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Highlights 

 Physics behind abnormal wave patterns in dusty gas flows was investigated in detail. 

 DG method was for the first time applied to two-fluid model equations for gas-particle 

flows. 

 A novel treatment of the source terms, free from assumptions of the operator splitting 

and zero-relaxation limit, was proposed. 
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Abstract  

The present work investigates complex wave patterns in dilute gas-particle flows based 

on a novel discontinuous Galerkin (DG) method. For this purpose, a high order DG method 

was for the first time applied to two-fluid model equations for dusty gas flows. The new DG 

scheme not only meets the demand for high order accuracy and the positivity/monotonicity 

preserving property for accurately simulating dusty gas flows, but it can also handle the 

numerically problematic source terms efficiently, without resorting to the complicated 

operator splitting method commonly employed in the conventional finite volume method 

(FVM). For verification, several benchmark problems in one- and two-dimensional space 

were calculated. Special attention was then paid to the complex mechanisms of wave patterns 

in the dusty gas flows, which have rarely been studied in previous works, and to the physical 

justifications of such abnormal behaviors. In particular, it was shown that when a dust contact 

discontinuity is present in the flow, a pseudo-compound wave (a reflected shock attached to 

the rarefaction wave) as well as a composite wave (a contact discontinuity attached to the 

relaxation zone) can form. 
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1. Introduction 

A class of multi-phase flows, composed of compressible gases carrying a substantial 

amount of small particles like dust or droplets, has emerged as an interesting topic in recent 

years. That interest is largely driven by the increasing need to understand technological 

processes (e.g., explosions in coal mines (Sapko et al., 2000), the separation of particulate 

matter from fluids (Wan et al., 2008), and the interaction of rocket plumes and lunar dust 

(Metzger et al., 2011)) and natural geophysical phenomena (e.g., volcanic eruptions (Walker, 

1981), cosmic explosions (Popel and Gisko, 2006), and star formation (Kührt and Keller, 

1996)), as summarized in Fig. 1. 

 

Fig. 1 Various applications of dusty gas flows 

The dynamics of dusty gas flows is known to be significantly different from those of 

pure gas flows. This difference is essentially caused by the mass, momentum and heat 

exchange that occurs between the two phases. In dusty gas flows with shock waves, such as 
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coal mine explosions or the interaction of the lunar lander’s rocket plume with the dusty 

surface of the moon during the descent phase, there is a transition region where the velocity 

of the shock wave continuously changes due to the inertia and the heat capacity of the 

particles. Moreover, the mass exchange effects as a result of phase change or chemical 

reactions is important in many applications (Marble, 1970). Such complexities have 

motivated various theoretical (Rudinger, 1964; Satofuka and Tokita, 1979) and experimental 

(Lock, 1994; Sommerfeld, 1985) studies. However, most of these studies have mainly 

focused on the one-dimensional shock tube problem in order to obtain a comprehensive 

physical understanding of the dusty gas flows, and consequently development of proper 

mathematical models. 

From a theoretical point of view, there are two prevailing approaches for predicting the 

dispersed flows: the trajectory (discrete or Lagrangian) and two-fluid (Eulerian-Eulerian) 

models (Brennen, 2005).  In the trajectory model, the dispersed phase is described in the 

Lagrangian framework, while in the two-fluid model the dispersed phase is treated as a 

continuum. In the present study, the two-fluid model is preferred over the trajectory model, 

since it is not only applicable to a wide spectrum of particulate loading in multi-phase 

regimes, but also incur a less computational cost, compared to the Lagrangian counterpart. 

The model is, however, not efficient when the distribution of particle size is the main interest, 

since a separate set of equations should be solved for each diameter size. 

While most of the theoretical research has been limited to the one-dimensional numerical 

problem (Igra et al., 1985; Miura and Glass, 1982; Sainsaulieu, 1995; Tiselj and Petelin, 1997; 

Toumi and Kumbaro, 1996), many recent studies have focused on developing multi-

dimensional numerical tools with the capability of handling unstructured grids. Saito (2002); 

(Saito et al., 2003) developed a two-dimensional numerical tool to solve the two systems of 
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conservation laws using the finite volume method. Igra et al. (1999) investigated shock wave 

reflection from a wedge in a dusty gas flow by using a second order accurate scheme in a 

finite difference framework based on the generalized Riemann problem and dimensional 

splitting. Moreover, they conducted an extensive parametric study on particle size and mass 

loading in two different time steps. In another attempt, Igra et al. (2004) extensively studied 

shock wave reflection from a wedge placed in various suspensions by using a finite volume 

method of a two-fluid model. 

On the other hand, Volkov et al. (2005) solved the viscous two-phase gas-particle flow 

over a blunt body using an Eulerian-Lagrangian approach and investigated the effects of 

inter-particle collisions and two-way coupling. Pelanti and LeVeque (2006) developed the 

fractional step method in the finite volume framework and applied the method to the one-

dimensional shock tube and two-dimensional volcanic eruption problems. Gurris et al. (2010) 

solved the two-fluid model of dusty gas flows with a high-resolution finite element method 

along with a TVD type limiter, and Douglas-Rachford splitting method to handle the source 

terms. Recently, Carcano et al. (2013) solved the problem of jet decomposition in both two 

and three dimensions using a second-order accurate semi-implicit finite volume method. In 

another work, Carcano et al. (2014) extensively investigated the grain-size distribution on the 

dynamics of under-expanded volcanic jets.  Vié et al. (2016) analyzed the capability of the 

Eulerian moment method for solving two-way coupled particle-laden turbulent flow systems. 

Although considerable research has been devoted to the problem of dusty gas flows, 

rather less attention has been paid to the application of high order methods to this category. 

Furthermore, the inefficiency of the standard numerical methods, such as finite volume or 

finite element methods in the presence of large source terms or highly heterogeneous porous 
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mediums with full permeability tensors, has driven the need for new methods which can be 

extended to higher orders with minimal effort (Klieber and Rivière, 2006).  

When small particles are present in a carrier phase, the dominance and stiffness of the 

source terms deteriorates the stability restrictions of an explicit numerical scheme. In implicit 

schemes, this effect, associated with the source terms, can also severely slow the convergence, 

even though the stability of the method may not be an issue. Previous studies have 

circumvented this problem by using a multiple-time stepping scheme, i.e., splitting of the 

system of equations into stiff and non-stiff terms. However, the classical splitting schemes 

tend to reduce the order of accuracy or increase the computational cost in the best-case 

scenario (Gosse, 2000; LeVeque and Yee, 1990). Moreover, previous studies using the 

Particle-In-Cell (PIC) method (Levine, 1971) and the finite difference method (Satofuka and 

Tokita, 1979) on simulations of a shock wave incident into a dusty gas flow have reported a 

severe smearing of the shock wave due to numerical artifacts. However, the recent 

developments demonstrate that PIC methods can provide promising results in this class of 

problems (Jacobs and Don, 2009; McFarland et al., 2016).  

The long-term goal of the present study is to investigate the impingement of the rocket 

plume on the lunar surface and the subsequent dusty gas flows formed by ejection of solid 

particles from the regolith during the descent phase of the lunar lander (Metzger et al., 2011). 

