28 / BRMLUTHZ S| X|

A12d A435. 2007. 12

DEVELOPMENT OF A THREE-DIMENSIONAL MULTI-BLOCK STRUCTURED
GRID DEFORMATION CODE FOR COMPLEX CONFIGURATIONS
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In this study, a multi-block structured grid deformation code based on a hybrid of a transfinite
interpolation algorithm and spring analogy was developed. The configuration was modeled by a Bezier
surface. A combination of the spring analogy for block vertices and the transfinite interpolation for interior
grid points helps to increase the robustness and makes it suitable for distributed computing. An elliptic
smoothing operator was applied to the block faces with sub-faces in order to maintain the grid smoothness
and skewness. The capability of this code was demonstrated on a range of simple and complex configurations

including an airfoil and a wing-body configuration.
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1. INTRODUCTION

Numerical simulation of unsteady flow with multi-block
structured grids arises in many engineering applications
such as fluid-structure interaction (FSI), control surface
movement and aerodynamic shape optimization design.
One critical part in these applications is the updating of
the computational grid at each time step. The new grid
can either be regenerated or dynamically updated. The first
approach is a natural choice that consists of regenerating
the computational grid at each time step during time
integration. However, a grid generation for a complex
configuration is by itself a nontrivial and time-consuming
task. Although some robustness problems for large
deformation remain to be solved, the dynamic grid is
inexpensive and appropriate for practical problems.
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The development of an efficient and robust grid
deformation methodology that can maintain the quality of
the initial grid generated by a commercial grid generation
package has been the subject of various studies in the
past. Many methodologies such as transfinite interpolation
(TFI), isoparametric mapping, elastic-based analogy and
spring analogy have been proposed. Some of them are
computationally efficient but less robust with respect to
the crossover cells while others are more robust but very
computationally expensive. An algebraic method was used
to deform the grid by redistributing grid points along grid
lines that are in the normal direction of the surfacefl].
The transfinite interpolation (TFI) method had also been
used to regenerate a structured grid. A detail analysis of
TFI method and pros and cons of this method for
multi-block structured grids were given by Dubuc et al.[2].
Algebraic methods are fast but work well only for small
deformation[3]. Large deformation can cause a crossover
of grid lines or produce a poor quality grid. A spring
analogy method initially proposed by Nakahashi and
Deiwert was applied to aero-elasticity problems by
Batina[4]. A comparison of the spring analogy and an
elliptic grid generation was presented by Bloom[5]. It is
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well known that the standard spring analogy will result in
an inversion of elements for large deformation. To
overcome this drawback, numerous schemes such as
torsional, semi-torsional and ortho-semi-torsional spring
analogies were suggested[6,7]. This method as well as the
elastic ~analogy can adapt to significant surface
deformations but their computational cost is expensive for
complex problems with a large number of grid points. In
addition, it has been widely applied to unstructured grid
deformation[8].

The hybrid approach, a useful compromise between
algebraic and iterative approaches, has been proposed in
the recent years. Tsai et al[l] provided a new scheme
which combines the spring analogy and TFI method in
Algebraic and Iterative Mesh 3D (AIM3D) code. Based on
this scheme, Spekreijse et al[3] introduced a new
methodology that replaces the spring analogy using the
volume spline interpolation. Although these schemes
provide relatively good results, a major drawback remains
involving the sub-faces problem. To overcome this
disadvantage, Potsdam and Guruswamy[9] proposed a
point-by-point methodology. Instead of computing the
displacement of block vertices, the nearest surface point,
the surface spline, the blending function and the decay
function are combined to define the deformed surfaces of
a block. In order to improve the orthogonality of the grid
lines near the configuration surfaces, Samareh[§]
introduced a quaternion methodology. Although many
algorithms were developed, considerable efforts have been
devoted to the development of robust and efficient
techniques for grid deformation. Bartels[10] proposed a
new methodology that combines a definition of material
properties and transfinite interpolation to generate a
deformed mesh.

Another important problem with multi-block structured
grid deformation is the handling of blocks, in general
connected in an unstructured fashion, in a distributed
computing context wherein the blocks are typically
distributed over different processors. Therefore, a grid
deformation method should allow deformation to be
accomplished on each processor without having to gather
all of the blocks on one processor and with little
communication between processors. This problem was first
discussed and solved by Tsai et al.[1]. Another problem is
to ensure matching between block faces in the matched
multi-block structured grid concept.

