaries of the local element, and n is the outward unit normal vector.   

The system of equations introduced in (Eq. 4-44) is not solvable since the degree of 

freedom belonging to every element is not linked to the degree of freedoms in other 

elements of h
 . Thus, establishing a weak inter-element connection via introducing an 

appropriate monotone numerical fluxes at interfaces and boundaries of elements e
  is 

essential to obtain an approximate spectral solution. 

4.7.5.3 Weak and strong formulation 

Replacing the discontinuous fluxes ─ , ,  and 
inviscid viscous auxiliary

i i ik
F F F ─ at the border of 

local elements with numerical flux functions ─ , ,  and 
inviscid viscous auxiliary

i i ik
F F F ─ leads to a 

weak formulation of DG method on local elements e
 . The weak formulation can be 

expressed as 
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The weak formulation not only leads to the unique solution at the interface between 

two elements, but also it leads to prescribing the boundary conditions in the weak sense 
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on the boundary interfaces. Although we are not utilizing the strong formulation of DG 

method, it can be obtained by applying the divergence theorem to the weak formulation 

(Eq. 4-45) as follows 
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The resulting formulation is called a two-steps mixed-DG method in which the test 

functions, accordingly to Galerkin method [118], are chosen to be equal to the basis 

(ansatz) functions defined in Section 0. In mixed DG method, the auxiliary equations 

are initially solved at the beginning of every time step, and the gradients of primary 

variables eh
  are updated based on the global solutions eh

w at current time step. 

Afterwards, the primary system is solved, using the values of eh
 obtained from step 

one. 

4.7.6 Time discretization of the problem 

Considering the weak formulation and applying the method of line (MOL) for 

decoupling time and spatial coordinates, the decoupled system of equations in time and 

space achieves in which time and space are discretized independently.  

Figure 4-15, there are several implicit, and explicit single level or multi-level time-

stepping schemes. The choice of the scheme for integration of the time depends on 

several items; the desired accuracy for transition state, the robustness of the scheme, 

and more importantly the stability and computational cost of the scheme.  

The explicit methods required smaller time steps compared to implicit methods; 

however, they are accurate and easy to parallelize for studying unsteady problems.  In 
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explicit schemes, it is well known that the grid spacing x  and the time step size t  

must be chosen such that the Courant–Friedrichs–Lewy (CFL) criterion is satisfied.  

 
Figure 4-15 Time integration schemes 

Chavent and Salzano [119] developed an explicit version of DG method and utilized 

it for solving one-dimensional scalar conservation laws. They discretized time utilizing 

the simple forward Euler method. According to their von-Neumann analysis, DG 

method is stable if t x   is in order of x , and it is unconditionally unstable when 

t x   is held to be constant. Although their conclusion was for a linear scalar 

hyperbolic equation, it might hold for a non-linear system of equations.  

Cockburn and Shu [92] proposed an approximation of the CFL number as 

max

1
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
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This CFL condition was proved to be exact for the case of 1p   [120]. Cockburn and 

Shu reported that CFL number for a numerical analysis should be around 5% less than 

above CFL condition when order of the polynomial is greater than two 2p   [92]. 

Therefore, in all of the simulation in present work, CFL number is determined using  

max

0.95
.

2 1

t
CFL

x p





 


 4-48 

Although obtaining an appropriate range of CFL number is essential, but it is not 

sufficient. It is proven that the forward Euler method applied to semi-discrete systems 

is unconditionally unstable in the case that the degree of approximate solution, p , is 

greater than 2 when Courant number is constant [120, 121].  

In finite volume methods, classical-Runge-Kutta schemes are commonly used. 

However, they may not be a good choice for high-order DG methods. There is a chance 

to have non-monotone results during time marching process by application of these 
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time-stepping schemes[122]. Strong-stability-preserving (SSP) method are basically 

designed to improve the capability of the explicit multi-level time-stepping schemes.  

The first SSP scheme was introduced by Cockburn and Shu in 1988[123]. In this 

scheme, the temporal operator itself does not increase the total variation of the solution 

due to the total variation diminishing (TVD) feature of the scheme [122, 124]. In this 

scheme, time-stepping is enforced to be formulated as a convex combination of forward 

Euler steps with time step size of 
il
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Many researches have been conducted to improve the traditional SSP scheme by 

choosing efficient values for ,  . Nevertheless, the 3rd order-3rd stages Strong-

stability-preserving (SSP 3-3) method is widely used for the solution of the advection-

diffusion equations, gas dynamics, and electromagnetics applications since it is low-

storage, compact, simple to code, optimal, and stable for all order of accuracy in spatial 

space. I also used (SSP 3-3) scheme,  
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to integrate time space in present work.  

4.7.6.1 Time step calculation 

The time step value t  for non-linear system of differential equations can be 

predicted by 

   ˆ ˆ ˆ ˆ ˆ ˆ
I

I x y z x y z

c c c v v v
I I

t CFL
C


 

      
. 

4-51 

Here, the convective spectral radii are defined as 

     ˆ ˆ ˆˆ ˆ ˆ,  ,  x x y y z z

c c cu c S v c S w c S            , 4-52 

and the viscous spectral radii are given by 
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Note that C is a constant parameter which is set; zero for zero-order Boltzmann-based 

model; 2 for first-order Boltzmann-based model; 4 for second-order Boltzmann-based 

model. ˆ ˆ ˆ, ,
x y z

S S S   are the projections of the control volume on the y-z, x-z and x-y 

planes, respectively. They can be defined as 

1 1 1

1 1 1ˆ ˆ ˆ, , .
2 2 2

F F FN N N
x y z

x y zJ JJ
J J J

S S S S S S
  

         4-54 

where , ,
x y z

S S S  denote the x-,y- and the z-component of the face vector S S n . 

4.7.7 Rules of the numerical integration 

In weak formulation (Eq. 4-45), the volume and surface integrals are needed to be 

approximated as a weighted summation of function evaluation at a number of points. 

The choice of quadrature rule limits the order of DG method, therefore, choosing an 

appropriate numerical integration method is essential to obtain highly accurate DG 

solutions.  

In case of one-dimensional problems, a volume integral can be determined 

numerically on the master element region  0
1,1  as 

     
1

11
2

GPN

i ix
i

x
f x dx f J d f





    

   
D
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where GP
N  is the number of required quadrature points and i  is the weight coefficient 

value of those and i
 is the corresponding Gauss point locations. In this dissertation, 

the Gaussian Legendre quadrature rule is employed for solving integrals inside the 

element, and over the element interfaces which necessitates the application of the exact 

polynomials of degree 2 p and 2 1p   for the numerical integrations inside elements and 

over the faces, respectively[110].  
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Line element 

 

Rectangular element 

 

Triangular element 

 

Figure 4-16 Number of required quadrature points for integrating inside and over faces of a 

1-D and 2-D element for (a) p=0, (b) p=1, and (c) p=2 order of space polynomials 

In two-dimensional cases, performing integration on the master elements is a trivial 

since the master elements are rectangular shapes with perpendicular edges. The 

integrals can be determined using the tensor product of two uni-dimensional quadrature 

rules [125, 126]. Figure 4-16 shows the distribution of the Gauss-Legendre quadrature 

points inside and over the master element for 1-D and 2-D elements. 

In case of three-dimensional DG method, the numerical integration of the boundaries 

and volumes are performed using a symmetrical integration rule. The surface Integrals 

are approximated by the following formulation  
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where 
0

A is the surface area of the standard (reference) triangle element and
i is the 

associated weight with the quadrature points. The volume integrals are estimated by  

   
1 1

1 2 3 1 2 3 0 1 2 3

10 0

1

0

, , ( , , ) , ,
pNr

i

i

r

e

s

f x J ffx x d d






 

        x η
ξ      

D
 4-57 

where 0  denotes the volume of master tetrahedral element. 

 

Distribution of all quadrature points 

 

Distribution of face quadrature points 

 

Distribution of volume quadrature points 

 

 

Figure 4-17 Number of required quadrature points for numerical integration in a tetrahedron 

element for (a) p=0, (b) p=1, and (c) p=2 order of space polynomials 
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4.7.8 Pseudo-algorithm of a modal DG solver 

Figure 4-18 demonstrates the pseudo flowchart of a multi-dimensional 

discontinuous Galerkin solver for compressible Navier-Stokes equations. 

 

 

Figure 4-18 The pseudo flow chart of a 2-D DG solver. 
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CHAPTER 5. Discontinuous Galerkin method: 

Special topics 

Albert Einstein (1879-1955): 
 “… all knowledge starts from experience and ends in it. Propositions arrived at by 

purely logical means are completely empty as regards reality." 

 

 

In this Chapter, an analytical solution of the Navier-Stokes-Fourier (NSF) equation 

is provided for viscous shock structure problem. Various limiter and numerical flux 

functions are reviewed and analyzed in detail. The performance of limiters and flux 

functions are reported for stiff and smooth solutions of NSF and Euler equations. The 

sensitivity of the modal DG method to the linear mapping of the curved boundaries is 

examined for Euler and NSF equations. 

5.1 Stiff but continuous benchmark problem 

Majority of the challenging engineering problems are irreversible and contain a 

process with a rapid change of the field properties. NSF is the most well-known model 

which is commonly used for studying the engineering fluid dynamics problems, 

although its application in far-from-equilibrium conditions is questionable [57]. It is 

expected that the solution of NSF equation is only being qualitatively in agreement with 

experimental results in case that solution departs considerably from equilibrium state. 

Nonetheless, computational study of NSF model in any thermodynamic condition can 

pave the way for designing a robust and an accurate numerical method.  

One of the complicated and cumbersome type of thermal non-equilibrium appears 

in compression and expansion shock waves where a rapid change of flow properties 

occurs within a very thin region [13, 107]. In almost all of the high-speed flows, there 

is a front shock wave with a thickness of order of few mean free path length that 

significantly influences the flow behavior in another region of the flow field. This 

frontal shock wave is usually analogous to the one-dimensional viscous shock structure 

problem, as shown in Figure 5-1.  

In viscous shock wave, the flow speed is higher than sound-speed since the speed of 

moving gas particles is much higher than the gas particle’s peculiar velocity. Thus, in 



96 

 

96 

 

macroscopic sense, the convective terms of momentum conservation laws tend to create 

a discontinuous jump alongside the shock wave whilst the thermal and viscous 

dissipations ― originating the lack of enough number of particle collisions in shock 

region― try to decay and fade the level of the flow stiffness by converting the 

translational energy into the internal energy. Thus, viscous shock wave solution is 

mathematically continuous and smooth, but it is extremely stiff and strong enough to 

arouse the numerical wiggles near shock waves.  

Analyzing the viscous shock wave and studying the physics of shock wave structures 

for varying Mach numbers ─ such as shock thickness, separation distance, and 

asymmetry ─ have been the center of attention of the physicists from the past century 

[13, 70, 127-130]. The numerical difficulties associated with the stiffness of the shock 

structure has also been studied by many mathematicians [65, 112, 131, 132].  

 

Figure 5-1 The appearance of the shock structure in multi-dimensional problems. The 

zoomed region illustrates the location of front shock structure. The lower and upper figures 

display the shock profiles and the variation of the shock density thickness versus Mach 

numbers for different gas molecules, respectively. 

There are two different approaches for solving viscous shock wave problem; 

recasting the equations into ordinary differential form and then solving them 

numerically using dynamical systems; solving the partial differential equations by aid 

of CFD [41, 70, 108, 127, 133, 134]. The physicists prefer the former so as to avoid the 

numerical difficulties (artifacts) in solving a partial differential equation.  



97 

 

97 

 

It was found that the numerical results of the shock structure are very sensitive to 

the extent of the computational domain, the imposed downstream boundary conditions, 

the level of intrinsic physical and artificial viscosity and thermal conductivity, and the 

employed time integration schemes [14, 65, 131, 135-137]. Therefore, it may be useful 

to solve this problem using advanced high-order methods in order to examine the 

performance of the methods for this stiff but continuous solution of the NSF equations.  

In the following of this chapter, this benchmark problem is extensively used to 

measure the performance of the limiters, flux functions, and to compare the capability 

of the finite volume methods with DG method in capturing shock waves. 

5.1.1 Analytical analysis of viscous shock-wave 

The viscous shock wave problem was initially solved analytically for the case that 

viscosity and thermal conductivity were constant and independent from temperature 

variations [133]. However, the effects of temperature variation are significant and not 

negligible for shock wave problem. So, the analytical solution of the viscous shock 

wave, considering the variation of the transport coefficients due to temperature 

variation, had been demanding until the general closed form of the analytical solution 

of the viscous shock was derived by Myong in 2014 [127].  

The full derivation of the analytical solution of the viscous shock wave for 

Maxwellian and the hard-sphere gas molecules was described in  [127]. Therefore, only 

the exact analytical solution of the flow properties is provided here. To the interested 

readers, it is recommended to study [107, 127] for further information about the 

derivation of the exact viscous shock wave problem. 

5.1.1.1 Density function of Maxwellian molecule 

The analytic solution of the density profile for the Maxwellian molecule [127] is 

defined as 
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where the subscripted 1 denotes the upstream, and the subscripted 2 stands for the 

downstream conditions; 5 4
a

r   is the integration constant value and r is density 
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variable in reduced form; 
ar

x is the location where local density becomes equal to the 

arithmetic average of the upstream and downstream density. The constant parameters 

of α and   are defined by  
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5.1.1.2 Density function of hard-sphere molecule 

Analytical solution of the hard-sphere gas molecule reads as 
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5.1.1.3 Solution of other variables 

Density solution is obtained by solving equation (Eq. 5-1) or (Eq. 5-4) using 

bisection method. The solution of the other variables is dependent to the density 

solution, and they can be easily calculated using the following relations: 
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where r, υ, θ, 𝜎, φ are density, velocity, temperature, normal stress, and heat flux 

variables in reduced form. 
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5.1.2 Verification of numerical methods 

The DG method has been mostly verified based on examination of the global 

conserved solution, although the most important variables are generally those quantities 

of engineering interest – e.g. non-equilibrium non-conserved variables, lift, drag, shock 

density thickness, and so on. In this section, the numerical results of the not only global 

quantities but also the non-conserved variables are compared with the exact analytical 

solution of NSF equations for hard-sphere and Maxwellian gas molecules. 

5.1.2.1 Finite volume method vs. discontinuous Galerkin method 

The analytical solution of the hard-sphere molecule is compared with finite volume 

and DG approximate solutions at three different Mach numbers. The computational 

domain was tessellated with the same number of the element for both numerical 

methods. All numerical solutions are shown at sub-cell level rather than cell average 

resolution to observe more detail of the solution and to compare the methods fairly.  

The normalized solution of the density profile is depicted for coarse and fine 

resolutions in Figure 5-2. Results illustrate that the piecewise constant solution is the 

most diffusive solution. It is obvious that the location of 
ar

x is not captured accurately 

when piecewise constant DG method or second order FVM method using coarse grid 

is employed. FVM method using coarse grid under-predicts the density profile 

compared to the analytical solution. This discrepancy becomes more tangible when 

Mach number increases. On the other hand, it is obvious that the difference between 

analytical solution and DG approximate solution becomes negligible by increase of the 

degree of the polynomial. Almost for all cases, DG high-order approximate solutions 

are closer to the analytical solution compare to solutions obtained by the same order 

FVM method.   
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Figure 5-2 Comparative analysis of the normalized shock density profile between finite 

volume methods, DG spectral method, and exact analytical solution at three different Mach 

numbers. (left) Coarse spatial resolution solution Ne=20, and (right) fine spatial resolution 

solution Ne=100. 

For the case that DG quadratic or linear piecewise polynomials are utilized, the 

location of shock-wave is estimated accurately even if 20 computational elements are 

used. Nevertheless, the piecewise linear approximation, obtained using 20 

X/

(
-

1
)/

(
2
-

1
)

-5 0 5
0

0.2

0.4

0.6

0.8

1

1.2
Piecewise linear solution (DG - p=1)
Piecewise quadratic solution (DG - p=2)
Piecewise constant solution
Piecewise linear solution (FVM)
MUSCL recounstructed solution (FVM)
Exact solution

X/

(
-

1
)/

(
2
-

1
)

-5 0 5
0

0.2

0.4

0.6

0.8

1

1.2
Piecewise linear solution (DG - p=1)
Piecewise quadratic solution (DG - p=2)
Piecewise constant solution
Piecewise linear solution (FVM)
MUSCL recounstructed solution (FVM)
Exact solution

X/

(
-

1
)/

(
2
-

1
)

-5 0 5
0

0.2

0.4

0.6

0.8

1

1.2
Piecewise linear solution (DG - p=1)
Piecewise quadratic solution (DG - p=2)
Piecewise constant solution
Piecewise linear solution (FVM)
MUSCL recounstructed solution (FVM)
Exact solution

X/

(
-

1
)/

(
2
-

1
)

-5 0 5
0

0.2

0.4

0.6

0.8

1

1.2
Piecewise linear solution (DG - p=1)
Piecewise quadratic solution (DG - p=2)
Piecewise constant solution
Piecewise linear solution (FVM)
MUSCL recounstructed solution (FVM)
Exact solution

X/

(
-

1
)/

(
2
-

1
)

-5 0 5
0

0.2

0.4

0.6

0.8

1

1.2
Piecewise linear solution (DG - p=1)
Piecewise quadratic solution (DG - p=2)
Piecewise constant solution
Piecewise linear solution (FVM)
MUSCL recounstructed solution (FVM)
Exact solution

X/

(
-

1
)/

(
2
-

1
)

-5 0 5
0

0.2

0.4

0.6

0.8

1

1.2
Piecewise linear solution (DG - p=1)
Piecewise quadratic solution (DG - p=2)
Piecewise constant solution
Piecewise linear solution (FVM)
MUSCL recounstructed solution (FVM)
Exact solution



101 

 

101 

 

computational elements, is deviated from the exact solution in rapid changing region of 

the upstream side. This discrepancy becomes more obvious when Mach number 

increases; however, it disappears when the number of computational elements is 

sufficiently large.  

Hard-Sphere Molecule Maxwell Molecule 

  
Mach=2, Ne=100 

  
Mach=5, Ne=100 

  
Mach=15, Ne=100 

Figure 5-3 Comparing the normalized shock profiles of the DG polynomial approximated 

solution with exact analytical solution of hard-sphere gas (left), and Maxwellian gas 

molecule (right) at three different Mach numbers. 
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This comparison shows that the finite volume methods ― both MUSCL and 

piecewise linear reconstruction schemes― are more diffusive than DG methods if the 

same grid resolution and order of accuracy is being used for the simulation. The results 

also demonstrated that as Mach number increases, either more computational elements 

or higher-order polynomial solutions are required to capture the shock position and its 

profiles. 

5.1.2.2 Profile verification 

In Figure 5-3, the profiles of the conservative and primitive (density, velocity, and 

temperature) variables are displayed for the hard-sphere and Maxwellian molecules at 

three different Mach numbers. The black solid line indicates the analytical solutions 

while the gray solid and scatter lines correspond to the numerical solutions with the 

polynomial order of zero, one, and two.  

Figure 5-3, illustrates that the DG approximate solution becomes closer to the 

analytical solution by increase of the degree of polynomial. The results illustrate that 

larger computational domain is required for simulation of Maxwellian gas molecule in 

compared to hard-sphere gas type. This is because that the shock profile of hard-sphere 

gas becomes more tightly packed and compressed by increasing the Mach number, 

whilst the shock profile of Maxwellian gas becomes more diffusive and disperse. 

It is also shown that the lower-order DG approximate solution of Maxwellian gas 

molecule displays better qualitatively matches with analytical solution compare with 

hard-sphere gas molecule. This is because that the Maxwellian molecule has the biggest 

viscosity power-index among all kind of the gas molecules which causes the increase 

of the viscosity in the shock region, and generation of the most diffused and smoothest 

shock profiles among all type of the gas molecules. 

Figure 5-4 depicts the profiles of the non-conservative variables – normal stress and 

heat flux– for the hard-sphere and Maxwellian gases at three different Mach numbers. 

A noticeable physical feature is that the shock transition regime extends further to 

upstream as the molecule deviates from the hard-sphere type. It is shown that the 

piecewise constant solution smears the stress and heat flux profiles more than high-

order DG solutions since the level of the numerical diffusion is the highest for first-

order solution approximation, and the second-order derivatives are not resolved 

accurately in low-order approximation. 
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Hard-Sphere Molecule Maxwell Molecule 

  
Mach=2, Ne=100 

  
Mach=5, Ne=100 

  
Mach=15, Ne=100 

Figure 5-4 Comparing the normalized stress and heat flux profiles of the DG polynomial 

approximated solution with exact analytical solution of hard-sphere gas (left), and 

Maxwellian gas molecule (right) at three different Mach numbers. 

It is also obvious that the prediction of shock properties for hard-sphere molecule 

using piecewise constant solution is erroneously as the Mach number increases. This is 

reverse in the case of Maxwellian gas molecule that low-order solution becomes closer 

to the analytical solution by increasing the upstream Mach number due to the fact that 
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the shock wave becomes thicker and smoother by increasing the upstream Mach 

number. The results also reveal that the stress profile is analogous to heat flux profile 

and it becomes more compressed by increasing the upstream Mach number. In the case 

of hard-sphere gas molecule, the maximum normal stress and minimum heat flux values 

are located at same position although this does not hold for Maxwellian gas molecule 

where the distance between stress and heat flux extrema increases by increasing the 

upstream Mach number.  

5.2 Spurious oscillations 

5.2.1 Gibbs phenomena 

DG method similar to other high-order methods suffers from the existence of the 

spurious oscillations at near the discontinuities due to Gibbs phenomena. A taxonomy 

of the spurious oscillation controllers is depicted in Figure 5-5. There are three general 

approaches to eliminate wiggles from the numerical solution: artificial viscosity, digital 

filters, and limiters. Among those, limiters may take more attention since they can be 

used not only to control wiggles but also to enforce the nonlinear stability in the 

numerical scheme.  

The choice of limiter functions distinguishes three different limiter categories for 

high-order methods; slope limiters, spectral limiters, and non-oscillatory limiters. Slope 

limiters were initially developed for finite volume method and later they are served in 

spectral hp methods. One way to group the slope limiters is to label them base on the 

behavior of their limiter functions ( )r in Harten’s TVD region[84] (or in  Spekreijse 

Monotonicity region [91]). According to this classification, total variation diminishing 

(TVD), total variation bounded (TVB), local extremum diminishing (LED), essentially 

local extremum diminishing (ELED), monotonicity preserving (MP) and 

multidimensional limiters can be distinguished from each other.  

In spite of the slope limiters that have been designed for finite volume method, the 

spectral limiters were designed originally for high-order spectral methods. High-order 

sub-cell limiter, moment limiter, and the modified moment limiter belong to this class 

of limiters. 

Final class of limiters is the non-oscillatory limiters which can also be considered as 

a high-order reconstruction scheme. Harten [89] was the first person who employed 

nonlinear reconstruction stencils at interface of the control volumes and introduced 
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ENO high-order reconstruction scheme. Later, this scheme has been developed more, 

and many novel non-oscillatory schemes are introduced such as weighted essentially 

non-oscillatory (WENO)[86], monotonicity preserving weighted essentially non-

oscillatory (MPWENO)[138], Hermite weighted essentially non-oscillatory (HWENO) 

[139-141], and so on. 

 

Figure 5-5 Taxonomy of spurious oscillations controllers 

Although there are many choices for limiters, the numerical experiments reveal that 

most of them does not have privilege to the others [142]. Some of the limiters perform 

better at some specific problems, and the others are better in other problems. Even 

though there is no rigorous guideline for selecting a proper limiter for certain problem, 

a systematic analysis on the limiters is essential to find out their overall performance. 

The application of the limiters eliminates unphysical oscillations and preserves the 

nonlinear stability of the numerical method, but preservation of the global order of 
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accuracy is still questionable. In most of the time, application of the limiters degrades 

the solution accuracy such that the order of accuracy reduces to first-order near stiff 

regions. In the other words, the obtained accuracy using limiters is usually far less than 

expected global order of accuracy.  

In this section, some of the limiters which are noticed more in DG community – total 

variation diminishing (TVD)[80], total variation bounded (TVB)[109], generalized 

moment (GM), simple monotonicity preserving (SMP), positivity preserving (PP)[143-

145], Hermite WENO (HWENO)[139-141], and differentiable and monotonicity 

preserving (DAMP) limiters– are selected for studying the performance of limiters for 

viscous shock wave problem.  

In previous studies on performance of the limiters, the accuracy of limiters was 

investigated by either qualitatively comparison of the limited solution profile with exact 

solution of the Euler equation or studying a very smooth solution of the scalar model-, 

inviscid Euler-, or NSF equations. The error norm analysis was only provided for the 

case that shock waves do not exist in the domain, and the point-to-point profiles 

comparison between the limited solutions and exact solution was preferred for 

measuring the performance of limiters in the case that a stiff region exists in the 

computational domain [142].  

Nonetheless, in order to indicate the real order of the accuracy of DG methods in 

conjugation with oscillation controllers, it is essential to analyze the convergence rate 

when a strong but continuous gradient exists in the computational domain. Hence, 

viscous shock problems can be considered as a unique benchmark problem for studying 

the performance of limiters, since the solution is smooth enough to measure error norms 

and convection terms are strong enough to induce unphysical oscillations.  

5.2.2 Trouble cell indicator 

Shock indicators have been commonly used, besides limiters, to minimize the 

numerical diffusion of the limiters, to avoid use of limiters in smooth flow regions, and 

to reduce the computational cost of the limiting process.  

Let’s assume the limited solution at right and left side of the local element in a 

general form of 

0 0,  ,e ei ih h
   w w w w w w

i+1/2 i-1/2
i ix x

 5-6 
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where 
0

wi presents the average of the solution in the local element; ,i iw w are the limited 

projection of the high-order terms at right and left side of the local element defined as 

1/2

1

( ) ( ),
p

e

N
l

h n i

l

t  




w wi 1/2

1

( ) ( )
p

e

N
l

h n i

l

t  




w wi in which the limited moment (local 

degree of freedom) of the approximate polynomial solution in the limited element are 

denoted by e

l

hw .  

If the limited moment value is not equal to original moment value e e

l l

h hw w , a 

limiter is activated and the high-order moments in the troubled element are replaced 

with limited moment values.  This approach is the simplest way for deciding whether 

limiting the moments of the DG solution in the local elements is needed or not. However, 

it is very diffusive and may not be applicable to use accompanied by several kinds of 

the limiters.  

Application of more advanced shock-detectors as the initial stage of limiting process 

is more fruitful. There are several shock-detector methods that can be utilized for 

finding the troubled cells; nonetheless, KXRCF has shown a decent performance for 

several applications compared with the others [146]. In present work, KXRCF shock 

detector in cooperation with several limiters ─ including TVB, GM, SMP, HWENO, 

and DAMP limiters─ is employed in order to examine the performance of the limiters 

in the application of viscous shock wave problem. 

The KXRCF shock-detection technique was introduced by Krivodonova et al. [147]. 

It works based on the super-convergence property of discontinuous Galerkin (DG) 

method at the outflow boundaries of an element in the smooth regions. Krivodonova et 

al. [147] demonstrated that the smooth solutions of DG method exhibit a strong 

superconvergence phenomena at outflow boundaries such that  

  2 11
(h ),

e neighj j
e

p
h h e

e

d




 
  


    5-7 

where 
e j

h and 
neigh j

h are the arbitrary quantity derived from a solution component on 

the adjacent interfaces between the element and its neighboring element on the side of 

e


 . h  indicates the radius of the circumscribed circle in the element 

e
 , and is 

equivalent to cell size x  in one-dimensional problem. e
 indicates the length of 
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,
e


 For a given linear or nonlinear differential system, the boundaries of an element 

e
  can be divided into two parts: the inflow boundary 

e


  where the flow comes into 

the element  0 ,v.n and the outflow boundary 
e


  where the flow goes out of the 

element  0 .v.n  In case of one-dimensional problem; 
e


 drops out from (Eq. 5-7) 

since it consists of only one point; the right face is considered as an inflow boundary if 

the velocity is negative at the right interface, otherwise, it is known as an outflow 

boundary.  

The KXRCF detector can be defined more specifically employing above information, 

and setting a specific value for 
e  (for example 1.0) as a trigger value in order to label 

the cell as the troubled cell; 

 
 1 /2

.
e neighj j

e

e

h h

e p

e h

d

h

  





 



 



 5-8 

Here 
eh is the maximum norm based on the local solution maxima at quadrature 

points, and is equivalent to the element average for one-dimension problems.  

5.2.3 Conventional limiter functions 

5.2.3.1 Total variation diminishing (TVD) limiter 

The first implementation of limiters in DG framework was done by Chavent and 

Cockburn in 1989 [121]. They implemented Van Leer [83] total variation diminishing 

(TVD) slope limiter for improving the stability of the DG method. In completion of 

their work, Cockburn et. al. [105] showed that the slope limiter must be applied not 

only in stiff regions but also in some part of the smooth regions where is affected by 

spurious oscillations.  

Application of TVD limiters yield to solution of at most first-order of accuracy in 

non-smooth regions due to strictly enforcement of the monotonicity condition. It is not 

possible to design any high-order schemes with the TVD property which maintains the 

high-order solution uniformly throughout the computational domain [148]. Nonetheless, 

it is still important to know the performance of this commonly used limiter for DG 

framework, without employing the shock trouble indicator, in presence of viscous 

shock wave.  
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A non-differentiable Minmod function returns the smallest argument if all arguments 

are positive, or the largest argument when all arguments are negative, and zero 

otherwise. The general form of the Minmod function with n arguments is given by 

1 2 1 2m( , , , ) s.min{ , , , },n na a a a a a  5-9 

where 

 

   

1 2

1 3 1

1
s ( ) ( ) .

2

1 1
( ) ( )   ( ) ( ) .

2 2
n

sign a sign a

sign a sign a sign a sign a

 

 
  

 

 5-10 

Accordingly, the TVD-Minmod slope limiter can be defined as 

m( ,   , ),e e e e

l l

h h h h  
 

w w w w  5-11 

where 1 1,  .e e e eh h h hi i
 

      w w w w w w   

5.2.3.2 Total variation bounded (TVB) limiter 

 Cockburn and Shu [109] designed TVB slope limiters by replacing the TVD-

Minmod function with a modified Minmod function in which a user input adjusting 

parameter is needed to tune the critical threshold value for maintaining the formal 

accuracy of the scheme at extrema. A TVB limiter may maintain the high-order 

accuracy of the solution, but it does not satisfy the strict maximum principle condition. 

It may also not possible to prove the existence of high-order solution with TVD property 

in multidimensional problems.  

In general, a TVB limiter function can be defined as 

m̂( ,   , ),  e e e e

l l

h h h h  
 

w w w w

 

5-12 

where 
2

1 1

1 2 3

1 2 3

  if   ,
m̂( , , )

( , , )                       otherwise.

a a Mh
a a a

m a a a

 
 


 

5-13 

Here m̂ is the non-differentiable modified Minmod function and M is a constant 

positive threshold value. Cockburn and Shu [109] showed that the M parameter is 

related to second-order derivatives of the local solution components for scalar problems. 