A schematic of the problem is illustrated in Fig. 2. The multi-scale nature of the physical 

phenomena in this problem leads to a coexistence of various flow regimes, which makes the 

numerical simulation extremely challenging (Tosh et al., 2011).  As the first step toward this 

goal, we seek high-resolution solutions for dusty gas flows governed by an Euler type 

multiphase system of equations in the framework of the discontinuous Galerkin (DG) method.  
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Fig. 2. Schematic of the impingement of engine plume and the subsequent dusty gas flows formed by the ejection of solid 

particles from the regolith during the lunar landing 

First introduced by Reed and Hill (1973) and further developed by (Cockburn and Shu, 

1988, 1989, 1998), the DG method has become a prominent tool for solving the fluid 

dynamics governing equations. While the DG method has been successfully applied to 

various class of problems such as compressible and incompressible flows, aeroacoustics, 

magneto-hydrodynamics, and many more (Cockburn et al., 2000), it has recently also found 

its way into the multiphase problem. This application is driven by improvement of the 

method, as well as recent advances in computer resources, which make the DG method a 

feasible tool for a larger number of industrial applications. 

Franquet and Perrier (2012) developed a robust high order DG method for compressible 

multiphase flows based on the Baer and Nunziato type systems and reported good agreement 

with experimental results. They also extended the method to reactive multiphase flows 

(Franquet and Perrier, 2013).  Owkes and Desjardins (2013) applied the DG method to 

conservative level set equations for interphase capturing in multiphase flows.  Lu et al. (2016) 

presented a Runge-Kutta DG method together with the front tracking method for solving two-
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medium gas-gas and gas-liquid flows. de Frahan et al. (2015) obtained the DG solution for 

multiphase flows using the Mie-Grüneisen family of equations of state. Recently, Dumbser 

and Loubère (2016) proposed an accurate nonlinear a posteriori stabilization of the DG 

method and applied the method to the Baer-Nunziato model in two-dimensional space. 

Moortgat and Firoozabadi (2016) developed a vertex-based DG method of multiphase 

compositional flow on 3D unstructured grids. Diehl et al. (2016) obtained the solutions of the 

Navier-Stokes-Korteweg equations for compressible liquid-vapor multiphase flow with phase 

transition using the local discontinuous Galerkin (LDG) method. 

 Although these recent studies demonstrated the capability of the DG method for very 

diverse problems, few mathematical models pertaining to multiphase flow categories or 

regimes have been investigated using the DG method. To the best knowledge of the authors, 

there is no previous work on applications of a high order DG method to solve a two-fluid 

model of dusty gas flows. Further, in flow problems with strong discontinuities and the 

presence of stiff source terms due to the coupling effects in the two-fluid model, the mere 

application of high-order methods without proper treatment of numerical artifacts or without 

proper handling of the non-homogeneous part of the partial differential equation will 

generally lead to divergence, an oscillatory solution or in the best scenario a huge 

computational penalty, caused by small time steps. 

In this study, we set out to investigate the complex mechanisms of wave patterns in 

dilute gas-particle flows, which were rarely studied in previous works, and the physical 

justification for such abnormal behaviors. In particular, it will be demonstrated that, when a 

contact discontinuity in dust is present in the dusty gas flow, a pseudo-compound wave as 

well as a composite wave can be formed.  
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To this end, the mathematical model of the gas and solid phases and a novel modal 

unstructured DG method are first presented. A detailed description of the positivity and 

monotonicity preserving property of the new scheme then follows. Further, a novel treatment 

of source terms, free from the aforementioned weaknesses in conventional methods based on 

operator splitting and zero-relaxation limit, is highlighted. Finally, the unique features of 

dusty gas flows, e.g. formation of a reflected shock attached to the rarefaction wave and a 

contact discontinuity attached to the relaxation zone, which were not observed in pure gas 

flows, are identified, and a physical explanation of the origin of such abnormal waves is 

provided. 

2. Theoretical background 

In this section, the two-fluid model of dusty gas flows will be explained briefly.  In what 

follows, the carrier phase (gas) and the dispersed phase (solid dust) are indicated by the 

subscripts g and s. In the Eulerian-Eulerian approach, both phases are considered continua. 

The gas phase is considered an inviscid and compressible flow obeying the perfect equation 

of state, while the dispersed phase is considered an incompressible continuum in which the 

particles do not collide with each other. Consequently, there is no pressure term in the 

conservation laws of the solid phase. The interaction of the two phases is taken into account 

via source terms, i.e. by momentum and heat transfer exchange between the gas and particles. 

Other interfacial effects including lift and gravity can be neglected, since they are small 

compared to drag and heat transfer.  

Before describing the details of the model, some basic multiphase flow parameters are 

defined. The level of interaction of phases is assessed by volume fraction of the dispersed 

phase (αs) and the mass loading (β). Small values of αs and β implies that the carrier phase is 
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not affected by the dispersed phase and the one-way coupling is satisfactory. In cases where 

the mass of both phases are comparable, in order to take both phases into account, the two-

way coupling is necessary. For larger αs, the particle-particle interactions such as collision, 

agglomeration and break-up may not be ignored, requiring a four-way coupling. The other 

important parameter to quantify how the phases can equilibrate is the Stokes number, defined 

as the ratio of aerodynamic response time of the particle (τs) to some characteristic time of the 

carrier phase (tref). Useful discussions regarding basic multiphase parameters can be found in 

(Balachandar and Eaton, 2010; McFarland et al., 2016). 

2.1. Mathematical model of the gas and solid phases 

Under the aforementioned conditions, the conservation law can be written as follows: 

For the gas phase, 

t g g  U F S   , (1) 

,

,

0

, , ( )

( ) ( ) ( )

g g g g g

g g g g g g g g g g s s g

g g g g g g g g s s g s g s g

p D

E E p D Q T T

   

   

   

     
     

         
     

        

u

U u F u u I S u u

u u u u

, (2) 

21

2
g v g gE c T  u , (3) 

and for the solid phase, 

t s s   U F S , (4) 

,

( )

s s s s s

s s s s s s s s s

s s s s s s sE E

   

   
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   
   

 
   
      

u

U u F u u

u

, (5) 
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21

2
s m p sE c T  u , (6) 

1g s   . (7) 

Here the U, F and S are the vectors of conservative variables, fluxes, and source terms, 

respectively. The variables t, α, ρ, u, E, p, T, D and Q represent time, volume fraction, 

density, velocity vector, total energy, pressure, temperature, interphase drag and heat flux, 

respectively. The dust density ρs is assumed to be constant. cv and cm are the specific heat 

capacity of the gas at constant volume and the specific heat of the particle material. The 

equation of state expresses the gas pressure in terms of other gas properties: 

g gp RT , (8) 

where R  is the gas constant.  

According to Miura and Glass (1982), the drag force that solid particles exert on the gas 

phase can be expressed as 

,

3

4

s g

g s D g sD C
d

 
 u u , (9) 

in which d is the particle diameter and CD is the drag coefficient computed as a function of 

the Reynolds number based on the particle diameter and relative velocity of the particle to the 

gas (i.e. Re
g g s

d

g

d






u u
 ). The drag coefficient can then be given by a well-stablished 

semi-empirical correlation (Dobran et al., 1993), 
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 0.68724
1 0.15Re , if Re<1000

Re

0.44, if Re>1000

dDC




 



  (10) 

The heat transfer, which is proportional to temperature difference, can be expressed as a 

function of the Nusselt number (Knudsen and Katz, 1958), 

g

2

6Nu
( )g s g sQ T T

d


  , (11) 

1

2

1

3Nu 2 0.65Re Prd   , Pr
p g

g

c 


 . (12) 

Here μg and κg  represent the viscosity and thermal conductivity of the gas, respectively. 