In this study, an efficient and robust deformed grid
code substantially based on the technique proposed by
Tsai et al[l] was developed. This algorithm is a

combination of the spring analogy and TFI methods. It is
easy to implement this algorithm in a distributed parallel
computing context. In the first step, the configuration
surface is parameterized using a Bezier surface. The
second step consists of determining the displacement of all
block comer points by using the spring analogy. In
general, the number of blocks, and hence the number of
vertices are far fewer than the volume grid points
implying that the computational cost for this step is small.
Once new coordinates of the corner points are determined,
the TFI method is used to compute the deformation of
edge, face and volume grid points in each block
separately. The previous approach does not ensure the
quality of block faces that are constituted by several
patches with different boundary conditions. To solve this
problem, instead of block faces, the TFI method is applied
to each patch of block faces. An elliptic smoothing
operator with only one or two iterations is applied to
these patches to improve the grid quality on these block
faces. To ensure the matching on the block interfaces,
mesh points are redistributed using an averaging of mesh
point coordinates on the interfaces.

In the next section, the shape parameterization, the
spring analogy technique, and then the arc-length-based
TFI technique are presented. Various numerical results of
grid deformation of several simple and complex
configurations such as an airfoil and a wing-body
configuration are presented in order to demonstrate the
capability of the proposed grid deformation code.

2. SHAPE PARAMETERIZATION

In a design optimization problem, parameterization of
the configuration is one of crucial areas of concern. It is
necessary to compromise between the accuracy of a
parameterization technique and the number of required
parameters. Among the approximation techniques, a Bezier
curve/surface is one of the most popular approaches. The
design parameters for this case are the positions of the
control points of the Bezier curves.

A Bezier curve/surface[11] in RY (d=2 or 3) of
degree n supported by a control polygon of n+1 control
points p,ER? (with k=0,1,-+-,n) is

k
z(t) = Z]()B:(wpk (1

Here, BF(t) is the Bemnstein polynomial B/(¢) =
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Fig. 1 RAE2822 airfoil, 16-degree Bezier curve-fits, and control

polygons of upper and lower curves

CHF(1—1)"* in which C*=n!/K(n—k)! and the
parameter £ varies from 0 to 1.

A procedure used to compute the coordinate of the
control points from configuration surfaces is proposed by
O[12]. The formula of the Bezier curve can be written in
a matrix form

[X(f,ﬂ = [B;.A-Hpk] (2)

Multiplying the transpose of matrix 7 to this equation
yields

[B,-,A-]T[B,,k“l?k] = [BLA»}T[X(Q)] (3)

The solution of this system of linear equations is the
coordinates of the control points. For the Bezier surface, a
similar process can also be applied.

To demonstrate the capability of this approximation
method, Bezier curves were used to represent the upper
and lower curves of the RAE2822 airfoil. Seventeen
control points are used for each curve. The condition in
which the first and last control points of two Bezier
curves are lidentical ensures the coincidence of the two
curves.

To examine the accuracy of this shape parameterization
technique, the tolerance between the Bezier curves and the
initial RAE2822 airfoil is formulated as

roL=3 ra=5)" s ) (4)

N

in which /V is a number of discrete points of the airfoil.

In this example the tolerance is approximately 10 °. It
was demonstrated that this error is adequate for an
optimization design.

While this method offers an acceptable accuracy and a
small number of required parameters, a minor drawback
exists nonetheless. If a design surface is represented by a
number of patches, the matching between these patches
must be guaranteed. Due to the computational error
associate with the Bezier surface, it is not feasible for this
problem. In order to solve the matching problem, an
averaging of mesh point coordinates between two adjacent
patches should be applied to eliminate the computational
error.

3. MULTI-BLOCK STRUCTURED GRID DEFORM-
ATION APPROACH

The grid deformation code developed in this study is
substantially based on a combination of the algebraic and
iterative methods proposed by Tsai et al[l]. Algebraic
methods such as transfinite interpolation (TFI) are
inexpensive to run but cannot solve large deformation
problems. This drawback can be overcome by using
iterative  methods such as the spring analogy.
Unfortunately, these methods require a high computational
cost. A hybrid approach combining these two approaches
will naturally inherit the robustness of the iterative method
and the efficiency of the algebraic method.