Nonetheless, estimating M value for the system of equations is more difficult, and it 

should be defined by user input.  
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In fact, the critical threshold parameter M is a shock detector criterion, and the value 

of M indicates the resolution of the solution at near the shock waves. If M is chosen to 

be a small value, unnecessary elements will be identified as troubled elements, in 

consequence of that the computational cost increases and accuracy reduces to be 

maximum first-order at marked elements. On the other hand, if M is chosen to be a large 

value, wiggles and oscillations may not be controlled properly and appear in the 

solution.  

In this study, the performance of TVB limiter is studied while it was employed in 

conjugation with KXRCF indicator to eliminate the ambiguity in choice of M 

parameters. 

5.2.3.3 Monotonicity preserving (MP) limiter 

The monotonicity-preserving (MP) limiter was initially designed by Suresh in 1997 

[90]. MP limiter was designed to enforce monotonicity strictly at near the extrema 

regions. In this limiter, high-order local degree of freedoms of the solution were 

neglected in the troubled element, and the solution was reconstructed linearly in such 

way that monotonicity is preserved. However, it was highly possible that the order of 

accuracy reduces miserably, and density becomes negative due to imposing the strict 

monotonicity constraint.  

The simplified version of MP limiter with fewer restriction on enforcement of the 

monotonicity condition was introduced by Ride and Margolin [149]. The simple 

monotonicity preserving (SMP) is placed in the category of the slope limiters. Various 

limiters ― including sign-preserving limiter [149], positivity preserving [139, 143], 

DAMP limiter, multi-dimensional Barth Jespersen [150] and MLP-u limiters [151]― 

were designed based on the concept introduced in this limiter.  

In SMP, the solution is initially reconstructed at interfaces using piecewise linear 

interpolation, and then the gradients of the solution at interfaces are multiplied with a 

scalar limiter function φ as 

0 .h h

i  w w wi i  5-14 

The performance of the various derivations of this limiter is highly related to the 

definition of the scalar function i
 , and the stencil used in limiting process. The 

classical definition of this non-differentiable function is defined such that the limited 

reconstructed solution is locally bounded; 
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where  

max max ,    i i i  w w w  5-16 

min min ,i i i  w w w  5-17 
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e

h

i ihx
  w w ξ w  5-18 
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e

h

i ihx
  w w ξ w  5-19 

Here
max

iw and 
min

iw are the maximum and minimum value of the h
w  in all the 

elements adjacent to the troubled element, respectively. 
max

h

i
 w  is the maximum value of 

the DG solution throughout Gauss quadrature points inside the troubled element. 

5.2.3.4 Generalized moment (GM) limiter 

There are very few existing limiters that were originally designed for DG method. 

Biswas et al. [152] introduced first generalized moment slope limiter in 1994. This 

slope limiter have two distinct features; it can be used for employing hp-adaptivity in 

DG; it can detect the local critical points without any need for user input parameters.  

In generalized moment (GM) limiter, the non-differentiable Minmod function is 

employed as a base function, and hierarchical limiting process deliberate to limit only 

necessary moments. The highest moment of the solution is limited first; then lower-

moments will be limited consecutively if the higher moments have been changed in the 

limiting process.  

The GM limiter function can be expressed as 

  1
m 2 1 ,  , ,   1 ,

2 1
e e e e

l l l l

h h h h pl l N
l

     
 

w w w w  5-20 

where the second and third terms in (Eq. 5-20) are defined as 1

1 1ˆ ˆ ˆe e e

l l l

h h h

 
  


w w w and

1

1 1ˆ ˆ ˆ .
e

l

h
e e

l l

h h 

   


w w w  

Burbeau et al. [153] revised GM limiter and introduced the modified generalized 

moment (MGM) limiter. MGM is very similar to the original one; however, an 

additional process is considered to improve the accuracy of the original generalized 

moment limiter. The limited moments are first calculated using (Eq. 5-20). Next, they 

are modified by employing a Maxmod function as 

,( )
,M( , ),e e

l l GM
l Max

h hw w wi  5-21 
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where maximum mode variable 
,l Max

wi is given by 

, ( ) ( 1) ( 1) ( 1) ( 1)

1 1
-

2 2
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and Maxmod function M  is defined as 

1 2 1 2

1 2 1 2 1 2

max{ , }     if   ( ) ( ) 0,

( , ) min{ , }   if   ( ) ( ) 0,  

0                      otherwise.

a a sign a sign a

M a a a a sign a sign a

 

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

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5.2.3.5 Positivity-preserving limiter 

Positivity preservation of the physical properties ― density and pressure ― is the 

obligatory condition for enforcing the monotonicity principle. If the density or pressure 

becomes negative, the system of (Eq. 4-8) will be ill-posed and unsolvable. 

Nevertheless, preservation of positivity of physical parameters does not guarantee the 

boundedness of the solution; it will only keep density and pressure away from negative 

values.  

Most of the high-order limiters do not satisfy the positivity property automatically 

[143]. Although there are some researches [143, 145, 154] showing that the application 

of positivity preserving schemes are sufficient for studying some applications, it is 

better to always employ a positivity preserving scheme in conjugation with a high-order 

limiter to guarantee the boundedness of the solution. 

The first positivity preserving (PP) limiter for DG method was introduced by Zhang 

and Shu [143]. The PP limiter does not satisfy the strict monotonicity constraint; instead, 

it preserves the positivity of the density and pressure by multiplication of the moments 

of the solution with a simple scaling factor. The PP limiter is a non-differentiable slope 

limiter that is computationally very cheap and easy to implement in structured and 

unstructured grids.  

PP limiter can be considered as a simplified version of SMP limiter in which the 

scaling function performs such that density and pressure solutions become positive 

[149]. In PP limiter, it is tried to relax the monotonicity principal constraint in order to 

enforce the positivity condition without destroying the accuracy of the high-order 

solution [143]. It is reported that PP limiter maintains the global order of accuracy in 
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smooth regions [155]; however, the performance of this limiter for more cumbersome 

condition (like shock region) is still questionable.  

Implementation of the PP limiter starts with defining a small number ε based on the 

average value of density and pressure in the target cell  13min , ,10p    . Afterwards, 

the positivity of density is surveyed by finding the minimum value of destiny 
min

looping over the quadrature points in the local elements. Next, positivity of density 

maintains by multiplying
1 to all higher-order moments of the density solution. As a 

result, the modified and positive solution of density is obtained; 

1

min

min 1, ,
   

   
     

5-26 

1( ).n

h hhh
      
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Next, the solution of density in evaluating time step is replaced by the modified 

polynomial solution   
h

  in the troubled elements.  

Second step of PP limiting process is intended to preserve the positivity of the 

pressure. This requires the scaling of all high-order moments with
2 for all conservative 

variables as  

2 ( ),n
h hh h  w w w w  5-28 

where evaluating the value of 
2 requires solving of 

(1 ) ,n

i ip t t     w w  5-29 

for t  and setting
2 as the minimum value of t  among all quadrature points.  

5.2.3.6 Differentiable and monotonicity preserving limiter 

It is well-known that non-differentiability of the limiter functions tends to cause 

severe convergence problems at steady-state [156]. Differentiable and monotonicity 

preserving limiter (DAMP) is inspired by the work of Michalak and Gooch [156]. 

Nevertheless, it is distinguished from their work, as it is a vertex based slope limiter 

with a differentiable limiter function designed for spectral hp methods.  

A differentiability of the limiter function requires that i
  to be continuous and 

conservative for all input data. Thus, i
  should always be positive and should be 

retained under the non-differentiable Minmod function profile such that the limited 

value of the modal moment coefficients does not exceed the unlimited values of those. 
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As it is shown in Figure 5-6, it is obvious that most of the differentiable limiters are 

violating above conditions after some specific value of r. DAMP limiter function is 

designed such that above constraints and requirements are strictly satisfied; 

( )
( ) 0, 0, at 0,

r
r r

r


  




  

5-30 
( )

( ) 1, 0, at 1,
r

r r
r


  




  

lim ( ) 1.
r

r


  

 

 

Figure 5-6 Comparison of the several differentiable slope limiter based on ϕ(r). 

The preservation of high-order solution on uniform grid requires that the difference 

between unlimited solution and limited solution becomes less than ( )
p

O x . DAMP 

considers a threshold parameter ε to define the level of desirable numerical diffusion in 

the limiting process and to minimize the loss of the accuracy during limiting process. 

Figure 5-7 shows the behavior of its limiter function for different value of ε. It is 

obvious that smaller ε value yields to less numerical diffusion in the limiting process; 

however, very small value of ε can affect the stability of the numerical method. The 

choice of ε parameter is trade of between preservation of the accuracy on non-uniform 

grids and maintenance of the good convergence behavior of the DG method in steady 

state solution.  

DAMP limits each degree of freedom individually using the differentiable limiter 

function obtained by employing a coplanar fitting technique, as shown in Figure 5-7. 
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In DAMP limiter, the solution is initially split into three major parts: cell average, linear, 

and nonlinear reconstructed parts of the solution; 

0 ,

2

,
pN

h linear nonlinear l

l

  w w w wi i i i  5-31 

where the ith projection of the solution in the target element is denoted by h

i and the 

linear and nonlinear contributions are given by 
1 0linear h

h w w wi i i , 

, 1nonlinear l l h l h

h h

 w w wi i i .  

Coplanar fitting technique 

 

Adjustment of threshold parameter for DAMP limiter 

 

Figure 5-7 Differentiable slope function of DAMP limiter 

The linear and nonlinear parts of the unlimited solution are multiplied with an 

individual scalar differentiable limiter functions φ and ϕ to control spurious oscillations 

generated in a high-order solution; 

0 ,

2

.
pN

h linear l nonlinear l

i i

l

 


  w w w wi i i i  5-32 
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i
  enforces the monotonicity of the solution at interfaces of the local elements, and 

l

i
  

controls spurious oscillations contributed by high-order moments.  Assuming that the 

l

i function is identical to i , the linear differentiable limiter function i can be defined 

as 

2 2

                                    

( ) ( ) ,

1                                      
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where the differentiability parameter   is set to be 1 5 and 3 4  . The input 

value of the limiter function x is given by 

min 0
0

0

max 0
0

0

0,

0,

1 otherwise,
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where
max

iw and 
min

iw are the maximum and minimum values of the global solution 

inside the adjacent element of the troubled element vertexes. 

5.2.3.7 Non-oscillatory limiters 

Although, Godunov’s barriers theorem [81] discouraged CFD developers to find any 

high-order methods with order of accuracy higher than one, Harten [89] showed that 

this theorem holds true only when linear reconstruction scheme is used for obtaining 

the solution at interfaces. He took the advantages of nonlinear reconstruction stencils 

and introduced ENO high-order reconstruction scheme.  

In general, non-oscillatory schemes are considered as a high-order reconstruction 

methods that can also be employed as high-order limiters in spectral hp methods. Even 

though non-oscillatory limiters are providing very promising results, but they do not 

necessarily maintain the TVD properties of the solution. Hence, they cannot satisfy the 

maximum principles strictly. Furthermore, they need to use very broad stencils for 

reconstructions of the solution in the troubled element which makes them difficult to 

use for unstructured grid and parallel processing.  
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Hermite weighted essentially non-oscillatory (HWENO) schemes are known as the 

compact non-oscillatory reconstruction schemes. The compactness in those is achieved 

by evolving the function used in the reconstruction of HWENO scheme and its first 

derivatives in time.  

Hermite WENO reconstruction, as a limiter, reconstructs the high-order moments of 

the troubled element using the derivatives of that element and its adjacent neighboring, 

while the first moment of the solution (i.e., element-average) does not change. This 

means that regardless of the order of accuracy of DG discretization, the troubled cells 

accuracy will reduce to the HWENO order of accuracy which is a major improvement 

compared to the other limiters in which the order of accuracy of the troubled cells is 

uncertain. Nonetheless, defining the value of nonlinear weights, evaluation of 

smoothness function, and application of characteristics field in the progress of 

reconstruction is very important and essential. The interested readers are referred to [86, 

141] for further information.   
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5.2.4 Performance of limiters for modal DG method 

In this section, a one-dimensional modal mixed DG method is employed to solve 

scalar hyperbolic-, Euler-, and Navier-Stokes-Fourier equations. DG solution in 

conjugation with various limiters are compared with analytical solutions in profile level. 

The viscous shock structure problem is solved using various limiters, and the least 

square error norm is calculated for this stiff flow problem. Accordingly, performance 

of several well-known limiters based on variety of important physical parameters is 

investigated.  

5.2.4.1 Performance of limiters based on profile analysis 

There are several exact solutions for the scalar hyperbolic equation and inviscid 

Euler equation that can be considered as the benchmark problems to examine the level 

of accuracy of the limiters[118].  

A scalar hyperbolic equation with the initial sinusoidal distribution is considered as 

the first benchmark problem,  

 

0, 0 1, 0,

,0 sin(2 ),

( , ) ( , ).

t x

L R

u u x t

u x x

u x t u x t

      





   5-36 

The periodic boundary condition is applied to the both sides of the computational 

domain, and the length of the computational domain is chosen to be one wavelength 

( 0 1x  ). The exact solution of this linear problem is very smooth. Therefore, 

employing limiters are not basically necessary. This problem is an appropriate case to 

measure the loss of accuracy inflicted by the limiters in smooth regions.  

Figure 5-8 shows the distribution of the solutions throughout the 200 elements at 

time=4 seconds. It can be observed that the first-order approximation is very diffusive 

even for this smooth problem. The initial sinusoidal wave is significantly damped by 

time evolving. However, the higher-order unlimited approximations yield very accurate 

results. It is obvious that the accuracy of the unlimited high-order solutions is not 

compromised and the high-order solutions remain very smooth. Figure 5-8 displays that 

there is no spurious oscillations and wiggles within the distributed solution. This is not 

surprising because there are no stiff regions in the computational domain and 

application of limiters is not necessary.  
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No limiter First-order solutions 

  

TVD Generalized moment 

  
Maximum principle  HWENO 

Figure 5-8 The smooth solutions of the linear advection problem at t=4 seconds 

Various limiters are applied in the smooth regions for the purpose of examining the 

performance and effect of the limiters in the smooth regions. The MP and HWENO 

limiters do not degrade the solution accuracy significantly even if these limiters are 

used without a trouble cell indicator. However, the small discrepancy between exact 

solution and HWENO limited solution may be observed near both ends of the domain. 
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On the other hand, application of TVD and GM limiters leads to a significant deviation 

from the exact solution. They cannot provide accurate results in smooth regions; 

therefore, application of a trouble cell indicator for detecting target elements is essential. 

Scalar hyperbolic equation with the initial square jump distribution is considered as 

the next benchmark problem. This problem can be considered as the simplified version 

of the shock wave problem whereas the shock structure is a stationary problem. There 

are two stiff jumps within the solution distribution. This problem is a good benchmark 

problem for investigating on the capability of the limiters for damping oscillations in 

the scalar hyperbolic equation.  

Figure 5-9 shows the distribution of the unlimited, limited, and exact solutions all 

over the computational domain. It is obvious that the spurious oscillations are not very 

severe and only appears on both sides of the square jump with small amplitude. Hermite 

WENO limiter shows a decent level of precision when the order of p is sufficiently big, 

and the number of elements is adequate. Maximum principle limiter provides very 

accurate result for all degrees of p due to fact that the threshold quantities for judging 

whether limiting process should start or not is based on the maximum and minimum 

value of the initial condition, therefore, as it was expected that the maximum principle 

limiter performs better than the others for this linear hyperbolic problem where the 

maximum and minimum of the domain do not change by evaluation of the time. Results 

also illustrate that generalized moment limiter damps the discontinuity although the 

limited solution is still being symmetrical. TVD limiter performs relatively better on 

the left side of the discontinuity, although the solution is considerably damped 

throughout the domain. 
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Figure 5-9 Solution distribution of the linear advection problem with initial square jump 

condition at t=1 second. 

 

Inviscid Burger problem is considered as the next studied benchmark problem to 

investigate the total variation of the solution and its coefficients in smooth flow regions 

when different limiters functions have been served. The periodic boundary condition 

and smooth sinusoidal initial distribution are used for this nonlinear scalar time 

evaluating problems.  
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The problem setup is given by, 
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Figure 5-10 Distribution of solution of the inviscid Burger’s problem with sinusoidal initial 

distribution using 50 elements at t=0.7 seconds. 
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Figure 5-10 depicts that Hermite WENO limiter can successfully preserve the 

accuracy of the solution. However, more number of the elements are required to capture 

the exact solution employing this limiter. The maximum principle limiter is performing 

fairly although it damps the oscillations insufficiently at an inflection point for the case 

of the piecewise linear approximation. Generalize moment limiter and TVD limiter 

provide almost identical results with the same order of deviation from the exact solution. 
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Figure 5-11 The solutions of the stationary contact discontinuity problem at t=0.012 seconds. 
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In order to check the performance of limiters for a system of equations, the present 

modal RKDG method was applied for solving the Euler system. One-dimensional 

Riemann problem with an initial stationary contact discontinuity located at x=0.8 is 

considered as a benchmark problem. Computational domain is discretized into 200 

equal-sized elements and the simulation is run until the time reaches to t=0.012 seconds. 

Figure 5-11 shows the unlimited and limited numerical solutions. It can be seen that 

the unlimited solutions of the piecewise linear, quadratic, and cubic polynomial 

approximations are contaminated with a considerable amount of oscillations. The 

HWENO and MP limiters which performed well in the case of the linear and nonlinear 

advection problems turns out not to be able to eliminate all spurious oscillations from 

the high-order solutions. Interestingly, the TVD and GM limiters, which performed 

poorly in the case of the linear and non-linear scalar hyperbolic problems, show better 

performance than the MP and WENO limiter for degree of 2p   in the Euler system. 

As the next benchmark problem, Sod’s shock tube flow that contains a left-running 

expansion wave, a contact discontinuity, and a right-running shock wave is considered. 

In this problem, the computational domain is discretized with 200 elements and the 

simulation is run until the time reaches to t=0.2 seconds. Figure 5-12 shows the density 

profiles of the Sod’s shock tube problem.  

As can be seen, the TVD limiter degrades the solution considerably. In particular, 

the TVD limiter for piecewise quadratic and cubic solutions (p=2, 3) yields 

unsatisfactory results. Similarly, the GM limiter suffers non-negligible wiggles in case 

of the piecewise quadratic and cubic solutions. Interestingly, it gives non-oscillatory 

density profile in case of the piecewise linear solution. On the other hand, the MP 

limiter, which is free from user inputs, provides an accurate approximation in the better 

level than HWENO limited solution. Nonetheless, it must be mentioned that obtaining 

an accurate solution using the MP limiter requires an accurate specification of the global 

maximum and minimum of the solution. 
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No limiter 

  
TVD Generalized moment 

  

Maximum principle  HWENO 

Figure 5-12 The solutions of the Sod’s shock tube problem with 200 elements at t=0.2 

seconds. 

Two rarefaction wave propagation near vacuum [157] is the another studied problem. 

For this particular problem, the negative density and pressure may appear in the process 

of simulation. As a result, linearized Riemann solvers can fail by returning negative 

pressures or densities in one or more of the intermediate states for very strong 

rarefactions. Therefore, the positivity preserving limiter is expected to play a critical 

role in the problem.  
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Density profile solution of this problem is shown in Figure 5-13. It is shown that the 

TVD and GM limiters degrade the accuracy of DG solution significantly. However, the 

MP and HWENO limiters in conjunction with positivity preserving feature can preserve 

the solution accuracy within an acceptable level. 

 

 

No limiter 

  

TVD Generalized moment 

  

Maximum principle  HWENO 

Figure 5-13 The solutions of Einfeldt’s strong rarefaction problem with 200 elements at 

t=0.15 seconds. 
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5.2.4.2 Performance of limiters based on error norm analysis 

5.2.4.2.1 Performance of limiters based on conservative variables 

The first analysis on the performance of the limiter is investigated thereby examining 

the error of the density and linear momentum solutions which are the global solution of 

the DG approximation.  

  
TVD Generalized moment-KXRCF 

  

Positivity preserving 
Simplified monotonicity preserving -

KXRCF 

  
DAMP-KXRCF HWENO-KXRCF 

Figure 5-14 The Euclidean norm of density solution of hard-sphere gas molecule for several 

limiters 
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The Euclidean norm of the density and linear momentum solutions are depicted for 

several limiters in Figure 5-14 and Figure 5-15, respectively.  
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Positivity preserving 
Simplified monotonicity preserving -

KXRCF 

  
DAMP-KXRCF HWENO-KXRCF 

Figure 5-15 The Euclidean norm of momentum solution of hard-sphere gas molecule for 

several limiters 

Results illustrate that TVD limiter degrades the order of accuracy considerably, and the 

maximum order of accuracy achieved using this limiter is less than one. Generalized 

Degree of freedoms



u

-

u

h


L
2

10
0

10
1

10
2

10
3

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Piecewise cubic (P=3)
Piecewise quadratic (P=2)
Piecewise linear (P=1)
Piecewise constant (P=0)

1

2

3

4

Degree of freedoms



u

-

u

h


L
2

10
0

10
1

10
2

10
3

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Piecewise cubic (P=3)
Piecewise quadratic (P=2)
Piecewise linear (P=1)
Piecewise constant (P=0)

1

2

3

4

Degree of freedoms



u

-

u

h


L
2

10
0

10
1

10
2

10
3

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Piecewise cubic (P=3)
Piecewise quadratic (P=2)
Piecewise linear (P=1)
Piecewise constant (P=0)

1

2

3

4

Degree of freedoms



u

-

u

h


L
2

10
0

10
1

10
2

10
3

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Piecewise cubic (P=3)
Piecewise quadratic (P=2)
Piecewise linear (P=1)
Piecewise constant (P=0)

1

2

3

4

Degree of freedoms




-


h


L
2

10
0

10
1

10
2

10
3

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Piecewise cubic (P=3)
Piecewise quadratic (P=2)
Piecewise linear (P=1)
Piecewise constant (P=0)

1

2

3

4

Degree of freedoms



u

-

u

h


L
2

10
0

10
1

10
2

10
3

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Piecewise cubic (P=3)
Piecewise quadratic (P=2)
Piecewise linear (P=1)
Piecewise constant (P=0)

1

2

3

4



129 

 

129 

 

moment limiter without application of any trouble cell indicator acts very poorly. 

However, the performance of this limiter improves noticeably when KXRCF trouble 

indicator is employed. Among all limiters, HWENO shows the best performance 

calculated based on the error norm of the conservative variables. DAMP and SMP 

limiters in conjugation with KXRCF trouble cell indicator are the next limiters which 

provide acceptable performance, respectively. 

  
TVD Generalized moment-KXRCF 

  

Positivity preserving 
Simplified monotonicity preserving -

KXRCF 

  
DAMP-KXRCF HWENO-KXRCF 

Figure 5-16 The Euclidean norm of temperature solution of hard-sphere gas molecule for 

several limiters 
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5.2.4.2.2 Performance of limiters based on primitive variables 

Temperature is a primitive variable obtained from mass, momentum, and energy 

relations. It may be useful to report the order of accuracy of DG method based on 

temperature error norm for viscous shock problem.  

Figure 5-16 shows the calculated energy norm of temperature variable for several 

limiters. It demonstrates that the order of accuracy obtained by temperature error norm 

analysis is roughly higher than the order of accuracy which was obtained by 

conservative analysis. 

5.2.4.2.3 Performance of limiters based on non-conservative variables  

Non-conservative variables – normal stress and heat flux – are another parameters 

in studying of shock waves [13]. The developed numerical methods for solving the non-

equilibrium phenomena are very sensitive to the precision of the estimated non-

conservative variables. Knowing the order of accuracy of the DG method based on non-

conservative variables is very important and useful for gas dynamic applications [112].  

Figure 5-17 and Figure 5-18 provide the energy norm of normal stress and heat flux 

for various limiters. The results show that the slope of stress and heat flux error norms 

do not differ much from the error norms obtained for conservative and primitive 

variable. In case that TVD limiter was applied the order of accuracy is degraded 

significantly since all high order terms are truncated in troubled cell to satisfy the 

monotonicity condition strictly. GM limiter without using KXRCF indicator does not 

provide likely results, and, similar to TVD limiter, the calculated order of accuracy is 

mostly less than one. However, this limiter performs much better when it (GM-KXRCF) 

is applied only in the troubled elements. The error norm analysis of stress and heat flux 

variables for GM- KXRCF limiter illustrate that the order of accuracy obtained based 

on heat flux is slightly higher than that for normal stress. The convergence behavior of 

the DAMP and HWENO limiters is promising although the convergence rate of heat 

flux is still higher than that for normal stress.  

All in all, the convergence rate is mostly higher than p for mostly all limiters ─ GM-

KXRCF, positivity preserving, SMP-KXRCF, DAMP, and HWENO-KXRCF ─ and 

magnitude of error calculated for heat flux and normal stress not is satisfactory for all 

limiters except, TVD and GM limiters. 
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Positivity preserving 
Simplified monotonicity preserving -

KXRCF 

  
DAMP-KXRCF HWENO-KXRCF 

Figure 5-17 The Euclidean norm of normal stress solution of hard-sphere gas molecule for 

several limiters 
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Simplified monotonicity preserving -

KXRCF 

  
DAMP-KXRCF HWENO-KXRCF 

Figure 5-18 The Euclidean norm of heat flux solution of hard-sphere gas molecule for several 

limiters 
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polynomial, and the gradients of the physical quantities are sought to be constant inside 

every local element. Therefore, the evaluation of viscous terms is at most first-order of 

accurate which is not adequate for studying viscous dominant flows (e.g., boundary 

shear layer, rarefied gas flows, viscous shock wave, etc.) unless very fine grid is used 

[107].  

In spite of finite volume method, application of the DG method brings the possibility 

to compute the viscous fluxes in the same order of accuracy as inviscid fluxes. 

Nevertheless, the local approximation of the viscous flux will be discontinuous at the 

interface of two elements due to the absence of a direct enforcement of the elemental 

continuity through the polynomial space. Thus, employing stable and continuous 

numerical flux functions on the boundary of the elements is crucial for prescribing the 

viscous fluxes. The estimation and evaluation of viscous flux function are still evolving; 

however, the numerical treatment for determining the inviscid fluxes is borrowed from 

finite volume method and it is matured. 

There are numerous articles that rigorously speak about the mathematical aspects of 

discretization of the viscous fluxes [113, 158-160], though the numerical 

implementation of the viscous flux functions is rarely explained in the literature. In 

following, several numerical flux functions are explained in detail. The physical 

concepts behind the inviscid and viscous numerical flux functions are illustrated; the 

technical information for implementation of the viscous numerical flux functions ― 

which are barely explained in the literature― is taken into account. Various viscous 

and inviscid numerical flux functions and theirs combination are analyzed for nonlinear 

Euler equation with smooth solution, scalar heat equation, and viscous shock structure 

problem  

5.3.1 Feasible numerical flux function 

As mentioned in previous chapter, the lack of existence of the unique solution at 

interface of the local elements can be resolved by employing feasible numerical flux 

functions  ( , ),e e

inviscid

h h

 
w wF ( , , , ),e e e e

viscous

h h h h
    

w wF and ( , )e e

auxiliary

h h

 
F w w at interior 

interfaces and boundary faces.  

Three important conditions should be satisfied by any numerical flux functions in 

order that the numerical solution converges to the physical (entropy) solution;  
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Figure 5-19 Taxonomy of monotone numerical flux functions for discretization of the 

inviscid and viscous fluxes. 

a) Consistency condition    
11 1

,  F F ; b) Continuity condition    
1 2 2 1
, ,   F F

where F is restricted to be a Lipschitz continuous function for 1
  and 2

 ; c) 
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Monotonicity condition that enforces F  to be a non-decreasing function of 1 and non-

increasing function of 2 . There are several numerical flux functions that satisfy these 

conditions, as is shown in Figure 5-19; however, few of them has been often used in 

DG methods. 

5.3.2 Inviscid numerical flux functions  

The inviscid numerical flux introduces a coupling between the conservative 

variables of the element and its adjacent neighboring element at the common edge of j. 

In general, any monotone, consistent and continuous numerical flux function can be 

used as inviscid numerical fluxes. As it is depicted in Figure 5-19 there are several 

schemes for discretization of the inviscid flux functions that can satisfy above 

mentioned conditions.  

Among all choices, the numerical flux function obtained based on flux-difference 

splitting approach can be considered as an appropriate choice for discretizing the 

inviscid flux function. Here, the evaluation of inviscid numerical flux functions using 

flux-difference splitting approach is explained briefly. Nonetheless, further information 

about inviscid numerical flux functions can be found in [80]. 

The goal of a numerical flux is to approximate the physical flux function at interfaces 

with a minimum amount of error. Flux difference splitting schemes consider the 

eigenvalues and eigenvectors of the transformation matrix to evaluate the numerical 

flux function. They describe all properties according to the Riemann invariants (or 

characteristics variables) of the Riemann problem solved at interfaces of the elements. 

Considering the advection part of the conservation laws (Eq. 4-6), a hyperbolic 

differential system can be defined as 

. ( ) 0,inviscid

t


 



w
F w  5-38 

where it can be reformulated in quasilinear form as 

 
0.

 
 

  

ww w

w x

Finviscid

t
 5-39 

Introducing a Jacobian matrix of transformation  inviscid A w
D D

, the system 

(Eq. 5-39) reads as 

  0.inviscid

t

 
 

 

w w
A w

x
 5-40 



136 

 

136 

 

Considering the fact that eh
w varies smoothly normal to the interface of the elements, 

it is only needed to find a one-dimensional flux function normal to the elemental 

interfaces.  

Following Beam -Warming and Hyett scheme [161] and defining a general matrix 

of Jacobian as a linear combination of  inviscid
A w  and normal vector components 

     : , ,ˆ  ˆ,inviscid inviscid inviscid

i i ik kA n A w n A w n w
D D

 5-41 

the one-dimensional system can be defined as 

 ˆ , 0.inviscid

t

 
 

 

w w
A w n

n
 5-42 

Knowing the fact that 
inviscid

iA  is diagonalizable tenor, and Jacobian matrix of 
inviscid

iA

has real eigenvalues with a complete set of eigenvectors, it is possible to write this 

system in characteristics form as 

  1ˆ , ,A w n RΛR
inviscid

 
5-43 

  1ˆ , ,A w n R Λ R
inviscid  

where the columns of R
D D and 1 R

D D contain the right and left eigenvectors, 

respectively; Λ
D D is a diagonal matrix of the eigenvalues of the transformation 

matrix Λ λΙ .  

Taking the product of (Eq. 5-42) with tensor of left eigenvectors 1
R and setting 

1 R w Q  gives 

0.
t

 
 

 

Q Q
Λ

n
 5-44 

where Q is the Riemann invariant vector. This is a decoupled system of equations where 

coupling between equations remains only through the eigenvalues of the system. Each 

scalar invariant Qi  is advected at the speed i . The speed is inward to the normal 

direction of the interface when 0i  and the speed is opposite to the normal direction 

if 0i . According to the theory of characteristics, the solution of this system for an 

initially discontinuous state is 

if 0, i i iQ Q   
5-45 

if 0. i i iQ Q   

Suppose that ( , )e e

inviscid

h h

 
w wF is the solution of a Riemann problem at an elemental 

interface, the flux function in normal direction to the interface can be expressed by 
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( ). ( , ). ,e e e

inviscid inviscid

h h h

 FF w n w w n  5-46 

and the general form of the upwinding numerical flux can be obtained after some 

manipulations on (Eq. 5-44) and (Eq. 5-46) [80, 162].  