2.2. Dimensionless form of the governing equations  

The following dimensionless variables and parameters are used to derive the non-

dimensional governing system of equations. Here the dimensionless parameters are 

superscripted by * and the reference values are denoted by the subscript ref, 

* * * * * *

* * * *

* *

, , , , , ,

, , , ,

, .

ref ref ref ref ref

ref ref ref ref

p v
p v

p v
ref ref

t T p
t T p

L t u T p

E Q
E Q

E Q

c c
c c

c c






 
 

 

     

   

 

x u
x u

  (13) 

In the above relations, x and cp are the spatial coordinates and the specific heat capacity at 

constant pressure, respectively. We then define the references and non-dimensional 

parameters as follows: 
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 


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  (14) 

After applying these to equations (1)-(6), the following non-dimensional system of equations 

can be derived:  

1
, ,

Re

1
( )

Re

0

1
( )

1 Nu
( ). ( )

,

t g g

g g g
g g
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(15) 
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Here the superscript * has been omitted for the sake of simplicity. The reference values for 

the length, pressure, temperature and velocity, L=4ρsd/(3ρref), pref=1 atm, Tref=273.15 K, and 

uref= 331.41 m/s, respectively, are employed in all simulations. 

3. Numerical framework based on a modal unstructured discontinuous 

Galerkin method 

The equations of the dusty gas flows described in the previous section are discretized 

using a modal discontinuous Galerkin (DG) method. The essential parts of the modal 

unstructured DG method developed in the present work—in particular, high order accuracy 

and positivity/monotonicity preserving property—are summarized in this section. For a more 

detailed discussion on general DG methods, readers are referred to (Cockburn et al., 2000; 

Cockburn and Shu, 1988, 1989, 1998), (Cockburn et al., 2000; Cockburn and Shu, 1988, 

1989, 1998) for DG implementations, and Barth and Jespersen (1989); (Kontzialis and 

Ekaterinaris, 2013; Wang et al., 2012; Zhang and Shu, 2010b) for limiter-related issues. 

3.1. A modal DG formulation 

The mathematical model of interest in the present work can be written in a compact form; 

   ( ) ( ) in ,Ω 0, ,Ω ,t t t       U F U S U   (16) 

where Ω denotes a bounded domain, and U, F, S are conservative variables vector, flux 

tensor, and source terms vector, respectively. The solution domain can be decomposed by a 

group of non-overlapping elements, Ω = Ω1⋃Ω2⋃...Ωne, in which ne is the number of 

elements. By multiplying a weighting function φi into the conservative laws (16) and 

integrating over the control volume for each element, the following formulation can be 

derived: 
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 ( ) ( ) ( ) ( ) ( ) Ω 0
k

t F S d  


    U x U x U x . (17) 

In order to construct a discretized system of the conservation laws, the global spatial 

domain Ω can be approximated by Ωh where, ΩhΩ as h0. The approximated domain, 

which is a tessellation of the space by bounded elementary control volumes, ={Ω }h k
, is 

filled with ne number of the non-overlapping elementsΩk h . The exact solution of the 

governing equations can be approximated by the numerical solution in every local element as 

1

1

( , ) ( , )
ne

e n

h h h h

e

t t


    U x U U x U U . (18) 

By splitting the integral over Ωh into series of the integrals over the sub-elements and 

applying the integration by part as well as divergence theorem to the equation (17), the 

elemental formulation reads as 

ˆ( )dΩ ( ) ( ) ( ) ( )dΩ

( ) ( )dΩ

k k k

k

t h i k i h i h k

i h k

nd   



  



     



  



U x x F U x F U

x S U
, (19) 

where n̂  is the outward normal vector of the element interface and Uh is the p-exact 

polynomial approximated solutions of the U on the discretized domain of Ωh. Uh can be 

expressed as the polynomial field that sums the multiplication of local degree of freedom 

with the corresponding smooth polynomials of degree P in the standard element:  

( ) ( )
P

h i i

i

a t U x . (20) 

Here ai(t) and φ(x) denote the local degree of freedom and the basis function, which can be 

chosen to be any continuous polynomial function, respectively.  
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In the one-dimensional case, the orthogonal scaled Legendre functions were selected as 

basis functions, while a linear mapping function was used for mapping from the physical 

space to the standard element. In the two-dimensional case, the PDK polynomials (Dubiner, 

1991) were selected as basis functions, while a collapsed coordinate transformation was used 

to transfer the triangles in the physical domain to the standard square elements, Ωe, in which 

the coordinates (a, b) are bound by constant limits  

{( , ) 1 , 1}a b a b   R . (21) 

Another transformation was introduced to transfer the triangle in the physical space into the 

computational space where the new local coordinates have independent bounds, as depicted 

in Fig. 3. A suitable coordinate system, which describes the triangular region between 

constant independent limits, can be defined by the following inverse transformation: 

(1 )(1 )
1,

2

a b
r w b

 
   . (22) 

New local coordinates (r, w) can then define the standard triangular region as follows: 

{( , ) 1 , ; 0}r w r w r w    T . (23) 

For more details on the various transformations used in the DG method, readers are referred 

to (Karniadakis and Sherwin, 2013).  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

17 

 

 

Fig. 3 Coordinate transformation 

The simple and efficient local Lax-Friedrichs (LLF) flux function, commonly used in the 

DG method, is applied for all the multiphase test cases in the present study. Despite the 

dissipative nature of the numerical flux, it improves the linear stability of the DG numerical 

approximation. The dimensionless form of the LLF flux is defined as  

       
1

( ) f ,
2

ih h h i h i h h hC          
 

F U U U F U F U U U , (24) 

where C is the maximum modulus of the eigenvalues of the Jacobian matrix, 

min( , ) max( , )
max | F ( ) |i

U U u U U
U

    

   , and for convex fluxes it reads as  max ,S SC v a v a      . 

Here /Sa T M  is the speed of sound at an elemental interface, and the superscripts (+) and 

(–) denote the inside and outside of an elemental interface, respectively. 

Moreover, a third-order accurate, third-stages total-variation-diminishing Runge-Kutta 

method was employed for time integration, owing to its simplicity, efficiency, and robustness. 

In order to minimize the temporal discretization error, the time step was set in such a way that 

the Courant-Friedrich-Levy (CFL) criterion is always satisfied. The Gauss-Legendre 

quadrature rule was used to calculate the volume and surface integrals in (19), which are 

proved to be 2P and 2P+1 order accurate, respectively.  
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3.2. Positivity preserving scheme 

High order conservative schemes, including the DG scheme introduced in the previous 

section, usually suffer from the non-physical negative density or pressure. This situation leads 

to the ill-posedness of the system and numerical breakdowns in consequence. On the other 

hand, in the case of conservation laws with source terms which are added to account for 

chemical reactions, gravity or the interaction of phases, as in the present case, the possibility 

of encountering negative density or pressure during numerical simulation increases. 

Therefore, the application of an efficient positivity preserving schemes is necessary to 

prevent the numerical breakdown. In the present work, the positivity preserving scheme of 

Zhang and Shu (2011) for compressible Euler equations was applied to ensure the positivity 

of density and pressure fields, while maintaining the higher order accuracy.  

The application of this limiter was proved to provide stable schemes for unstructured 

triangular meshes with favorable results (Kontzialis and Ekaterinaris, 2013). We report the 

first application of this type of limiter to the two-fluid model of dusty gas flows. Our 

numerical experiments on all the test cases show that application of a positivity preserving 

limiter is necessary to obtain converged solutions without compromising the accuracy of the 

solution.  

3.3. Monotonicity preserving scheme 

Our numerical investigations show that simple application of the positivity preserving 

scheme is not enough to develop a stable scheme, especially in the presence of strong shock 

waves. The situation deteriorates when the multiphase system with source terms is being 

solved.  In the present study, the limiter of Zhang and Shu (2010a)  for  one-dimensional 

cases and the limiter of  Barth and Jespersen (1989) which was initially devised for the finite 

volume framework are applied. It is important to note that any TVD/MUSCL type scheme 
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can degrade the order of accuracy in the smooth regions of the solution, unless a pragmatic 

shock detection scheme is introduced. The detailed implementation of the scheme can be 

found in (Barth and Jespersen, 1989). 

