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With the advancement of fabrication technology and miniaturization, fluid flows at micro- and nano- 
scales has received considerable attention. Flow characteristics in these systems significantly vary from 
those of macro- scale devices, due to geometric restrictions. In such cases, Navier-Stokes-Fourier(NSF) 
equations with no-slip condition may not be valid for studying gas flows inside a micro- cavity. This 
article therefore investigates the cavity flows using modified NSF equations with velocity slip and 
temperature jump conditions. In the present case, a monatomic gas is considered for modelling gas 
flows. To accurately predict the flow physics, mixed modal discontinuous Galerkin(DG) method is being 
developed. The flow characteristics of monatomic gas is studied by varying the Reynolds number(Re) and 
Knudsen number(Kn), respectively. Results obtained are compared with the previous results and are 
found to be in good agreement with them.
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1. Introduction

Industrial, commercial and governmental research 
organizations are constantly working on miniaturization of 
devices to satisfy the consumer needs. These devices 
include hard-disk drive heads, ink-jet printer heads, micro 
heat-exchangers, micro pumps, and turbines. The gas flow 
under these micro-systems significantly varies from that of 
conventional (macro-systems) devices, as the characteristic 
length reduces to few microns. Under such circumstances, 
Navier-Stokes-Fourier(NSF) equations with no-slip 

boundary conditions may not remain valid, as the flow 
enters into non-equilibrium conditions[1,2]. In the past, 
several studies have been conducted to prove the inability 
of NSF equations with no-slip boundary conditions to 
study micro- fluids[3-5].

At micro scales, number of intermolecular collisions are 
significantly reduced, and thus non-equilibrium effects start 
to dominate[4]. This degree of rarefaction of a gas is 
defined with the Knudsen number(). To describe the 
rarefied gas, the Boltzmann transport equation(BTE) is 
consequently considered as the fundamental equation. In 
the past, several methods have been devised to solve these 
equations, out of which Direct Simulation of Monte Carlo 
(DSMC) method is often used for numerical simulation of 
BTE[6]. However, DSMC is subject to high statistical 
noise at low flow speeds, which is a typical situation for 
micro gases. Also, DSMC is computationally expensive in 
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nature[7]. To overcome these shortcoming, NSF equations 
with velocity slip and temperature jump boundary 
conditions are considered due to its ability to predict 
non-equilibrium effects. These modified equations are 
hereafter called as modified NSF equations in rest of this 
paper. Until now, very few studies have been presented to 
study cavity flows using modified NSF equations[4], which 
is the main objective of this study.

Among the existing numerical methods, discontinuous 
Galerkin(DG) method is often considered to compute low 
Mach number flow problems as it does not require 
time-preconditioning techniques, which are often required 
in finite volume method(FVM)[8]. The essential idea of 
the DG method is derived from the shape functions which 
are considered discontinuous across the element boundaries. 
This feature enables it to avoid the need of assembling 
global matrix leading to less in-core memory required in 
computation when compared with continuous Galerkin 
method[9]. Although the DG method looks attractive, it 
was considered difficult to implement for NSF equations, 
until Bassi and Rebay[10] presented a novel approach, 
called as “mixed” DG method. Till date, no works based 
on explicit mixed modal DG method for the modified 
NSF equations is being reported for low-Mach gas flow 
inside a lid-driven cavity.

In this study, we aim to investigate the rarefied 
monatomic gas flow inside a lid-driven cavity. For this 
purpose, a high order mixed modal discontinuous Galerkin 
method is employed to solve the two-dimensional 
conservation laws. In the present work, we studied the 
effect of Reynolds number() and  on the flow 
characteristics of cavity flows. To verify these results, 
comparison with the literature is also presented.

2. Mathematical Formulation and Numerical Procedure

2.1. Problem definition
Figure 1 presents a schematic diagram of the lid-driven 

cavity. The computational domain is set to be a square  
with    and   . The top wall of the cavity moves 
with a constant velocity ( ) in  direction. The 
other wall boundaries at    and    and    are 
assumed stationary. All the walls are considered to be 
isothermal, with a temperature    K.

Here we consider monatomic rarefied argon gas 
confined in the geometry with a shear viscosity index of 
. In all simulations, the Knudsen number  ranges 
from  to , which is expressed as:

Fig. 1 Schematic diagram of lid-driven square cavity

 

 



 . (1)

The current work details the study of both continuum 
and non-continuum flows. In case of continuum flows, 
three values of   (based on the corresponding  for a 
given Mach number) are considered, i.e.,   = ,  
and . For the case of non-continuum flows, three 
values of  are studied, i.e.,  = ,  
and .