In case of linear flux functions, a linearization of the inviscid flux 

ˆ ( ).
inviscid inviscid

A w F w n  can be used to define the numerical inviscid function as 

ˆ ˆ( , )
1

. [[ ]],
2

e ee e

inviscid inviscid inviscid

h h h h

   n A w A wF w w  5-47 

where ˆ inviscid
A  is constant tensor; 

e
h

w and [[ ]]eh
w  are the average and jump of eh

w

at interface. The linear numerical flux function can be further simplified as Â
inviscid  is 

not function of neither eh


w nor eh


w , therefore, we have 

ˆ ˆ( )., .e ee e

inviscid invisci
h h

d inviscid
h h

    n w wA Aw wF  5-48 

In case of nonlinear flux vectors, the nonlinearity of the inviscid flux function yields 

to a consistent numerical flux as 

1 ˆ( , ) = ( ) . ( , ) [[ ]],
2

.e e

inviscid inviscid invisc

e e eh

id

h h h h

    n ww w F n w w ,n wF A  5-49 

where ˆ inviscid
A is a function of eh


w  and outward normal vector n , therefore, more efforts 

are required for estimation of the ˆ inviscid
A . There are two possible choices for calculation 

of ˆ inviscid

iA [163], 

inv inv
ˆ ˆ= ( ) ,

i
eh k

i ik
nA A w  5-50 

inv
ˆ ˆ= ( ) .inv e khi ik i

nA A w  5-51 

For case that equation (Eq. 5-51) is chosen, extra efforts is needed to be considered to 

ensure that ˆ
inv

i
A has real eigenvalues [80, 163]. Note that, the definition of inv

ˆ
i

A  

distinguishes several approximate Riemann solvers from each other. 

 

Application of the exact solution of Riemann problem at the interface of the every 

element gives the original Godunov method. It provides the smallest numerical 

viscosity, but it is very costly and delicate. As it is shown in Figure 5-19, there are 

several alternative approximate flux functions such as Rusanov (LLF), Roe, Harten-

Lax-Van Leer (HLL) and HLLC flux functions that consider some (or all) of the 

characteristics waves in the process of the evaluation of inviscid flux function [163]. 

The conceptual definition of the these flux functions is given as follows,  
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1

max

Roe, all but linearized waves

HLLC, three waves

HLL, two waves

Rusanov (LLF), one wave

Lax-Friedr

(1 ) ( ) 1
( )

2

ˆ 1= ( )
2

inviscid

inviscidinv

x

t


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


 
5-52 

Here I
D D  is the identity matrix.  

 

 

Figure 5-20 Approximation of convective characteristics wave using numerical flux 

functions. 

Although there are available several more numerical inviscid functions,  three of 

well-used inviscid flux functions ―Rusanov (LLF), Roe, and HLL ― are considered 

in this study to examine the performance of the inviscid flux functions in combination 

with viscous flux functions.  

Rusanov flux function ― sometimes called as local-Lax-Friedrichs (LLF) ― is 

commonly used in DG method due to its simplicity and efficiency in cost, even though 

this monotone numerical flux function is the most diffusive numerical flux function and 

smears discontinuities considerably. In Rusanov flux function, only one wave is 

considered, and considerable amount of the numerical dissipation is added to stabilize 

this wave. It is defined as 

max

1
( , ) = ( ) . [[ ]],

2
.e e

inviscid

eh

inv d

h

s

h

i ci    w w F w n I wF n   5-53 

where max
  is the largest eigenvalue of the convective flux function on the interface of 

the element. 

Roe flux function linearizes the Jacobian of inviscid flux and considers all linearized 

characteristics waves in the calculation of numerical flux function. The linearization is 

applied in such a way that the nonlinear physical jumps like a shocks and contact 

discontinuities are recognized correctly. The method turns to the exact solution of the 

linear hyperbolic systems; however, it may face difficulties for nonlinear systems when 

very strong discontinuity, shock diffraction, or nonlinear instability (i.e., carbuncle) 

exist in the computational domain.  

t

x

Godunov

Exact Riemann Solver

t

x

HLLC

Approximate Riemann Solver

t

x

HLL
t

x

Roe
t

x

Rusanov

Non-Linear Solvers Linear Solvers
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Harten-Lax-Van Leer (HLL) flux function is a symmetric flux with either nonlinear 

or linear numerical dissipation function. It considers two characteristics waves and 

divides the x-t phase space into three separate sub-regions while individual actions are 

considered for handling each of the sub-region. The method is accurate when contact 

discontinuities exist in the computational domain, whilst it turns to exact solution only 

for systems with two equations like one-dimensional shallow water system. The 

modified version of HLL method was introduced by Toro et al. [164] to overcome the 

short comes of the HLL scheme. However, in case of viscous shock wave where the 

role of velocity-shear phenomena is negligible, application of HLL flux function 

instead of more complicated fluxes like HLLC may end to the same conclusion.   

5.3.3 Viscous numerical flux functions 

In general, there are two different viewpoints that mirror the primal and flux 

formulation of the governing equations. The primal formulation is the viewpoint of the 

finite element researcher, and the flux formulation is the preferred notation of the 

traditional finite volume supporters. The followers of finite element method try to write 

system of equations in global compact form rather than elemental form to enhance the 

efficiency of their schemes by the elimination of the auxiliary variables. However, finite 

volume followers prefers elemental formulations, and try to enforce the continuity and 

stability of the solution through novel implementation of the numerical viscous flux 

function in elemental formulation [165].  

Arnold et al. [166] showed that both approaches are conceptually similar when the 

primal formulation is converted to the flux formulation or backwards. They provided 

[159] a unified analysis of discontinuous Galerkin methods for the 1-D elliptic problem 

by transforming the flux formulation into the primal formulation and proving several 

properties of the schemes including convergence behavior of the schemes, and so on. 

As it is shown in Figure 5-19, there are various choices for discretization of the viscous 

flux, including Baumann–Oden method, Bassi-Rebay first scheme (BR1), local 

discontinuous Galerkin (LDG), compact discontinuous Galerkin (CDG), Bassi-Rebay 

second scheme (BR2), interior penalty (SIP), and recovery based discontinuous 

Galerkin (RDG), and so on.  

For hyperbolic equations, it is shown that these numerical flux functions behave 

differently in terms of efficiency, stability, and accuracy [167]. According to the 

efficiency of the schemes, local DG, and compact DG methods similar to BR1 method 
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require an extra set of variables (i.e., auxiliary variables) for evaluating higher-order 

derivatives. It means that more memory and computational cost are required for BR1, 

LDG, and CDG in compared to the other method.   

In contrast to above schemes, SIP and BR2 schemes do not need to solve any extra 

set of equations for evaluation of the second-order derivatives. In these methods, data 

from the adjacent neighbors is only required for calculation of the viscous term, hence, 

they are more efficient than BR1, LDG and CDG methods in the sense of computational 

cost. However, the numerical implementation of these schemes is more complicated 

and requires an understanding of the rigorous mathematical formulation used in the 

derivation of these schemes.  

Comparing the SIP method to the second method of Bassi and Rebay, the SIP 

method is more efficient regarding the computational effort. However, an extension of 

the SIP method to the Navier-Stokes-Fourier equations yields undesirable convergence 

rate for the even polynomial degree of p [168]. Moreover, SIP is developed based on 

primal formulation which cannot be utilized for discretizing nonlinear physical viscous 

flux functions since the Jacobean transformation matrix is not an explicit function of 

the velocity gradients [112, 169].  

In the following, the generalized formulation of viscous flux function is initially 

introduced. Later, mathematical derivation, numerical implementation of the viscous 

flux functions― BR1, LDG, and BR2― are briefly explained to ease computational 

coding.  

5.3.3.1 Jump and average operators 

To proceed the evaluation of viscous and auxiliary fluxes, it is necessary to define 

the average   and jump [[.]]  operators for a function of g  on the face of h  and .h  

Average operator can be defined as 

on 
,2

on 

h

boundary

h

g g

g

g

  


 

  

5-54 

and jump operator is given by 

[[g]] = .g g   n n
 

5-55 

As normal unit vector on both sides of an interface are related by = , n n  jump 

operator which can be written as 
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  on 
[[ ]] .

on 

h

boundary

h

g g
g

g

  



  
 


n

n
 5-56 

The jump vector in index notation can be written as  

[[ ]] =    k k kg g n g n . 5-57 

Noting that the jumps and average operators are only needed to be calculated at interior 

(left), and exterior (right) trace of the function g at an interface. Considering the 

multiplication of vector a and tensor A, the identity relation can be defined such that 

jump operator satisfies the following product rule at interfaces 

[[ ]] = [[ ]] [[ ]] .    A A Aj jk jk j k j jk ka a a  5-58 

This identity relation can be verified by substitution of (Eq. 5-54) and (Eq. 5-55) in 

(Eq. 5-58). By application of (Eq. 5-58) in the integrals over the elements and using 

divergence theorem, we have 

.( ) ( [[ ]] [[ ]] ) . .
h

h h

h e e

e e

d a a d d


 

         A A A A n
D D

a a  5-59 

Considering equation (Eq. 5-58) and (Eq. 5-59)   

.( ) ( [[ ]] [[ ]] ) . ,
e

h h h

e e

h F B

e e e

d a a d d


  

          A A A A n
D D

a a  
5-60 

( ) n [[ ]] n .e

h h h

e e

j jk k e j jk k F j jk k Bh
e e e

d a d a d 

  

        A A A
D D D

a  
5-61 

Note that in the sum over all boundary integrals, the internal faces are counted twice. 

Thus, jump operator appeared to count the contributions of the left and the right states. 

5.3.3.2 Generalized numerical flux formulation  

Although we are interested in the discretization of the numerical viscous flux of NSF 

equation, it can be useful to initially present the general discretization form of the 

viscous flux for a simpler problem.  

Arnold et al. [159] and Castillo et al.[170] introduced the general form of the flux 

formulation for the scalar equation. The flux formula was obtained from a stability 

analysis of a linear elliptic model problem. Although this formulation was originally  

derived for scalar equation [159], it is preferred to write it in vector form to easily 

extend it for multidimensional problem; 

11 12
ˆ [[ ]] [[ ] ,]h h hC  Θ Θ w C Θ  5-62 
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12 22[[ ] [ .] [ ]]ˆ
h h hC  w w C w Θ  

where Θ̂ is analogous to the viscous numerical flux and ŵ is comparable to the 

auxiliary flux function of conservation laws. Various numerical schemes for elliptic 

problems can be derived by choosing the value of 11 12
,C C and 22

C  parameters.  

Castillo et al. [37] proved that stabilizing parameters 11 22
( ,0 C 0)C   should be 

positive to obtain a unique and stable approximate solution. Although stabilizing 

parameters can be any positive value, the majority of schemes takes 22
0C   to decouple 

the solution of h
w  and h

Θ , and solve viscous variables independently from auxiliary 

variables. In the following, it is assumed that the second stabilizing parameter is zero 

22
0.C   

5.3.3.3 Bassi-Rebay first method (BR1) 

Bassi and Rebay [103] introduced mixed-DG formulation and recast system of 

equations into two first-order systems. Bassi-Rebay’s first method (BR1) can be 

derived from the generalized numerical flux function if  11 12
,C C  and 22

C  parameters are 

chosen to be zero. In original work of Bassi-Rebay [103], an arithmetic mean average 

function is served for discretization of the diffusion and auxiliary flux functions such 

that 

 1
( , , , ) = ( , ) ( , )

2

0 [[ ]] 0 [ ,[ ]]

e e e e e e

viscous viscous viscous

e eh h h h h hh h

h h

       

   

w w F w F w

w Θ

F      5-63 

1
( , ) = ( ) 0 [[ ]] 0 [[ ]].

2
e e

auxiliary

h h h hh h

       w w w w w ΘF  5-64 

This choice of the numerical flux seems to be a very natural choice as diffusion does 

not prefer any direction. This flux has been employed in several studies [103, 112, 169, 

171, 172] since it is simple to implement in the developed numerical solvers. It provides 

the moderate performance for several applications. However, further investigations 

reveal that BR1 has some limitations when applied to study; viscous dominants flows, 

pure elliptic problems, high transition, and free molecular rarefied flows.  

Unfortunately, BR1 similar to Baumann-Oden method is weakly unstable [104, 159, 

173] due to lack of existence of stabilizer term in viscous flux function. The stability of 

the BR1 method may become grid dependence, which is clearly undesirable, due to fact 
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that the viscous contribution to the Jacobian of viscous flux may be singular on some 

meshes [174, 175].  

Furthermore, it does not optimally converge to design order of accuracy even for the 

case of the simple scalar equation. It achieves a convergence rate of ( )
p

O h  for p  odd 

while the convergence rate of the method is of the order of 
1

( )
p

O h


 when p  is even 

[92, 158].  

5.3.3.4 Local discontinuous Galerkin (LDG) 

LDG method was introduced by Cockburn and Shu [104] as an extension of BR1 

method in order to generalized DG methods for any convective-diffusion problem. 

Local DG method can be considered as a stabilized mixed-DG method [173]. It is a 

general scheme which can be employed for solving systems with higher derivatives 

[176]. In case of linear problems, it is known that LDG achieves uniform convergence 

rate for any order of p, whereas the convergence rate of BR1 method depends on p 

being even or odd. 

The local DG method is a non-compact and inefficient scheme when it is employed 

with cooperation of an implicit time integration method due to dealing with the second 

neighbors of the elemental faces in the evaluation of the viscous fluxes. On the other 

hand, LDG is compact and optimal for using in explicit time stepping schemes [177].  

In explicit methods, the auxiliary equations are solved at the beginning of each time 

step, and then the auxiliary variables are stored as the extra degree of freedoms. 

Subsequently,  the primary system of differential equations are solved by employing a 

strong stability preserving (SSP) method. The process is repeated at every time step 

until DG method converges to desired solution. The only disadvantage of LDG for 

explicit time marching condition is that the extra memory is required for storing the h
 .  

A local discontinuous Galerkin method can be derived from the generalized 

formulation of the viscous fluxes (Eq. 5-62) if the stabilizing parameters are defined as 

11
= ,C   

5-65 
12 12

= ,
2

C


n

C  

22
= 0.C  

LDG fluxes on the boundary of the elements are given by 
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h h k
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r
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y

ik ww n      5-66 

ˆ ,bound

i i

aryww   5-67 

where exterior boundary state e

boundary

h
w is a function of the interior state and known 

boundary data.  

By this definition of the stabilizing parameters, the viscous flux is penalized by   

times of the jumps in wh  and / 2
nk  times the jump in h , and auxiliary flux is 

penalized by / 2
nk  times the jump in wh . Any arbitrary value can be chosen as 12

C , 

for example, it can be chosen to be a function of normal vectors ( n , n ). However, 

LDG becomes unstable when   is set to be zero and 12
C is not defined 

correspondingly.  

A larger value of   on the boundary faces means more strictly enforcement of the 

boundary conditions which means that the boundary conditions are enforced in a strong 

sense in the limit of   [95]. In practice, penalty term   is defined as 

,LDG

h


 

 
5-68 

where ηLDG is the stabilization constant. h indicates the radius of the circumscribed 

circle in the elementis, and it is equivalent to cell size x  in one-dimensional problem.  

The minimal dissipation LDG formulation ─ which sometimes called as ‘upwinding 

in two opposite directions’, ‘alternating-flux’, or ‘upwind-downwind’ scheme ─ can be 

derived if 11
C  is set to be zero and the direction of 12

C  is restricted to be non-parallel 

to the normal vectors of the elemental faces; 

12 12

11

1 1
ˆ [[ ]] ,

2 2
h h h k
ik ik i

ik

C C
C w

  
      5-69 

12 12
1 1

ˆ .
2 2

i h h
i i

C C
w w w

 



  5-70 

where  12 1,1C    gives the flip-flop nature of the scheme.  

Considering highlights of minimal dissipation LDG and setting 12C  equal to 1 2 , 

a class of LDG method can be obtained for Navier-Stokes-Fourier as  

( , , , ) = ( , ),e e e e e

viscous viscous

eh h h h h h
       

w wF F u  
5-71 

( , ) = 0 [[ ]].e e

auxiliary

h hh h

    wF w w w  
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Note that utilizing this scheme at boundary interfaces requires that viscous flux function 

at the boundary faces takes the shape of 

11( , , , ) = ( ( ) , ),ee e e e e

viscous viscous

h eh h h h

bounda

h h

ry

h
C         ww F w n wF w  

5-72 
( , ) = .e e

auxiliary

hh h

  
F w w w  

5.3.3.5 Bassi-Rebay second method (BR2) 

Application of the implicit time stepping schemes in DG method for simulating 

advection–diffusion problems (e.g., turbulent flows) motivates Bassi et al. to introduce 

Bassi-Rebay’s second method (BR2) method.  

BR2 method has been employed in several studies due to the compactness of the 

scheme and optimal convergence rates for odd and even polynomial degrees in solving 

viscous dominant problems[178, 179]. In the original paper [158], the mathematical 

derivation of the BR2 scheme for model elliptic equation ― instead of Navier-Stokes-

Fourier ― was interpreted rigorously while the detail of the numerical implementation 

of the scheme, and the process for evaluation of the lifting operators were not addressed. 

 In this section, the mathematical derivation and numerical implementation of the 

BR2 method for Navier-Stokes-Fourier system are illustrated; evaluation of the global 

and local lifting operators are described; the numerical process for discretization of 

viscous flux functions is summarized.  

The weak formulation (Eq. 4-45) can be reformulated into the global form by 

replacing the surfaces integrals with the sum over all elemental interfaces and 

boundaries as 
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Note that the viscous numerical flux depends not only from the jump on the edge j  but 

also from the jumps on all the edges belonging to the element e
  and neighboring 

elements sharing the edge .j  

By the integration by part, and applying divergence theorem to the fourth integral 

term of the auxiliary equation, it reads as 

[[ ]]  .
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The auxiliary system can be re-formulated, substituting (Eq. 5-74) in auxiliary equation 

(Eq. 5-73) as 

[[ ]] ( , )

( , )

[[ ]]  0.

e e

h h

e e ee
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Discretizing auxiliary flux function as 

on 
,

on 

e

e

hauxiliary h

ik boundary

hh
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w

w
F  5-76 

and replacing [[ ]]e
i

ik kh
w with equivalent equation introduced in (Eq. 5-58) yields  
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In order to obtain the explicit expression for the auxiliary variables, it is essential to 

define a global lifting operator 
 2

h

 
 

D D
 as 

.
e

i

ik

h

ikh

k

w

x

 
  
  

   5-78 

Substituting (Eq. 5-78) in (Eq. 5-77) results in the weak formulation of global lifting 

operator as 
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According to (Eq. 5-78) and (Eq. 5-79), the auxiliary variable ik
  can be expressed as 

a sum of the solution gradient 
e

i
h

k

w

x




and correction factor (i.e., global lifting operator) 

which is taken into account due to the jumps in e
ih

w at interfaces and jump between the 

value of e
ih

w and e
i

boundary

h
w at elemental boundaries. This means that the global lifting 

operator h  is to penalize the jumps at the faces, although it is equal to zero in smooth 

regions.  

Replacing the surface integral in auxiliary equation (Eq. 5-73) with volume integral 

using (Eq. 5-79) and summing over all the local elements e
 , the global lifting operator 

function over all elements of h
  can be expressed as 

ik

e
ih

ik ik ik

k

h

w
d d

x

 
       

  

 D D
. 5-80 

In order to eliminate the non-compactness of the scheme, it is possible to replace the 

auxiliary variable with weak definition as 

 
h h

ik h ik k h h
ik i ik

d w d
 
         . 5-81 

This definition of auxiliary variables could be employed to derive the primal 

formulation of conservation laws, although we are only interested in the flux 

formulation of the scheme.  

The process of the determination of the global lifting operator was not addressed in 

[158]. We can compute the global lifting operator directly by considering (Eq. 5-81) 

and (Eq. 5-79) and defining the  eh
using defined polynomial expansions in Section 0. 

If  we express the global lifting operator by polynomial expansion as 

1

ˆ( , ) ( ) ( ),
p

ik

N

h h l
ik

l

t t


  ξ ξ  5-82 

The coefficient of global lifting operator can be obtained by solving 
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Nevertheless, it is shown [158] that using the global lifting operator, can lead to 

unsatisfactory convergence rate for polynomial approximations of odd order. Moreover, 

application of global lifting operator may lead to wide stencil which is obviously 

undesirable [158, 175]. These issue is resolved by introducing a local lifting operator 
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r

j

h

D D
as an approximation of the global lifting operator h
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= Fj Bj

ik ikh h h
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In order to employ local lifting operator in the process of the viscous flux discretization, 

it is necessary to find 
j

hr for every interface and boundary edge of the element such that  
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Note that the local lifting operator can not be computed directly, although it can be 

represented by a linear polynomial expansion as 

1

ˆ( , ) ( ) ( )
p

e
i

N

j

h lhi
l

r t r t 
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ξ ξ . 5-86 

where ( )ξl  belongs to ( )p

e  space. The linear system of (Eq. 5-86) must be solved 

in order to obtain the coefficients of lifting operators ˆ eh
r . According to (Eq. 5-85), the 

local lifting operators are only non-zero on the interfaces of the local elements. 

Therefore, 

,
,
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r d r d w d 
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As the value of lifting operator function is equal for the element e
  and neighboring 

elements sharing the edge ,j and test function is an arbitrary polynomial function, 

equation (Eq. 5-87) reads as 

,

1
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Replacing local lifting operator by approximate polynomial function and considering 

ik
 to be equal to ( )

l
 ξ , according to Galerkin method, yields to 
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Considering that ( ) ( )j l ed ξ ξ 
D

 is the elemental Mass matrix which can be 

inverted to the 
1

Mrj , and knowing that ˆ ( )e
ih

r t is only function of time, the expansion 

coefficients of the local lifting operator on face j of element e  are given by 
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The local lifting coefficients of the boundary faces are determined analogously as 
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Finally, the viscous numerical flux of BR2 method can be defined by considering an 

arithmetic mean average of the viscous fluxes while the auxiliary variables are 

approximated in weak sense as 
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where ηBR2 is stabilization constant which is required to be greater than the number of 

element faces in order to prove stability for the BR2 scheme [159].  

Oliver [174] and Shahbazi [180] introduced an explicit formula for evaluation of this 

parameter. However, it has been shown in several researches [158, 165, 181, 182] that 

there is no serious stability issue when ηBR2is chosen to be less than stability criterion. 

Note that, the solution gradients ∇wh used in the evaluation viscous flux function, are 

the real gradient of the global solution wh  and they can be evaluated using either 

differentiation matrices [93] or expanding a polynomial series on the gradients of basis 

functions.  
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The numerical evaluation of the viscous flux function using BR2 method is 

illustrated in following. First, the real gradient of the local solution is calculated based 

on polynomial expansion as 
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= ( ) ( )
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pN
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k k l

l

t  , 5-96 

where the moments of the gradient expansion can be explicitly calculated from the 

partial derivative of the local solution expansion (i.e.,
1

1
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h
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projection technique. For case of one-dimension problem, the gradient of local solution 

at the elemental interfaces is given by, 
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Next, the local lifting operators are calculated according to equation either (Eq. 5-92) 

or (Eq. 5-93) for every face of the local element e . Afterward, the global lifting 

operator is evaluated using  

1 1
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where 
F

N  and 
B

N denote the number of interfaces and boundary faces in the element
e

 . 

Finally, the second derivatives of auxiliary variables are estimated using following 

relations, 
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where j index indicates the jth face of the element e  and GPi stands for ith quadrature 

points inside the element. The resulting solution of second-order derivatives can be 

used for evaluation of viscous flux function in (Eq. 5-95). 

Considering the above-mentioned processes for evaluation of the viscous fluxes, an 

explicit formula for one-dimensional problem is obtained as 
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5.3.4 Performance of flux functions 

Arnold et al. [159] studied the performance of several viscous numerical fluxes for 

Laplace problem and found out that only a few numerical flux functions yields the 

optimal order of convergence for this simple scalar equation. Namely, the second 

method of Bassi and Rebay (BR2) [158], SIP scheme [183], and the local discontinuous 

Galerkin (LDG) scheme [104].  

Qiu et al. [184] studied various monotone inviscid numerical flux functions for the 

couple of the benchmark problems. They showed that the Rusanov flux requires the 

least CPU time among all inviscid fluxes, whilst the level of numerical diffusion is the 

worst. They also showed that performance of inviscid flux function depends on the 

degree of the polynomial expansion.  

Although, these analyses on the performance of numerical fluxes in DG framework 

are available, there is no comprehensive verification analysis that examines the 

performance of viscous fluxes in combination with inviscid numerical fluxes for DG 

method. In this section performance of various numerical flux functions based on 

Euclidean error norm is surveyed. 

5.3.4.1 Performance of the inviscid fluxes for smooth problem 

The Euler equation (i.e., zero-order Boltzmann model) with smooth initial condition 

is considered as a benchmark problem. The periodic boundary conditions are applied 

at both side of the domain and initial condition is set to be  
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The exact solution of this problem is also given by 

( , ) 1,
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x t x t
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In order to measure the order of accuracy of the DG method using various inviscid 

flux function, several inviscid flux functions are tested and the density distribution of 

the solution is shown for various degree of p in Figure 5-21. 

  
Roe flux function 

  
HLL flux function 

  
Rusanov (LLF) flux function 

Figure 5-21 Comparison of various inviscid flux discretization schemes for smooth solution 

of Euler equation; (left) profile comparison, (right) Euclidean norm of density 
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It is obvious that piecewise constant solution is very diffusive and far from exact 

solution; however, application of more advanced flux functions such as Roe’s flux and 

HLL can improve the level of accuracy of piecewise constant solution. To judge more 

precisely about the performance of inviscid flux function, the numerical errors and the 

orders of accuracy is calculated based on the density solution. As it is shown in 

Figure 5-21, all numerical flux functions ―Rusanov, HLL, and Roe― can achieve the 

expected order of accuracy of p+1. This observation is consistent with the result 

obtained by Qiu et al. [184]. 

5.3.4.2 Performance of the viscous fluxes for smooth problem 

In order to measure the order of accuracy of viscous flux functions for the smooth 

problem and verify our numerical implementation of the viscous flux functions, a one-

dimensional parabolic (heat) equation which has been studied in several previous 

studies, is considered as a benchmark problem.  

The differential equation of heat problem can be defined as  

2

2
0,tw w

t x

 
 

 
 5-105 

where the length of the computational domain is chosen to be equal to one wavelength 

( 0 2x   ) of the initial sinusoidal distribution with amplitude of 1.0. The periodic 

boundary conditions are applied at both side of the computational domain, and exact 

analytical solution is given by 

( , ) sin( ).tw x t e x  5-106 

It was shown that the application of real gradient without correction term for 

discretizing the numerical flux leads to inaccurate approximation of the global solution 

[176]. To verify this issue, the heat equation is solved using central flux function while 

the real gradient of global solution has been employed for calculating the second-order 

derivative of hw .  

The discrepancy between exact solution and numerical approximated solution is 

obvious in Figure 5-22. It is due to fact that solution is discontinuous at interface of the 

elements, therefore, application of central numerical flux with real gradient of the 

global solution at inter-element boundaries yields inconsistent solution of the heat 

problem.  
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Figure 5-22 DG approximated solution of the heat equation without considering any 

correction on real gradient of the global solution. 

 

  
BR1 scheme 

  
BR2 scheme 

  
LDG scheme 

Figure 5-23 Comparison of the heat equation solution for BR1, BR2, LDG schemes. 
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Figure 5-23 shows the solution of heat problem using BR1, BR2, and LDG schemes 

at time equal to 0.7 second. LDG scheme acts very good in capturing both the solutions 

of wh, and its gradient ∇wh. Nonetheless, considerable amount of jump in solution of 

wh and ∇wh is obvious in BR1 solution. This is due to fact that BR1 scheme does not 

use any stabilizer for minimizing the jumps of the global solution in inter-element 

connections. 

 
BR1 scheme 

 
BR2 scheme 

 
LDG scheme 

Figure 5-24 Performance of BR1, BR2, LDG methods for one-dimensional heat equation 

based on the Euclidean norm of hw . 
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The solution of heat equation obtained by BR2 scheme retains the accuracy at 

everywhere; however, the precision of the method in approximation of the gradients is 

one order less than the global solution.  

Figure 5-24 depict the Euclidean norm of the global solution of heat problem for all 

schemes. It is obvious that BR1 method does not optimally converge for odd degree of 

p while the convergence rate of BR2 is in order of 1( )pO h  for case that 0p  , and 

LDG method shows uniform convergence rate for any order of p. 

5.3.4.3 Performance of the inviscid and viscous fluxes for stiff problem 

The distribution of the density, velocity, temperature, normal stress, and heat flux 

solutions along shock-wave are shown for two Mach numbers in Figure 5-25 to 

Figure 5-27. The upstream Mach number is set to be 2 and 5. Hard-sphere gas molecule 

is chosen as the working gas flow. Various numerical flux functions is served for 

discretizing the fluxes. In all profiles, the black solid line indicates the analytical 

solution while the gray thin solid and scatters lines correspond to the numerical 

solutions with polynomial order of zero, one, and two. 

Results illustrate that the numerical solution becomes closer to the analytical 

solution by increasing the degree of the polynomial order, as is expected. The 

discrepancy between the exact and numerical approximate solutions are relatively less 

in profiles of the conservative and primitive variables compared with the non-

conservative variables. It seems that the non-conservative variables are more sensitive 

than the conservative variables to the choice of the viscous numerical flux function, 

despite that all profiles are influenced similarly from choosing the inviscid numerical 

flux function.  

The piecewise constant solution smears the conservative and non-conservative 

properties of gases more than any high-order DG solution. The piecewise constant 

profile predicted by use of Rusanov (LLF) flux function is the most diffusive and 

disperse solution compared with the others. However, the numerical diffusion 

generated by this flux function is negligible when the order of polynomial 

approximation is more than one. It is obvious that application of Roe and HLL flux 
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functions lead to less numerical diffusion in piecewise constant approximation; whereas 

there is not significant numerical advantages in those for high-order DG solution. 

Indeed, the lower orders of polynomial approximate solution are more delicate to the 

choice of the inviscid numerical flux function than high-order degree of p.  

 
         BR1-Rusanov (LLF) 

 
                   BR1-Roe 

 
                   BR1-HLL 

 
         BR2-Rusanov (LLF) 

 
                   BR2-Roe 

 
                   BR2-HLL 

 
        LDG-Rusanov (LLF) 

 
                  LDG-Roe 

 
                  LDG-HLL 

Figure 5-25 Comparing the normalized shock profiles of the DG polynomial approximated 

solution with exact analytical solution for hard-sphere gas at Mach=2. 