3.4. Boundary conditions 

The implementation of boundary conditions in two-fluid or multi-fluid systems requires 

a different set of conditions for each phase. The benchmark problems considered in this paper 

are free from boundary effects, except the compression corner test case, in which an adiabatic, 

impermeable, inviscid wall boundary condition is applied for both phases (Kim and Chang 

(1991). Other boundary conditions choices like the adherence condition or reflection 

conditions are also viable for the solid phase (Saurel et al., 1994).  When the viscous system 

of conservation laws (e.g. Navier-Stokes-Fourier) is considered, it is necessary to use a non-

slip boundary condition for the gas phase and a slip boundary condition for the solid phase. 

3.5. Novel source terms treatment 

It was well-known that the stiff relaxation terms in balance laws (i.e., strictly hyperbolic 

systems with source terms) lead to disparate relaxation times, which in turn results in severe 

numerical difficulties. In the case of the two-fluid model, in addition to the time scale related 

to the convection, a much smaller relaxation time scale exists that inevitably imposes smaller 

time steps on the numerical solver. The use of a slower time scale in such problems can cause 

severe numerical instability. 

The most well-known methods for removing this limitation are the operator splitting and 

zero-relaxation limit; however, as reported in Béreux (1996), the range of validity of each 

method is very limited, to the product of relaxation time and the acoustic wave pulsation. 

Moreover, spurious solutions may arise when the effects of the source terms are not properly 
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resolved (LeVeque and Yee, 1990). Finally, it is well established that the convergence rate of 

the first-order finite difference methods for conservation laws will be no better than O(h
1/2

) 

(Lucier, 1985). Here we demonstrate that the inherent feature of the new DG scheme 

bypasses the need to apply such inefficient treatments in conventional methods. 

For a single variable uh, the elemental formulation (19) reduces to   

ˆ( )d ( ) ( ) ( ) ( )d

( ) ( )d .

k k k

k

h i k h i h i k

h i k

d
u F u n d F u

dt

S u

   



  



     

 

  



x x x

x

  (25) 

Taking U as the global vector of degrees of freedom, this equation can be written in a matrix 

form: 

1 1 1

(1) (2) ( )

1 1 1

( ) ( ) 0

( ) ( ) 0

( )

( , ,..., )

( ) ( ) ( )

h h

h h

N T

h h

d
F u S u

dt

d
F u S u

dt

d
L

dt

U U U

L F u S u

  

  

   

   





  

U
M KU Θ Θ

U
M KU M Θ M Θ

U
U

U

U M KU M Θ M Θ

  
(26) 

Here, M and K are the mass and stiffness matrixes, and Θ and Θʹ are the vectors that 

incorporate the contributions of the boundary and source terms, respectively. The matrixes 

are defined as follows: 
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1 1 1 2 1

2 1 2 2 2

1 2

( ) ( )d    1  

( ) ( )d ( ) ( )d ... ( ) ( )d

( ) ( )d ( ) ( )d ... ( ) ( )d

( ) ( )d ( ) ( )d ... ( ) ( )d

k

k k k

k k k

k k k

i j k

k k n k

k k n k

n k n k n n k

i j n 

     

     

     



  

  

  

    

 
 





 



  

  

  

M x x Ω

x x Ω x x Ω x x Ω

x x Ω x x Ω x x Ω

x x Ω x x Ω x x Ω








, (27) 

Owing to the orthogonal property of the basis functions, 
0

ijC i j

i j


 


M   

1 1 1 2 1

2 1 2 2 2

1 2

( ) ( )d

( ) ( )d ( ) ( )d ... ( ) ( )d

( ) ( )d ( ) ( )d ... ( ) ( )d

( ) ( )d ( ) ( )d ... ( ) ( )d

k

k k k

k k k

k k k

i i k

k k n k

k k n k

n k n k n n k

 

     

     

     



  

  

  

 

   
 
   
 


   
 



  

  

  

K x x Ω

x x Ω x x Ω x x Ω

x x Ω x x Ω x x Ω

x x Ω x x Ω x x Ω






  (28) 

1

2

( ) d

( ) d

( ) d

e

e

e

e

e

n e

J

J

J













 
 
 
 
 
 
 
  







x Ω

x Ω
Θ

x Ω

  (29) 

1

2

( ) d

( ) d

( ) d

e

e

e

e

e

n e

J

J

J













 
 
 
  
 
 
 
  







x Ω

x Ω
Θ

x Ω

. (30) 

The choice of orthogonal basis functions greatly simplifies the contribution of the high 

order moments of the polynomial approximate solution to the source-term related vector Θʹ 

in equation (30). Once the basis functions (Legendre polynomials), ( )
n

x , are multiplied by 
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the transformation Jacobian ( (1 ) / 2J b   ), the integration in the interval [-1 1] will vanish 

for all the terms except the first term, due to orthogonal property of the basis functions and a 

coincidental relation 1
( ) 1x ; that is, 

1

2

( ) d 2

0
( ) d

( ) d 0

e

e

e

e

e

n e

J

J

J













   
   
   
    
   
   
      







x Ω

x Ω
Θ

x Ω

  (31) 

Note that, in this novel method, the source term treatment is greatly simplified, exactly 

the same as the first-order (P
0
) case. In other words, the contribution of the cell average 

solutions is dominant in the source terms in the DG framework, although the left hand side of 

equations (19) and (25) is calculated by the high order polynomial approximation. 

4. Numerical investigation of complex waves in dusty gas flows 

In this section, we present the results for some of the well-known benchmark problems in 

one- and two-dimensional space. For the purpose of verifying the code and estimating the 

order of accuracy of the numerical scheme, we first solve a smooth problem with analytical 

solutions. We then investigate the widely studied Sod’s shock tube problem in dusty gas 

flows with special emphasis on the complex wave behaviors therein. Finally, we solve two 

two-dimensional multiphase flows—explosion and compression corner problems—to 

highlight the effects of the dispersed phase (solid dust) on multi-dimensional dusty gas flow.  

In all test cases, the ratio of the specific heats of air (γ) and the ratio of the specific heats of 

the two phases (cm/cv) are set equal to 1.4 and 1.0, respectively.  Unless otherwise mentioned, 

the following values are used for particle properties: 
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diameter, d=10 µm; 

mass density, ρs=2,500 kg/m
3
; 

specific heat, cm=718 J/kg-K. 

4.1. Verification study in the single-phase case 

The propagation of a smooth sine wave was considered for verification of the code. The 

periodic boundary conditions were applied at both sides of the domain. For the following 

initial condition, 

( ,0) 1,

( ,0) 1.0 0.2sin( ) ,

( ,0) 1,

u x

x x

p x

 




 
 

  (32) 

the corresponding exact solutions can be written as 

( , ) 1,

( , ) 1.0 0.2sin( ( )) ,

( , ) 1.

u x t

x t x t

p x t

 




  
 

 (33) 

In order to measure the order of accuracy of the DG method for various flux functions, 

the density distribution of the solution was obtained for different orders of accuracy (P
χ
, with 

χ indicating the polynomial order) and the results are shown in Fig. 4. It can be seen that 

numerical deviation from the analytical solution is large in the first-order piecewise constant 

case (P
0
); however, the application of more sophisticated numerical fluxes such as Roe and 

HLL can improve the accuracy of the piecewise constant solution.  