Additionally, we also performed a grid study to find 
computationally efficient mesh characteristics. All numerical 
simulations are performed with the specified top wall 
boundary condition for a constant moving velocity field in 
the x direction. This velocity field is calculated in 
reference to low Mach number M = . The cavity 
presented is subjected to partial slip boundary condition 
which is imposed on these walls[11]. In all simulations, 
flow is assumed to be unsteady and laminar.

2.2. Governing equations for monatomic gas
The Boltzmann kinetic equation for monatomic gas 

particles can be expressed as, in case of no external field,




v⋅∇vr. (2)

where f, v, r, and  represent the distribution function, 
the particle velocity, the particle position, and the collision 
integral, respectively[12]. In reference to gas kinetic 
theory, there are two different sets of macroscopic 
variables including the conservative variables    and 
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the non-conservative variables, viscous shear stresses and 
heat fluxes,  . These variables can be represented by 
a statistical formula

 〈〉 (3)

where the angular bracket denotes the integration over the 
variable v. The  indicates the molecular expressions 
for moments. The leading elements of the set of the 
conservative variables and non-conservative variables are 
defined as

        

   P    Q 

(4)

with the molecular expressions corresponding to this set

   v   


 

  cc    


 

(5)

Here  is the density,   is the average velocity vector, 
E is the total energy density, p is the pressure, m is the 
molecular mass, c denotes the peculiar velocity of the 
molecule, and  represents the enthalpy density per unit 
mass. The symbol    denotes the traceless symmetric 
part of the second rank tensor. The shear stresses are 
related to the stress tensor P  through the relation

  (6)

where   is the unit second rank tensor. The expressions 
(5) are collision invariants and there is no dissipation term 
for the conserved variables. Thus the kinetic equation (2) 
can be derived into a set of evolution equations of 
conserved variables according to the conservation laws as 
follow,



 








∇⋅




 







∇⋅




 


⋅




 . (7)

The equation (7) can be written in non-dimensional 
vector form using proper dimensionless variables and 
parameters as [12],




∇⋅∇⋅∇  . (8)

where the conservative vector  , the inviscid flux vector 
  and the viscous flux vector   are given by

 









 



































⋅Pr









(9)

Here the dimensionless numbers, Mach(M), Reynolds 
(Re), Eckert(Ec) and Prandtl (Pr), can be defined as

≡


 ≡




 ≡ Pr≡






(10)

where the subscript r stands for the reference state,  is 
the specific heat ratio, T is the temperature, R is the gas 
constant, and   is the reference heat capacity per mass 
at constant pressure.

For the classical Navier-Stokes-Fourier model, the stress 
tensor   and the heat flux vector  are computed by 
the Newtonian law of shear and the Fourier law of heat 
conduction, respectively, as follows,

 ∇   ∇ , (11)

where  and  are the Chapman-Enskog viscosity, and 
the thermal conductivity, respectively, for the monatomic 
molecule and can be expressed as,

      and   


 . (12)

The  denotes the exponent of the inverse power laws 
for the gas particle interaction potentials[8].

2.3. Discontinuous Galerkin formulation
The computational domain is discretized using the 
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mixed modal DG method in reference to Bassi and 
Rebay[10] formulation. This formulation determines the 
value of the second-order derivatives present in viscous 
terms by adding auxiliary unknowns S, because the 
second-order derivatives cannot be accommodated directly 
in a weak formulation using a discontinuous function 
space. Therefore, S can be defined as the derivative of 
either primitive or conservative variables U. Hence, 
equation (7) can be reformulated as the coupled system 
for S and U as




∇⋅∇⋅  

 ∇ 

(13)

These equations refer to a coupled system of equations 
in which the computational domain is decomposed into 
unstructured triangular elements. The exact solutions of U 
and S are approximated by the DG polynomial 
approximations of   and   , respectively.