Comparing the results predicted by BR1, BR2 and LDG methods in conjugation 

with various inviscid flux functions confirm that application of the different inviscid 
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numerical flux function does not result to the instability of the numerical method even 

if Mach number is very high, at least for this particular problem. However, choosing 

different numerical schemes for discretizing viscous terms yields to significant change 

in the performance of the numerical solution. 
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Figure 5-26 Comparing the normalized stress and heat flux profiles of the DG polynomial 

approximated solution with exact analytical solution for hard-sphere gas at Mach=2.  
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Figure 5-27 Comparing the normalized shock profiles of the DG polynomial approximated 

solution with exact analytical solution for hard-sphere gas at Mach=5.  

Figure 5-29 shows the profile of non-conservative variables for BR1, BR2, and LDG 

schemes at three different Mach number. It is shown that employing BR1 scheme yields 

the moderate approximation of the exact solution for low Mach case; however, it may 

not work properly for high Mach conditions. Actually, BR1 method can be employed 
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for solving the high Mach number shock waves only if the numerical solver is equipped 

with a proper positivity preserving treatment [144]. Results illustrate that BR1 scheme 

becomes fully unstable when Mach number is greater than 5 even if the positivity 

preserving limiter is used. 

 
         BR1-Rusanov (LLF) 

 
                   BR1-Roe 

 
                  BR1-HLL 

 
         BR2-Rusanov (LLF) 

 
                   BR2-Roe 

 
                   BR2-HLL 

 
       LDG-Rusanov (LLF) 

 
                  LDG-Roe 

 
                  LDG-HLL 

Figure 5-28 Comparing the normalized stress and heat flux profiles of the DG polynomial 

approximated solution with exact analytical solution for hard-sphere gas at Mach=5. 

Figure 5-29 also illustrates that obtained first-order solutions using BR2 scheme are 
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order derivatives do not participate in the calculation process of the non-conservative 

variables. Thus, piecewise constant solutions are equivalent to Euler solutions when 

BR2 scheme is used. Nevertheless, BR2 scheme can provide moderate high-order 

solutions at all three tested Mach numbers even though the amount of discrepancy 

between the approximated non-conservative variable and exact solution increases by 

increasing the Mach number value for the case of piecewise linear solution. 

 
BR1-Mach=2 

 
BR1-Mach=5 

 
BR1-Mach=15 

 
BR2-Mach=2 

 
BR2-Mach=5 

 
BR2-Mach=15 

 
LDG-Mach=2 

 
LDG-Mach=5 

 
LDG-Mach=15 

Figure 5-29 Comparing the accuracy of the normalized stress and heat flux profiles with 

exact analytical solution for hard-sphere gas; HLL is chosen as the inviscid numerical flux; 

50 elements used for discretizing computational domain. 
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always stable and the discrepancy between exact solution and numerical approximation 

is negligible in most of the cases. The solution has an acceptable level of accuracy for 

both case of conservative and non-conservative variables; however, the value of CFL 

X/

N
o

rm
a

li
z
e

d
v

a
ri

a
b

le
s

-4 -2 0 2 4
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 Piecewise quadratic solution (DG - p=2)
Pievewise linear solution (DG - p=1)
Exact solution

qx

xx

X/

N
o

rm
a

li
z
e

d
v

a
ri

a
b

le
s

-4 -2 0 2 4
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 Piecewise quadratic solution (DG - p=2)
Pievewise linear solution (DG - p=1)
Exact solution

qx

xx

X/

N
o

rm
a

li
z
e

d
v

a
ri

a
b

le
s

-4 -2 0 2 4
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 Piecewise quadratic solution (DG - p=2)
Pievewise linear solution (DG - p=1)
Exact solution

qx

xx

It is not converged. 

It is unstable!

X/

N
o

rm
a

li
z
e

d
v

a
ri

a
b

le
s

-4 -2 0 2 4
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 Piecewise quadratic solution (DG - p=2)
Pievewise linear solution (DG - p=1)
Exact solution

qx

xx

X/

N
o

rm
a

li
z
e

d
v

a
ri

a
b

le
s

-4 -2 0 2 4
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 Piecewise quadratic solution (DG - p=2)
Pievewise linear solution (DG - p=1)
Exact solution

qx

xx

X/

N
o

rm
a

li
z
e

d
v

a
ri

a
b

le
s

-4 -2 0 2 4
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 Piecewise quadratic solution (DG - p=2)
Pievewise linear solution (DG - p=1)
Exact solution

qx

xx

X/

N
o

rm
a

li
z
e

d
v

a
ri

a
b

le
s

-4 -2 0 2 4
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 Piecewise quadratic solution (DG - p=2)
Pievewise linear solution (DG - p=1)
Exact solution

qx

xx

X/

N
o

rm
a

li
z
e

d
v

a
ri

a
b

le
s

-4 -2 0 2 4
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 Piecewise quadratic solution (DG - p=2)
Pievewise linear solution (DG - p=1)
Exact solution

qx

xx

X/

N
o

rm
a

li
z
e

d
v

a
ri

a
b

le
s

-4 -2 0 2 4
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 Piecewise quadratic solution (DG - p=2)
Pievewise linear solution (DG - p=1)
Exact solution

qx

xx



162 

 

162 

 

number should be chosen more carefully compared to BR1 and BR2 schemes. I had 

tested LDG method even for higher Mach numbers (e.g. Mach =40), it works without 

any stability issue and could provide decent numerical solutions. 

5.3.4.3.1 Performance of fluxes based on error norm analysis 

Conservative variables 

The numerical error and order of accuracy for density solution is depicted in 

Figure 5-30. Results illustrate that the performance of the inviscid flux functions 

depends on the degree of the polynomial order. It is obvious that  DG method does not 

achieved the designed order of accuracy due to enabling limiter function. Nonetheless, 

it is still possible to have a fair comparison between various numerical flux functions 

since same limiter function is served for all simulations.  

The comparison analysis reveals that BR2 and LDG method degrade solution more 

than BR1 whenever the order of the polynomial approximation is equal to p=2. While 

they perform better than BR1 when a proper inviscid flux function is used and p ≥ 3. 

Primitive variables 

Figure 5-30 shows the energy norm of density and temperature for several 

combination of the viscous and inviscid flux functions. Results demonstrate that there 

is no significant difference between error norm computed by temperature for various 

inviscid flux function. It means that the computed order of accuracy based on 

temperature is less sensitive to the choose of inviscid flux function compared with 

density.  

Non-conservative variables  

Non-conservative variables are another important parameters in studying shock 

waves and gas dynamics problems [13]. Knowing the order of accuracy of the DG 

method based on non-conservative variables is very important [112]. A numerical 

method developed for studying rarefied gas flows should be very accurate in estimation 

of the non-conservative variables.  

Figure 5-31 provides the energy norm of normal stress and heat flux variables for 

various combination of numerical flux functions. The results show that BR1 and BR2 

schemes cannot provide an expected order of accuracy for piecewise linear 
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approximation (p=1). However, order of accuracy obtained by LDG is relatively higher 

than BR1 and BR2 schemes. 

 

2h L
   

2h L
T T  

  
BR1 scheme 

  
BR2 scheme 

  
LDG scheme 

Figure 5-30 Comparing the order of accuracy of DG approximate solution based on the 

Euclidean norm of density and temperature solution of viscous shock wave problem for 

several combination of viscous and inviscid flux functions.  
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2h L
   

2h L
q q  

  
BR1 scheme 

  
BR2 scheme 

  
LDG scheme 

Figure 5-31 Comparing the order of accuracy of DG approximate solution based on the 

Euclidean norm of normal stress solution of viscous shock wave problem for several 

combination of viscous and inviscid flux functions.  
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5.4 Curved boundary 

In second-order finite volume method, a geometry with curved boundaries is usually 

represented by segments of straight side lines or planar facets. However, this simple 

representation of curved boundaries does not describe the geometry appropriately for 

high-order DG methods [103].  

As Bassi and Rebay reported [111] that discontinuous Galerkin method requires 

more accurate treatment on the walls than that allowed by traditional finite volume 

methods. In DG method, it is essential to pay a significant attention to the curved 

boundaries. A curved boundary is a smooth physical surface, and it has to be handled 

as it is. Employing a linear sub-parametric mapping for high-order DG approximation 

ends to significant degradation of the solution at curved boundaries. It results in 

appearance of unphysical wakes and spurious oscillations in solution. 

The importance of curved boundary treatment for DG method has been subject of 

several researches during last decade [103, 185-191]. There are two ways to solve this 

problem; approximation of the normal vectors at each Gauss quadrature point on 

surface[187], or using iso-/ super-parametric mapping [126, 192]. The first method is 

the simplest way in which the normal vector on quadrature points are approximated 

using either exact geometry information or approximated based on interpolation from 

neighboring faces. Application of this method is not straightforward for three-

dimensional geometries, and it can be generally considered as a temporary cure for 

written codes rather than firm and strong treatment. The fundamental approach to model 

curved boundaries is to map them using high-order polynomial expansions. Interested 

readers are referred to [179] for further information. 

In this section, the importance of curved solid boundaries in a DG simulation is 

investigated by simulating flow over a cylinder at Mach=0.4 using various order of 

polynomials for various Knudsen flow regimes. Figure 5-32 shows that mapping the 

curved boundaries using sub-parametric mapping does influence the accuracy of 

solution for Euler equation.  

It is shown that refinement of grid on the curved boundaries does not improve the 

accuracy of the solution, instead, it magnifies the amplitude of unphysical wakes. As I 

experienced during this work, similar to many other researchers [193], it is highly 

possible that a numerical solver diverges due to negativity of density and pressure 

caused by spurious oscillations generated on the wall. Therefore, simulation of curved 
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boundary problems without appropriate treatment on curved boundaries will results in 

degradation of the solution accuracy and even instability of the numerical methods at 

low/high-speed flow conditions.  

  
Piecewise constant solution 

  
Piecewise linear solution 

  
Piecewise quadratic solution 

Figure 5-32  Mach contour solution of Euler equation over a cylinder for flow 

stream Mach of 0.4 on the grid with size of h=0.25. 
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Piecewise constant solution 

  
Piecewise linear solution 

  
Piecewise quadratic solution 

Figure 5-33  Mach contour solution of Euler equation over a cylinder for flow 

stream Mach of 0.4 and Kn→ ∞ on the grid with size of h=0.025. 

 

The influence of curved boundary on the solution accuracy is less important for 

Navier-Stokes-Fourier equations. It is shown in Figure 5-34 that mapped curved 

boundary using linear polynomial will results in tangible numerical artifact for flows at 
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very low Knudsen regimes; however, in contrary to Euler equations, the streamline are 

not affected by low accuracy modeling of the physical curved boundary. 

 

  
Piecewise constant solution 

  
Piecewise linear solution 

  
Piecewise quadratic solution 

Figure 5-34  Mach contour solution of Navier-Stokes-Fourier equation over a 

cylinder for flow stream Mach of 0.4, and Kn=10-8 on the grid with size of h=0.25. 
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It is shown in Figure 5-35 that the importance of true mapping of curved geometry 

reduces as Knudsen number increases. It is due to fact that the thickness of viscous 

shear layer on the wall increases, and it diffuses the numerical artifacts generated due 

to inaccurate mapping of the curved walls. 

  
Piecewise constant solution 

  
Piecewise linear solution 

  
Piecewise quadratic solution 

Figure 5-35  Mach contour solution of Navier-Stokes-Fourier equation over a 

cylinder for flow stream Mach of 0.4 and Kn=10-1 on the grid with size of h=0.025. 
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5.5 Boundary conditions 

The numerical implementation of the boundary conditions is tricky and it demands 

special attention. The accuracy of the simulation, rate of residual convergence, and 

stability of the numerical solver are strongly dependent on the implementation of the 

boundary conditions.  

As discussed in CHAPTER 4, the present modal DG method imposes the boundary 

conditions in a weak manner through the prescribed boundary operators. So it is 

possible to construct any kind of boundary conditions ─ Dirichlet, Riemann, and 

Neumann ─ for DG method based on information at exterior and interior state of the 

boundary faces. 

5.5.1 Far-field boundary 

Two requirements must be satisfied in numerical implementation of the far-field 

boundary conditions [194]. First, the cutting of the physical domain should not have 

any considerable effect on the flow solution as compared to the unbounded domain. 

Inadequate truncation of the domain can lead to a severe slowdown of steady state 

convergence rate. This issue is more sensible in simulation of subsonic and transonic 

flow problems which are naturally elliptic and parabolic. Second, any outgoing noise 

should have no influence on the flow field.  

Based on concept of characteristics variables, all information are transported into the 

computational domain along the characteristics waves when incoming flow is 

supersonic. Therefore, all eigenvalues have the similar sign, and boundary operator is 

solely defined based on conservative variables at boundary side as 

  ,e

Tboundary

h
e  w u   5-107 

where the subscript denotes to the free-stream values. Accordingly, the numerical 

inviscid, viscous, and auxiliary flux functions can be approximated as 
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5.5.2 Outflow boundary 

If the outgoing flow is a supersonic flow, the sign of all eigenvalues is same and all 

characteristics waves leave the computational domain[194]. Considering behavior of 

the characteristics waves, the boundary operator can be defined as 
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The numerical inviscid, viscous, and auxiliary flux functions can also be approximated 

as 
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5.5.3 Symmetry plane 

Symmetry boundary condition should guarantee no flux across the boundary. To 

satisfy this condition; the velocity normal to the symmetry plane must be zero; the 

gradients of scalar quantities normal to the boundary, and the gradient of tangential 

velocity on the boundary must be zero. It is also necessary that the gradient of normal 

velocity along the boundary vanishes. The summary of these conditions can be written 

in form of mathematical relation as 

   

 

0,

. .( ) 0,

( ). ( ) 0.

 

     

       

n w

n u t n u I n n

t u n I n n u n

 5-111 

where, t denotes a vector tangential to the symmetry boundary and   means dyadic 

vector product.  

There are two treatments for implementation of symmetry boundary condition. First 

is based on finite volume approach in which the mathematical constraints, defined in 

(Eq. 5-111), are imposed by introducing the concept of reflected cell. It can be 

formulated as  
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where the normal gradient of the normal velocity in the exterior state equals to that in 

the interior state, but it has a reversed sign [194]. The numerical flux functions over 

boundary interface is defined as 
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Alternative way to define symmetry boundary condition is to prescribe the 

derivatives of the global solution on the boundary side as follows, 
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where   n ne
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 can be written in index notation form as   .
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where 
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The numerical flux functions are given by 
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5.5.4 Inviscid wall boundary 

In the case of inviscid flow [194], the velocity vector should be tangent to the surface 

and it is not zero as there is no friction force on the surface. The fluid slips over the 

surface while it does not penetrate into wall. To prescribe zero normal velocity on the 

surface, the inner cross product of velocity and outward unit normal vectors must 

vanishes as 

0 u n . 5-118 

While the inviscid flux function is computed by adjusting the wall velocity to have zero 

normal component, the viscous and auxiliary flux functions are zero by default; 
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5.5.5 No-slip viscous wall boundary 

In no-slip wall, the relative velocity between solid wall and fluid attached to the 

surface is assumed to be zero. Therefore, the physical velocity on the solid should be 

defined such that  

0.boundary solid u u  5-121 

If the wall boundary maintains the temperature, solid temperature should be given 

explicitly; however, if heat flux vector is prescribed at wall, the normal heat flux on the 

wall should be defined as . .
solid boundary

q n q   For NSF equations, where Fourier law is 

employed for modeling heat flux vector, the normal gradient of temperature on the 

surface must be set zero for adiabatic wall boundary condition;  
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Although prescribing the velocity and temperature is straightforward, defining 

pressure and density have been treated in a number of different ways in several 

researches [195-199].Prescribing noslip wall boundary condition in simplest way is 

preferred for most of the applications. Nevertheless, the stability of this approach is not 

the same as the characteristics based boundary condition.  

The most straightforward method to define no-slip boundary condition is to use 

following relations [126] for adiabatic wall  
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and 
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In this approach, the gradient of temperature on the boundary state are defined 

according to (Eq. 5-122) as 
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Although this approach is useful but it is vulnerable to the numerical instability when 

the variation of the density near a wall is not small [196, 200]. These instabilities usually 

happens in the initial stages of a steady-state simulation, or in a simulation of an 

transient (unsteady) flows in which the temperature difference between wall and 

interior state is non-negligible and the speed of the fluid is considerably high. 

 An alternative approaches can be obtained by assist of finite volume method and 

defining boundary operator using one of below approaches 
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if first approach is picked. the numerical fluxes at wall can be obtained according to 

(Eq. 5-124). Whereas using the second approach leads to calculation of the numerical 

flux function based on interior and boundary state values.  

5.5.5.1 Evaluation of the wall properties 

Let’s assume that the flow is laminar with no enforced body force and no significant 

gradients of pressure in the tangential direction over the wall. Assume also that the 

normal velocity on the wall vanishes and the velocity gradients in tangential direction 

are small compared to velocity gradients in the normal direction. We can express the 

continuity and the simplified momentum balance on the wall as 
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where 
wall is wall density.  

According to (Eq. 5-127), the pressure gradient in normal direction to the wall is 

mainly balanced by the normal gradient of viscous forces. The variations of the normal 

velocity and the pressure gradient in the normal direction can be ignored if the variation 



175 

 

175 

 

of the density at the wall is negligible. Thus, a simple extrapolation from the interior 

state can be used for prescribing the wall pressure: 
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and wall temperature, for case of isothermal wall, is defined by extrapolating from the 

interior state and specified wall temperature as 
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The total energy and wall density is given by 

 for adiabatic wall,

 for isothermal wall,
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 
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If the variation of density is not small or the normal velocity gradient and the 

pressure gradient near the wall cannot be ignored [196], application of (Eq. 5-128) 

results in numerical instability because of the inconsistency between a zero-pressure 

gradient enforced at the wall and pressure gradient inside the local element. Therefore, 

it is essential to revisit definition of wall pressure at wall such that the continuity 

equation, momentum equation on the wall, and the given thermal conditions are 

integrated together in smart way. The wall density is first defined by evaluating 

continuity equation on the wall, and then pressure on the wall is calculated using 

updated density on the wall and given temperature on the wall. For case of adiabatic 

walls, normal gradient of temperature can be determined using  / ii
p x n   [198]. 

5.5.6 Langmuir slip wall boundary 

It is necessary to introduce the velocity slip and temperature jump boundary 

conditions on the surface for studying the rarefied and microscale gas flows. Among 

various slip models [201-204], the Langmuir slip model [201, 205-208] which is based 

on the physical adsorption isotherm [14] can be utilized to model the slip effects. 
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Langmuir slip model takes the interfacial gas–surface molecular interaction into 

account and turns out to be qualitatively the same as the conventional Maxwell slip 

model in most cases. However, its numerical implementation is simpler than the first-

order Maxwell boundary condition since it is Dirichlet-type boundary condition.  

In Langmuir boundary condition, a coverage fraction α, defined as a function of wall 

pressure, is limited to be in the range of 0 1  . For monatomic molecules, the 

coverage fraction can be expressed as 
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where p is the dimensional surface pressure and   is defined by considering the gas–

surface molecular interaction process as a chemical reaction, 
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Here heat of adsorption De depends on the gas-solid interaction specifications and universal
R

denotes the universal gas constant. λ denotes the freestream mean free path and 
  

represents the mean area of a site which can be approximated using hard-sphere total 

cross-sectional area,  

2. d   5-134 

The velocity slip and temperature jump boundary conditions in the Langmuir model 

are determined as  
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where tangential velocity vector u  and temperature of gas T
 outside of the Knudsen 

layer can be approximated based on either free stream condition or the values in 

adjacent element to the wall boundary interface. 

5.5.7 Maxwell slip wall boundary 

5.5.7.1 The original Maxwell boundary condition 

The original Maxwell slip boundary condition [202, 207, 209] was defined first in 

form of the stress tensor and heat flux vector along the wall direction as  

 Pr 12 3

4

wall solid v
tangential tangential tangential tangential

v p

 
    

 
u u τ q

 

  
, 5-136 



177 

 

177 

 

where tangential stress and heat flux are defined using    S I n n tangential 

operator as 

  , .
tangential tangential

  τ n Π S q = q S   5-137 

Here, n is the outward normal vector and I  is the second-order unit tensor defined as 
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This equation is valid for any three-dimensional arbitrary geometry problem and can 

be written in form of vector products as 
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Later, it was simplified for one-dimensional NSF equation, and commonly used for 

solving multi-dimensional problems. 

5.5.7.2 First-order Maxwell boundary condition 

In case of NSF equations where the non-conservative variables are modeled using 

linear uncoupled constitutive relations (i.e. first-order Boltzmann-based model), the 

stress tensor and heat flux vector on the wall for monatomic gases are defined as 
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Therefore, the original Maxwell boundary condition (Eq. 5-139) can be simplified using 

these first-order constitutive relations as 
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5.5.7.3 Maxwell boundary condition for 1-D Couette flow 

In order to obtain the simplified Maxwell boundary conditions for Couette flow 

problem, let’s define the heat flux and shear stress values on the wall using classical 

linear relations  

1

1

1

12

2

q ,

.

T
k

x

u

x



 




  



 5-142 



178 

 

178 

 

and define gas properties using caloric perfect gas relations for ideal gas flows

1, Pr ,
p p

C R C k p RT       .  

As Couette flow is purely one-dimensional flow the problem, thus it is possible to 

eliminate several terms from (Eq. 5-139) as 
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Applying above condition into (Eq. 5-139), the one-dimensional Maxwell Slip 

boundary condition for Couette flow problem reads as 
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Although this model is derived for one-dimensional Couette flow problem, it is often 

used in multidimensional problems by considering it as the most simplified version of 

Maxwell boundary condition. 
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CHAPTER 6. Verification & validation of 

discontinuous Galerkin method 

Albert Einstein (1879-1955): 

” Not everything that counts can be counted, and not everything that can be counted 

counts.” 

 

 

Verification and validation become critical practical issues when laboratory level 

research of computational models is used in the mature, real world (application) 

problems. However, such study is often complicated and subtle since verification and 

validation of computational models depend on the properties considered, and in many 

cases, overall multi-faceted agreement is very difficult to achieve. DG has been 

successfully verified for various scalar equations and variety of hyperbolic/elliptic 

systems. There are numerous numerical and mathematical researches directed on the 

study of the accuracy of method for either Euler or Navier-Stokes-Fourier equations 

[98-100, 103, 111]. In this Chapter, various well-known benchmark problems are 

solved, in order to verify the accuracy of the modal DG method. 

6.1 Scalar linear problem 

Scalar hyperbolic equation with mixed initial condition consists of a combination of 

the Gaussians, a square pulse, a sharp triangle, half-ellipse profiles, is a well-known 

benchmark problem due to the appearance of several different smooth and stiff extreme 

together in the computational domain.This problem is considered to check performance 

of KXRCF troubled cell indicator and accuracy of present Modal DG solver.  

As it is shown in Figure 6-1, the precision of DG approximation increases by 

increase of the polynomial expansion; however, the improvement in the solution 

accuracy is not tangible for p>2. Moreover, it is shown that KXRCF indicator detects 

troubled cells nicely; however, some cells in smooth regions near the local smooth 

extrema are labeled falsely.  
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Figure 6-1 Scalar hyperbolic equation with mixed initial condition (Right) Modal DG 

solutions, (b) Performance of KXRCF indicator in detecting troubled cells. 

6.2 Two-dimensional Riemann problems 

The one-dimensional centered waves are associated with gas dynamics equations 

consist of contact-discontinuities, shock-waves, and rarefaction-waves. Studying 1-D 

Riemann problems can pave the way for developing large class so-called upwinding 

methods [81, 210]. Contrasting to 1-D problems, there is no general exact Riemann 

solver available in the 2-D cases. 

 Generally, 2-D Riemann solvers are not considered as a building block for 

development of CFD schemes. A multi-dimensional upwinding scheme recasts into a 

one-dimensional Riemann problem at interface of a two-dimension control volume. As 

several researchers [211-214] predicted that there are at least 19 admissible types of 2-

D Riemann problems which are genuinely different from each other, must be studied 

case by case.  

Although 2-D Riemann problems has been analyzed by many researchers in last 

decades [79, 215-217], studying these problems using DG methods provides very useful 

information about capability of DG methods in handling with purely multi-dimensional 

problems. It can also provide valuable information about capability of positivity 

preserving DG schemes in dealing with strong and complicated gas dynamics problems. 

In order to analyze performance of modal DG method for solving purely multi-

dimensional problems, the solution of present modal DG method are compared to 

solution of high-order finite difference scheme for two cases (namely: case 4 and case 

6) out of 17 distinguishable cases available in [217]. 
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In a 2-D Riemann problem, computational domain is divided into four quadrant and 

the initial data in each quadrant are set to be constant initially such that one-dimensional 

expansion waves (rarefaction waves), one-dimensional compression waves (shock 

waves) and contact discontinuities (slip line) appears at interfaces between the 

quadrants.  

In order to compare present method with results presented in [217], density lines are 

distributed with 29 levels (minimum level of 0.52 and maximum of 1.92), pressure 

variation is plotted by color contour and velocity is depicted by streamline. Figure 6-2 

shows that DG and high-order finite difference methods resolve all discontinuities; two 

straight 1-D shocks splitting two constant states and the two curved shocks separating 

the bow shaped region of higher density. As it is obvious, the DG polynomial 

approximate solution with grid resolution of 200x200 predicts a thinner shock wave 

and resolves the discontinuities more clearly than high-order finite difference method.  
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Figure 6-2 Comparison between piecewise quadratic modal DG solution(right) and multi-

adaptive finite difference solution [217](left) for solving 2-D Riemann problem (Case 4).  
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Figure 6-3 shows a well agreement between present DG method and high-order 

finite difference method. It is obvious that a strong low-pressure region appears near to 

the origin of jump condition, and waves come out from the initial jump origin and 

propagate into the all four quadrants since their speed is faster than the speed of the 

main contact discontinuity. DG approximate solution obtained for 200x200 cells is 

almost equivalent to the solution of high-order finite difference method using 400x400 

grids. It is obvious that solution estimated by DG method is more accurate than those 

of high order finite difference solution at the same grid size distribution.  
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Figure 6-3 Comparison between piecewise quadratic modal DG solution(right) and multi-

adaptive finite difference solution [217](left) for solving 2-D Riemann problem (Case 6).  

6.3 Unsteady flow problems 

Unsteady shock-dominated flows are strongly influenced from the uncertainties and 

exhibit highly non-linear responses to perturbations. In order to examine stability and 

accuracy of present DG method for solving Euler equation, three classical well-known 
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benchmark problems in unsteady compressible fluid dynamics are studied; forward 

facing step, backward facing step, double Mach reflection. 

6.3.1 Forward facing step flow 

Consider the supersonic flow over a forward facing step in a channel, known as the 

classical Woodward-Colella problem [218]. The objective is to capture the position of 

the shock waves and Kelvin-Helmholtz instability near the top of the domain. The free-

stream Mach number is 3, and domain compromises of an inlet section followed by a 

forward-facing step.   

In this problem, as shown in Figure 6-4, a stable moving shock hits a rectangular 

step at a particular instant of time after the impulsive start of the channel. Then, a stable 

shock-wave pattern consists of standing Mach stem develops at top of the corner. Later, 

Kelvin-Helmholtz instability origins from this Mach-stem and floating in domain.  

Several numerical schemes are failed in simulation of this problem due to existence 

of very sharp singularity (90-degree corner). They cannot capture the Kelvin-Helmholtz 

instability because of over-limiting of the solution at local extrema. At present work, it 

is simulated without use of any special entropy correction scheme for the corner region.  

6.3.2 Backward-facing step flow 

Diffraction of shock and detonation waves is one of the fundamental problems in 

gas dynamics [219]. The diffraction of a shock at a sudden (sharp) expansion of a planar 

channel is a special benchmark problem due to high chance of negativity of density at 

corner region. Note that, the viscous effects are unimportant in this problem, therefore, 

they can be neglected and Euler equation is used for this problem[220].  

The results shown in Figure 6-5 verify that DG solution is in well agreement with 

experiments and numerical solution of the other research. It is shown in Figure 6-6 that 

the secondary shock wave appears near the 90-degree edge as the incident shock wave 

pass the diffraction edge. As there is a high pressure, low-velocity gas below the contact 

discontinuity stream and there is a low pressure, high velocity expanded gas above this 

stream, the secondary shock wave is generated to adjust flow between these two regions. 

Therefore, a lambda shock wave appears near diffraction edge due to flow separation 

forced by the increasing strength of the secondary shock wave.   
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Figure 6-4 Numerical Schlieren sequence of Woodward-Colella forward facing step 

problem. 
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Modal DG Experiment 

Figure 6-5 Computed shock-wave diffraction density contour on a backward-facing step for 

M=1.5 (left) present DG solution, (right) Experimental data of [219] 

6.3.3 Double Mach reflection problem 

Let’s consider a strong oblique shock incident on flat surface with angle of 60o to 

the direction of shock propagation. The moving shock with Mach of 10 is propagating 

in stationary domain where flow is at rest before facing with moving shock. This 

unsteady high-speed problem is so-called double Mach reflection, and it was studied in 

detail by Woodward and Colella [218] and later many other researchers. As the 

accuracy of capturing propagating and reflecting shocks in double Mach region is 

highly sensitive to the boundary condition and numerical scheme, this problem is 

always considered as important benchmark problem for verification of a numerical 

solver.  

Figure 6-7 shows the DG approximate solution for four levels of mesh refinements, 

and Figure 6-8 shows that the zoomed secondary shock waves for this problem. It is 

obvious that all shocks and contact discontinuities are well captured when the global 

domain is decomposed into large number of elements and order of polynomial 

expansion is considerably high.  
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Figure 6-6 Grid study for shock-wave diffraction on a backward-facing step for M=1.5. 
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Figure 6-7 Case study of double shock-reflection problem with M=10. 

6.4 Steady flow problems 

Steady-state internal and external flows can be mostly influenced by the viscous 

boundary layer appearing near the wall. In order to examine the accuracy of present DG 

method for solving shock-dominant flow problems and shear-dominant flow problems, 

I studied two classical well-known benchmark problems using classical Navier-Stokes-

Fourier model; flow around a cylinder, and compressible lid-driven cavity flow[221]. 
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Figure 6-8 Double shock-reflection region for four level of mesh refinement. 

6.4.1 Compressible lid driven cavity 

Two-dimensional compressible lid-driven cavity problem is a laminar, viscous-

dominant, subsonic flow in which fluid is driven by steadily moving wall in x direction 

with constant velocity of 50m/s. In this problem, all walls (expect driven wall) are 

stationary with equal temperatures, while the Knudsen number can vary by changing 

flow conditions. The results of this problem are important as they can be used to 

investigate the effects of the Reynolds number and the Mach number on the flow 

structure and to study the accuracy of wall boundary condition.  