In order to evaluate the performance of the numerical scheme in more detail, the 

numerical errors and the order of accuracy were calculated based on the density solution. The  
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Roe flux function 

 

 

HLL flux function 

 

 

Rusanov (LLF) flux function 
Fig. 4. Comparison of various numerical fluxes for smooth solution of Euler equation; (left) profile, (right) Euclidean norm 

of density 
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results were found to be consistent with the observations of Qiu et al. (2006). Moreover, it 

was confirmed that all numerical fluxes lead to the expected order of accuracy of P+1.  It is 

worth noting that each flux function shows a different behavior in performance for different 

orders of polynomial function, and thus drawing a general conclusion is not possible. 

4.2. Sod shock tube problem in dusty gas flows 

Fig. 5 depicts the shock tube problem in single phase (pure gas) and multiphase (dusty 

gas).  The evolution of various types of waves and discontinuities from the initial Riemann 

data can provide the essence of dusty gas flows; as, for example, the supersonic flows formed 

by the interaction of rocket plume and lunar dust. Moreover, the shock tube problem is ideal 

for examining the feasibility and validity of the new numerical methods, since it is free from 

boundary effects or other numerical complexities. The scheme tested in the one dimension 

problem can also be extended to the multi-dimensional situation afterwards. 

 

Fig. 5. Schematic of the shock tube problem in dusty gas (pure gas versus dusty gas) 

(computational domain length: 100L) 

In order to obtain solutions without spurious oscillations, the positivity-preserving 

scheme was used in conjunction with the monotonicity-preserving limiter. It should be 

emphasized again that no extra effort is necessary for handling the source terms, thanks to the 

special feature associated with the orthogonal basis functions introduced in the new DG 
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scheme, as explained in subsection 3.5. That is, the present DG method is immune to the 

artifact that may arise from splitting the source terms, or the complexity incurred by 

application of the fractional step approach (Gurris et al., 2010; Perot, 1993) or the random 

choice method (Saito and Glass, 1984) to cope with the source terms. 

The results of the dusty shock tube problem with the initial condition summarized in 

Table 1 are presented in Fig. 6. It can be seen that the numerical solutions of the pure gas are 

in good agreement with the analytical solutions of the shock tube problem. In the figures, the 

term ‘dusy gas’ implies the carrier gas phase. This problem has been previously investigated 

by Saito (2002), Saito et al. (2003) and Pelanti and LeVeque (2006). Comparison with these 

previous results can be used as verification of the present computational model of two-fluid 

dusty gas.  The multiphase solutions clearly demonstrate the profound effects of the inertia of 

the dust particles on the flow properties. The gradual response of the dust particles to the 

diaphragm rupture was observed, especially in the velocity and temperature profiles. 

Interestingly, the strength of the right-running shock wave front was found to be much 

smaller than that of pure gas, which is due to the absorption of momentum and heat from the 

gas molecules by the dust particles. In addition, the deceleration of the shock wave front was 

observed from the velocity profile, inducing compression waves behind the shock wave. This 

phenomenon was identified in the pressure profiles as well.  

Table 1. Initial condition for the Sod’s shock tube problem  

Non-dimensional variable Driver section Driven section 

Pressure 10.0 1.0 

Gas density 10.0 1.0 

Particle concentration 0.00001 1.0 

Gas velocity 0.0 0.0 

Dust velocity 0.0 0.0 
 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

27 

 

  

  

  

  
t=5 t=10 

Fig. 6. Solutions of the Sod’s shock tube problem in dusty gas for two different time steps (P1 solution) 
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4.3. Composite wave structures in the Sod problem of dusty gas flows 

In contrast to a single-phase flow, dusty gas flows can show some striking wave 

structures, which have no counterpart in classical theory. The physical explanation of these 

phenomena in dusty gas flows has rarely been addressed in the literatures. In this section, we 

provide a detailed discussion on the underlying physics forming these abnormal waves. 

Various wave structures that are formed in the shock tube problem of dusty gases are 

schematically illustrated using the x-t diagram in Fig. 7 (a) describes the case in which the 

contact discontinuity of gas and the boundary path of a particle are located at the same 

position, while Fig. 7 (b) describes the case in which the boundary path of a particle is 

located at a distance from the contact discontinuity of gas. When a shock wave impinges on a 

cloud of particles in dusty gas flows, it will be reflected as an expansion or shock wave, 

depending on the ratio of the specific heats of the solid particle and gas, and the particulate 

loading of the mixture (Sommerfeld, 1985). In this diagram, the case of reflected rarefaction 

waves was not considered, since the properties of the test case of the mixture correspond to 

the case of shock wave reflection. Since solid particles with non-negligible inertia cannot 

follow the abrupt changes of flow, a relaxation zone attached to the shock wave forms and 

the shock wave front decelerates until a new equilibrium condition is reached. The size of the 

relaxation zone is affected by the diameter of the solid particle, density, and heat capacity. As 

mentioned before, a finite time is required for the particles to fully attain the speed of the gas. 

During this period, reflected compression waves are generated from the boundary path of the 

particle, eventually forming a weak left-running shock wave, as illustrated in Fig. 7 (a). 
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(a) 

 

(b) 

Fig. 7. Schematic of various wave structures in the 1-D dusty gas flows: (a) The gas contact discontinuity and boundary 

particle path are initially located at the same position, (b) The particle boundary path is located at a distance from the gas 

phase contact discontinuity. 
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The effects of particle concentration are shown in Fig. 8, with a focus on abnormal 

behaviors. The non-dimensional time of 30 was chosen so that the flow becomes fully 

developed, enabling a better description of the phenomena. It can be clearly observed that a 

higher concentration of dust particles in the driven section of the shock tube leads to 

amplification of the effects (at the tale of the left-running rarefaction waves and the right-

running shock wave, and pre-contact discontinuity). Therefore, one may conclude that the 

presence of dust particles is the main source of these behaviors.  

For better clarification, we investigated in detail how the evolution of those waves is 

affected by the concentration of dust particles. We identified three abnormal behaviors based 

on the density profile: 1) the tale of the left-running rarefaction waves; 2) the region before 

the contact discontinuity; and 3) the tale of the right-running shock wave.  It is well known 

that, after the diaphragm ruptures, a right-running compression wave and left-running 

rarefaction waves will start to propagate in the background medium. On the other hand, dust 

particles with different density ratios on each side of the diaphragm will lead to the existence 

of an extra contact discontinuity (in solid phase) compared to the case of pure gas. We refer 

to this discontinuity as the dust contact discontinuity (DCD). 

The first composite wave structure, marked as number (1) in Fig. 8, was observed at the 

tail of the rarefaction waves in the density profile. This exotic structure should be 

distinguished from the numerical artifacts that may be found in high order methods when 

they are not treated properly. Due to the presence of dust particles, the rarefaction waves 

weaken and their propagation speed decreases as well. Therefore, gas will accumulate in the 

region close to the tail of the rarefaction waves, and the reflected compression waves 

generated from the boundary path of the dust particle will form a weak shock wave attached 

to the tail of the left-running rarefaction waves, as observed in Fig. 8 (a).  
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(a) (b) 

  

(c) (d) 

 
 

Pseudo compound wave made up of  RW- 

RS 

 
 

CD attached to RZ 

                                                                                      

 
 

RZ attached to SW 

 

Fig. 8. Effects of initial dust concentration on the Sod’s shock tube in the dusty gas (P1 solution) 

(RW: rarefaction wave, RS: reflected shock, CD: contact discontinuity, RZ: relaxation zone, SW: shock wave ) 
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This weak shock wave is directly related to the presence of the DCD and it will be 

strengthened when the dust concentration increases. It will be shown in a later figure that, 

when there is no DCD, i.e., when both the high and low pressure sections are filled with the 

same dust concentration, this composite wave structure will disappear. In passing, it should 

be mentioned that this type of composite waves is different from the generic compound 

waves observed in magneto-hydrodynamics, due to the non-convexity and the non-strict 

hyperbolicity (Myong and Roe, 1997), and the present waves should be called composite 

waves or pseudo-compound waves, rather than compound waves. 