The first step of the hybrid method used in this study
consists of computing the displacement of all vertices of
each block. In a multi-block structured grid context, the
arrangement of blocks is generally unstructured so that the
motion of these comner points is determined by the spring
analogy. TFI is then applied to compute the displacement
of the interior grid points in each block.

3.1 SPRING ANALOGY

The concept of the spring analogy[4] is adopted for
determining the movement of the block vertices. Spring
analogy models can be categorized into two types: vertex
model and segment model. In this study, the segment
model is applied to the grid deformation code. The corner
points are viewed as a network of fictitious springs with
the stiffness defined as follows
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Fig. 2 A suitable strategy for parallel multi-block structured
grid deformation

Spring stiffness is computed for all 12 edges and 4
cross-diagonal edges of a block. These cross-diagonal
edges are utilized in the control of the shearing motion of
the grid cells. The coefficients A\ and 5 are used to
control the stiffness of the grid cells. Typically, the
coefficients A and  are assumed to be 1 and 0.5,
respectively, which implies that the stiffness is inversely
proportional to the length of the connecting edges[1].

It is assumed that the displacement of the configuration
surface is prescribed. The motion of the corner points of
each block is determined by solving the equations of static
equilibrium

2 k(07 -87)=0 ©)

The static equilibrium equations are iteratively solved as
follows

K Sk, (), . ik”(oj\»)j >k, (52)!
(e = [ =R = P )
2k, 2k, 2k

3.2 TRANSFINITE INTERPOLATION (TFT)

After computing the movement of all block vertices, the
volume grid in each block can be determined by using the
arc-length-based TFI method described below. It has been
demonstrated that this method preserves the characteristics
of the initial mesh. The process to implement the TFI
method[1] includes the following steps:

- Parameterize all grid points.

- Compute the grid point deformations by using the one-,
two- and three-dimensional  arc-length-based  TFI
techniques

- Add the deformations to the original grid to obtain the

new grid.

A multi-block structured grid consists of a set of
blocks, faces, edges and vertices. Each block has its own
volume grid defined as follows

XB= {-",A/.A.- [ =1, imax:

j=1,gmar; k=1, kmax}

In the parameterization process, the normalized
arc-length-based parameter for each block along the grid
line in the 7 direction is defined as
+

=Sic1jk

‘sz max. j.k

Similarly, the parameters G, and 77 ;, for the j and
k directions, respectively, can be defined.

The second stage involves computing the displacement
of the edges, surfaces and block points based on the one-,
two- and three-dimensional TFI formulas, respectively.
From the displacement of the configuration surfaces, the
interpolated values of the deformation are created by using
the TFI method, allowing the new grid obtained by adding
the deformations to the initial mesh to maintain the
quality of the original grid.

The one-dimensional TFI in the ¢ direction is simply
defined by

AE,,, :(I_E.l.l)APl.l.l +F AR )

Here, AP is the displacement of the two corner points of
the block edge. The displacement of the block surface (for
example, the surface in the plane k= 1) is computed by
the two-dimensional TFI formula

ASV./.] = (] = E./.I )AEI./.I 3 I:H.IAErmn\./J
+(1_Gr./,l)(AEl.].] _(l_Fl.;.l )APU.[ *Fr./.lAP‘v.u) (10)
+G:.,.1 (AEI./nmx.l _(l = F,./.x )A[)l..\“_l - E./.IAP\A.\/.I )

After computing the deformation of all surfaces and edges,
the standard three-dimensional TFI formula[13] is used to
determine the displacement of all volume grid points
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=VI+V2+V3-VI2-VI3-V23+V123 (11
where
Vi=(1-F,,, )AS,,, +F,,AS,

ij.k fmax, j,k

+G, . AS,

iLk ij.k i, jmax.k

+H. . AS.