Reynolds number is small and flow is derived due to viscous forces generated by 

driven wall, therefore, this problem can be considered as a benchmark problem to check 

ability of compressible modal DG method in handling very low-speed viscous dominant 

flows. As is shown in Figure 6-10, the present DG solution is comparable with result 

obtained from unified-gas kinetic scheme. It is obvious that the flow structure consists 
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of two separate co-rotating vortices contiguous to the moving walls. It is shown in 

Figure 6-9 that DG piecewise constant solution cannot resolve the vortexes generated 

at corners of the domain, while all high-order DG approximate solutions can predict 

these physical vortexes accurately and identically.  

  
Piecewise constant solution Piecewise linear solution 

  
Piecewise quadratic solution Piecewise cubic solution 

Figure 6-9  Mach contour over a lid-driven cavity flow for cases for four level of refinement 

of degree of the polynomial expansion. 
 

  
Modal DG UGKS solution 

Figure 6-10  Mach contour over a lid-driven cavity flow for Re=1000, driven wall velocity 

u=0.165 (left) present DG solution, (right) UGKS solution [112]. 
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6.4.2 Laminar flow over cylinder 

6.4.2.1 Flow at various Reynolds numbers 

Flow over a cylinder at various Reynolds number is considered to verify the range 

of validity of present Modal DG solver. For all cases, a cylinder with radius of one is 

used and the outer boundary is set approximately 15 times of the diameter away from 

the cylinder surface in order to avoid interaction between the boundary conditions.  

 
Piecewise constant solution 

  
Piecewise linear solution Piecewise quadratic solution 

Figure 6-11  Steady creeping flow over a cylinder in Re=1  

In creeping flow condition, streamlines are analogous to those of the solution of the 

potential equations and there is no separation or recirculation behind the cylinder. As is 

shown in Figure 6-11 and Figure 6-13, DG method can easily capture the flow structure 

of the low Reynolds number conditions with any order of polynomial considering 

piecewise constant approximation. It is shown that piecewise linear and piecewise 

quadratic solutions are providing qualitatively similar solutions, and there is no wake 

at behind of the cylinder as it is expected. Figure 6-11 also shows that there is no need 
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of using very high-order numerical approximation for studying creeping steady state 

flow problems unless it is desired to use less grids. 

In Reynolds number 40, flow is still laminar while two large stable wakes appears 

behind the moving cylinder. Figure 6-12 shows that first-order compressible DG solver 

cannot predict the essence of the flow properly, whereas the second-order and third-

order numerical solutions predicts flow behavior correctly, as shown in Figure 6-14. It 

is obvious that the size and location of the wakes are predicted accurately compared 

with experimental results.  

 
Piecewise constant solution 

  

Piecewise linear solution Piecewise quadratic solution 

Figure 6-12  Steady laminar flow with two steady separated wakes behind a cylinder at, 

Re=40  
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Piecewise constant solution 

 
Piecewise linear solution 

 
Piecewise quadratic solution 

Figure 6-13  Unsteady laminar flow with von-Karman vortex street over a cylinder at, 

Re=150. 

When Reynolds number increases sufficiently, the wakes behind the cylinder 

becomes unstable and start moving, although flow is still laminar. Figure 6-13 shows 

that simulation of moderate Reynolds number flows requires application of high-order 

DG methods, particularly when there are some wakes or circulations inside the 

computational domain, and compressible form of the conservation laws are served. The 

von Karman vortex street does not appear in piecewise constant solution. This states 
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that piecewise constant approximation of solution using DG is not sufficient for 

studying laminar flows with low Reynolds number values. Although the quality of 

piecewise constant solution may improve if million grids are used in a simulation, high-

order DG methods can easily capture the von-Karman vortex streets even if the 

computational grids are coarse.  

  
Modal DG Experiment 

Figure 6-14  Stream lines over a cylinder for M=0.1, Re=40 (left) present DG 

solution, (right) Experiment adapted from [222]. 

 
 

6.4.2.2 Verification and validation DG method for high-speed flows 

As the main focus of present work is to study the physics of non-equilibrium flows, 

the level of accuracy of present solver for capturing physics in rarefied conditions is 

examined by comparing present Modal DG solution with second-order validated finite 

volume solution, and direct simulation Monte-Carlo method. As shown in Figure 6-15 

and Figure 6-16, the results of modal DG are in well agreement with solution of the 

second-order finite volume method for Kn=0.05. It is shown that the thickness of shock 

wave and its location is predicted similarly for both methods.  

 

  
Modal DG Second-order finite volume method 

Figure 6-15  Density contour over a cylinder for M=5.48, Kn=0.05 (left) present 

DG solution, (right) second-order vertex-based finite volume solution. 
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Second-order finite volume method 

 
 

Modal DG 
Figure 6-16  Comparison of flow field contours over a half of cylinder for M=5.48, 

Kn=0.05 (left) density contour, (upper side) pressure contour. 

6.4.2.3 DG-P adaptability  

The flow around a cylinder with free-stream Mach number of 5.48 is considered as 

the next benchmark problem in order to know which order of polynomial expansion is 

sufficient for simulation of steady-state high-speed flow in a moderate grid size. 

Figure 6-17 shows the solution of this problem using Modal DG method for three level 

of polynomial refinements. It is shown that in piecewise constant solution shock-wave 

smears considerably even if the considerable number of element is used. 

   
Piecewise constant 

solution 

Piecewise linear  

solution 

Piecewise quadratic 

solution 

Figure 6-17  Computed bow shock-wave Mach contour over a cylinder for cases 

with different order of polynomial expansion. 
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The results of present modal DG solver is also compared with direct solution of 

Boltzmann equation at low speed (M=0.1, Kn=0.1) and high-speed flow (M=5.48, 

Kn=0.05) stream conditions, in order to verify application of present DG solver in 

conjugation with second-order Boltzmann-based constitutive relations for studying 

rarefied gas flows. It is shown that application of present modal DG method for 

studying rarefied gas flows is valid, and results are, qualitatively and quantitatively, 

comparable with direct solution of Boltzmann equation.  

 

  
Modal DG DSMC 

Figure 6-18  Mach contour over a cylinder for M=0.1, Kn=0.1 (left) present DG 

solution, (right) DSMC solution [112]. 

 

 

  
Modal DG DSMC 

Figure 6-19  Mach contour over a cylinder for M=5.48, Kn=0.5 (left) present DG 

solution, (right) DSMC solution [112]. 

 

To summarize this chapter, it has to mention that the DG methods developed for 1-

D, 2-D, and 3-D is employed for solving various problems and the results were verified 

and validated with other numerical solutions, and experiments. These analysis give us 

enough trust and confidence to apply present DG method for studying the physics of 

rarefied flows over an arbitrary geometry in next chapter. 
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CHAPTER 7.  Solution of the Boltzmann-based 

models for simple gas flows 

Albert Einstein (1879-1955): 

“If we knew what it was we were doing, it would not be called research, would it?” 

 

 

In case that flow deviates from local thermal equilibrium state, application of the 

moment method into the classical Boltzmann equations leads to Boltzmann-based 

models where the non-conservative variables are being linearly or nonlinearly 

proportional to the gradient of the velocity (strain rate) and temperature (thermal strain 

rate) state variables. The objective of this chapter is to measure the level of accuracy of 

the Boltzmann-based models. Therefore, solutions of the Boltzmann-based models are 

compared with each other, the solution of the DSMC method, and experimental data. 

 

One-dimensional shock structure is simulated using Boltzmann-based model and the 

results are compared with experiments and DSMC. Flow over a cylinder is also studied 

in detail. Then, a comparative analysis between different slip boundary conditions is 

provided using Navier-Stokes-Fourier (i.e., 1st order Boltzmann-based) equation. 

Finally, a flow over sphere is simulated using modal DG method. 

7.1 Compression dominant flow problems: 1-D shock structure 

The density solution of viscous shock structure for three different Mach stream 

conditions is shown in Figure 7-1. The zero-order solutions are way off from the 

experiment, whilst first-order and second-order Boltzmann-based models can predict 

the shock density profile moderately for all Mach flow conditions. It is also shown that 

the difference between first-order solution and experiments become noticeable for high 

Mach number flows, while second-order Boltzmann-based solution is very close to the 

experiments.  

 

 



197 

 

197 

 

 
M=1.5 

 
M=3.8 

 
M=9.0 

Figure 7-1  Density profile of shock structure problem for Argon gas at three different flow 

stream Mach numbers 

 

The shock density thickness is known as one of the important parameters on 

accuracy of the models, therefore, the solution of Boltzmann-based models are 

compared with experimental data in Figure 7-2. It is obvious that second-order 
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Boltzmann-based method can precisely capture the shock-density thickness for all 

Mach number regimes.  

 

Figure 7-2  Computed shock density thickness of Argon gas 

 

In case of the asymmetry of shock solution, as shown in Figure 7-3, the first-order 

and second-order Botlzmann-based models remain qualitatively the same, increases fo 

the asymmetry property Q  with Mach number. In contrast, the quasi-linear generalized 

hydrodynamics model [223] shows a different behavior, reaching a maximum in Q and 

then decreasing with Mach number. 

 

Figure 7-3  Computed shock asymmetry of Argon gas using Boltzmann-based models. 
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 Another important parameter for analyzing shock structure problem is the distance 

between density and temperature profiles. Figure 7-4 demonstrates the temperature-

density distance for Argon gas. It is shown that the second-order Boltzmann-based 

model provides very similar results in comparison with direct physical solution (DSMC) 

of Boltzmann equation. 

 

Figure 7-4  Computed temperature-density distance of Argon gas using DSMC and 

Boltzmann-based models. 

7.2 Multi-dimensional flow problems 

In previous chapter, the present DG method was extensively verified and validated 

for studying flow over cylinder. It was shown that piecewise linear solution of DG 

method can provide very accurate results for steady-state low-speed and high-speed 

flows. Therefore, in the rest of the work, the piecewise linear solution of DG method 

will be used for studying rarefied gas flows. 

7.2.1 Effects of Langmuir slip boundary condition 

One of the challenging issues in simulation of rarefied flows using continuum 

method is to model slip effect accurately. Unfortunately, most of the explicit numerical 

solvers often suffer a numerical instability in case of Maxwell slip boundary condition, 

and therefore, development of an alternative slip model would be necessary.  
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In this work, Langmuir slip model is used for simulation of rarefied gas flows; 

therefore, special attention will be given to investigate the level of accuracy of this slip 

model.  

The slip velocity and temperature jump values predicted by this model are highly 

dependent on the quantity of   and the potential De parameters. De can take various 

values based on the type of the molecular bonding between the gas molecules and the 

surface atoms. It motivates us to measure the influence of De parameter on slip 

magnitude. Figure 7-5 demonstrates the importance of De value on computation of slip 

properties, and it shows that smaller De value will result in bigger magnitude of slip. It 

also shows that the computed slip velocity using Langmuir slip boundary condition 

with smallest De value is still significantly far from DSMC solution.  

 

Figure 7-5  Computed slip velocity profile over cylinder with flow stream of Mach 5.48, 

Kn=0.05 using first-order Boltzmann-based model in cooperation with Langmuir slip 

boundary condition for various values of De parameter. 

 

 

Figure 7-6  Computed density contour over cylinder with flow stream of Mach 5.48, Kn=0.05 

using first-order and second-order Boltzmann-based models in cooperation with Langmuir 

slip boundary condition for three different values of De. 

 

Figure 7-6 presents the contour of density over cylinder with steam Mach number 

of 5.48. It is shown that application of slip velocity together with the first-order and 

second-order Boltzmann-based models results in different magnitude of slip value for 
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these models, although the Knudsen number is not significantly high for this case. This 

discrepancy is due to fact that application of second-order model results in reduction of 

the viscous stress tensor and heat flux vector compared to first-order model, therefore, 

flow experiences less amount of resistance for the case of second-order Boltzmann-

based model even for same value of De. 

7.2.2 Effects of various slip boundary condition 

In order to study the slip effects, it is necessary to make sure that the no-slip 

boundary condition is prescribed accurately. Flow over a flat plate at Mach of 4.38 and 

Knudsen of 0.0013 is considered as the next benchmark problem. Figure 7-7 shows that 

enforcing zero velocity strictly on the wall using modal DG method requires application 

of the high-order DG approximation. It also shows that the numerical artifacts degrade 

the high-order subcell solutions when inappropriate limiter function is served. 

Therefore, application of proper enough number of elements in the boundary layer, 

utilizing a proper limiter function (multi-dimensional limiters) is essential to obtain 

non-oscillatory world class solutions.  

 

  
Cell average solution Subcell solution 

Figure 7-7  Computed no-slip velocity for viscous wall using modal DG method and various 

degree of p polynomial expansion. 

 

In order to compare the effect of various slip conditions, two different set of wall 

boundary conditions are defined according to Section 5.5.5, and the level of accuracy 

of those are examined for simulation of rarefied gas flows. In the first set of wall 

boundary conditions, it is assumed that the normal gradient of pressure on the wall is 

negligible, and the normal velocity on the wall is zero. This is called the pressure-based 

wall boundary, whilst the density-based wall boundary, second boundary configuration, 



202 

 

202 

 

is developed based on (Eq. 5-127). In this case, first density is obtained and then the 

wall pressure is calculated based on updated density and temperature values. 

  
No-slip verification Maxwell slip model 

  
Karniadakis second-order slip 

model 

Langmuir slip model 

Figure 7-8  A comparison between various slip models and viscous wall boundary conditions 

in computation of the slip velocity profile on the flat plate. 

 

A comparison between DSMC slip results and modal DG solution shows that 

application of density-based viscous wall boundary condition provides better result than 

pressure-based wall boundary. Figure 7-8 also shows that the increase of the degree of 

polynomial expansion results in better resolution of the slip velocity on the wall. A 

comparison between the result generated by present modal DG using various slip 

condition and DSMC solution is conducted, as shown in Figure 7-12. It shows that the 

Karniadakis slip model [224] performs better than the other available models for this 

particular problem since it is a second-order slip boundary condition [203]. Next to the 

Karniadakis model, the generalized Maxwell, and Langmuir slip models stands 
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respectively. Nonetheless, all models provides a fairly accurate slip velocity prediction 

compared to DSMC solution.  

 
Figure 7-9  Computed slip velocity profile on the flat plate using various slip models at 

M=4.38, Kn=0.0013. 

 

The temperature predicted on the wall using Langmuir, Karniadakis, and Maxwell-

Smoluchowski model are compared with DSMC, as shown in Figure 7-10. It is obvious 

that second-order Karniadakis model provides better result than the others; however, 

the Langmuir and Maxwell models provides almost similar solutions. It is reported in 

[203, 225] that replacing the Smoluchowski model with Paterson temperature jump 

model in Maxwell slip configuration may lead to better agreement with DSMC.  

 

 
Figure 7-10  Computed temperature profile on the flat plate using various slip models at 

M=4.38, Kn=0.0013. 
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7.2.3 Flow over cylinder 

7.2.3.1 Equilibrium state 

Figure 7-11 shows the Mach contour over cylinder at M=5.48 for three Boltzmann-

based solutions and direct physical solution of the Boltzmann equations. The solutions 

of all the Boltzmann-based models are very similar to the exact solution of the problem, 

due to the fact that the level on non-equilibrium for this problem is negligible. Thus the 

simplest Boltzmann-based model is sufficient for simulation of the bulk region, whilst 

application of higher-order (at least first-order) Boltzmann-based models for prediction 

of the boundary layer adjacent to wall is necessary. Note that, simulation of this 

problem using Boltzmann-based models requires only few hours, whereas DSMC 

method has significantly slow converge rate since it needs at least 50,000,000 

representative molecules, and significantly small time step value to provide an accurate 

solution.  

 

    
Zero-order 

Boltzmann model 

First-order 

Boltzmann model 

Second-order 

Boltzmann model 

Direct simulation  

of Boltzmann Eq. 

Figure 7-11  Computed Mach contour over cylinder with flow stream of Mach 5.48, 

Kn=0.0002 

7.2.3.2 Near equilibrium state 

In order to analyze performance of Boltzmann-based models near equilibrium state, 

flow over cylinder at Mach=5.48 and Knudsen number of 0.02 is simulated and results 

are shown in Figure 7-12. It is obvious that the shock thickness increases in comparison 

with the previous simulated case due to bigger viscous dissipation generated inside the 
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shock region. It is shown that the shock thickness predicted by second-order model is 

slightly thicker than this of the first-order model, other than that both models are 

performing similarly and they can provide almost similar solution compared with 

DSMC solution. 

    
Zero-order 

Boltzmann model 

First order 

Boltzmann model 

Second-order 

Boltzmann model 

Direct simulation  

of Boltzmann Eq. 

Figure 7-12  Computed Mach contour over cylinder with flow stream of Mach 5.48, Kn=0.02 

7.2.3.3 Non-equilibrium state 

In order to check the performance of Boltzmann-based models at a state considerably 

deviated from equilibrium state, flow over cylinder at M=5.48, Kn=0.2 is simulated. It 

is obvious that the increase of Knudsen parameter, will magnify the thickness of shock 

and boundary layer; however, it does not change the general shape of the solution 

formed by conservation laws. In Figure 7-13, the solution of DSMC is compared with 

zero-, first-, and second-order Boltzmann-based solution. It is shown that the second-

order Boltzmann-based solution is the closest solution to the direct physical solution of 

Boltzmann. However, the shock thickness predicted with the Boltzmann-based models 

is not as thick as the predicted one by DSMC method.  

MACH

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

MACH

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

Ma

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5



206 

 

206 

 

    
Zero-order 

Boltzmann model 

First-order 

Boltzmann model 

Second-order 

Boltzmann model 

Direct simulation  

of Boltzmann Eq. 

Figure 7-13  Computed Mach contour over cylinder with flow stream of Mach 5.48, Kn=0.2 

 

7.2.4 Flow over a sphere 

7.2.4.1 Analytical solution of drag over sphere 

The low Reynolds number isothermal gas flow past a sphere is the last problem 

studied. The understanding of this flow may become important when one tries to 

estimate the drag experienced by a microsphere subjected to unconfined low Reynolds 

number gas flow. Unlike the internal flows, pressure does not change significantly in 

external creeping flows, and density can be assumed to be constant. Thus the flow can 

be also described by using either the incompressible or compressible Navier–Stokes-

Fourier equations with proper slip model. It is possible to extend the Stokes’ analytical 

solution for creeping flow past a sphere [226-229] by considering the incompressible 

form of the conservation laws, and deriving the analytical solution of the problem based 

on desired slip model. 

 

Let’s consider the incompressible form of the Navier-Stokes-Fourier equations; 

2
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where   is constant viscosity coefficient, u is the velocity vector, and p is pressure. 

Introducing the dimensionless variables,  
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and after removing asterisks, the dimensionless form of the equations can be written 

as 
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For small Reynolds number  Re 1 , the inertia term on the left-hand side of the 

momentum equation can be neglected, therefore reduced equations, so-called Stoke’s 

equation, are given by 
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Now let us consider a stationary solid microsphere of radius R in an unbounded 

incompressible monatomic gas flow. The infinitely far from the sphere is of uniform 

flow with speed of U
. Owing to the symmetry in the flow direction, (Eq. 7-4) can be 

written in the spherical coordinates  ,r   as, 
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where, 
2 2
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 In these expression, ,r  denotes the radius 

and cone angle in spherical coordinates. To account the analysis the slip effects near 

the sphere surface, the governing equation (Eq. 7-5) are solved in conjunction with slip 

velocity boundary condition: 

, at
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No flow should penetrate inside the wall and also flow at the far field boundary should 

be taken as the reference value, therefore, 
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The only remaining task is to determine slip velocity on the wall. For Maxwell slip 

model, the slip velocity boundary condition can be written [206] as  

2
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where σ is the tangential momentum accommodation coefficient (TMAC). Therefore, 

the solution of governing (Eq. 7-5) can be obtained using the method of separation of 

variables and employing (Eq. 7-7) and (Eq. 7-8) such that 
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where  
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As total drag on the microsphere is a combination of three components, namely, skin 

friction drag, normal stress drag and pressure drag 

     totalDrag Drag Drag Drag
skin friction normal stress presure 
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The total drag can be expressed in terms of pressure and stress forces as 
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where the shear stress and normal stress are given as 
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Note that there is a contrinution in drag due to viscous normal stress. From the relations 

(Eq. 7-9) and (Eq. 7-11), a coefficient of the total drag obtained by Maxwell slip model 

can be derived as 

 
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 7-14 

The next available slip model is Langmuir slip model which describe the slip 

velocity on the wall [206] as  

 
,

1slip
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
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where 
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and

1 e  . Applying the method of separation of variables similar to Maxwell slip model, 

and using (Eq. 7-15) and (Eq. 7-16) the solution of governing (Eq. 7-5) differ only in 

the expression of the constants 
1k  and 

2k which are given as  
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with  1 31
.

2
E e e   Accordingly, the total drag coefficients using Langmuir slip 

model can be obtained as 
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In case of choosing free stream velocity as reference velocity of the Langmuir slip 

model or taking e  , then with 
1

,
4 Kn




 the drag coefficient reduces as  
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In case of choosing free stream velocity as reference velocity of the Langmuir slip 

model or taking e  , then with 
1

,
4 Kn




 the drag coefficient reduces as  
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where  
24

2 /
D no slip

C
U R 



 . 

7.2.4.2 Numerical simulation of flow over sphere 

The results obtained for second-order Boltzmann-based model using the 3-D modal 

DG method are compared with direct physical solution of Boltzmann equation at Mach 

of 5.48 and Knudsen of 0.05. In this low Knudsen number flow condition, there is a 

recirculating region behind the sphere which is captured properly by present DG 

method, as shown in Figure 7-15. Next step, is to compare the results of Boltzmann-

based models with DSMC solution at the same flow condition. It is shown in 

Figure 7-14 that application of Langmuir slip boundary condition with proper 
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adjustment of De value in cooperation with second-order  Boltzmann-based constitutive 

model may lead to acceptable resolution of the flow field compared with DSMC.  

  
Density contour Mach contour 

Second-order Boltzmann-based model 

  
Density contour Mach contour 

Direct simulation of Boltzmann 
Figure 7-14  Computed density and Mach contours over a sphere with flow stream 

of Mach 5.48, Kn=0.05 using second-order Boltzmann-based model in cooperation 

with Langmuir slip boundary condition and direct simulation of Monte Carlo 

(DSMC). 

 

 

Figure 7-15 Flow behind a sphere at M=5.48, Kn=0.05 
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Density contour Mach contour 

First-order Boltzmann-based model 

  
Density contour Mach contour 

Second-order Boltzmann-based model 

Figure 7-16  Computed density and Mach contours over a sphere with flow stream 

of Mach 0.1, Kn=0.004 using first-, and second-order Boltzmann-based model in 

cooperation with Langmuir slip boundary condition. 

 

Figure 7-16 shows the density and Mach contour distribution for solution of the first-

order and second-order Boltzmann-based constitutive relations at M=5.48. There is no 

significant difference between solutions of these two models since the degree of non-

equilibrium is negligible. It is shown that the degree of non-equilibrium for three-

dimensional problems, is much smaller than two-dimensional flows due to extra spatial 

coordinate and extra degree of freedom given to flow for movement in the flow field. 

Nevertheless, it is obvious in Figure 7-18 that once flow becomes so much rarefied the 

difference between first-order and second-order Boltzmann-based constitutive relations 

becomes sensible. In order to investigate the performance of second-order Boltzmann-

based models in higher Knudsen number, it is necessary to improve the slip boundary 

condition, employ very small time steps, and reduce the computational cost using 

paralleled DG code which is the future work of the present study. 
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Density contour Mach contour 

First-order Boltzmann-based model 

  
Density contour Mach contour 

Second-order Boltzmann-based model 

Figure 7-17  Computed density and Mach contours over a sphere with flow stream 

of Mach 0.1, Kn=0.04 using first-, and second-order Boltzmann-based model in 

cooperation with Langmuir slip boundary condition. 
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Density contour Mach contour 

Second-order Boltzmann-based model 

Figure 7-18  Computed density and Mach contours over a sphere with flow stream 

of Mach 0.1, Kn=0.4 using first-, and second-order Boltzmann-based model in 

cooperation with Langmuir slip boundary condition. 
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CHAPTER 8. Parallelization 

Jalaluddin Rumi (1207-1273): 
” Stop acting so small. You are the universe in ecstatic motion.” 

 

 

One of the challenging issues in the discontinuous Galerkin (DG) methods is the 

higher computational cost compared with the traditional finite volume method (FVM) 

for a given set of grids. In the present chapter, the focus is on the computational cost of 

the modal DG method for solving the conservation laws in conjunction with the first- 

and second-order constitutive laws. The computational cost of the Navier-Stokes-

Fourier (NSF) and second-order Boltzmann-based model is investigated in the serial 

and parallel frameworks. 

 

In DG methods, an arbitrarily high-order approximate solution can be achieved by 

increasing the degree of polynomial expansion in least square finite element space. Due 

to this locality feature of DG method and compactness of the stencils, parallelization of 

DG method is very promising. As parallelization is one of DG most enticing features, 

a considerable amount of research has been directed to study parallelization techniques, 

implementations of parallel techniques, and measure the performance of paralleled DG 

method for hyperbolic conservation law [152, 165, 185, 230, 231]. Biswas et al. [152] 

applied a third-order quadrature-based DG method to solve a scalar wave equation 

which was one of the early works on DG parallelization. Bey et al. [230] implemented 

an effective parallel algorithm based on hp-adaptive discontinuous Galerkin 

approximation of linear, scalar, hyperbolic conservation laws on structured grids. They 

obtained nearly optimal speedup in case that the ratio of interior elements to subdomain 

interface elements is sufficiently large. Baggag et al. [231] applied a parallel 

implementation of the discontinuous Galerkin method for time-dependent simulations 

based on unstructured grids. Hong Luo [185] implemented a parallel, reconstruction-

based discontinuous Galerkin method for the solution of the compressible Navier-

Stokes equations on arbitrary grids using domain partitioning and single program 

multiple data (SPMD) parallel programming model. Recently, Landmann et al. [165] 

implemented an efficient parallel algorithm on high-order discontinuous Galerkin code 
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for laminar and turbulent flows. Nevertheless, a very few parallel DG researches is 

available in the study of rarefied gas flows [232]. In present work, a single program 

multiple data (SPMD) parallel model using a message-passing-interface (MPI) library 

was employed to parallelize the present mixed modal DG method for solving rarefied 

gas flow problems. 

 

There are several sources for higher computational cost of a DG methods in 

comparison with the traditional FVM methods for a given set of grids. An obvious 

source of additional cost is the increase in degree of freedom associated with extra 

numerical calculation at every Gaussian quadrature point located inside of the elements. 

Application of mixed-DG formulation (for LDG, BR1 schemes) is another source, 

because the it requires extra sets of equations for every degree of freedom of the primary 

and auxiliary variables, resulting in a system of equations with more unknowns for an 

equal number of elements, compared to continuous Galerkin method or high-order 

finite volume method. Further, additional cost is incurred when solving the high-order 

constitutive models are solved with conservation laws, where the computational cost is 

a nonlinear function of the physics of the problem.  

 

In the following, the parallelization of the DG method for the first-order model (NSF) 

is explained in detail. The speed-up and efficiency of the DG method for piecewise 

constant and higher-order polynomial approximate solutions are then reported. Finally, 

the computational cost of the second-order Boltzmann-based model is compared with 

that of the NSF model for both serial and parallel solvers. 

8.1 Background 

DG method is compact and highly parallelizable due to the local nature of the 

discretization. The solution is approximated independently in each element, where 

inter-element data sharing is only needed among the face neighbor elements (elements 

sharing a common face) to calculate numerical fluxes. Therefore, inter-process 

communication is only required between the corresponding neighboring processes for 

the computations at partition boundary faces (i.e., faces having their left and right 

elements with different processes). In this work, a single program multiple data (SPMD) 

parallel model using a message-passing-interface (MPI) library was employed to 
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parallelize the present mixed modal DG method. The MPI library guarantees the 

maximal flexibility of the parallel programming, portability, and scalability of the 

distributed memory parallel architectures [233].  A shell program was developed to 

unify all the parallel processing steps, as illustrated in Figure 8-1.  

 

Figure 8-1 Illustration of unified shell program for parallel processes. 

 

The software setup including MPICH (i.e., a high-performance and widely portable 

implementation of the MPI standard) and 64-bit compilers with double precision 

accuracy was used for all the floating point operations. Moreover, a Linux cluster 

sharable among multiple users was established using Intel Xenon processors with ten 

cores at each node. This cluster is equipped with eighty cores interconnected by dual 

port Gigabit Ethernet. The steps in the parallelization of the DG solver for rarefied gas 

flows including domain decomposition, communication process, merging of sub-

domains and parallel performance measurements are described in the following sub-

sections. 

8.2 Domain decomposition  

Mesh partitioning is the first step in the parallel programming, where the 

computational domain is decomposed into several sub-domains and then individual 

sub-domains are assigned to each processor. Decomposition of the domain into several 

sub-domains was done using open source software, ParMETIS [234]. ParMETIS is an 

MPI-based parallel library that implements a variety of algorithms for computing fill-

reducing orderings of sparse matrices, and partitioning of the unstructured graphs. It 

decomposes the given mesh such that each processor has approximately the same 

number of elements, which balances the load for the processors and the number of links 

cut by the decomposition is minimized. This feature is crucial to minimizing 

communication among the processors [234]. After the decomposition of the domain, 

the partitioned results, including the node and element connectivity information, are 
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assigned to the processors. The sub-domains generated by ParMETIS for the case of 

flows around a cylinder and a sphere are shown in Figure 8-2. 

 

  

Figure 8-2 Triangular mesh partition using ParMETIS.; different colors represent sub-

domains owned by different processors. 

8.3 Communication process  

The present parallel solver is based on a single program, multiple data (SPMD), 

which executes the same program in all processors with different data. The SPMD 

model can manage the processors to conditionally execute only certain parts of the 

program. Therefore, some of the processors may not necessarily need to execute the 

entire program. The parallelization was achieved without compromising the serial 

algorithm for the purpose of higher parallel performance. Moreover, the present parallel 

algorithm allows the MPI communications to completely overlap with the computations. 

This type of algorithm is usually referred to as hiding communication behind 

computation, which is easier to achieve in explicit time marching schemes [231] as 

summarized in Figure 8-3. 

The point-to-point communication methodology of MPI was used such that the 

message passing operation may only occur between two different processors. While 

one processor is performing a send operation, the other processor performs a matching 

receive operation. There are various types of send and receive routines that are available 

in MPI point-to-point communication. Either blocking or non-blocking routines are 

often used in the SPMD model due to their flexibility and for the sake of 

implementation. Both communication methods use a buffer to avoid data loss and 
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confusion during the transmission of data from one processor to another. Hence, data 

will be copied to the buffer before it is received by the partner processor. A buffer is a 

region of memory storage designed to temporarily store data during the communication 

process. 

 

Figure 8-3 Flow chart of DG parallel algorithm. 

In the blocking send and receive routines, the send routine will only return (block) 

after the completion of communication. Hence, computations cannot be done by the 

respective processors involved in communication until the process is completed. On the 

contrary, non-blocking communication functions return immediately (i.e., do not block) 

even if the communication is not finished. While using non-blocking communications, 

care should be taken to use the proper wait comment, to see whether the communication 

has finished or not. Non-blocking communications are primarily used to overlap 

computation with communication and exploit possible performance gains. 