 
 




 

  
 




  ∀ ∈

(14)

where 
   and 

   are the local degrees of freedom 
of U and S,   is the basis functions for finite 
element space, and  is the number of required basis 
function for the k-exact DG approximation. In the present 
work, second order of Dubiner basis functions and third 
order explicit DG scheme are adopted for triangular 
elements. The mixed system (13) is multiplied with the 
test function, which is taken to be equal to the basis 
function  , and then integrated by parts over an 
element . This results in the weak formulation of the 
mixed system for   and   ,
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Fig. 2 Comparison of shear stress and heat flux along the walls of 
cavity for different meshes, at  and 
 

where n is the outward normal vector,  and  denote 
the volume and boundary of the element, respectively. In 
the above formulation, the Gaussian-Legendre quadrature 
rule has been implemented for both boundary and volume 
integrations. Therefore, the volume and boundary integrals 
in equation (15) are computed using 2k and 2k+1 order 
accurate Gauss quadrature formulas, respectively[8]. Three 
quadrature points on edges and 5 quadrature points inside 
the elements are used for boundary and volume 
integrations. In this work, we considered local 
Lax-Friedrichs and BR1 schemes for inviscid and viscous 
terms, respectively. In order to limit the spurious 
numerical fluctuations in the solutions for higher order 
schemes, positivity preserving limiter is used. A third-order 
total variation diminishing Runge-Kutta(TVD-RK) method 
is employed for explicit time marching[13]. Furthermore, 
in order to simulate gas-solid slip, the maxwell velocity 
and temperature slip/jump conditions[14] are considered.

3. Grid Study and Verification of the Code

In this section, we describe the grid independency and 
verification studies for the code in reference to argon gas.

3.1. The grid independency test
In order to minimize the computational cost, simulations 

are carried out using four grid resolutions Mesh1=
×, Mesh2=× , Mesh3=×  and 
Mesh4=×  for unstructured triangular elements. To 
ensure grid independence, distributions of the shear 
stresses and heat fluxes along wall boundaries are 
investigated. Figure 2 shows the comparison of shear 
stress and heat flux, along the walls of the cavity for 
different meshes, at   ,  and 
. In these figures, it has been observed that the 
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Fig. 3 Comparison of profiles: (a) “u” velocity along the vertical central line (y/L), and 
                                                      (b) “v” velocity along the horizontal central line (x/L), at     

simulation errors for coarse grids are more pronounced on 
the moving lid. This can be attributed due to the presence 
of higher gradients on the moving lid when compared to 
the stationary walls. In all, both Mesh3 and Mesh4 
performed similar. However for computational efficiency, 
grid resolution of Mesh3=×  is considered in the 
present case. All numerical simulations are performed with 
Courant-Friedrichs-Lewy(CFL) number of .

3.2. Verification of the code
For verification of the present work, we first studied 

flow in the continuum regime and later flow in the 
non-continuum regime. In case of continuum regime, we 
compared our results with Ghia et al.[15] for three 
different Re. The plot of profiles for velocity field in x- 
and y- directions along central line of the cavity are 
considered. Figure 3 outlines the comparison of “u” and 
“v” velocity components along the vertical and horizontal 
central lines of the cavity, at   = ,  and . 
Based on these plots, it can be found that our results are 

(a) (b)

Fig. 4 Comparison of profiles: (a) “u” velocity along the vertical 
central line (y/L), and (b) “v” velocity along the horizontal 
central line (x/L), at     

in good agreement with previous results in the literature. 
For the case of non-continuum regime, we compared the 
velocity profiles with Wang et al.[16], for argon gas at 
 and   , as shown in Fig. 4. Fairly 
good agreement with previous results is obtained from 
these plots.
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grid resolution of Mesh3=×  is considered in the 
present case. All numerical simulations are performed with 
Courant-Friedrichs-Lewy(CFL) number of .

3.2. Verification of the code
For verification of the present work, we first studied 

flow in the continuum regime and later flow in the 
non-continuum regime. In case of continuum regime, we 
compared our results with Ghia et al.[15] for three 
different Re. The plot of profiles for velocity field in x- 
and y- directions along central line of the cavity are 
considered. Figure 3 outlines the comparison of “u” and 
“v” velocity components along the vertical and horizontal 
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Based on these plots, it can be found that our results are 
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Fig. 4 Comparison of profiles: (a) “u” velocity along the vertical 
central line (y/L), and (b) “v” velocity along the horizontal 
central line (x/L), at     

in good agreement with previous results in the literature. 
For the case of non-continuum regime, we compared the 
velocity profiles with Wang et al.[16], for argon gas at 
 and   , as shown in Fig. 4. Fairly 
good agreement with previous results is obtained from 
these plots.
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        

Fig. 5 Streamline plots of lid-driven cavity at different  : (a) 100, (b) 400 and (b) 1000, for  

4. Results and Discussion

In this section, numerical simulations for the 
two-dimensional(2D) lid-driven cavity are presented. In the 
first part, near-equilibrium flows are simulated and 
compared. In the second part, rarefied flow using modified 
NSF equations are computed.