Ll ij.k i, jk max

Vi2= (I_F;',j,k)(l Gija )AE”'"

+(1=F,, )G, ,AE, s
+F,, (1=G, VA, s
+F, kGljkAElmaxjmaxk
v13=(1-F,, )(1-H,,,)AE, ,, (12
+(1=F ) H, , ,AE, | e
+F,,, (1=H, ) AE
+F,H, WAE, i kmax
vi23=(1-F,,)(1-G,, )(1-H,,, )AR,,
+(1 E/k)(l uk) UkAPllkmax
+(1-F, )G, (1-H,,,)AP,, ..
+(1=F, )Gyt iAP, poimme
+F,, (1=G, 1= H, 4 ) AR s

+F;1k(1 ank) ij.k lmaxlkmax
+F:]kGljk 1 Hl] ) imax, j max,l
+F;jkGlijr]kARmaxjmakaax

3.3 SMOOTH OPERATOR : FILIPTIC DIFFERENTIAL EQUATION

There are cases in which only a certain portion of a
surface is extremely distorted. To accommodate such
problems, a smooth operator is locally applied to alleviate
the distortion. In this study, an elliptic differential equation
is used to smooth the deformed grid[14].

apk, +ayry, —2a,r, =0 (13)
with

Xer Xon Xen

M= Ve b 2 = | Vg |» 2 =| Ve

Zg Zon Ze

2 2 2
a, =x5 +y§ +Z§

a, =x2 +y:,I+Z2 (14)
=x.x, + YV, T 2.2,
_05( Xy =%is)

x,=0.5(x, 0 =%, )

Xer =X, —2X 4%,

Xon =X 50 —2x, ,+ X, i
—025( Kiatjel " Fien i1 ~ Fion et T X o 1)

An elliptic operator is used only for the sub-faces to
eliminate possible distortion after applying the TFI method.
To maintain the efficiency of this code, only one or two
elliptic smoothing iterations are used. As the TFI method
has previously been used at this point, one or two
iterations are sufficient to enhance the smoothness of the
deformed grid. When the elliptic smoothing operator is
applied, the computational time is in general only 10%
higher than the original time required by the standard
methodology. However, the grid quality is significantly
improved.

4. COMPUTATIONAL RESULTS

4.1 AIRFOIL DEFORMATION

The following test cases demonstrate the efficiency and
the robustness of the proposed grid deformation code. The
performance of this code is first demonstrated on a grid
around the RAE2822 airfoil. An O-typed initial grid
generated by the commercial package GRIDGEN has 5
blocks with 95,790 grid points, and 85,260 cells (see
Figure 3(b). In addition to this initial grid, the information
concerning the grid topology is required as an input for
the grid deformation program.

To evaluate the usability of this code for the design
optimization problem, it is necessary to adapt the grid for
the NACA2412 airfoil from the grid originally generated
for the RAE2822 airfoil. Figure 3(b) shows the grid
around the RAE2822 airfoil, while Figure 3(a) shows the
grid around the NACA2412 airfoil obtained by simply
replacing the RAE2822 airfoil with the NACA2412 airfoil
in the original grid. The grid update requires only several
seconds on a common desktop computer.

To evaluate the performance of this code, a more
difficult situation was tested. The RAE2822 airfoil in this
test was rotated 10° around its quarter line. The grid
around new configuration could be updated in seconds
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b) RAE2822

Fig. 3 Multi-block grids around an airfoil: 5 blocks in a close-up
view

(see Figure 4(a)). In Figure 4(b), the close-up view at the
trailing edge shows that there is no cross-over of cells for
this case. In the multi-block structured grid deformation
concept, the matching between two blocks is a critical
problem. Figure 4(a) and 3(a) show that grid lines are
perfectly matched at block-to-block interfaces. These results
confirm that the approach suggested by Tsai et al.[l]
automatically ~guarantees the matching on the block
interfaces. This is, however, not the case if the grid
topology includes sub-faces, especially when the block
face consists of solid patches and non-solid patches. In
these cases, the standard algorithm suggested by Tsai et
al[1] can give an inadequate result as shown in Figure
5(a). As can be observed clearly in Figure 5(a),
non-matching between block interfaces with sub-faces
exists. As only solid-type patches of block faces are
deformed when applying the TFI method, discontinuity
occurs at the transition between solid and non-solid
patches. This discontinuity will result in the inversion of
mesh cells. In this study, in order to solve this
non-matching problem, the TFI method was applied to
sub-faces rather than to block face. Figure 5(b) shows that

b) Detail at the trailing edge

Fig. 4 RAE2822 mesh with 10° pitch up: 5 blocks in a close-up
view and detail at the trailing edge

the final grid obtained by using the new technique is free
of discontinuity and non-matching problems.