The communication module of the DG solver starts working by sending data 

(adjacent to partition boundaries) to neighbor partitions and this is followed by 
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receiving data from a corresponding neighbor. These communications should be 

repeated for each of the Gaussian quadrature points on the element boundaries. 

However, the number of Gaussian quadrature points will increase with the increasing 

order of accuracy of the DG approximation. As a result, the amount of data 

communication will also increase as the DG order of accuracy increases, as shown in 

Figure 8-4. 

 

Figure 8-4  Data communication through Gaussian quadrature points for (a) DG piecewise 

constant scheme, and (b) DG higher-order approximation (data package is the solution 

information.). 

Non-blocking sending and receiving were used in the parallelization in order to save 

processor waiting time and avoid deadlock. Therefore, the application of MPI_CHECK 

and MPI_WAIT was essential to confirm the completion of communication without 

data loss. These operations were started by calling standard MPI routines, MPI_ISEND 

and MPI_IRECV. Furthermore, the MPI_WAITALL routine was used to ensure the 

completion of the communication process. Once communication was completed, the 

data received from the neighboring processors were used for further computations. 

8.4 Merging of sub-domains 

During the parallel computations, all the partitioned sub-domains execute the same 

DG solver with respective data inputs and solve the flow fields in their local domain. 

After the solution converges, each of the processors plots its solution for post-

processing purposes. However, it is noticeable in Figure 8-5 that the results are visually 

not smooth at the boundaries of the sub-domains due to biased interpolation of the 

solution and as a result of not considering all vertex neighborhoods for interpolations. 

The merging subroutine is designed for better analysis and post-processing of the DG 
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paralleled solution. In this subroutine, all subdomain results were exported into a 

unified single domain for better visualization and there is no other purpose behind this 

subroutine. The DG approximate solutions are sought in the finite element space and 

then solution at any point inside the computation cell can be calculated by summing up 

the product of moment of the solution and basis function. Although each element 

contains their individual solutions, in order to post processing purpose the solution have 

to be interpolated to the node in commercial software like Tecplot.  

  

Figure 8-5  Pressure contour of unmerged sub-domains. 

  

Figure 8-6  Merging of the sub-domains for post-processing of the solutions; Pressure contour of 

unified merged domain. 

So the biased interpolation, without considering all the neighbors of the node, results 

in poor numerical visualization. In order to avoid this discrepancy merging of 

subdomains is necessary. In order to avoid this discrepancy, the merging of sub-

domains was performed for post processing after terminating parallel processing, as 

demonstrated in Figure 8-6 Moreover, as the space polynomial function is defined in 

least square space and the solution in each DG element is calculated locally, the results 

are not depending on number of processors.   
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8.5 Parallel performance measurement 

The measurement of parallel computation is essential for assessing the efficiency 

and applicability of the parallel solver. Generally, parallel performance is measured by 

relative speed-up, relative efficiency or scalability [235]. The definition of speed-up (Sp) 

was established by Amdahl's law [236]. According to this law, it is a metric for the 

relative improvement in performance when executing a task. However, speed-up can 

be used more generally to show the effect of any performance enhancement. The 

relative speed-up is given by 

,s
p

p

t
S

t
  8-1 

where Sp is speed-up, ts and tp denote the elapsed time taken by a single processor and 

p processors, respectively. Relative efficiency (E) is a metric of the utilization of the 

resources of the improved parallelized system read as  

.
pS

E
p

  8-2 

A performance analysis indicates the level of speed-up and efficiency of the parallel 

solver. Speed-up of the code varies with the increase in the number of processors for a 

fixed problem size. Linear speed-up usually remains less than p, and efficiency lies 

between 0 and 1. In ideal cases, elapsed time taken by p processors is equal to tp = t1/p, 

relative speed-up is equal to Sp = p, and relative efficiency is equal to  

E =1.  

8.6 Computational cost of Boltzmann-based models 

Figure 8-7 shows the global computational cost of Boltzmann-based constitutive 

models measured empirically using serial modal DG solvers for various cases with 

different numbers of elements. It can be seen that the computational cost of 2nd order 

model does not change linearly with respect to the number of elements either for 

piecewise constant or piecewise linear polynomial approximations. In fact, the 

numerical experiment shows that the computational cost of the 2nd order Boltzmann-

based model increases exponentially with the increasing number of elements, and it is 

higher than that of 1st order model for all cases. Moreover, the computational cost of 

the piecewise linear DG approximation is considerably higher than that of the piecewise 

constant approximation as expected. This is because, for higher-order DG 
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approximation, extra efforts are needed to obtain solution at added Gaussian quadrature 

points on the element interfaces, and inside the volume of the elements.  

  

Figure 8-7 Computational cost of solving Boltzmann-based constitutive models. 

8.7 Parallel performance of Boltzmann-based models  

Figure 8-8 illustrates the speed-up of the piecewise constant and higher-order DG 

approximations for elements ranging from 4,000 to 200,000, and with a range of 

processors from 1 to 64. The plots indicate that the speed-up increases almost linearly 

as the number of processors increases, and the speed-up is enhanced in the case of 

higher-order approximations. Figure 8-9 shows the relative efficiency of the parallel 

code for piecewise constant and higher-order DG approximations, respectively. The 

communication overload increases as the number of processors increases, and, as a 

result, the required run-time for communication between processors becomes 

comparable to the computational time of the simulations, for cases with a smaller 

number of elements.  Hence, the speed-up and parallel efficiency are higher for cases 

with larger numbers of elements (200,000) and processors (64). Moreover, the speed-

up of the higher-order scheme is substantially higher than that of the piecewise constant 

scheme due to the reduction in communication overload between processors in 

comparison with the numerical computation overload. Overall, the present results 

demonstrate that the higher-order DG schemes are highly parallelizable and a better 

choice for parallelization. 
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Figure 8-8  Parallel speed-up pS  for 1st order Boltzmann-based model: (left) DG piecewise 

constant scheme, and (right) DG higher-order scheme. 

 

  

Figure 8-9  Parallel relative efficiency, E, for 1st order Boltzmann-based model: (left) DG 

piecewise constant scheme, and (right) DG higher-order scheme. 

 

Figure 8-10 depicts the rate of cost reduction in the parallel Boltzmann-based models. 

In the ideal case, according to Amdahl’s law, it is expected a linear reduction of 

computational cost for paralleled DG solver, which is barely never happens. For 1st 

order linear constitutive model, computational cost reduces linearly but not optimally 

which is compatible with the Amdahl’s law [236]. For second-order model, however, 

the computational cost reduces with very fast rate, almost exponentially, as the number 

of processors increases. This super-parallel performance is due to the nonlinear 

behavior of the model, which demands less computational effort for smaller numbers 

of elements. Therefore, decomposing the domain into several sub-domains will boost 

the performance of 2nd order Boltzmann-based model.  
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Figure 8-10 Comparison analysis on parallel performance of modal DG solver for 

Boltzmann-based models: (left) rate of cost reduction (right) normalized computational cost. 

 

Figure 8-10 also shows the normalized computational cost of the parallel 

Boltzmann-based models for different numbers of processors. It is reported that the cost 

of the 2nd order Boltzmann-based model reduces with a much higher rate than that of 

the 1st order model, for both the piecewise constant and higher-order approximations. 

In summary, because of the super-parallel performance associated with the nonlinear 

behavior of the cost, the second-order Boltzmann model has higher potential for 

parallelization than the 1st order Boltzmann-based model. 
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CHAPTER 9. Conclusion and Recommendations 

Arnold Sommerfeld (1868-1951): 
“Thermodynamics is a funny subject. The first time you go through it, you don't 

understand it at all. The second time you go through it, you think you understand it, except 

for one or two small points. The third time you go through it, you know you don't understand 

it, but by that time you are so used to it, it doesn't bother you anymore.” 

 

9.1 Outlook 

The application of Boltzmann-based constitutive models to the study of gas flows 

has been considered in this work. Starting from Eu’s moment equations for monatomic 

gases derived in the framework of irreversible thermodynamics, the origin of the 

Boltzmann-based models, in particular, the second-order models based on the balanced 

closure, was described in detail. It was shown that application of these constitutive 

models in conjunction with the conservation laws provides valuable insight into the 

study of gas flows, while their computational cost may be considerably higher than 

conventional classical first-order linear constitutive relations. The complete set of the 

constitutive models for one-, two-, and three-dimensional flows were provided, and 

their characteristics were investigated for a wide range of the thermodynamic forces, 

viscous stress and heat flux. Interestingly, it has been shown that the computational cost 

of the second-order Boltzmann-based model can be significantly reduced by employing 

parallel algorithms, owing to a super-parallel performance of the NCCR solver of the 

second-order Boltzmann-based model. 

 

Further, the discontinuous Galerkin method has been extensively studied as the basic 

numerical scheme for solving the Boltzmann-based models. It is shown that the DG 

method is suitable for solving the conservation laws together with the Boltzmann-based 

constitutive models. The mixed type DG methods were developed for solving one-

dimensional and multi-dimensional problems, and they were verified for both smooth 

and stiff flow problems. The solutions of DG method were compared with analytical 

and other numerical solutions, DSMC, and experimental data. The error norm analysis 

was conducted on global, conserved, and non-conserved variables, and the performance 
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of various limiters and flux functions was comprehensively examined. A new 

differentiable limiter proposed for the DG method was also tested for several 

benchmark problems. It was observed that selection of proper limiter function and 

viscous numerical flux function plays a critical role in obtaining accurate DG solutions. 

It was also found that in case of highly rarefied gas flows, sub-parametric mapping for 

curved boundaries has little influence on the accuracy of solution and, consequently, a 

simple linear mapping may be used. 

 

In case of high speed and low Reynolds flows, it was shown that the local DG method 

is preferred for discretizing viscous fluxes than other DG methods. The order of 

accuracy of the present DG method is proved to be p+1 for smooth flow problems, 

while the accuracy for stiff flow problems is shown to be highly sensitive to the choice 

of the limiters, and numerical flux functions, in particular, viscous flux functions. 

Several boundary value problems has also been studied using the DG method; forward 

facing step flow, backward facing step flow, double Mach reflection, one- and two-

dimensional Riemann problems, and external flow over sphere and cylinder. It was 

found that solutions of the second-order Boltzmann-based models are always in better 

agreement with DSMC data than the classical first-order linear model and appropriate 

slip/jump boundary conditions remain essential for studying rarefied and microscale 

gas flows. 

Finally, a comprehensive review of the DG methods, including limiter functions, 

numerical flux functions, boundary conditions, and curved boundary effects, was given 

to explain various numerical aspects of the DG method. 

9.2 Future works 

After having developed a mixed explicit modal DG method for the conservation laws 

in conjunction with the first- and second-order Boltzmann-based constitutive relations, 

the following topics may be considered as future work. 

 

No-slip/slip boundary treatment for high speed flows 

As discussed in Chapter 5, implementation of no-slip wall boundary for compressible 

gas flows is not straight ward. There are still unsolved issues in the accurate treatment 
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of conservative variables on solid wall. The next step in development of more accurate 

DG solver may be a study on improvement of slip/no-slip boundary conditions.  

 

Curved boundary treatment 

In order to provide a unified DG solver for all flow regimes, it is essential to prescribe 

the solid wall boundary of the geometry accurately. Therefore, extension of the present 

solver to curved boundary case may be considered as an important topic. 

 

WENO limiter 

Recently, a compact and highly accurate WENO limiter was introduced. It was 

known to perform better than other limiters for smooth and stiff flow problems. It is 

worth developing a new WENO-type limiter for multi-dimensional DG solvers. 

 

Study on validity of the second-order Boltzmann-based model for various Mach 

and Knudsen numbers 

To identify the range of application of the second-order Boltzmann-based models, 

comprehensive studies may be conducted for various Mach and Knudsen numbers from 

simple monatomic gas to diatomic gases. As the degree of non-equilibrium increases, 

the classical linear Boltzmann-based model breaks down. It is interesting to examine 

the range of validity of the second-order Boltzmann-based models. 

 

Improvement of the robustness of numerical solver for studying viscous-

dominated problems using the second-order Boltzmann-based model 

As the Mach number increases, the stability of numerical solver may be reduced due 

to appearance of spurious oscillations near boundaries and discontinuities. Moreover, 

in case of highly rarefied flows near vacuum condition, very small variation in pressure 

or density may violate the positivity-preserving property of numerical solver. Hence, it 

is necessary to further improve the stability of the DG solver for studying high non-

equilibrium flows. 

 

.
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APPENDIX A.  Vector and tensor calculus 

Albert Einstein (1879-1955): 

Anyone who has never made a mistake has never tried anything new 

 

Unit vectors 

Let’s define unit vectors e and its derivatives as following, 

 1 2 3

1 0 0

, , 0 , 1 , 0

0 0 1

e e e

      
      

        
            

e . 
A - 1 

 

The Kronecker Delta function ij can be defined as 

1,

0,
ij

if i j

otherwaise



 


. 
A - 2 

 

It also can be written in terms of unit vectors as 

1 0 0

0 1 0

0 0 1

i j ije e 

 
 

  
 
  

. 
A - 3 

 

The cross product of two unit vectors can be written as a permutation (Levi-Civita) 

tensor 

1 for even permuations

1 for odd permuations

0       for any repeated index

i j ijk ke e e




   



. 
A - 4 

 

Vector definition 

Now, If u and v are vectors such as  

 

 

1 2 3

1 2 3

, , ,

, v , v .





u

v

T

T

u u u

v
 A - 5 

 

The vector u can be defined in terms of unit vector as 

1 1 2 2 3 3 1 2 3

1 0 0

0 1 0 .

0 0 1

     
     

      
     
          

u i i

i

u e u e u e u e u u u  
A - 6 

 

Product operators 
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Inner product of two vector is defined as 

1 1 2 2 3 3( ).   u.v i iu v u v u v u v  
A - 7 

 

The cross product of two vectors can be written as 

  .      w u v i i j j i j i j i j ijk ku e v e u v e e u v e  
A - 8 

 

The area covered by two vector can be obtained using norm of the cross product of two 

vectors 

2 2 2

2 3 3 2 3 1 1 3 1 2 2 1( ) ( ) ( ) .       Area u v u v u v u v u v u v u v  
A - 9 

 

The volume formed by three vectors can be calculated by 

. cos .   Volume = Area.w u v w u v w   
A - 10 

 

Normal vector  

Let’s  1 2 3, ,n n nn =  denotes the normal vector on a surface, then it is possible to 

write dyadic product of two normal vectors n n  as  

2

1 1 1 2 1 3 1 1 2 1 3

2

2 1 2 2 2 3 2 1 2 2 3

2

3 1 3 2 3 3 3 1 3 2 3

= .

  
  

    
     

n n = nn
T

n n n n n n n n n n n

n n n n n n n n n n n

n n n n n n n n n n n

 
A - 11 

 

Tensor definition 

A scalar value is a zero-order tensor, and a vector is first-order tensor. Nevertheless, the 

lowest-order tensor which generally describes a tensor characteristics is second-order 

tensor. A second-order tensor ijA  has 9 components, a third order tensor ijkA has 27 

quantities, and fourth-order tensor ijklA has four indices with 81 components. The most 

useful tensor used in fluid and solid mechanics is the second-order stress tensor which 

is defined as 

11 12 13

21 22 23

31 32 33

.

   
 

   
 
    

Π  A - 12 

The tensor Π  can be defined in terms of unit vector as 

3 3

1 1

.
 

 Π Πij i j

j i

e e  
A - 13 
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The addition of two tensor is a tensor of a the same rank 

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

0 0

0 0

0 0

.

     
   

      
   
        

    
 

   
 
     

Π I

p

p p

p

p

p

p

 A - 14 

In index notation, we would write 

.  Π I ij ijp p  A - 15 

 

Product of a vector and a tensor 

The product of a tensor Π and a vector u is a vector as 

11 12 13 1 11 1 12 2 13 3

21 22 23 2 21 1 22 2 23 3

31 32 33 3 31 1 32 2 33 3

. ,

          
     

        
     
               

v Π u

u u u u

u u u u

u u u u

 A - 16 

or simply in index notation forms 

.i ij jv u  A - 17 

The product of . .Πu u Π , therefore,  

1 11 12 13 11 1 21 2 31 3

2 21 22 23 12 1 22 2 32 3

3 31 32 33 13 1 23 2 33 3

. .

          
     

        
     
               

v u Π

u u u u

u u u u

u u u u

 A - 18 

Alternatively, using index notation 

. j i ijv u  A - 19 

As a result, the traction of stress tensor on normal vector n is defined as 

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

3 31 32 33 31 1 32 2 33 3

.

          
     

        
     
               

t = n

n n n n

n n n n

n n n n

   
A - 20 

 

Transpose of a tensor 

The transpose of a tensor is defined so that 

,Π Π
Transpose

ji  A - 21 

. . .u Π Π u
Transpose  A - 22 
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It is obvious that the columns and rows of the tensor are switched by transpose operator. 

Using transpose operator it is possible to write  . .
Transpose Transpose Transpose Π u u Π . 

Dyadic operator 

One way to construct a tensors is to use of the dyadic operator. The dyadic product of 

two vectors can be defined as following,  

 
1 1 1 1 2 1 3

2 1 2 3 2 1 2 2 2 3

3 3 1 3 2 3 3

v v v .

   
   

   
   
      

u v uv
T

u u v u v u v

u u v u v u v

u u v u v u v

 A - 23 

Note that the dyadic product of two vectors is shown by T u v uv . Nevertheless, 

many papers are showing it as uv which is not mathematically correct!  

A third/fourth-order tensor can be derived from a dyadic product of three/ four vectors 

as 

,  A = u v wijk i j ku v w  
A - 24 

 

.   A = u v w yijkl i j k lu v w y  A - 25 

 

Gradient operator 

A scalar has no directional dependence while it can be heterogeneous, which means 

that it can vary from point to point within a body. The gradient of scalar variable    

shows how a scalar value changes in physical space, and it is a vector quantity given 

by 

1 2 3

1 2 3

grad .
   

   
   

i

i

e e e e
x x x x

   
  

A - 26 

 

The gradient of vector  u  is a second rank tensor and is defined as 

grad .


   


u u i
j i i j

j

u
u e e

x
 A - 27 

 

It can also be written as 

1 1 1

1 2 3

in Cartesian coordinate
2 2 2

1 2 3

3 3 3

1 2 3

grad .

       
           
        

      
        

       
   

       

u u

u u u u u u

x x x x y z

u u u v v v

x x x x y z

w w wu u u

x y zx x x

 
A - 28 
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The divergence of a vector which physically measure the net flux of a quantity through 

a surface can be defined mathematically as 

 . .
  

   
  

u u .i i i
i j ij

j j i

u u u
div e e

x x x
  A - 29 

 

In general, the gradient operator creates a higher ranked tensor from the entities while 

the divergence creates a lower ranked tensor from the same entities. The gradient of a 

second-order tensor is defined as 

grad ,


  


A A
ij

k ij

k

A
A

x
 

A - 30 

 

and the divergence of a second-order tensor gives a vector as 

1311 12

1 2 3

2321 22

1 2 3

31 32 33

1 2 3

,

 . , .

  
  

   
   

      
    

   
      

A A
ij

i

j

AA A

x x x

A AA A
div e

x x x x

A A A

x x x

 
A - 31 

 

Product of two tensors 

The product of two tensors is a tensor of the same rank 

1 1 1

1 2 3

11 12 13

2 2 2
21 22 23

1 2 3

31 32 33

3 3 3

1 2 3

u u u

x x x

u u u

x x x

u u u

x x x

   
 
      

    
                    

 
   

B Π u . A - 32 

It can be written in component form as 

3 3 31 2 1 2 1 2

11 12 13 11 12 13 11 12 13

1 1 1 2 2 2 3 3 3

3 3 31 2 1 2 1 2

21 22 23 21 22 23 21 22 23

1 1 1 2 2 2 3 3 3

31 2

31 32 33

1 1

       
         

        

       
         

        

 
   

 

u u uu u u u u u

x x x x x x x x x

u u uu u u u u u

x x x x x x x x x

uu u

x x

3 31 2 1 2

31 32 33 31 32 33

1 2 2 2 3 3 3

.

    
      

      

 
 
 
 
 
 
 
 
 

u uu u u u

x x x x x x x

 

The index notation of this product is 

ij ik k jB u  . A - 33 

Note that tensor products are not commutative . . Π u u Π . 
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Inner product of two tensors 

The inner product (Contraction) of two tensor of second rank is a scalar quantity as 

:ij ijA BA : B . A - 34 

The component form of the inner product of two second-order tensor is  

11 11 12 12 13 13

21 21 22 22 23 23

31 31 32 32 33 33

A B A B A B

A B A B A B

A B A B A B

   
 

    
   

A : B , A - 35 

and the inner product of a tensor with identity tensor is defined as 

iiAA : I . A - 36 

 

Outer product of two tensors 

The outer product of two second-order tensor is a scalar value  

11 11 21 12 31 13

12 21 22 22 32 23

13 31 23 32 33 33

A B A B A B

A B A B A B

A B A B A B





   
 

    
   

A B . A - 37 

 

The invariant of a tensor 

All individuals except scalar quantities will vary by changing the coordinate systems. 

Therefore, vectors and tensors are direction dependent. Nevertheless, the eigenvalues 

and invariants of a tensor are independent of direction and do not change by changing 

the coordinates.  The invariant of the tensors usually having some physical meaning 

therefore, the eigenvalues and invariants of second-order tensors are given as 

11 22 33

1 ( )ii

st Trace    Inv  Π Π Π Π Π Π . A - 38 

The second invariant of stress tensor is 

 2 1

2
ii jj ij ji

th  Inv  Π Π Π Π Π , A - 39 

which can be written in opened form as 

   

   

   

11 22 21 12 22 11 12 21

11 33 31 13 33 11 13 31

22 33 32 23 33 22 23 32

2 1

2

th

    
 

     
 

   

Π Π Π Π Π Π Π Π

Inv  Π Π Π Π Π Π Π Π Π

Π Π Π Π Π Π Π Π

. A - 40 

Due to conservation of angular momentum ij ijΠ Π so that second invariant of stress 

tensor can be simplified as 
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     2 2 2

11 22 12 11 33 13 22 33 23

2 .th      Inv  Π Π Π Π Π Π Π Π Π Π  A - 41 

The third invariant of stress tensor is defined as 

1 2 3

3 det( ) ijk i j k

th  Inv  Π Π Π Π Π , A - 42 

which can be simplified by eliminating the zeros due to permutation tenors as 

11 22 33 12 23 31 13 21 32

11 23 32 12 21 33 13 22 31

3th   
  

   

Π Π Π Π Π Π Π Π Π
Inv  Π

Π Π Π Π Π Π Π Π Π
. A - 43 

In index notation, this can be written as 

3 1

6
ijk lmn li mj nk

th  Inv  Π Π Π Π . A - 44 

Moreover, it may be useful to note that 

det( ) det( ),A A
Transpose

 A - 45 

det( . ) det( )det( ),A B A B  A - 46 

 

The eigenvalues of the second-order tensor can be calculated by solving the following 

cubic equations 

3 2 1 2 30 0st nd th       A I λ λ Inv A Inv A Inv A . A - 47 

 

The trace-free part of a symmetrical tensor 

The trace-free part of a tensor is given by 

 
(2) 1 1

( )
2 3
    A A A A I

T Trace . A - 48 

Consequently, the trace-free part of the velocity gradient tensor is defined as 

   
(2) 1 1

.
2 3
       u u u u I

T  A - 49 

Alternatively, the index notation is given by 

 
(2) 1 1

2 3

    
      

      

u
ji k

ijij
j i k

uu u

x x x
  A - 50 

The trace-free part of Π ucan also be defined as 

 
(2) 1 1

,
2 3

  
      

   
Π u

j i l
ik jk ij lkij

k k k

u u u

x x x
  A - 51 

 

Tensor relations on the surface 

Therefore, traction vector on surface    S I n n is a second-order tensor which 

can be defined as 
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 

 

2

1 1 2 1 3

2

2 1 2 2 3

2

3 1 3 2 3

2

1 1 2 1 3

2

2 1 2 2 3

2

3 1 3 2 3

1 0 0

0 1 0 ,

0 0 1

1

1 .

1

  
  

       
     

   
 

       
    

S I n n

S I n n

n n n n n

n n n n n

n n n n n

n n n n n

n n n n n

n n n n n

 
A - 52 

 

The gradient operator tangent to surface cane be defined as  S      I n n S . 

Accordingly, calculation of field vectors and tensors variables on surface can be defined 

as follows, the gradient of temperature along the surface ST T  S is given by 

 

21
1 1 2 1 3

2

2 1 2 2 3

2 2

3 1 2 3 3

3

1

1 ,

1

T

x
n n n n n

T
T n n n n n

x
n n n n n

T

x

 
 
     
   

              
 
 

S =  
A - 53 

 

after multiplication and simplification, it reads as 

 

 

 

 

2

1 1 2 1 3

1 2 3

2

2 1 2 2 3

1 2 3

2

3 1 2 3 3

1 2 3

1

1

1

T T T
n n n n n

x x x

T T T
T n n n n n

x x x

T T T
n n n n n

x x x

   
   

   
   

       
   

   
    

   

S . 
A - 54 

 

Similarly, the tangent velocity on the surface t  u u S can be defined as 

 

 

 

2

1 1 1 2 2 1 3 3

2

2 1 1 2 2 2 3 3

2

3 1 1 2 3 2 3 3

1

1

1

t

n u n n u n n u

n n u n u n n u

n n u n n u n u

   
 
      
 
    
 

u u S = . 
A - 55 

 

The tangent stress vector   n S    on the surface is given by 

 

2

11 1 12 2 13 3 1 1 2 1 3

2

21 1 22 2 23 3 2 1 2 2 3

2

31 1 32 2 33 3 3 1 3 2 3

1

1 .

1

       
  

          
          

n S

n n n n n n n n

n n n n n n n n

n n n n n n n n

    
A - 56 

 

Alternatively, it can be written in more specific form as 
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 

 

 

2

1 1 1 2 2 1 3 3

2

2 1 1 2 2 2 3 3

2

3 1 1 3 2 2 3 3

1

1 ,

1

   
 
    
 
    
 

n n n n n

n n n n n

n n n n n

  

  

  

   
A - 57 

 

where 

1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

,

,

.

   

  

  

n n n

n n n

n n n







 A - 58 

 

 

The Π n n is defined as 

2

11 12 13 1 1 2 1 3

2

21 22 23 2 1 2 2 3

2

31 32 33 3 1 3 2 3

:

n n n n n

n n n n n

n n n n n

    
  

      
       

Π n n  , 
A - 59 

 

which can be written in more simplified form as 

2 2

11 1 12 1 2 13 1 3 21 2 1 22 2

2

23 2 3 31 3 1 32 3 2 33 3                   .

      

   

Π n n n n n n n n n n

n n n n n n n


 A - 60 

 

The normal = q nnq  and tangential heat flux vector q = q St  on the surface also can 

be defined as 

1 1 2 2 3 3,  = q n =nq q n q n q n  
A - 61 

 
2

1 1 1 2 1 3

2

2 2 1 2 2 3

2

3 3 1 3 2 3

1

1 ,

1

t

q n n n n n

q n n n n n

q n n n n n

    
  

      
        

q = q S =  
A - 62 

 

or simply      2 2

1 1 1 2 2 1 3 1 2 1 1 2 2 2 3 3 21 1t zn q n n q n n q n n q n q n n q        q = e e

  2

3 1 1 3 2 2 3 3 31 .n n q n n q n q    e  

The normal gradient of velocity n u  on the surface is given by  

31 1 1 1 2
2 3

1 2 3 1 1 1

1

32 2 2 1 2
2 2 3

1 2 3 2 2 2

3

33 3 3 1 2
2 3

3 3 31 2 3

x

x

x

uu u u u u
n n n

x x x x x x
n

uu u u u u
n n n n

x x x x x x
n

uu u u u u
n n n

x x xx x x

       
    

         
        

                           
    

       

n u , 
A - 63 

 

and the normal of the transposed gradient of velocity  
T

 n u is  
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 

31 2 1 1 1
1 2 3

1 1 1 1 2 3

1

31 2 2 2 2
2 1 2 3

2 2 2 1 2 3

3

31 2 3 3 3
1 2 3

3 3 3 1 2 3

T

uu u u u u
n n n

x x x x x x
n

uu u u u u
n n n n

x x x x x x
n

uu u u u u
n n n

x x x x x x

      
   

        
       

                          
   

        

n u . 
A - 64 

 

The dilatation of velocity vector  I u is defined as 

  31 2

1 2 3

1 0 0

0 1 0

0 0 1

uu u

x x x

 
   

           

I u , 
A - 65 

 

and then   n I u  is defined as 

 

31 2
1

1 2 3

31 2
2

1 2 3

31 2
3

1 2 3

uu u
n

x x x

uu u
n

x x x

uu u
n

x x x

   
   

    
          
    
 
   

       

n I u , 
A - 66 

 

 

  n u S is defined as  

 

1 2 3

1 2 3

1 2 3

2

1 1 2 1 3

2

2 1 2 2 3

2

3 1 3 2 3

31 2

1 1 1

31 2

2 2 2

31 2

3 3 3

1

1

1

uu u
n n n

x x x

uu u
n n n

x x x

uu u
n n n

x x x

n n n n n

n n n n n

n n n n n

 
 

  

 
 

  

 
 

  

 
 
     
   

       
       
 
 

n u S = , 
A - 67 

 

which can be written in full component form as 

 

 

2 3 3 31 2 1 2 1 2

1 1 2 3 1 2 1 2 3 1 3 1 2 3

1 1 1 2 2 2 3 3 3

23 31 2 1 2 1

2 1 1 2 3 2 1 2 3 2 3 1

1 1 1 2 2 2 3

1

1

 

  

       
      

        

     
     

      

    
     
     

   
   
   

u u uu u u u u u
n n n n n n n n n n n n n n

x x x x x x x x x

u uu u u u u
n n n n n n n n n n n n

x x x x x x x

 

32

2 3

3 3

23 3 31 2 1 2 1 2

3 1 1 2 3 2 3 1 2 3 3 1 2 3

1 1 1 2 2 2 3 3 3

1

.

  




 

       
      

        

 
 
 
  

  
  

     
      
      

uu
n n

x x

u u uu u u u u u
n n n n n n n n n n n n n n

x x x x x x x x x

This equation is written in shorten hand form as 
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 

 

 

 

2

1 1 1 2 2 1 3 3

2

1 2 1 2 2 1 3 3

2

1 3 1 2 3 2 3 3

1

1

1

n n n n n

n n n n n

n n n n n

  

  

  

   
 
      
 
    
 

n u S = , 
A - 68 

 

where 

31 2
1 1 2 3

1 1 1

31 2
2 1 2 3

2 2 2

31 2
3 1 2 3

3 3 3

,

,

.