In another region, marked number (2) in Fig. 8, the presence of dust induces an increase 

in pressure (and a decrease in velocity) in the middle region, leading to higher density 

compared to the case of. It turns out that this increase in density is dependent on dust 

concentration, as well as the location of the DCD.  

A second composite wave structure, marked number (3) in Fig. 8, was observed at the 

tail of the shock wave. It consists of a right-running shock wave followed by a relaxation 

zone. When there is no particle, the shock wave is steep and strong as expected. When 

particles are present, however, the shock wave weakens substantially and the relaxation zone 

forms instead, due to the coupling effects between the two phases. We can clearly see that a 

higher particle concentration leads to a larger relaxation zone and a reduction in the 

propagation speed of the shock wave. It will be shown in the next figure that the location of 

the DCD changes the position where the shock wave forms, but does not affect the size of the 

relaxation zone. 

In order to investigate how the DCD would affect wave patterns in the dusty gas flows, 

additional cases were simulated by varying the position of the DCD (from x=40 to x=60) 

while maintaining the same dust concentration, as shown in Fig. 9. The other profiles in this  
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(a) (b) 

  

(c) (d) 

 

Pseudo compound wave made up of  RW-RS 

 

CD attached/detached to/from RZ 

 

RZ attached to SW 

Fig. 9. Effects of location of the initial dust contact discontinuity (DCD) on the Sod’s shock tube in the dusty gas at t=30 (P1 solution) 

(RW: rarefaction wave, RS: reflected shock, CD: contact discontinuity, RZ: relaxation zone, SW: shock wave) 
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figure correspond to the pure gas and the dusty gas case of the previous figure. In all cases, 

the dust concentration is assigned with the same value (α0ρ0=0.1). In the region marked 

number (1), the weak discontinuity in density, pressure and temperature profiles discussed in 

Fig. 8 vanishes when there is no DCD. When the DCD is shifted towards the right end of the 

tube (x=60), the discontinuity is detached from the rarefaction waves and is shifted to the 

right as well.  

In the region marked number (2), the shifted DCD seems to produce yet another contact 

discontinuity (around x=70) attached to the relaxation zone. When put together with adjacent 

waves, there seems to be a new composite wave structure, consisting of three waves—a 

contact discontinuity, the relaxation zone, and a shock wave. On the other hand, as can be 

seen in region number (3), the strength of the right-running shock wave and the size of the 

relaxation zone remain the same for all dusty gas cases, though the position of the waves is 

shifted as expected. 

4.4. 2-D explosion problem in dusty gas flows 

As the first two-dimensional test case, we investigated the explosion problem outlined in 

Toro (2013) for a pure gas. This problem is in essence the two-dimensional extension of the 

classical Sod’s shock tube, as illustrated in Fig. 10.  

 
Fig. 10. Schematic of the pure gas (left) and dusty gas (right) 2-D explosion problems 

(outer radius: L) 
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The initial conditions for the single-phase and multiphase cases are summarized in Table 2. 

Table 2. Initial condition for the explosion problem 

Non-dimensional variable Driver section Driven section 

Pressure 1.0 0.1 

Gas density 1.0 0.125 

Particle concentration 0.00001 0.1 

Gas velocity 0.0 0.0 

Dust velocity 0.0 0.0 
 

A study on grid independency is presented in Fig. 11 where five different grids with 

mesh sizes of h=1/20, 1/40, 1/80, 1/120 and 1/160 are considered, where h is the 

characteristic size of grid. A grid resolution with h=1/120 was found to provide almost 

identical results with h=1/160, and hence this grid was used for the rest of simulations. 

  

  
Fig. 11. Grid independency test for the explosion test case (P1 solution) 
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In the next step, the effects of the polynomial order of the DG method was examined 

with and without the monotonicity preserving limiter for the single-phase problem, while the 

positivity preserving limiter was applied for all cases.  It can be seen in the left column of Fig. 

12 that, without the monotonicity preserving limiter, the second- and third-order solutions 

exhibit severe oscillations near strong waves. The Barth-Jespersen limiter described in 

subsection 3.3, however, was shown to handle the non-physical oscillations effectively, as 

confirmed in the right column of Fig. 12. Our numerical experiments showed that such 

oscillations lead to a breakdown of the numerical code, in the case of high CFL numbers, or 

when multiphase problems are solved without proper monotonicity preserving limiters. The 

judicious use of limiters specially developed for the DG method, along with the discontinuity 

detection scheme, is believed to be key factors in the successful shock capture with a 

minimum penalty in accuracy. 

In addition, we investigated the evolution of the gas and solid phase concentrations, as 

summarized in Fig. 13 and Fig. 14. The initial conditions for this multiphase case are given in 

Table 2. The physical justifications obtained from the one-dimensional Sod’s shock tube in 

dusty gas flows hold true here. That is, the presence of dust particles leads to a weakened 

shock wave whose front is cut by the relaxation zone. Moreover, for the same reason, the 

shock wave front decelerates substantially as time elapses.   
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Fig. 12. High order solutions of the explosion problem for pure gas (h=1/100, t=0.2) 

Without monotonicity preserving limiter (left); with monotonicity preserving limiter (right) (P1 solution) 
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Pure gas Dusty gas Dust 

   

   

   

   
Fig. 13. Graphical presentation of time evolution of density in the multiphase explosion problem (P1 solution) 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

39 

 

  

  

  

 
 

 
 

t=5 t=10 

Fig. 14. Time evolution in the multiphase explosion problem (P1 solution) 
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4.5. 2-D compression corner problem in dusty gas flow  

As the second two-dimensional benchmark problem, we investigated the compression 

corner problem for both the single and multi-phase applications. This problem is far more 

complicated due to the presences of boundary effects and the intrinsic complexity of the flow. 

The incident shock Mach number Ms, the wall inclination angel θw, and the initial condition 

of driven and driver sections define the governing physics of the shock-wave diffraction. The 

schematic of the compression corner problem is illustrated in Fig. 15. 

 

Fig. 15. Schematic of the pure gas (left) and dusty gas (right) 2-D compression corner problems  

(computational domain size: 5L×4L) 

As a validation study, we compared our numerical solutions with the experimental 

results obtained by (Deschambault and Glass, 1983) for the case of a single Mach reflection 

(SMR). The initial condition are for both the single-phase and multiphase cases are provide in  

Table 3. Initial condition for the single Mach reflection problem 

Non-dimensional variable Driver section Driven section 

Pressure 4.64 1.0 

Gas density 2.71 1.4 

Particle concentration 0.1 0.1 

Gas velocity (x-direction) 1.51 0.0 

Gas velocity (y-direction) 0.0 0.0 

Dust velocity (x and y -directions) 0.0 0.0 
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Experimental image (Deschambault and Glass, 1983) P0 soloution  

  

P1 soloution P2 soloution 

A 

 

  

  

  
 

B 

C 

Ben-Dor et al. (2001) Present result (P1 solution) 

Fig. 16. Validation of pure gas case (Isopycnics for single Mach reflection: Ms=2.03 and θw=27°) and verification of dusty gas case 

(A-constant flow Mach number contours, B-constant gaseous phase density contours, and C-constant dust phase spatial density) 
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table 3. The incident shock Mach number is set to 2.03, and the corner wedge angel is given 

by 27°. Numerical solutions, up to the third order of accuracy, were in good agreement with 

experimental data, as shown in Fig. 16. We confine our validation to a single-phase SMR 

case, since no experimental data are available in the case of dusty gas flows. The comparison 

shows that the solutions up to third order accuracy (P
2
) are in good agreement with the 

experimental data. Also, we verified the dusty gas results with the solutions of (Ben-Dor et al., 

2001) for two particle diameters (1 µm and 5µm) in the case of SMR.  The comparison of 

Mach contours as well as isopycnic surfaces of gas and dust densities indicates a good 

agreement. 