4.1. Effect of Reynolds number on cavity flows
Three cases are selected to explain the effect of the 

Reynolds numbers:   = ,  and  for same 
Mach number,  . In these simulations, the wall 
velocity is kept fixed i.e.,    . Depending upon 
the  ,  is varied in reference to equation (1). In all 
simulations, CFL is taken for numerical convergence. 
Initial temperature of argon gas is assumed to be same as 
the wall temperature (  ). The variable hard 
sphere (VHS) model is considered for molecular collisions 
and viscosity index is set to .

Figure 5 shows the streamline plot for lid-driven cavity 
at different  . The distributions illustrate that both 
primary and secondary vortices are efficiently captured. 
Also it has been noticed that as the   increase, the 
centre of primary vortex shift towards the centre of cavity 
and secondary vortices gain strength which is in agreement 
with the previous results, Ghia et al.[15]. Also, it has 
been observed that as the   , tertiary vortex 
appears at the top left corner of the cavity. These plots 
clearly agree with the plots of velocity profiles as shown 
in Fig. 3.

Figure 6 shows the comparison of contour plots of 
flow variables i.e., “u” velocity, mach number, pressure 
and temperature fields, for the lid-driven cavity based on 

different  , at . These plots clearly show that 
as the   increases, distinct primary vortex is formed at 
the centre of the cavity. Also it is observed that the 
temperature distribution remains isothermal across the 
stationary walls. However, in the vicinity of moving wall, 
higher temperature gradients are noticed due to constant 
moving wall and high pressure gradients. In general, it is 
noted that the expansion cooling does not occur in these 
tests, as ≈ in almost the entire region. Thus, 
viscous dissipation governs the overall heat transfer 
mechanism. Moreover, it has been found that the   
significantly affect the temperature distribution. As the 
value of   increase, low temperature field is obtained at 
the centre of cavity which is apparently absent at 
  .

4.2. Effect of Knudsen number on cavity flows
In this part, we consider three test cases to investigate 

the effect of Knudsen numbers:  = ,  
and  for the gas at  . In these simulations, 
the wall velocity is kept fixed i.e.,    . And 
CFL number is set to 0.1. Initial temperature of gas is 
assumed to be same as the wall temperature 
(  ). The variable hard sphere(VHS) model 
is considered for molecular collisions and viscosity index 
is set to .

Figure 7 shows the comparison of velocity profiles 
along central lines of the cavity at , with 
Wang et al.[16]. As detailed in these plots, velocity field 
closely follows the literature. In the Fig. 7, comparison of 
contour plots of velocity, Mach number, pressure and 
temperature fields are presented for NSF and modified 
NSF equations. In these plots, no major difference is 
observed between the contour plot of velocity and Mach 
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Fig. 6 Contour plots of flow variables: (a) “u” velocity, (b) Mach number, (c) pressure, and 
                                                  (d) temperature, for lid-driven cavity at different   and  



68 / J. Comput. Fluids Eng. T. Chourushi ․ S. Singh ․ R.S. Myong

(a)

(b)

(c)

(d)
        

Fig. 6 Contour plots of flow variables: (a) “u” velocity, (b) Mach number, (c) pressure, and 
                                                  (d) temperature, for lid-driven cavity at different   and  
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(a)

(b)

(c)

(d)
NSF modified NSF

Fig. 7 Comparison of contour plots: (a) “u” velocity, and (b) Mach 
number, (c) pressure, and (d) temperature, for NSF and 
modified NSF equations for cavity flows, at 
    

number. In case of the modified NSF equations, low 
pressure region on the top-left corner of the cavity is 
efficiently captured which is absent for the NSF equations. 
In case of slip, gas density reduces near the top-left 

(a) (b)

(c)

Fig. 8 Comparison of heat flux stream traces overlaid on 
temperature contours (K) for the cavity, at different : 
(a) , (b) , and (c) 

corner of the cavity which gives rise to low pressure 
region. By incorporating slip condition, this behavior is 
well captured. Also, the contour plots of temperature field 
slightly differ for the NSF and modified NSF equations. 
In general the NSF equation under-predicts the temperature 
field when compared with the modified NSF equation.