  
   

   

  
   

   

  
   

   

uu u
n n n

x x x

uu u
n n n

x x x

uu u
n n n

x x x






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Finally,   T
  n u S can be written as 

  

1 1 1
1 2 3

21 2 3

1 1 2 1 3

22 2 2
1 2 3 2 1 2 2 3

1 2 3 2

3 1 3 2 3

3 3 3
1 2 3

1 2 3

1

1 ,

1



   
  

       
     

                     
  

   

=n u S
T

u u u
n n n

x x x
n n n n n

u u u
n n n n n n n n

x x x
n n n n n

u u u
n n n

x x x
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which can be written in full component form as 

 

 

2 3 3 31 1 1 2 2 2

1 1 2 3 1 2 1 2 3 1 3 1 2 3

1 2 3 1 2 3 1 2 3

2 31 1 1 2 2 2

2 1 1 2 3 2 1 2 3 2 3 1

1 2 3 1 2 3 1

1

1

 

  

       
      

        

     
     

      

     
     
     

   
   
   

u u uu u u u u u
n n n n n n n n n n n n n n

x x x x x x x x x

uu u u u u u
n n n n n n n n n n n n

x x x x x x x

 

3 3

2 3

2 3

2 3 3 31 1 1 2 2 2

3 1 1 2 3 2 3 1 2 3 3 1 2 3

1 2 3 1 2 3 1 2 3

1

,

  

 


 

       
      

        

 
 
 
  

  
  

      
      
      

u u
n n

x x

u u uu u u u u u
n n n n n n n n n n n n n n

x x x x x x x x x

and the shorten hand form of above equation is given by 

  
 

 

 

2

1 1 1 2 2 1 3 3

2

1 2 1 2 2 1 3 3

2

1 3 1 2 3 2 3 3

1

1 ,

1

   
 
       
 
    
 

n u S =
T

n n n n n

n n n n n

n n n n n

  

  

  

 
A - 71 

 

where 
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1 1 1
1 1 2 3

1 2 3

2 2 2
2 1 2 3

1 2 3

3 3 3
3 1 2 3

1 2 3

,

,

.

   
   

   

   
   

   

   
   

   

u u u
n n n

x x x

u u u
n n n

x x x

u u u
n n n

x x x







 A - 72 

 

Calculation for ‘      n I u S ’ 

  

31 2
1

1 2 3
2

1 1 2 1 3

231 2
2 2 1 2 2 3

1 2 3 2

3 1 3 2 3

31 2
3

1 2 3

1

1

1

uu u
n

x x x
n n n n n

uu u
n n n n n n

x x x
n n n n n

uu u
n

x x x



   
   

    
                                

   
       

n I u S = . 
A - 73 

 

which can be written in shorten hand form as 

  

 

 

 

2 2 2

1 1 1 2 1 3

2 2 2

2 1 2 2 2 3

2 2 2

3 1 3 2 3 3

1

1

1

n n n n n n

n n n n n n

n n n n n n

  

  

  

   
 
          
 
    
 

n I u S . 
A - 74 

 

where 

31 2

1 2 3

uu u

x x x


  
   

   
. A - 75 
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APPENDIX B.  Three-dimensional form of the 

Maxwell slip boundary condition on arbitrary 

geometry 

The original Maxwell boundary condition 

The opened form of the original Maxwell equation holds for any arbitrary geometry. 

Can be defined by opening and simplify products appeared in (Eq. 5-139) as  

 

 

 

 
 

 

2

1 1 1 2 2 1 3 3

2

2 1 1 2 2 2 3 3

2

3 1 1 3 2 2 3 3

2

1 1 1 2 2 1 3 3

2

1 2

1

2
1

1

1

Pr 13
                               1

4



   
  
       
  
    
 

  


   

u u
wall solid v
tangential tangential

v

y x

n n n n n

n n n n n

n n n n n

n Q n n Q n n Q

n n Q n
p

  

 
  

 
  





 

2 2 3 3

2

3 1 1 3 2 2 3 3

,

1

 
 
 
 
    
 

Q n n Q

n n Q n n Q n Q

 
B-1 

 

where 

1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

,

,

.

n n n

n n n

n n n

   

  

  







 B-2 

First-order Maxwell boundary condition 

The opened form of first-order Maxwell boundary condition for an arbitrary 

geometry can be defined by calculating the value of     , ,
T

    n u S n u S

   ,
T

  n u S and  T S , and replacing them into (Eq. ). 
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 

 

 

 

 

2

1 1 1 2 2 1 3 3

2

1 2 1 2 2 1 3 3

2

1 3 1 2 3 2 3 3

2

1 1 1 2 2 1 3 3

2

1 2 1 2

1

2
1

1

1

2
                            1

wall solid v
tangential tangential

v

v

v

n n n n n

n n n n n

n n n n n

n n n n n

n n n



   
  
      
  
    
 

  

 
    
 

u u

  


   


  

  


  



 

 

 

 

 

2 1 3 3

2

1 3 1 2 3 2 3 3

2 2 2

1 1 1 2 1 3

2 2 2

2 1 2 2 3

2 2 2

3 1 3 2 3 3

2

1

1

1

22
           1

3

1

1

3
                                    

4

v
y

v

n n

n n n n n

n n n n n n

n n n n n n

n n n n n n

T
n

x

T

 
 
 
 
    
 

   
  
      
  
    
 










  

  


   


  




 

 

1 2 1 3

1 2 3

2

2 1 2 2 3

1 2 3

2

3 1 2 3 1

1 2 3

1 ,

1

T T
n n n n

x x

T T T
n n n n n

x x x

T T T
n n n n n

x x x

  
  

  
   
    

   
   
    

   

 

B-3 

Where 

3 31 2 1 2
1 1 2 3 2 1 2 3

1 1 1 2 2 2

31 2
3 1 2 3

3 3 3

,  ,

.

u uu u u u
n n n n n n

x x x x x x

uu u
n n n

x x x

       
        

        

  
   

   

 



 B-4 

1 1 1 2 2 2
1 1 2 3 2 1 2 3

1 2 3 1 2 3

3 3 3
3 1 2 3

1 2 3

, ,

.

u u u u u u
n n n n n n

x x x x x x

u u u
n n n

x x x

        
        

        

   
   

   

 



 B-5 

31 2

1 2 3

.
uu u

x x x

  
   

   
  B-6 
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APPENDIX C.  Derivation of conservation laws 

from the Boltzmann kinetic equation 

(monatomic gas) 

The Boltzmann kinetic equation for the monatomic gas particles without external 

body force can be read as 

   1, , ,f t f f
t

 
   

 
v v r R . C - 1 

Let’s define the few of the macroscopic quantities appearing in the balance equation 

once more based on the statistical mechanical formula as follows: 

2

2

density : ( , , ) ,

momentum : ( , , ) ,

1
energy : ( , , ) ,

2

stress tensor : ( , , ) ,

1
heat flux : ( , , ) .

2











v r

u v v r

v r

P v r

Q v r

m f t

m f t

E mc f t

m f t

mc f t







cc

 
C - 2 

Here the thermal velocity is c = v-u. It is important to note that (x, v, and t) are 

independent variables, whereas thermal velocity is not independent from space and 

time. It is possible to re-write Boltzmann equation in form of thermal velocity as 

 1,


  


c
x

df f
f f

dt
R , C - 3 

where  d dt t     v x . 

 

Mass Conservation 

Multiplication of Boltzmann equation with m   and then subsequent integration 

over velocity space yields     

 1,
f f

m m m f f
t

 
  

 
v

x
R . C - 4 

Due to conservation of mass collisional integral vanishes, then 

0,
mf m f

mf
t

  
  

  

v v

x x
 C - 5 

which is equivalent to 
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 . 0.


 


u
t


  C - 6 

 

Momentum Conservation 

Multiplication of Boltzmann equation with m  v  and subsequent integration over 

velocity space yields 

 1,
f f

m m m f f
t

 
 

 
v vv v

x
R , C - 7 

where collisional term is zero due to conservation of momentum in collisions. Since we 

need to integrate over velocity, we have to convert molecular velocity into peculiar 

velocity and then bring it together with f as 

0
m f m m f m

f f
t t

   
   

   

v v vv vv

x x
. C - 8 

Due to independence of molecular velocity from spatial and time coordinates, we have 

0 0i i k k i
i k

k k k

mv f mv v f v v
mv f mfv

t x x x

   
    

   
, C - 9 

0 0 0 0i i k

k

mv f mv v f

t x

 
    

 
, C - 10 

  
0

  
 

 

i i k ki

k

m u c u c fmv f

t x
, C - 11 

0
    

    
    

i k i i k i k k i

k k k k

mv f mc c f mu u f mu c f mu c f

t x x x x
, C - 12 

0 0 0
  

    
  

i k i i k

k k

mv f mc c f mu u f

t x x
. C - 13 

Then splitting the thermal velocity tensor as 

 
(2)

1
0

3

  
   

   

k ii i k l l
ik

k k k

mc c fmv f mu u f mc c f

t x x x
 . C - 14 

Using the macroscopic definition of the statistical formula, we have 

0i i k ik

k k i

u u u p

t x x x

    
   

   
, C - 15 

Finally, we have  

. . 0p
t





   



u
uu Π . C - 16 
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Energy Conservation 

Multiplication of Boltzmann equation with 2 2 mv  and subsequent integration 

over velocity space yields 

 
2 2 2

1, ,
2 2 2

 
 

 
v

x

mv f mv f mv
f f

t
R  C - 17 

where collisional term is zero due to conservation of total energy in collisions. Since 

we need to integrate over velocity, we have to convert molecular velocity into peculiar 

velocity and then take all terms beside f to find appropriate macroscopic variable as 

2 2 2 22 1 2 2
0.

2

   
   

   

v v

x x

mv f v mv f v
mf mf

t t
 C - 18 

Due to independence of molecular velocity from spatial and time coordinates, we have 

2 22 2
0 0 0

 
   

 

v

x

mv f mv f

t
. C - 19 

Now let’s write the molecular velocity as summation of thermal velocity and stream 

velocity, the we have 

   2 2 2 2
2 2 2 2

0 0 0
   

 
 

 
+ uc + uc v

x

m u c f m u c f

t
, C - 20 

   2 2 2 2
2 2 2 2

0
   

 
 

+
i i k

k

mu mc f m u c u c v f

t x
, C - 21 

 2 2 2 22 2 2 2
0,

    
   

   

k k i i k

k k k

mu mc f u mv f mc v f u mc v f

t x x x

 

C - 22 

where 

 2 2 21 1
2 2

2   
 

  

k k k k

k k k

mc c u f mc c f u mc f

x x x
, C - 23 

2 21 1
int2 2

   
  

   

k k k k

k k k k

mc c f u mc f Q u e

x x x x


, C - 24 

and 

  
 

  

i i k i i k i i k

k k k

u mc v f u mc c f u mc u f

x x x
, C - 25 

 
(2)

1

3

  
  

   

i i ki i k i k i i l l
ik

k k k k

u mc c fu mc c f u u mc f u mc c f

x x x x
 , C - 26 
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 
(2)

1

3

    
  

   

i i k i l l i ik k
ik

k k k k

u mc c f u mc c f u u p

x x x x
 . C - 27 

Putting all calculated terms together we have 

 2 2
int int

2 2
0

       
     

     

k k k i ik k

k k k k k

u e u u u e Q u u p

t x x x x x

   
, C - 28 

and finally the conservation of total energy reads as 

 
   

2

int 2

int

2
2 . . . . . 0


        u u Q Π u

d u e
u e p

dt

 
  . C - 29 
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APPENDIX D.  Derivation of constitutive 

equations from the Boltzmann kinetic 

equation (monatomic gas) 

Stress balance equation 

Multiplication of Boltzmann equation with  
(2)

 ccm  and subsequent integration 

over velocity space yields 

       
(2) (2) (2)

1,


 


cc cc c cc
x

df f
m m m f f

dt
R , D -  1 

where the collisional term is not zero and denotes by      
(2)

1m f ,f Π cc R . As 

we need to integrate over velocity, we have to convert the molecular velocity into 

peculiar velocity and then bring it together with f as 

       
 

(2) (2) (2) (2)

.
 

  
 

 
cc cc cc c cc c

x x
Π

dm f d m f m
mf mf

dt dt
 D -  2 

Let’s to write this equation in index notation form as 

(2)

(2) (2)

(2) (2)

[ ]
[ ] [ ]

[ ] [ ]
[ ].

i j ji

j i

i j k i j k

k k

ij

dm c c f dcdc
mf c mf c

dt dt dt

m c c c f c c c
mf

x x

 

 
 

 
  

 D -  3 

Now, let’s manipulate this equation as follows, by considering the independence of 

molecular velocity from spatial and time coordinates 

( 2) ( 2)

( 2) ( 2)

( 2)

[ ] [ ]
[ ] [ ]

[ ]
[ ],

i j j i j ki

j i

k

i j k

k

ij

dm c c f du m c c c fdu
mf c mf c

dt dt dt x

c c c
mf

x


  







  

 D -  4 

(2) (2)

(2) (2)

(2) (2) (2)

[ ] [ ]
[ ] [ ]

[ ] [ ] [ ] [ ],

i j j i j ki

j i

k

ji k

j k k i i j

k k k

ij

dm c c f du m c c c fdu
mf c mf c

dt dt dt x

uu u
mf c c mfc c mf c c

x x x


   



 
 

  
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D -  5 
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(2) (2)

(2) (2)

[ ] [ ]
[ ] [ ]

2 [ ] [ ] [ ],

i j j i j ki

j i

k

i k

j k i j

k k

ij

dm c c f du m c c c fdu
mf c mf c

dt dt dt x

u u
mf c c mf c c

x x


   



 


 
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D -  6 

where 
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(2) 1 1
[ ]

2 3

1 1

2 3

1 1
0 0 0 0.

2 3

j j i k

i i j k ij

j i k

i j k ij

j i k

ij

du du du du
mf c mfc mfc mfc

dt dt dt dt

du du du
mfc mfc mfc

dt dt dt

du du du

dt dt dt







   

  

  

 
 
 

 
 
 

 
 
 

 D -  7 

Therefore,  

(2) (2)
[ ] [ ] 0.

ji

j i

dudu
mf c mf c

dt dt
   D -  8 

It is possible to simplified (D -  6) further; 

(2) 2
2 [ ] ,

3

ji i r

j k j k i k r k ij

k k k k

uu u u
mf c c mfc c mfc c mfc c

x x x x


  
  

   
 D -  9 

(2) (2)

(2)

[ ] [ ]

2
[ ] [ ].

3

 
  

 

 
    

  

i j i j k i
j k

k k

j kr
i k r k ij i j ij

k k k

dm c c f m c c c f u
mfc c

dt x x

u uu
mfc c mfc c mf c

x x x


 D -  10 

Now, it is the time for opening the thermal velocity tensor and simplified stress transfer 

equation such that; 

(2) (2)

(2)

(2)

(2) (2)

[ ] [ ]
[ ]

1 1
[ ]

3 3

2 2
[ ] [ ] [ ].

3 3

 
  

 

 
  

  

 
     

  

i j i j k i
j k

k k

j ji
r r jk i k r r ik

k k k

kr r
r k ij r r ij i j ij

k r k

dm c c f m c c c f u
mf c c

dt x x

u uu
mfc c mf c c mfc c

x x x

uu u
mf c c mfc c mf c c

x x x

 

 

 

D -  11 

Using the macroscopic definition of the statistical formula, we have 

(2)[ ]

2
2 [ ].

3

   
    

   

  
       

   

ij i j k ji i
jk ik

k k j k

j kr r
rk ij ij ij ij

i k r k

d m c c c f uu u
p

dt x x x x

u uu u
p p

x x x x
 

 D -  12 

From mass balance it is known that
1

.
d

dt




  u , therefore, stress balance equation 

can be written as  

 (2) (2) (2). [ ] 2[ . ] 2 [ ] [ ].

d

m f p
dt




 
 
 

       

Π

cc c Π u u Π  
D -  13 

which is the same as one derived in [1, 13]. 
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Heat flux balance equation 

Multiplication of Boltzmann equation with 
2

inter atomic
2



 
  
 

c
m

c m   and 

subsequent integration over velocity space yields 

 

2 2

inter atomic inter atomic

2

inter atomic 1

2 2

,
2

,

 




   





   
   
   

 
 
 

c cc
x

c

m df m f
c m c m

dt

m
c m f f

 

 R

 D -  14 

where the collisional term is equal to    2

inter atomic 1

m
c m f ,f

2


 
    

 
Q cR . Note 

that the inter atomicm is zero for monatomic gases.  

As we need to integrate over velocity, we have to convert the molecular velocity into 

peculiar velocity and then bring it with f together as 

 

2
2 2

2

2 2 2

2




    
 

c c cc
cc

Q
x x

m c m
d c f d c f

m c
mf f

dt dt
. D -  15 

 

Now, let’s manipulate this equation as follows, by considering the independence of 

molecular velocity from spatial and time coordinates 

 

2

2 2
2

2 2 2

2



 



  



i i k i

k

k i
i

k

m c m
d c c f d c c c c f

mf
dt dt x

c c cm
f Q

x

, 

D -  16 

such that 

 

2 2

2 2

2 2

2

.
2 2



 




  
    

  

i k i

k

ir r r
i r

i k r
k i k i r i

k k k

m m
d c c f c c c f

dt x

dcc c dc
mf mfc c

dt dt

c c cm m
fc c fc c mfc c c Q

x x x

 D -  17 

 

Knowing that dc du dc du,
dx dx dt dt

    , we have 
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 

2 2

2 2

2 2

2

.
2 2




   
 

 
   

 

i k i
ir r r

k i r

k k

i kr
i r k i i

k k

m m
d c c f c c c f

duu c c
mfc c c mf

dt x x dt

u udu m m
mfc c fc c fc c Q

dt x x

 D - 18 

From momentum and mass balance we know that; 

0,

0,

    
    

    


 

 

i i k ik
k i

k k k i

k

k

u u u p
u u

t x x x x

u

t x

 



 D -  19 

such that 

1   
   

  

i ik
ik

k k

du p

dt x x



. D -  20 

It is possible to simplified (D - 18) further by replacing idu

dt
 from (D -  20); 

   

2 2

2 2

1
,


  

    
    

   
        

    

i k i

ikr
k i r internal ik

k k k k

rk i k
ir ir rk k i i

k k k k

m m
d c c f c c c f

u p
mfc c c e

dt x x x x

u up
p Q Q Q

x x x x



 


 D - 21 

or 

 

2

2

.

i k

i ir rkr
k i r

k k k r

ik i k
internal internal k i i

k i k k

m
c c c f

dQ u p
mfc c c

dt x x x x

u up p p
e e Q Q Q

x x x x



 


   

    
    

      
          

      

 D - 22 

Knowing that 
1

.
d

dt




  u and 

internal p

p
e c T


  , we can write above equation as  

 

 

2. ( ) : .
2

.( ) . .

p

p

d
m

c f c T p mf p
dt

c T p






 
 

           
 

      

Q

Π
cc Π I ccc u Π I

Π I Q u Q

 
D - 23 

which is the same as one derived in [1, 13]. 

 



250 

 

250 

 

REFERENCES 

1. Eu, B.C., Kinetic theory and irreversible thermodynamics. 1992: Wiley. 

2. Eu, B.C., Nonequilibrium statistical mechanics: ensemble method. Vol. 93. 2013: 

Springer Science & Business Media. 

3. Eu, B.C., Generalized Thermodynamics: Thermodynamics of Irreversible 

Processes and Generalized Hydrodynamics. Vol. 124. 2002: Springer Science & 

Business Media. 

4. Bird, G.A., Molecular gas dynamics and the direct simulation Monte Carlo of gas 

flows. Clarendon, Oxford. 1994, Oxford Engineering Science Series. 

5. Buckingham, E., On physically similar systems; illustrations of the use of 

dimensional equations. Physical Review, 1914. 4(4): p. 345. 

6. Bridgman, P.W., Dimensional Analysis. second edition ed. 1931: Yale University 

Press, New Haven. 

7. Lissaman, P., Low-Reynolds-number airfoils. Annual Review of Fluid Mechanics, 

1983. 15(1): p. 223-239. 

8. Glazner, A.F., Magmatic life at low Reynolds number. Geology, 2014. 42(11): p. 

935-938. 

9. Tsien, H.S., Superaerodynamics, Mechanics of Rarefied Gases. Journal of the 

Aeronautical Sciences, 1946. 13(12): p. 653-664. 

10. Macrossan, M.N., Scaling parameters in rarefied Flow: breakdown of the Navier-

Stokes equations. 2006. 

11. Callen, H.B., Thermodynamics & an Intro. to Thermostatistics. 2006: John wiley & 

sons. 

12. Sonntag, R.E., R.E. Sonntag, and G.J. Van Wylen, Fundamentals of statistical 

thermodynamics. 1966. 

13. Myong, R., On the high Mach number shock structure singularity caused by 

overreach of Maxwellian molecules. Physics of Fluids (1994-present), 2014. 26(5): 

p. 056102. 

14. Myong, R., A generalized hydrodynamic computational model for rarefied and 

microscale diatomic gas flows. Journal of Computational Physics, 2004. 195(2): p. 

655-676. 

15. Myong, R. and J. Kim. Numerical computations of nonequilibrium diatomic gas 

flows using Eu’s generalized hydrodynamic equations. in AIP Conference 

Proceedings. 2003. 

16. Struchtrup, H., Thermodynamics and Energy Conversion. 2014: Springer. 

17. Aoki, K. and D. Kusnezov, Non-equilibrium steady states and transport in the 

classical lattice φ 4 theory. Physics Letters B, 2000. 477(1): p. 348-354. 

18. Bird, G., Breakdown of translational and rotational equilibrium in gaseous 

expansions. AIAA journal, 1970. 8(11): p. 1998-2003. 



251 

 

251 

 

19. Cheng, H. Hypersonic shock-layer theory of the stagnation region at low Reynolds 

number. in Proceedings of the 1961 Heat Transfer and Fluid Mechanics Institute. 

1961. Stanford Univ. Press Chicago. 

20. Boyd, I.D., G. Chen, and G.V. Candler, Predicting failure of the continuum fluid 

equations in transitional hypersonic flows. Physics of Fluids, 1995. 7: p. 210-219. 

21. Heisenberg, W., Über den anschaulichen Inhalt der quantentheoretischen 

Kinematik und Mechanik. Zeitschrift für Physik, 1927. 43(3-4): p. 172-198. 

22. Struchtrup, H., Macroscopic transport equations for rarefied gas flows. 2005: 

Springer. 

23. Kennard, E.H. and E.H. Kennard, Kinetic theory of gases: with an introduction to 

statistical mechanics. 1938: McGraw-hill New York. 

24. Cercignani, C., Rarefied gas dynamics: From basic concepts to actual calculations. 

2000: Cambridge University Press. 

25. Eu, B.C., Kinetic theory and irreversible thermodynamics. Accounts of Chemical 

Research, 1986. 19(5): p. 153-160. 

26. White, F.M. and I. Corfield, Viscous fluid flow. Vol. 3. 2006: McGraw-Hill New 

York. 

27. Vincenti, W.G. and C.H. Kruger, Introduction to physical gas dynamics. 1965, New 

York, Wiley. 

28. Boltzmann, L., Sitzungsberichte Akad. Wiss., Vienna, II, 66: 275-370. Permagon 

Press, Oxford. Vol. 88. 1872. 175. 

29. Shen, C., Rarefied gas dynamics: fundamentals, simulations and micro flows. 2005: 

Springer. 

30. Alder, B. and T. Wainwright, Phase transition for a hard sphere system. The Journal 

of Chemical Physics, 1957. 27(5): p. 1208-1209. 

31. Alder, B.J. and T. Wainwright, Studies in molecular dynamics. I. General method. 

The Journal of Chemical Physics, 1959. 31(2): p. 459-466. 

32. Bird, G.A., Approach to translational equilibrium in a rigid sphere gas. Physics of 

Fluids, 1963. 6(10): p. 1518-1519. 

33. Bird, G.A., Molecular gas dynamics. Clarendon, Oxford. 1976, Oxford Engineering 

Science Series. 250. 

34. Sheng, C. and X. Shen, Modelling of acoustic agglomeration processes using the 

direct simulation Monte Carlo method. Journal of Aerosol Science, 2006. 37(1): p. 

16-36. 

35. Wang, M. and Z. Li, Gas mixing in microchannels using the direct simulation 

Monte Carlo method. International journal of heat and mass transfer, 2006. 49(9): 

p. 1696-1702. 

36. Wu, J.S. and K.C. Tseng, Analysis of micro-scale gas flows with pressure 

boundaries using direct simulation Monte Carlo method. Computers & Fluids, 2001. 

30(6): p. 711-735. 

37. Alexander, F.J., A.L. Garcia, and B.J. Alder, Direct simulation Monte Carlo for 

thin‐film bearings. Physics of Fluids, 1994. 6(12): p. 3854-3860. 



252 

 

252 

 

38. Oran, E., C. Oh, and B. Cybyk, Direct simulation Monte Carlo: Recent advances 

and applications, Annual Review of Fluid Mechanics, 1998. 30(1): p. 403-441. 

39. Darbandi, M., A. Karchani, R. Khaledi-Alidusti, and G. Schneider, The study of 

microfilter performance in different environments using DSMC. in ICNMM2011. 

2011. Alberta, Canada: ASME. 

40. Darbandi, M., A. Karchani, and G. Schneider. The study of rarefied gas flow 

through microfilters with different openings using MONIR-DSMC. in 

ICNMM2011. 2011. Alberta, Canada: ASME. 

41. Karchani, A. and R. Myong, Convergence analysis of the direct simulation Monte 

Carlo based on the physical laws of conservation. Computers & Fluids, 2015. 115: 

p. 98-114. 

42. Karchani, A., O. Ejtehadi, and R.S. Myong, A probabilistic automatic steady-state 

detection method for the direct simulation Monte Carlo. Communications in 

Computational Physics, 2016. 20(5): p. 1183-1209. 

43. Wagner, W., A convergence proof for Bird's direct simulation Monte Carlo method 

for the Boltzmann equation. Journal of Statistical Physics, 1992. 66(3-4): p. 1011-

1044. 

44. Bird, G.A., The DSMC method. Vol. 1. 2013: CreateSpace Independent Publishing 

Platform. 300. 

45. Garcia, A.L., Surprising hydrodynamic results discovered by means of direct 

simulation Monte Carlo, in Proceedings of the Models and Computational Methods 

for Rarefied Flows NATO Conference, 2011. 

46. Bird, G., The DSMC method. 2013: CreateSpace Independent Publishing Platform. 

47. Karchani, A., O. Ejtehadi, and R.S. Myong, A steady-state convergence detection 

method for Monte Carlo simulation. AIP Conference Proceedings, 2014. 1628(1): 

p. 313-317. 

48. Meiburg, E., Comparison of the molecular dynamics method and the direct 

simulation Monte Carlo technique for flows around simple geometries. Physics of 

Fluids, 1986. 29: p. 3107. 

49. Alexander, F.J., A.L. Garcia, and B.J. Alder, Cell size dependence of transport 

coefficients in stochastic particle algorithms. Physics of Fluids, 1998. 10(6): p. 

1540-1542. 

50. Hadjiconstantinou, N.G., Analysis of discretization in the direct simulation Monte 

Carlo. Physics of Fluids, 2000. 12: p. 2634-2638. 

51. Garcia, A.L. and W. Wagner, Time step truncation error in direct simulation Monte 

Carlo. Physics of Fluids, 2000. 12(10): p. 2621-2633. 

52. Rader, D., et al. DSMC convergence behavior for Fourier flow. in AIP Conference 

Proceedings. 2005. 

53. Rader, D.J., et al., Direct simulation Monte Carlo convergence behavior of the hard-

sphere-gas thermal conductivity for Fourier heat flow. Physics of Fluids, 2006. 

18(7). 

54. Mansour, M.M., et al., Fluctuating hydrodynamics in a dilute gas. Physical review 

letters, 1987. 58(9): p. 874-877. 



253 

 

253 

 

55. Chen, G. and I.D. Boyd, Statistical Error Analysis for the direct simulation Monte 

Carlo technique. Journal of Computational Physics, 1996. 126(2): p. 434-448. 

56. Enskog, D., Kinetische Theorie der Vorgänge in mässig verdünnten Gasen. 1917. 

57. Chapman, S. and T.G. Cowling, The mathematical theory of non-uniform gases: an 

account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. 

1970: Cambridge university press. 

58. Grad, H., On the kinetic theory of rarefied gases. Communications on Pure and 

Applied Mathematics, 1949. 2(4): p. 331-407. 

59. Grad, H., Principles of the kinetic theory of gases. Thermodynamik der 

Gase/Thermodynamics of Gases. 1958: Springer. 

60. Grad, H., The profile of a steady plane shock wave. Communications on pure and 

applied mathematics, 1952. 5(3): p. 257-300. 

61. Weiss, W., Comments on ‘‘Existence of kinetic theory solutions to the shock 

structure problem’’[Phys. Fluids 7, 911 (1964)]. Physics of Fluids (1994-present), 

1996. 8(6): p. 1689-1690. 

62. Zhao, W., et al., Computation of 1-D shock structure in a gas in rotational non-

equilibrium using a new set of simplified Burnett equations. Vacuum, 2014. 109: p. 

319-325. 

63. Jou, D., J. Casas Vázquez, and G. Lebon, Extended irreversible thermodynamics, 

in Extended Irreversible Thermodynamics. 1996, Springer. p. 41-74. 

64. Myong, R., Thermodynamically consistent hydrodynamic computational models 

for high-Knudsen-number gas flows. Physics of Fluids, 1999. 11(9): p. 2788-2802. 

65. Myong, R., A computational method for Eu's generalized hydrodynamic equations 

of rarefied and microscale Gasdynamics. Journal of Computational Physics, 2001. 

168(1): p. 47-72. 

66. Serrin, J., Mathematical principles of classical fluid mechanics, in Fluid Dynamics 

I/Strömungsmechanik I. 1959, Springer. p. 125-263. 

67. Euler, L., Principles of the motion of fluids. Physica D: Nonlinear Phenomena, 

2008. 237(14-17): p. 1840-1854. 

68. Navier, C., Mémoire sur les lois du mouvement des fluides. Mémoires de 

l’Académie Royale des Sciences de l’Institut de France, 1823. 6: p. 389-440. 

69. Stokes, G.G., On the effect of the internal friction of fluids on the motion of 

pendulums. Vol. 9. 1851: Pitt Press. 

70. Myong, R., Thermodynamically consistent hydrodynamic computational models 

for high-Knudsen-number gas flows. Physics of Fluids, 1999. 11. 

71. Kružkov, S., First order quasilinear equations in several independent variables. 

Sbornik: Mathematics, 1970. 10(2): p. 217-243. 

72. Oleinik, O.A.e., Uniqueness and stability of the generalized solution of the Cauchy 

problem for a quasi-linear equation. Uspekhi Matematicheskikh Nauk, 1959. 14(2): 

p. 165-170. 

73. Ferziger, J.H. and M. Peric, Computational methods for fluid dynamics. 2012: 

Springer Science & Business Media. 