Figure 6(a) shows another case, a grid update for the
RAE2822 airfoil after a pitch up of 45° In this case, an
O-type grid topology was used. The deformed grid was
visibly subjected to a crossover at the trailing edge (see
Figure 6(b). This can be avoided if a C-grid topology was
used. The detail at the trailing edge presented in Figure
6d shows a high quality grid without any crossover. These
results clearly demonstrate that the quality of the final
grid partially depends on the originally adopted grid
topology. This is understandable, as the spring analogy is
used to determine the movement of block vertices before
applying the TFI method.

To evaluate the robustness of the current code, a more
critical situation was tested. Figure 7 demonstrates the grid
update for the RAE2822 airfoil Navier-Stokes-typed mesh
with 10° pitch up. For Navier-Stokes calculations, where
the mesh near the solid wall must be refined to resolve
the high gradients of the flow properties in these regions,
the distance to the solid wall of the first mesh point is in
the order of 10 ° mm for commonly encountered
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aerodynamic problems. Handling these fine grids is a
delicate problem. Figure 7 however shows that the code
can be used equally well for a Navier-Stokes mesh. A
close-up view of the trailing edge region shows no
cross-over of the mesh cells.

N

4.2 DLR-F4 WING BODY DEFORMATION

This code was also successfully tested for complex
three-dimensional ~ multi-block ~ structured ~ grids. ~ The
following outlines the deformation of a grid around the
DLR-F4 wing-body configuration, which was used to
evaluate the accuracy of the Navier-Stokes solvers in the
frame of the AIAA CFD Drag Prediction Workshop[15].
This grid has 24 blocks with 216,678 grid points. The
topology of a grid generated by the GRIDGEN package is
shown in Figure 8.

Figure 9(b) shows the deformed grid in which the
wing-body configuration rotates about its latitudinal axis
by 15° This result shows that the current code can
successfully update the grid of a complex configuration
with an arbitrary grid topology. In this case, the advantage
of the grid deformation code is demonstrated clearly. It Fig. 6 RAE2822 mesh with a 45° pitch up with different
takes approximately 2-3 weeks to generate the initial grid topology

d) Detail at the trailing edge
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a) Close-up view at the trailing edge
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b) Detail at the trailing edge

Fig. 7 RAE2822 Navier-Stokes mesh with a 10° pitch up

Fig. 8 DLR-F4 wing body topology: 24 blocks, close-up view

but requires only 40 seconds to get the deformed grid on
a desktop computer.

Figure 10 and Figure 11(a) show the details of this
deformed grid at the nose and tail of the wing-body. As
mentioned in above sections, the TFI method does not
ensure the grid smoothness and orthogonality at the block
interfaces with sub-faces. Figure 11(a) shows that there is
some distortion in the grid cell near the tail of the
wing-body. In this study, the elliptic differential equation
was applied as a smoothing operator to solve this
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3

Fig. 10 Detail of grid in the nose region of DLR-F4 wing body
configuration

problem. Figure 11(b) shows the final grid after applying
the elliptic solver. It is clear that, with the elliptic
smoothing operator, the quality of the deformed grid is
improved considerably. In this case, the computational time
could increase by 10%.

5. CONCLUSION

A grid deformation code was developed and tested for
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b) With the elliptic smoothing operator

Fig. 11 Detail of a grid in the tail region of the DLR-F4 wing
body configuration

the two- and three-dimensional multi-block structured grids.
This code, which is based on a hybrid of the algebraic
and iterative methods, was demonstrated to be very
efficient and sufficiently robust for moderate deformation.
The deformed grid still maintains the qualities of the
initial grid including the smoothness and skewness. As the
spring analogy is used to compute the deformation of all
block vertices and the TFI technique is applied separately
to the volume grid points (without the need to gather all
grid data on a processor), this code can easily be applied
in a distributed computing context. This method also
guarantees the automatic matching of edges and surfaces
between two blocks. Some modifications, including the
elliptic smoothing operator (with only one or two
iterations) and the modified TFI method for sub-faces,
were implemented to improve the quality of the deformed
grid. It was shown that addition of the smoothing operator
does not increase the computational time much but does

greatly improve the quality of the deformed grid. Further
research is in progress in an effort to improve the

robustness of the current code for large deformation
problems.
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