In order to further evaluate this difference for 
non-continuum flows, the plot of heat flux stream traces 
overlaid on temperature contour is illustrated in Fig. 8. 
The results show that the trend in the temperature field is 
from hot to cold regions. In case of low  (i.e., 
 ) flows, ≈ in almost the 
entire region so viscous dissipation dominates the heat 
transfer mechanism. With the further increase in  (i.e., 
), both expansion cooling and viscous 
dissipation are observed, which governs the heat transfer 
mechanism for rarefied gas cavity flows. At the top left 
corner of the cavity, expansion cooling phenomena is 
noticed, as   , which is almost absent at low .

In Fig. 9, “u” and “v” velocity components along 
vertical and horizontal central lines of the cavity are 
presented, respectively for  =  and . 
For flow near to continuum regime (i.e.,  ), 
“v” velocity component is close to zero at both left and 
right stationary walls of the cavity. However, for 
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Fig. 9 Comparison of profiles: (a) “u” velocity along the vertical 
central line (y/L), and (b) “v” velocity along the horizontal 
central line (x/L), at and 

Fig. 10 Comparison of velocity streamlines overlaid on shear stress 
contours for the cavity(=)

non-equilibrium flows “v” velocity slip attains a finite 
value, as referred in the plots. Also, it has been found 
that with increasing , the gradients of “v” velocity 
component tends to be smoother.

Finally, Fig. 10 shows the velocity streamlines 
superimposed on viscous shear stress contours. At this low 
 , streamlines are symmetric with respect to the central 
vertical line of the cavity, which is in agreement with 
previous literature[17]. Furthermore, in this plot it has 
been observed that the top corners of the cavity generates 
maximum shear stress. Also, at this plot the shear stresses 
are non-symmetric with respect to the central vertical line 
of the cavity. In general, comparatively high shear stresses 
are found at the top right corner of the cavity.

5. Conclusion

In this study, the flow characteristics inside a lid-driven 
square cavity is presented by solving two-dimensional 
conservation laws for monatomic gas. A high order 
discontinuous Galerkin method is employed for spatial and 
time integrals.

The effect of Reynolds number and Knudsen number 
on the flow and thermal characteristics of a monatomic 
gas in a lid-driven cavity are discussed in detail. It has 
been observed that as the   increase, distinct primary 
and secondary vortices are formed. Moreover, low 
temperature field at the centre of cavity is noticed at high 
  which is apparently absent at   . In the later 
case when  is varied, it has been found that both the 
pressure and temperature fields are not well captured by 
NSF equations. As the  increases, smoother profiles 
are obtained for v-velocity component. For continuum 
flows, viscous dissipation governs the heat transfer 
mechanism. Alternatively, for flow under non-equilibrium 
conditions, it reveals that both expansion cooling and 
viscous dissipation dictate the heat transfer mechanism.
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vertical line of the cavity, which is in agreement with 
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been observed that the top corners of the cavity generates 
maximum shear stress. Also, at this plot the shear stresses 
are non-symmetric with respect to the central vertical line 
of the cavity. In general, comparatively high shear stresses 
are found at the top right corner of the cavity.

5. Conclusion

In this study, the flow characteristics inside a lid-driven 
square cavity is presented by solving two-dimensional 
conservation laws for monatomic gas. A high order 
discontinuous Galerkin method is employed for spatial and 
time integrals.

The effect of Reynolds number and Knudsen number 
on the flow and thermal characteristics of a monatomic 
gas in a lid-driven cavity are discussed in detail. It has 
been observed that as the   increase, distinct primary 
and secondary vortices are formed. Moreover, low 
temperature field at the centre of cavity is noticed at high 
  which is apparently absent at   . In the later 
case when  is varied, it has been found that both the 
pressure and temperature fields are not well captured by 
NSF equations. As the  increases, smoother profiles 
are obtained for v-velocity component. For continuum 
flows, viscous dissipation governs the heat transfer 
mechanism. Alternatively, for flow under non-equilibrium 
conditions, it reveals that both expansion cooling and 
viscous dissipation dictate the heat transfer mechanism.
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