254 

 

254 

 

74. Patankar, S., Numerical heat transfer and fluid flow. 1980: CRC Press. 

75. Lax, P.D. and R.D. Richtmyer, Survey of the stability of linear finite difference 

equations. Communications on Pure and Applied Mathematics, 1956. 9(2): p. 267-

293. 

76. Lax, P. and B. Wendroff, Systems of conservation laws, Comm. Pure and Applied 

Maths, 1960. 13: p. 217-237. 

77. Oberkampf, W.L. and C.J. Roy, Verification and validation in scientific computing. 

Vol. 5. 2010: Cambridge University Press Cambridge. 

78. LeVeque, R.J. and R.J. Le Veque, Numerical methods for conservation laws. Vol. 

132. 1992: Springer. 

79. LeVeque, R.J., Finite volume methods for hyperbolic problems. Vol. 31. 2002: 

Cambridge university press. 

80. Toro, E.F., Riemann solvers and numerical methods for fluid dynamics: a practical 

introduction. 2009: Springer Science & Business Media. 

81. Godunov, S.K., A difference method for numerical calculation of discontinuous 

solutions of the equations of hydrodynamics. Matematicheskii Sbornik, 1959. 89(3): 

p. 271-306. 

82. Boris, J.P. and D.L. Book, Flux-corrected transport. I. Shasta, A fluid transport 

algorithm that works. Journal of computational physics, 1973. 11(1): p. 38-69. 

83. Van Leer, B., Towards the ultimate conservative difference scheme. II. 

Monotonicity and conservation combined in a second-order scheme. Journal of 

computational physics, 1974. 14(4): p. 361-370. 

84. Harten, A., High resolution schemes for hyperbolic conservation laws. Journal of 

computational physics, 1983. 49(3): p. 357-393. 

85. Colella, P. and P.R. Woodward, The piecewise parabolic method (PPM) for gas-

dynamical simulations. Journal of computational physics, 1984. 54(1): p. 174-201. 

86. Shu, C.W. and S. Osher, Efficient implementation of essentially non-oscillatory 

shock-capturing schemes. Journal of Computational Physics, 1988. 77(2): p. 439-

471. 

87. Toro, E. A weighted average flux method for hyperbolic conservation laws. in 

Proceedings of the Royal Society of London A: Mathematical, Physical and 

Engineering Sciences. 1989. The Royal Society. 

88. Kim, C. and A. Jameson. Flux limited dissipation schemes for high speed unsteady 

flows. in 12th Computational Fluid Dynamics Conference. 1995. 

89. Harten, A., ENO Schemes with Subcell Resolution*. 1997: Springer. 

90. Suresh, A. and H. Huynh, Accurate monotonicity-preserving schemes with Runge–

Kutta time stepping. Journal of Computational Physics, 1997. 136(1): p. 83-99. 

91. Spekreijse, S., Multigrid solution of monotone second-order discretizations of 

hyperbolic conservation laws. Mathematics of Computation, 1987. 49(179): p. 135-

155. 



255 

 

255 

 

92. Cockburn, B. and C.W. Shu, Runge–Kutta discontinuous Galerkin methods for 

convection-dominated problems. Journal of scientific computing, 2001. 16(3): p. 

173-261. 

93. Karniadakis, G. and S. Sherwin, Spectral/hp element methods for computational 

fluid dynamics. 2013: Oxford University Press. 

94. Ortega, M.A., A high-order unstructured discontinuous Galerkin finite element 

method for aerodynamics. 2012, Instituto Tecnológico de Aeronáutica. 

95. Ueckermann, M.P., Towards next generation ocean models: novel discontinuous 

Galerkin schemes for 2-D unsteady biogeochemical models. 2009, Massachusetts 

Institute of Technology. 

96. Wang, Z., High-order methods for the Euler and Navier–Stokes equations on 

unstructured grids. Progress in Aerospace Sciences, 2007. 43(1): p. 1-41. 

97. Vos, P.E., S.J. Sherwin, and R.M. Kirby, From h to p efficiently: Implementing 

finite and spectral/hp element methods to achieve optimal performance for low-and 

high-order discretisations. Journal of Computational Physics, 2010. 229(13): p. 

5161-5181. 

98. Cockburn, B., S.Y. Lin, and C.W. Shu, TVB Runge-Kutta local projection 

discontinuous Galerkin finite element method for conservation laws III: one-

dimensional systems. Journal of Computational Physics, 1989. 84(1): p. 90-113. 

99. Lesaint, P. and P.A. Raviart, On a finite element method for solving the neutron 

transport equation. Mathematical aspects of finite elements in partial differential 

equations, 1974(33): p. 89-123. 

100. Johnson, C. and J. Pitkäranta, An analysis of the discontinuous Galerkin method 

for a scalar hyperbolic equation. Mathematics of computation, 1986. 46(173): p. 1-

26. 

101. Richter, G.R., The discontinuous Galerkin method with diffusion. Mathematics 

of computation, 1992. 58(198): p. 631-643. 

102. Cockburn, B. and C.W. Shu, The Runge–Kutta discontinuous Galerkin method 

for conservation laws V: multidimensional systems. Journal of Computational 

Physics, 1998. 141(2): p. 199-224. 

103. Bassi, F. and S. Rebay, A high-order accurate discontinuous finite element 

method for the numerical solution of the compressible Navier–Stokes equations. 

Journal of computational physics, 1997. 131(2): p. 267-279. 

104. Cockburn, B. and C.W. Shu, The local discontinuous Galerkin method for time-

dependent convection-diffusion systems. SIAM Journal on Numerical Analysis, 

1998. 35(6): p. 2440-2463. 

105. Cockburn, B., G.E. Karniadakis, and C.W. Shu, The development of 

discontinuous Galerkin methods. 2000: Springer. 

106. Süli, E., A posteriori error analysis and adaptivity for finite element 

approximations of hyperbolic problems, in An introduction to recent developments 

in theory and numerics for conservation laws. 1999, Springer. p. 123-194. 

107. Karchani, A. and R.S. Myong, Comprehensive verification of discontinuous 

Galerkin methods for gas dynamic applications using analytical viscous shock 

solutions I: limiters, preprint, 2016. 



256 

 

256 

 

108. Karchani, A. and R.S. Myong, Comprehensive verification of discontinuous 

Galerkin methods for gas dynamic applications using analytical viscous shock 

solutions II: numerical flux functions, preprint, 2016. 

109. Cockburn, B. and C.W. Shu, TVB Runge-Kutta local projection discontinuous 

Galerkin finite element method for conservation laws. II. General framework. 

Mathematics of computation, 1989. 52(186): p. 411-435. 

110. Cockburn, B., S. Hou, and C.W. Shu, The Runge-Kutta local projection 

discontinuous Galerkin finite element method for conservation laws. IV. The 

multidimensional case. Mathematics of Computation, 1990. 54(190): p. 545-581. 

111. Bassi, F. and S. Rebay, High-order accurate discontinuous finite element 

solution of the 2-D Euler equations. Journal of computational physics, 1997. 138(2): 

p. 251-285. 

112. Le, N.T., H. Xiao, and R. Myong, A triangular discontinuous Galerkin method 

for non-Newtonian implicit constitutive models of rarefied and microscale gases. 

Journal of Computational Physics, 2014. 273: p. 160-184. 

113. Sherwin, S., et al., On 2-D elliptic discontinuous Galerkin methods. 

International journal for numerical methods in engineering, 2006. 65(5): p. 752-

784. 

114. Kirby, R.C., Singularity-free evaluation of collapsed-coordinate orthogonal 

polynomials. ACM Transactions on Mathematical Software (TOMS), 2010. 37(1): 

p. 5. 

115. Proriol, J., Sur une famille de polynomes á deux variables orthogonaux dans un 

triangle. Comptes rendus hebdomadaires des seances de l academie des sciences, 

1957. 245(26): p. 2459-2461. 

116. Koornwinder, T., Two-variable analogues of the classical orthogonal 

polynomials. Theory and applications of special functions, 1975: p. 435-495. 

117. Dubiner, M., Spectral methods on triangles and other domains. Journal of 

Scientific Computing, 1991. 6(4): p. 345-390. 

118. Karchani, A. and R.S. Myong, Performance of limiters in discontinuous 

Galerkin methods for Euler equations. Journal of Computational Fluids 

Engineering, 2016. 21. 

119. Chavent, G. and G. Salzano, A finite-element method for the 1-D water flooding 

problem with gravity. Journal of Computational Physics, 1982. 45(3): p. 307-344. 

120. Cockburn, B. and C.W. Shu, The Runge-Kutta local projection P1-P2 

discontinuous Galerkin finite element method for scalar conservation laws. RAIRO-

Modélisation mathématique et analyse numérique, 1991. 25(3): p. 337-361. 

121. Chavent, G. and B. Cockburn, The local projection P0 P1 -discontinuous-

Galerkin finite element method for scalar conservation laws. RAIRO-Modélisation 

mathématique et analyse numérique, 1989. 23(4): p. 565-592. 

122. Gottlieb, S. and C.W. Shu, Total variation diminishing Runge-Kutta schemes. 

Mathematics of computation of the American Mathematical Society, 1998. 67(221): 

p. 73-85. 



257 

 

257 

 

123. Cockburn, B., C. W. Shu. The runge-kutta local projection p1 discontinuous 

galerkin finite element method for scalar conservation laws. IMA Preprint Series, 

1988. 388. 

124. Gottlieb, S., C.W. Shu, and E. Tadmor, Strong stability-preserving high-order 

time discretization methods. SIAM review, 2001. 43(1): p. 89-112. 

125. Iqbal, K.H., Comparison of high-order methods on unstructured grids. 2013. 

126. Landmann, B., A parallel discontinuous Galerkin code for the Navier-Stokes 

and Reynolds-averaged Navier-Stokes equations. 2008. 

127. Myong, R., Analytical Solutions of Shock Structure Thickness and Asymmetry 

in Navier–Stokes/Fourier Framework. AIAA journal, 2014. 52(5): p. 1075-1081. 

128. Schmidt, B., Electron beam density measurements in shock waves in argon. 

Journal of Fluid Mechanics, 1969. 39(02): p. 361-373. 

129. Alsmeyer, H., Density profiles in argon and nitrogen shock waves measured by 

the absorption of an electron beam. Journal of Fluid Mechanics, 1976. 74(03): p. 

497-513. 

130. Zhong, X., R.W. MacCormack, and D.R. Chapman, Stabilization of the Burnett 

equations and application to hypersonicflows. AIAA journal, 1993. 31(6): p. 1036-

1043. 

131. Xu, K., A gas-kinetic BGK scheme for the Navier–Stokes equations and its 

connection with artificial dissipation and Godunov method. Journal of 

Computational Physics, 2001. 171(1): p. 289-335. 

132. Al-Ghoul, M. and B.C. Eu, Generalized hydrodynamics and shock waves. 

Physical Review E, 1997. 56(3): p. 2981. 

133. Morduchow, M., On a complete solution of the one-dimensional flow equations 

of a viscous, heat-conducting, compressible gas. Journal of the Aeronautical 

Sciences (Institute of the Aeronautical Sciences), 2012. 16(11). 

134. Mott-Smith, H., The solution of the Boltzmann equation for a shock wave. 

Physical Review, 1951. 82(6): p. 885. 

135. Al-Ghoul, M. and B.C. Eu, Generalized hydrodynamics and shock waves. 

Physical Review E, 1997. 56(3). 

136. Iannelli, J., An implicit Galerkin finite element Runge–Kutta algorithm for 

shock-structure investigations. Journal of Computational Physics, 2011. 230(1): p. 

260-286. 

137. Cai, C., D.D. Liu, and K. Xu, One-dimensional multiple-temperature gas-

kinetic Bhatnagar-Gross-Krook scheme for shock wave computation. AIAA journal, 

2008. 46(5): p. 1054-1062. 

138. Balsara, D.S. and C.W. Shu, Monotonicity preserving weighted essentially non-

oscillatory schemes with increasingly high order of accuracy. Journal of 

Computational Physics, 2000. 160(2): p. 405-452. 

139. Zhang, X. and C.W. Shu, On maximum-principle-satisfying high order schemes 

for scalar conservation laws. Journal of Computational Physics, 2010. 229(9): p. 

3091-3120. 



258 

 

258 

 

140. Jiang, Z.H., et al., Hermite WENO-based limiters for high order discontinuous 

Galerkin method on unstructured grids. Acta Mechanica Sinica, 2012. 28(2): p. 241-

252. 

141. Zhu, J., et al., Runge–Kutta discontinuous Galerkin method using a new type of 

WENO limiters on unstructured meshes. Journal of Computational Physics, 2013. 

248: p. 200-220. 

142. Zhu, H., Y. Cheng, and J. Qiu, A Comparison of the Performance of Limiters 

for Runge-Kutta Discontinuous Galerkin Methods. Advances in Applied 

Mathematics and Mechanics, 2013. 5(3): p. 365-390. 

143. Zhang, X. and C.W. Shu, On positivity-preserving high order discontinuous 

Galerkin schemes for compressible Euler equations on rectangular meshes. Journal 

of Computational Physics, 2010. 229(23): p. 8918-8934. 

144. Zhang, X. and C.W. Shu. Maximum-principle-satisfying and positivity-

preserving high-order schemes for conservation laws: survey and new 

developments. in Proceedings of the Royal Society of London A: Mathematical, 

Physical and Engineering Sciences. 2011. The Royal Society. 

145. Cheng, Y., et al., Positivity-preserving DG and central DG methods for ideal 

MHD equations. Journal of Computational Physics, 2013. 238: p. 255-280. 

146. Qiu, J. and C.W. Shu, A comparison of troubled-cell indicators for Runge-Kutta 

discontinuous Galerkin methods using weighted essentially nonoscillatory limiters. 

SIAM Journal on Scientific Computing, 2005. 27(3): p. 995-1013. 

147. Krivodonova, L., et al., Shock detection and limiting with discontinuous 

Galerkin methods for hyperbolic conservation laws. Applied Numerical 

Mathematics, 2004. 48(3): p. 323-338. 

148. Goodman, J.B. and R.J. LeVeque, On the accuracy of stable schemes for 2-D 

scalar conservation laws. Mathematics of computation, 1985: p. 15-21. 

149. Rider, W.J. and L.G. Margolin, Simple modifications of monotonicity-

preserving limiter. Journal of Computational Physics, 2001. 174(1): p. 473-488. 

150. Barth, T.J. and D.C. Jespersen, The design and application of upwind schemes 

on unstructured meshes. 1989. 

151. Park, J.S., S.H. Yoon, and C. Kim, Multi-dimensional limiting process for 

hyperbolic conservation laws on unstructured grids. Journal of Computational 

Physics, 2010. 229(3): p. 788-812. 

152. Biswas, R., K.D. Devine, and J.E. Flaherty, Parallel, adaptive finite element 

methods for conservation laws. Applied Numerical Mathematics, 1994. 14(1): p. 

255-283. 

153. Burbeau, A., P. Sagaut, and C.H. Bruneau, A problem-independent limiter for 

high-order Runge–Kutta discontinuous Galerkin methods. Journal of 

Computational Physics, 2001. 169(1): p. 111-150. 

154. Zhang, X., Y. Xia, and C.W. Shu, Maximum-principle-satisfying and positivity-

preserving high-order discontinuous Galerkin schemes for conservation laws on 

triangular meshes. Journal of Scientific Computing, 2012. 50(1): p. 29-62. 



259 

 

259 

 

155. Wang, C., et al., Robust high order discontinuous Galerkin schemes for two-

dimensional gaseous detonations. Journal of Computational Physics, 2012. 231(2): 

p. 653-665. 

156. Michalak, C. and C. Ollivier-Gooch, Accuracy preserving limiter for the high-

order accurate solution of the Euler equations. Journal of Computational Physics, 

2009. 228(23): p. 8693-8711. 

157. Einfeldt, B., et al., On Godunov-type methods near low densities. Journal of 

computational physics, 1991. 92(2): p. 273-295. 

158. Bassi, F., et al., Discontinuous Galerkin solution of the Reynolds-averaged 

Navier–Stokes and k–ω turbulence model equations. Computers & Fluids, 2005. 

34(4): p. 507-540. 

159. Arnold, D.N., et al., Unified analysis of discontinuous Galerkin methods for 

elliptic problems. SIAM journal on numerical analysis, 2002. 39(5): p. 1749-1779. 

160. Zhang, M. and C.W. Shu, An analysis of three different formulations of the 

discontinuous Galerkin method for diffusion equations. Mathematical Models and 

Methods in Applied Sciences, 2003. 13(03): p. 395-413. 

161. Warming, R., R.M. Beam, and B. Hyett, Diagonalization and simultaneous 

symmetrization of the gas-dynamic matrices. Mathematics of Computation, 1975. 

29(132): p. 1037-1045. 

162. Hesthaven, J.S. and T. Warburton, Nodal discontinuous Galerkin methods: 

algorithms, analysis, and applications. 2007: Springer Science & Business Media. 

163. Suzuki, Y. and B. van Leer, A Space-Time Discontinuous Galerkin Method for 

Extended Hydrodynamics. 

164. Toro, E.F., M. Spruce, and W. Speares, Restoration of the contact surface in the 

HLL-Riemann solver. Shock waves, 1994. 4(1): p. 25-34. 

165. Landmann, B., et al., A parallel, high-order discontinuous Galerkin code for 

laminar and turbulent flows. Computers & Fluids, 2008. 37(4): p. 427-438. 

166. Arnold, D.N., et al., Discontinuous Galerkin methods for elliptic problems, in 

Discontinuous Galerkin Methods. 2000, Springer. p. 89-101. 

167. Gassner, G., Discontinuous Galerkin methods for the unsteady compressible 

Navier-Stokes equations. 2009, Universität Stuttgart. 

168. Hartmann, R. and P. Houston, Symmetric interior penalty DG methods for the 

compressible Navier-Stokes equations I: Method formulation. 2005. 

169. Xiao, H. and R.S. Myong, Computational simulations of microscale shock–

vortex interaction using a mixed discontinuous Galerkin method. Computers & 

Fluids, 2014. 105: p. 179-193. 

170. Castillo, P., et al., An a priori error analysis of the local discontinuous Galerkin 

method for elliptic problems. SIAM Journal on Numerical Analysis, 2000. 38(5): p. 

1676-1706. 

171. Cantão, R., et al., development of a 3-D compressible Navier-Stokes solver 

based on a DG formulation with sub-cell shock capturing strategy for fully hybrid 

unstructured meshes. Blucher Mechanical Engineering Proceedings, 2012. 1(1): p. 

868-885. 



260 

 

260 

 

172. Kontzialis, K. and J.A. Ekaterinaris, High order discontinuous Galerkin 

discretizations with a new limiting approach and positivity preservation for strong 

moving shocks. Computers & Fluids, 2013. 71: p. 98-112. 

173. Cockburn, B., et al., Local discontinuous Galerkin methods for the Stokes 

system. SIAM Journal on Numerical Analysis, 2002. 40(1): p. 319-343. 

174. Oliver, T.A., K.J. Fidkowski, and D.L. Darmofal, Multigrid solution for high-

order discontinuous Galerkin discretizations of the compressible Navier-Stokes 

equations. 2006: Springer. 

175. Brezzi, F., et al., Discontinuous Galerkin approximations for elliptic problems. 

Numerical Methods for Partial Differential Equations, 2000. 16(4): p. 365-378. 

176. Xu, Y. and C.W. Shu, Local discontinuous Galerkin methods for high-order 

time-dependent partial differential equations. Communications in Computational 

Physics, 2010. 7(1): p. 1-46. 

177. Cockburn, B., G. Kanschat, and D. Schötzau, The local discontinuous Galerkin 

method for linearized incompressible fluid flow: a review. Computers & fluids, 

2005. 34(4): p. 491-506. 

178. Bassi, F., et al., On the flexibility of agglomeration based physical space 

discontinuous Galerkin discretizations. Journal of Computational Physics, 2012. 

231(1): p. 45-65. 

179. Bassi, F., et al. A high-order discontinuous Galerkin solver for 3-D aerodynamic 

turbulent flows, Proceedings of the European Conference on Computational Fluid 

Dynamics, Egmond aan Zee, The Netherlands, September 5-8, 2006. 2006. Delft 

University of Technology; European Community on Computational Methods in 

Applied Sciences (ECCOMAS). 

180. Shahbazi, K., An explicit expression for the penalty parameter of the interior 

penalty method. Journal of Computational Physics, 2005. 205(2): p. 401-407. 

181. Landmann, B., A parallel discontinuous Galerkin code for the Navier-Stokes 

and Reynolds-averaged Navier-Stokes equations. 2008. 

182. Oliver, T.A., A high-order, adaptive, discontinuous Galerkin finite element 

method for the Reynolds-averaged Navier-Stokes equations. 2008, DTIC Document. 

183. Arnold, D.N., An interior penalty finite element method with discontinuous 

elements. SIAM journal on numerical analysis, 1982. 19(4): p. 742-760. 

184. Qiu, J., B.C. Khoo, and C.W. Shu, A numerical study for the performance of 

the Runge–Kutta discontinuous Galerkin method based on different numerical 

fluxes. Journal of Computational Physics, 2006. 212(2): p. 540-565. 

185. Luo, H., et al., A parallel, reconstructed discontinuous Galerkin method for the 

compressible flows on arbitrary grids. Communications in Computational Physics, 

2011. 9(02): p. 363-389. 

186. Zhang, X. and S. Tan, A simple and accurate discontinuous Galerkin scheme 

for modeling scalar-wave propagation in media with curved interfaces. Geophysics, 

2015. 80(2): p. T83-T89. 

187. Krivodonova, L. and M. Berger, High-order accurate implementation of solid 

wall boundary conditions in curved geometries. Journal of computational physics, 

2006. 211(2): p. 492-512. 



261 

 

261 

 

188. Zhang, X., A curved boundary treatment for discontinuous Galerkin schemes 

solving time dependent problems. Journal of Computational Physics, 2016. 308: p. 

153-170. 

189. Fahs, H., Improving accuracy of high-order discontinuous Galerkin method for 

time-domain electromagnetics on curvilinear domains. International Journal of 

Computer Mathematics, 2011. 88(10): p. 2124-2153. 

190. Luo, H., J.D. Baum, and R. Löhner, On the computation of steady‐state 

compressible flows using a discontinuous Galerkin method. International Journal 

for Numerical Methods in Engineering, 2008. 73(5): p. 597-623. 

191. Persson, P.O. and J. Peraire. Curved mesh generation and mesh refinement 

using lagrangian solid mechanics. in Proceedings of the 47th AIAA Aerospace 

Sciences Meeting and Exhibit. 2009. 

192. Hindenlang, F., Mesh curving techniques for high order parallel simulations on 

unstructured meshes. 2014, University of Stuttgart. 

193. Gao, H., Differential formulation of discontinuous Galerkin and related 

methods for compressible Euler and Navier-Stokes equations. 2011. 

194. Blazek, J., Computational fluid dynamics: principles and applications. 2015: 

Butterworth-Heinemann. 

195. Yoo, C.S. and H.G. Im, Characteristic boundary conditions for simulations of 

compressible reacting flows with multi-dimensional, viscous and reaction effects. 

Combustion Theory and Modelling, 2007. 11(2): p. 259-286. 

196. Liu, J., C.R. Kaplan, and E.S. Oran, A brief note on implementing boundary 

conditions at a solid wall using the FCT algorithm. 2006, DTIC Document. 

197. Parsani, M., M.H. Carpenter, and E.J. Nielsen, Entropy stable wall boundary 

conditions for the three-dimensional compressible Navier–Stokes equations. 

Journal of Computational Physics, 2015. 292: p. 88-113. 

198. Lamarque, N., et al., On the stability and dissipation of wall boundary 

conditions for compressible flows. International Journal of numerical methods in 

fluids, 2010. 62(10): p. 1134-1154. 

199. Bruneau, C.H. and E. Creusé, Towards a transparent boundary condition for 

compressible Navier–Stokes equations. International journal for numerical 

methods in fluids, 2001. 36(7): p. 807-840. 

200. Weber, Y., et al., The numerical simulation of shock bifurcation near the end 

wall of a shock tube. Physics of Fluids (1994-present), 1995. 7(10): p. 2475-2488. 

201. Le, N.T., et al., Langmuir–Maxwell and Langmuir–Smoluchowski boundary 

conditions for thermal gas flow simulations in hypersonic aerodynamics. 

International Journal of Heat and Mass Transfer, 2012. 

202. Zhang, W.M., G. Meng, and X. Wei, A review on slip models for gas 

microflows. Microfluidics and nanofluidics, 2012. 13(6): p. 845-882. 

203. Rooholghdos, S.A. and E. Roohi, Extension of a second order velocity 

slip/temperature jump boundary condition to simulate high speed micro/nanoflows. 

Computers & Mathematics with Applications, 2014. 67(11): p. 2029-2040. 



262 

 

262 

 

204. Beskok, A., G.E. Karniadakis, and W. Trimmer, Rarefaction and 

compressibility effects in gas microflows. Journal of Fluids Engineering, 1996. 

118(3): p. 448-456. 

205. Myong, R., Velocity-slip effect in low-speed microscale gas flows. AIAA Paper, 

2001(2001-3076). 

206. Myong, R., Gaseous slip models based on the Langmuir adsorption isotherm. 

Physics of Fluids, 2004. 16: p. 104. 

207. Myong, R., et al., Velocity slip in microscale cylindrical Couette flow: the 

Langmuir model. Physics of Fluids, 2005. 17: p. 087105. 

208. Myong, R., J. Lee, and T. Cho. Analysis of Unsteady Oscillatory Flows in the 

Slip Regime Using the Langmuir Model. in AIP Conference Proceedings. 2008. 

209. Lockerby, D.A., et al., Velocity boundary condition at solid walls in rarefied 

gas calculations. Physical Review E, 2004. 70(1): p. 017303. 

210. Kurganov, A. and E. Tadmor, Solution of two‐dimensional Riemann problems 

for gas dynamics without Riemann problem solvers. Numerical Methods for Partial 

Differential Equations, 2002. 18(5): p. 584-608. 

211. Zhang, T. and Y.X. Zheng, Conjecture on the structure of solutions of the 

Riemann problem for two-dimensional gas dynamics systems. SIAM Journal on 

Mathematical Analysis, 1990. 21(3): p. 593-630. 

212. Schulz-Rinne, C.W., Classification of the Riemann problem for two-

dimensional gas dynamics. SIAM journal on mathematical analysis, 1993. 24(1): p. 

76-88. 

213. Schulz-Rinne, C.W., J.P. Collins, and H.M. Glaz, Numerical solution of the 

Riemann problem for two-dimensional gas dynamics. SIAM Journal on Scientific 

Computing, 1993. 14(6): p. 1394-1414. 

214. Chang, T., G.-Q. Chen, and S. Yang, On the 2-D Riemann problem for the 

compressible Euler equations. I. Interaction of shocks and rarefaction waves. 

Discrete and Continuous Dynamical Systems, 1995. 1: p. 555-584. 

215. Lax, P.D., Weak solutions of nonlinear hyperbolic equations and their 

numerical computation. Communications on pure and applied mathematics, 1954. 

7(1): p. 159-193. 

216. Lax, P.D. and X.D. Liu, Solution of two-dimensional Riemann problems of gas 

dynamics by positive schemes. SIAM Journal on Scientific Computing, 1998. 19(2): 

p. 319-340. 

217. Liska, R. and B. Wendroff, Comparison of several difference schemes on 1-D 

and 2-D test problems for the Euler equations. SIAM Journal on Scientific 

Computing, 2003. 25(3): p. 995-1017. 

218. Woodward, P. and P. Colella, The numerical simulation of two-dimensional 

fluid flow with strong shocks. Journal of computational physics, 1984. 54(1): p. 

115-173. 

219. Takayama, K. and O. Inoue, Shock wave diffraction over a 90 degree sharp 

corner—Posters presented at 18th ISSW. Shock Waves, 1991. 1(4): p. 301-312. 



263 

 

263 

 

220. Hillier, R., Computation of shock wave diffraction at a ninety degrees convex 

edge. Shock waves, 1991. 1(2): p. 89-98. 

221. Ghia, U., K.N. Ghia, and C. Shin, High-Re solutions for incompressible flow 

using the Navier-Stokes equations and a multigrid method. Journal of 

computational physics, 1982. 48(3): p. 387-411. 

222. Coutanceau, M. and R. Bouard, Experimental determination of the main 

features of the viscous flow in the wake of a circular cylinder in uniform translation. 

Part 1. Steady flow. Journal of Fluid Mechanics, 1977. 79(02): p. 231-256. 

223. Eu, B.C., Kinetic theory of nonequilibrium ensembles, irreversible 

thermodynamics, and generalized hydrodynamics: Volume 1. nonrelativistic 

theories. 2016: Springer. 

224. Karniadakis, G., A. Beskok, and N. Aluru, Microflows and nanoflows: 

fundamentals and simulation. Vol. 29. 2006: Springer Science & Business Media. 

225. Greenshields, C.J. and J.M. Reese, Rarefied hypersonic flow simulations using 

the Navier–Stokes equations with non-equilibrium boundary conditions. Progress 

in Aerospace Sciences, 2012. 52: p. 80-87. 

226. Torrilhon, M., Slow gas microflow past a sphere: Analytical solution based on 

moment equations. Physics of Fluids (1994-present), 2010. 22(7): p. 072001. 

227. Liu, V.C., S.C. Pang, and H. Jew, Sphere drag in flows of almost-free molecules. 

Physics of Fluids, 1965. 8(5): p. 788. 

228. Henderson, C.B., Drag coefficients of spheres in continuum and rarefied flows. 

AIAA journal, 1976. 14(6): p. 707-708. 

229. Goldberg, R., The Slow Flow of a Rarified Gas Past a Spherical Obstacle. 1954. 

230. Bey, K.S., J.T. Oden, and A. Patra, A parallel hp-adaptive discontinuous 

Galerkin method for hyperbolic conservation laws. Applied Numerical 

Mathematics, 1996. 20(4): p. 321-336. 

231. Baggag, A., H. Atkins, and D. Keyes, Parallel implementation of the 

discontinuous Galerkin method. 1999: Institute for Computer Applications in 

Science and Engineering, NASA Langley Research Center. 

232. Su, W., A.A. Alexeenko, and G. Cai, A parallel Runge–Kutta discontinuous 

Galerkin solver for rarefied gas flows based on 2-D Boltzmann kinetic equations. 

Computers & Fluids, 2015. 109: p. 123-136. 

233. Löhner, R. and J.D. Baum, Handling tens of thousands of cores with 

industrial/legacy codes: Approaches, implementation and timings. Computers & 

Fluids, 2013. 85: p. 53-62. 

234. Karypis, G. and V. Kumar, A fast and high quality multilevel scheme for 

partitioning irregular graphs. SIAM Journal on scientific Computing, 1998. 20(1): 

p. 359-392. 

235. Grama, A., Introduction to parallel computing. 2003: Pearson Education. 

236. Amdahl, G.M. Validity of the single processor approach to achieving large scale 

computing capabilities. in Proceedings of the April 18-20, 1967, spring joint 

computer conference. 1967. ACM. 



264 

 

264 

 

  



265 

 

265 

 

 