Furthermore, a very strong shock wave case studied by Woodward and Colella (1984) 

was investigated. The problem, a strong Mach 10 shock impinging on a wall inclined at 30°, 

was known to lead to a complicated double Mach reflection (DMR). The initial conditions for 

both the single-phase and multiphase cases are summarized in Table 4. 

In Fig. 17 (a), a study on grid independency was done for solutions with the second order 

of accuracy (P
1
). A grid resolution with h=1/100 was found to provide almost identical 

results with h=1/120, and hence the grid with h=1/100 was used throughout. The density and 

Mach contours at non-dimensional time t=200, as shown in Fig. 17 (b) and (c),  indicated that 

the present DG scheme successfully resolves all the important flow features: slip lines, Mach 

Table 4. Initial condition for the double Mach reflection problem 

Non-dimensional variable Driver section Driven section 

Pressure 116.5 1.0 

Gas density 8.0 1.4 

Particle concentration 0.1 0.1 

Gas velocity (x-direction) 8.25 0.0 

Gas velocity (y-direction) 0.0 0.0 

Dust velocity (x and y -directions) 0.0 0.0 
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stem, secondary Mach stem, reflected shock wave, and the formation of supersonic flow in 

the delta region. A weak jetting effect reported in Ben-Dor et al. (2001) was also observed.  

 
(a) Grid independency study: Pressure distribution along the reflecting wedge surface  

 
(b) Density contour 

 
(c) Mach contour 

Fig. 17. Verification study: Double Mach reflection (pure gas P1 solution) 
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The effects of polynomial order on numerical solutions were analyzed in Fig. 18. It can 

be clearly seen that the first-order solution with h=1/100 cannot resolve the expected flow 

feature properly. However, higher order solutions can provide a satisfactory resolution to 

accurately explain the important physical features of the flow. It can also be seen that there is 

no drastic change in solutions when increasing the polynomial order from one (P
1
) to two 

(P
2
). It should be mentioned that application of the positivity preserving scheme is necessary 

to prevent numerical instabilities in this high Mach number flow. 

In order to understand the effects of dust particles on the time evolution of the flow, the 

single-phase and multiphase solutions (pure gas, dusty gas, and dust concentration) are 

summarized in Fig. 19 for two different time steps. One of the main features of the dusty gas 

flows is that the transition region in the shock waves is much thicker than that of the pure gas. 

In the multiphase flow, as the shock front is decelerated due to interaction with particles, a 

longer time is required for the shock front to reach the same location when there is no particle 

in the flow field. It is also obvious that the presence of the particles can lead to attenuation of 

the incident shock wave. It should be mentioned that both the positivity and monotonicity 

preserving limiters were applied in the simulation of multiphase flows to prevent the 

numerical breakdown. 
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(a) Pure gas (P0) 

 

 (b) Pure gas (P1)  

 

 (c) Pure gas (P2)  

Fig. 18. Effects of polynomial orders on the density contours 
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Pure gas (t=1) 

 

Pure gas (t=2) 

 

Dusty gas (t=1) 

 

Dusty gas (t=2) 

 

Dust (t=1) 

 

Dust (t=2) 

Fig. 19. Time evolution of density contours in the compression corner (double Mach reflection) problem (P1 solution) 

The effects of dust particles on the structure of the DMR were also investigated, as 

summarized in Fig. 20. The convex shape of the Mach stem in the pure gas simulation is due 

to the front of the curled slipstream reaching the Mach stem (Li and Ben-Dor, 1999). The 

presence of particles, however, decelerates the velocity of the slipstream front and does not 

allow the slipstream to catch up with the Mach stem, as shown in Fig. 20 (b) of the 

multiphase case with a particulate loading β=0.1 and a particle diameter 10 µm. As a result, 

the Mach stem forms almost perpendicular to the reflecting wall surface in the dusty gas case. 

The secondary reflected shock wave and slipstream are severely distorted so that they are not 

clearly identified. Moreover, the secondary triple point configuration, in which the secondary 

reflected shock wave, Mach stem and slipstream coincide undergoes a significant change so 

that such a point is almost indistinguishable. 
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(a) Pure gas 

 
 

(b) Dusty gas: β=0.1, d=10.0 µm 

  

(c) Dusty gas: β=0.5, d=0.5 µm 

Fig. 20. Change of the DMR structure in presence of dust particles (P1 solution) 

Another dusty gas case with a particulate loading β=0.5 and a particle diameter 0.5 µm 

was considered. Such a setting leads to a greater number of particles in the domain compared 

to the previous case. It can be seen in Fig. 20 (c) that, unlike the previous case in which only 
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the secondary triple point is subject to major change, both the primary and secondary triple 

points are affected by dust particles. Note also that the incident shock front is significantly 

decelerated in this case with high dust concentration. 

Finally, a more detailed parametric study on the effects of particulate loading and 

particle diameter size was summarized in Fig. 21. Isopycnic surfaces, that is, surfaces with a 

constant density of gas phase in the dusty gas indicate that the particulate loading will 

substantially affect the configuration of the triple points. This change is more significant in 

the case of larger dust particles. Moreover, when the particulate loading increases, the 

incident shock front greatly decelerates, especially in the case of smaller dust particles. 

Furthermore, it can be seen that the height of the Mach stem shortens in dusty gas flows. Due 

to the increased momentum and thermal interactions, the height of the Mach stem shortens 

more in the case of a smaller dust particle. In addition, it can be observed that the particle 

diameter affects the curvature and slope of the secondary and primary reflected shock waves. 

The larger the particle diameter is the less is the curvature of the secondary reflected wave. 

Also the primary reflected shock gets more aligned with the secondary reflected shock as the 

diameter increases. In case of large particles and high mass loadings, the reflected shocks are 

completely distorted. Furthermore, it can be seen that the slipstreams are affected by increase 

of particulate loading. The slipstreams are found highly distorted in case of smaller particles. 

In summary, it can be inferred that the increase of particle diameter and mass loading would 

lead to blurrier flow patterns of reflected waves and slipstreams. The surfaces of constant 

density of solid phase in the dusty gas, shown in Fig. 21 (b), imply that smaller particles can 

follow the gas phase closely, but larger particles cannot follow the gas phase, so  
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β=0.1, d=1.0 µm β=0.5, d=1.0 µm β=1.0, d=1.0 µm 

   
β=0.1, d=5.0 µm β=0.5, d=5.0 µm β=1.0, d=5.0 µm 

   
β=0.1, d=10.0 µm β=0.5, d=10.0 µm β=1.0 , d=10.0 µm 

(a) Gas phase 

   
β=0.1, d=1.0 µm β=0.5, d=1.0 µm β=1.0, d=1.0 µm 

  
 

β=0.1, d=5.0 µm β=0.5, d=5.0 µm β=1.0, d=5.0 µm 

   
β=0.1, d=10.0 µm β=0.5, d=10.0 µm β=1.0 , d=10.0 µm 

(b) Solid phase 

Fig. 21. Parametric study on particulate loading and particle diameter in the double Mach reflection problem (P1 solution) 
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that the structure of isopycnic surfaces becomes drastically different from that of the 

corresponding gas.  

4.6. Axisymmetric particle-laden under-expanded jet  

One of the few experimental studies on the interaction of particles with shock waves is 

the case of under-expanded supersonic jets of gas and particle. In this subsection, we 

investigate the problem of supersonic jets of particle-laden gas (Sommerfeld, 1994). In order 

to implement the axisymmetric formulation in the present computational framework, the 

source terms in the system of governing equations should be modified. The axisymmetric 

equations can be easily derived by following previous studies (Ishii et al., 1989; Pelanti and 

LeVeque, 2006; Sommerfeld, 1994). The problem is defined as a supersonic jet which is 

expanded from a high pressure chamber into a low pressure chamber, as illustrated in Fig. 22. 

 

Fig. 22. Schematic of the under-expanded jet of particle-laden gas 

(computational domain size: 5D×10D) 

The location of Mach disk in the absence of particles is first studied for validation of the 

pure gas solver. This parameter has been experimentally studied by various researchers in the 

past (Avduevskii et al., 1970; Crist et al., 1966; Lewis and Carlson, 1964; Sommerfeld, 
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1994). Recently, Franquet et al. (2015) presented an extensive review on experimental works 

dealing with free under-expanded jets. The comparison of Mach disk location with 

experimental results is shown in Fig. 23. Generally, the results are in good agreement with 

experimental data of Avduevskii et al. (1970) for mid-range pressure ratios. In the case of 

pressure ratios of 2 and 100, our predictions are more close to the experimental results of 

Lewis and Carlson (1964). 

 

Fig. 23. Comparison of prediction of Mach-disc location depending on the pressure ratio for the pure gas flow with previous 

experimental results 

Moreover, a comparison of dusty gas solutions with experiments of Sommerfeld (1994) is 

shown in Fig. 24. Here, particle properties are set equal to the values of diameter 45 µm and 

mass density 2500 kg/m
3
. In this problem, one of the important flow features is the upstream 

movement of Mach disk as a consequence of the interaction of gas phase with particles. As 

reported in (Sommerfeld, 1994), when the particle loading increases, the Mach disk gets 

closer to the nozzle exit and the wave patterns observed in the downstream of the Mach disk 

becomes more pronounced. The phenomena of movement of Mach disk has also been 

reported in (Carlson and Lewis, 1964) and (Draper and Jarvinen, 1967). As can be seen in Fig. 
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24 (b), even though an exact match with experimental results is not achieved, a close 

agreement in the qualitative trend of upstream movement of the Mach disk is found. There 

were, nonetheless, some differences between the numerical solutions and the experimental 

shadowgraphs; for example, the curvature of the Mach disk and the width of the jet boundary. 

While experiments show that the Mach disk tends to straighten as the particle loading 

increases, the numerical simulation cannot predict this feature. In addition, the width of the 

jet boundary is over-predicted in the numerical solutions compared to experimental results. 

Such deviations may arise from the difference in considering the effect of a nozzle. In the 

present investigation, for the sake of simplicity, the computation is set up to simulate 

expansion of a circular jet from a hole into ambient condition without considering a nozzle. 

Apparently, further in-depth investigation will be necessary for capturing all the detailed 

features observed in experiments. 
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d e f 

 

 

Fig. 24  Shadowgraphs of the under-expanded gas-particle (Sommerfeld, 1994) (top) and  density contours of pure gas 

solution (right) with dusty gas (left) jet for different particle loadings (bottom): a) β= 0.0; b) β= 0.11 ; c) β= 0.24; d) β= 

0.35; e) β= 0.64; f) β= 1.07 (P0 = 0.31MPa, P0/P∞ = 29.8, d = 45µm) (P1 solution) 
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5. Concluding remarks 

Complex wave patterns in dilute gas-particle flows were investigated in detail using a 

novel DG method developed for solving the two-fluid model for dusty gas flows. In 

particular, it was shown that, when a dust contact discontinuity is present in the dusty gas 

flow, a pseudo-compound wave as well as a composite wave can form. Further, the new DG 

scheme not only meets the demand for high order accuracy (at least second-order) to 

accurately simulate dusty gas flows, but it can also handle the tricky source terms of coupling 

effects between the two phases, without resorting to the complicated operator splitting 

method commonly employed in the conventional method. In fact, in the study of multiphase 

flow, developing a robust DG solver for dusty gas flows has recently been considered a 

challenging topic deserving attention.  

It turned out that the orthogonality of the basis functions, the backbone of the DG 

method, again played a critical role in the novel treatment of the high order moments of the 

polynomial approximations to the source-term. Based on the new DG scheme, various 

benchmark problems with different physical features in one- and two-dimensional space were 

studied. In order to elaborate the complex wave patterns in gas-particle flows, the wave 

propagation mechanisms in the one-dimensional shock tube problem of the dusty gas were 

first investigated in detail. Several abnormal waves in dusty gas flows—most of them not 

previously identified—were highlighted and a physical explanation on the origin of such 

abnormal waves was given. 

In addition, the new unstructured DG scheme was applied to two different types of 

problems with and without the presence of boundary effects.  The results in both cases were 

shown to be in accordance with the previous data. The explosion case was first simulated in 

such a way that radial symmetry was preserved to confirm the one-dimensional behavior. 
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Then, the multiphase explosion problem was considered to examine the ability of the 

numerical method to capture more complex flow patterns. The new scheme was then applied 

to investigate the compression corner problem for both the single and multi-phase 

applications. Both single and double Mach reflection problems were solved and the higher 

order solutions (up to polynomial order of two) were successfully obtained. 

Furthermore, a detailed parametric study on particulate loading and particle diameter size 

was conducted. Isopycnic surfaces indicated that the particulate loading substantially affects 

the structure of the double Mach reflection, including the configuration of triple points. The 

main reason for this change is the amplification of the relaxation region, that is, the main 

element of the abnormal waves in dusty gas flows. In all cases, it was found that the 

secondary triple point was much more affected by the dust particles. Moreover, the convex 

Mach stem formed in the pure gas flow changed into a perpendicular Mach stem in the dusty 

gas flows. It was found that the particle diameter and mass loading affect the slope and 

curvature of the reflected waves as well. While an increase in particle diameter causes the 

secondary reflected wave to align along the primary wave, the increase in mass loading leads 

to increase of the intersection angle of these two waves. It was also found that as the particle 

diameter and mass loading increase, the structure of the DMR becomes blurrier. 

Lastly, based on axisymmetric formulation, the problem of particle-laden free under-

expanded jet was investigated for the purpose of validating the numerical simulation in 

capturing multiphase interactions. Even though a slight over-estimation of Mach disk location 

and jet boundary width was found in the numerical solutions, the important feature of 

upstream movement of Mach disk was shown in good agreement with experimental results. 

One of the future applications of the present study will be to simulate the impingement of 

a rocket plume on the lunar surface, and the subsequent dusty gas flows formed by the 
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ejection of solid particles from the regolith. Inherent complexities consisting of various flow 

regimes—the plume expanding in vacuum, standoff shock, stagnation region, local erosion, 

supersonic dusty jet flow, rarefied flow, and so on—in this problem will make high-fidelity 

numerical simulation a grandly challenging problem. We hope to report in future the results 

of studies of this problem using the present high-resolution DG framework on an Eulerian 

multiphase system of equations for dusty gas flows. 
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